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What is this talk about?

Data languages: sets of finite words over an infinite alphabet

invariant under permutations of the letters.

Lifting of some classical results to data languages, e.g.

translations between monoids and logic

characterization of first-order definability

Example

L = {w ∈ N⋆ ∶ at most 2 distinct values in w}

= {ε, , , , , , . . .}

= {ε, , , , . . .}



Logics, automata, and monoids over infinite alphabets:

all languagesclassical

MSO logic

non-deterministic finite automata
unambiguous finite automata

deterministic finite automata

finitemonoids

FO logic

counter-free deterministic automata

aperiodic finite monoids
x
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Logics corresponding to:

● orbit-finite data monoids

[Bojanczyk 2011]

● aperiodic orbit-finite data m.

x



Finite alphabet:

MSO logic

∃X . first ∈ X ∧ last /∈ X

∧ ∀y . y ∈ X ↔ y + 1 /∈ X

Finite Automata

0|D| 1|D| 0|D| . . .|DD| 1|D|

q

Finite monoids

s ⋅ t = s

t ⋅ s = t

Infinite alphabet:

MSO logic with data tests

∃X . first ∈ X ∧ last /∈ X

∧ ∀y . y ∈ X ↔ y + 1 /∈ X

∧ ∀y , z ∈ X → y ∼ zy ∼ zy ∼ z

Finite Memory Automata

|D||D||D| . . .|DD||D|

q( )

Orbit-finite Data Monoids

s( ) ⋅ t( ) = s( )

t( ) ⋅ s( ) = t( )
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Consider the Myhill-Nerode equivalence ≡L for the data language

L = {w ∈ N⋆ ∶ at most 2 distinct values in w}

N⋆ N⋆
/≡L

ε
(empty word)

1

...
(constant words)

. . .
s( )s( )s( )

...
(words with two data values)

. . .
t( ) = t( )t( ) = t( )

(words with more than

two data values) 0

This gives a data monoid with products defined by equations like

s( ) ⋅ s( ) = t( ) t( ) ⋅ s( ) = 0 ...

The data monoid is orbit-finite because

it has finitely many elements up to renamings
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Consider the Myhill-Nerode equivalence ≡L for the data language

L = {w ∈ N⋆ ∶ w contains at most one occurrence of each value}

N⋆ N⋆
/≡L

ε
(empty word)

1

(singleton words)

. . .
s( )s( )s( )

(two values, each occurring once)

. . .
t( ) = t( )t( ) = t( )

(three values, each occurring once)

. . .. . .
u( ) = . . .u( ) = . . .

⋮ ⋮

(multiple occurrences of some value) 0

This syntactic data monoid is not orbit-finite

(unbounded “memory” → infinitely many orbits!)
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Languages recognized by orbit-finite data monoids:

Closed under all boolean operations

First value = last value

⋯⋯

∃x , y . x ∼ y ∧ x = first ∧ y = last

At least two distinct values

⋯ ⋯

∃x , y . x ≁ y ∧ y = x+1

At least three distinct values

⋯ ⋯ ⋯

∃x , y . x ≁ y ∧ (x ≁ x+1) ∧ (y−1 ≁ y)
∧ ∄ z ∈ [x+1, y−2]. (z ≁ z+1)

All data tests are

guarded by formulas

defining bijections!

First value reappears later

Some value appears twice

Every value appears at most once
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Languages recognized by orbit-finite data monoids:
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Definition

Rigidly guarded MSO∼ is the fragment of MSO with data tests

defined by the following grammar:

ϕ ↦ x < y ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ∃x . ϕ ∣ ∃Y . ϕ ∣

x ∼ y ∧ α(x , y)x ∼ y ∧ α(x , y)x ∼ y ∧ α(x , y)

where α(x , y) is generated by the same grammar and is rigid

i.e. in every word, it determines xxx from yyy and vice versa.

Rigidity can be checked, or enforced syntactically like in

αmin(x , y) = α(x , y) ∧ ∄x , y ′. [x ′, y ′] ⊊ [x , y] ∧ α(x ′, y ′)

We can use shorthands like

α(x , y) ∧ x ≁≁≁ y = α(x , y) ∧ ¬(α(x , y) ∧ x ∼ y)

α(x , y) →→→ x ∼ y = ¬α(x , y) ∨ (α(x , y) ∧ x ∼ y)
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Theorem 1

Rigidly guarded MSO∼

=

Orbit-finite data monoids.

...and as in the Schützenberger-McNaughton-Papert’s theorem:

Theorem 2

Rigidly guarded FO∼
=

Aperiodic orbit-finite data monoids.



From logic to monoids: induction and closure properties

1 Negation: easy, by definition of recognizability

2 Conjunction: product of orbit-finite data monoids

3 Existential quantification: powerset construction

i.e. given h ∶ (N × B)⋆ → Mh ∶ (N × B)⋆ → Mh ∶ (N × B)⋆ → M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

for a formula ϕ(X)

, construct h′ ∶ N⋆ → ℘(M)h′ ∶ N⋆ → ℘(M)h′ ∶ N⋆ → ℘(M)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

for the quantified formula ∃X . ϕ(X)

:

elements of ℘(M) are sets of elements of M

product is naturally defined by S ⋅ T = {s ⋅ t ∣ s ∈ S , t ∈ T}

stronger invariant (projectability) that forbids the following case

h(w ,XXX) = s( ) and h(w ,X ′X ′X ′) = s( )

4 Rigidly guarded data tests: product with non-projectable morphism

i.e. given h ∶ (N × B × B)⋆ → Mh ∶ (N × B × B)⋆ → Mh ∶ (N × B × B)⋆ → M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

for a rigid guard α(x ,y)

, construct h′ ∶ (N × B × B)⋆ → M ′h′ ∶ (N × B × B)⋆ → M ′h′ ∶ (N × B × B)⋆ → M ′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
for the data test α(x , y) ∧ x ∼ y
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From monoids to logic: generalization of Schützenberger’s proof

Given a morphism h ∶ N⋆ → M, logically define the language h−1(s)

by induction on the size of the infix-closed set s↑ = {t ∣ s ∈ M ⋅ t ⋅ M}s↑ = {t ∣ s ∈ M ⋅ t ⋅ M}s↑ = {t ∣ s ∈ M ⋅ t ⋅ M}.

Key ingredients in the classical aperiodic case:

1 s = (s ⋅ M)(s ⋅ M)(s ⋅ M) ∩ (M ⋅ s)(M ⋅ s)(M ⋅ s) ∩ s↑s↑s↑

2 h(w) ∈ (s ⋅ M) ↔ ∃ prefix u ⋅ a of w such that h(u) ⋅ h(a) ∈ (s ⋅ M)

(w.l.o.g. let u be maximal such that h(u)↑ ⊊ s↑)

3 h(w) ∈ s↑ ↔ ∀ infixes a ⋅ u ⋅ b of w , h(a) ⋅ h(u) ⋅ h(b) ∈ s↑

(w.l.o.g. let u be maximal such that h(u)↑ ⊊ s↑)

Additional difficulties with data monoids:

products depend on data values

data tests must be performed under rigid guards

“data groups” must be considered to keep track of data values
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Example

Consider the product s( ) ⋅ t( ) = r( ) of two elements

ψs (x , z1 , z2 , y ) ψt ( x ′ , z ′1 , y ′ )

. . . . . . . . . ⋅ . . . . . .

ψr (x , z2 , z ′1 , y ′ )

Stronger inductive hypothesis

Given a morphism h ∶ N⋆ → M and an orbit s( , . . . , ),

one can construct the following objects by induction on s↑:

1 a formula ϕ↑s(x , y)ϕ↑s(x , y)ϕ↑s(x , y) that defines the infixes w[x , y] ∈ h−1(s↑)w[x , y] ∈ h−1(s↑)w[x , y] ∈ h−1(s↑)

2 for each rigid guard α(x , y) that entails ϕ↑s(x , y),

a rigid formula ψαs (x , z1, ..., zk , y) such that

w ⊧ ψαs (x , z1, ..., zk , y) → h(w[x , y]) = s(w(z1), ...,w(zk))w ⊧ ψαs (x , z1, ..., zk , y) → h(w[x , y]) = s(w(z1), ...,w(zk))w ⊧ ψαs (x , z1, ..., zk , y) → h(w[x , y]) = s(w(z1), ...,w(zk))
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From monoids to logic: non-aperiodic case

1 Check that h(w) ∈ (M ⋅ s) ∩ (s ⋅ M) ∩ s↑

2 Factorize w = u1 a1 ← v1 → b1 u2 a2 ← v2 → b2
. . .

w1 w2

with h(ui)
↑ ⊊ s↑ and vi maximal such that h(vi)

↑ ⊊ s↑

3 Guess elements s1, s2, . . . (over a bounded data domain) and

using i.h. and products, check that each sisisi is a renaming of h(wi)h(wi)h(wi)

4 Check that each pair si , si+1si , si+1si , si+1 is a renaming of h(wi), h(wi+1)h(wi), h(wi+1)h(wi), h(wi+1)

and, similarly, that s1, sns1, sns1, sn is a renaming of h(w1), h(wn)h(w1), h(wn)h(w1), h(wn)

5 Inductively compute the partial products s1 ⋅ . . . ⋅ si , for i = 1, . . . , n:

Lemma

s1 ⋅ . . . ⋅ sn is a renaming of h(w) = h(w1) ⋅ . . . ⋅ h(wn).
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An interesting class:

● decidable equivalence?

● closed under complement?

● logical characterization?
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