On the use of guards for logics with data

Gabriele Puppis

LaBRI / CNRS

based on joint works with

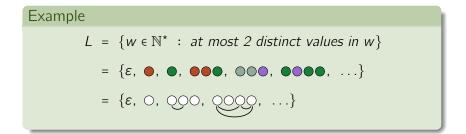
Thomas Colcombet and Clemens Ley

What is this talk about?

Data languages: sets of finite words over an infinite alphabet invariant under permutations of the letters.

Lifting of some classical results to data languages, e.g.

- translations between monoids and logic
- characterization of first-order definability



all classical languages

MSO logic NSO losi non-deterministic finite automata unanbiguous finite automata unanbiguous finite automata deterministic finite automata finite monoids

^{aperiodic} finite monoids ^{counter-free deterministic automata} FO logic

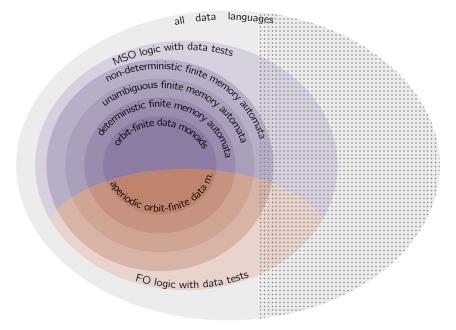
all classical languages

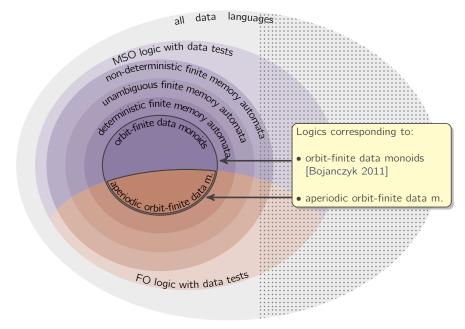
NISO logic with NSO logic NSO deterministic finite me automata non-biquous finite me automata Unal inistic finite me automata t-finite da monoids

⁹⁰eriodic t-finite da monoi. ^{Counter-free} deterministic automata

FO logic with

all cidatiatal languages MSO logic with data unal inistic finite memo autonal bit finite dat monoids Providic bit-finite dat mon. FO logic with data





Finite alphabet:

MSO logic

 $\exists X. \text{ first} \in X \land \text{ last} \notin X$ $\land \forall y. y \in X \leftrightarrow y + 1 \notin X$

Infinite alphabet:

• MSO logic with data tests

 $\begin{array}{l} \exists X. \ \mbox{first} \in X \ \land \ \mbox{last} \notin X \\ \land \ \ \forall y. \ y \in X \leftrightarrow y + 1 \notin X \\ \land \ \ \forall y, z \in X \ \rightarrow \ \textbf{y} \sim \textbf{z} \end{array}$

Finite alphabet:

MSO logic

 $\exists X. \text{ first } \in X \land \text{ last } \notin X$ $\land \forall y. y \in X \leftrightarrow y + 1 \notin X$

Infinite alphabet:

• MSO logic with data tests

 $\exists X. \text{ first } \in X \land \text{ last } \notin X$ $\land \forall y. \ y \in X \leftrightarrow y + 1 \notin X$ $\land \forall y, z \in X \rightarrow y \sim z$

• Finite Memory Automata

Finite alphabet:

MSO logic

 $\exists X. \text{ first } \in X \land \text{ last } \notin X$ $\land \forall y. y \in X \leftrightarrow y + 1 \notin X$

• Finite monoids

$$s \cdot t = s$$
$$t \cdot s = t$$

Infinite alphabet:

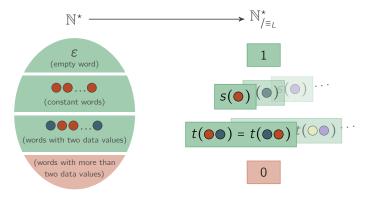
• MSO logic with data tests

- $\exists X. \text{ first } \in X \land \text{ last } \notin X$ $\land \forall y. \ y \in X \leftrightarrow y + 1 \notin X$ $\land \forall y, z \in X \rightarrow y \sim z$
- Finite Memory Automata

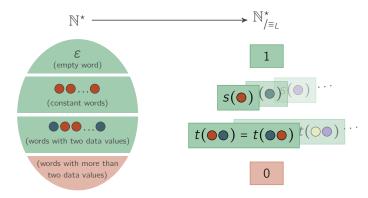
• Orbit-finite Data Monoids

$$s(\bigcirc) \cdot t(\bigcirc) = s(\bigcirc)$$
$$t(\bigcirc) \cdot s(\bigcirc) = t(\bigcirc)$$

Consider the Myhill-Nerode equivalence \equiv_L for the data language $L = \{ w \in \mathbb{N}^* : at most 2 \text{ distinct values in } w \}$



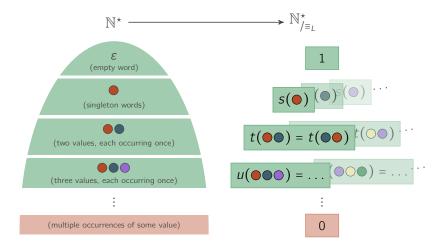
Consider the Myhill-Nerode equivalence \equiv_L for the data language $L = \{w \in \mathbb{N}^* : at most 2 \text{ distinct values in } w\}$



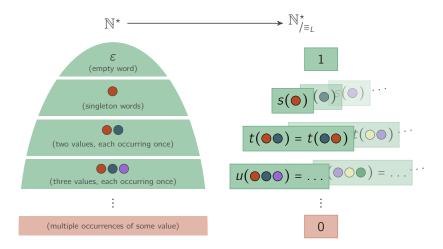
This gives a data monoid with products defined by equations like

 $s(\bullet) \cdot s(\bullet) = t(\bullet \bullet)$ $t(\bullet \bullet) \cdot s(\bullet) = 0$

The data monoid is orbit-finite because it has finitely many elements up to renamings Consider the Myhill-Nerode equivalence \equiv_L for the data language $L = \{ w \in \mathbb{N}^* : w \text{ contains at most one occurrence of each value} \}$



Consider the Myhill-Nerode equivalence \equiv_l for the data language $L = \{ w \in \mathbb{N}^* : w \text{ contains at most one occurrence of each value} \}$



This syntactic data monoid is **not orbit-finite** (unbounded "memory" \rightarrow infinitely many orbits!)

 \checkmark Closed under all boolean operations

✓ First value = last value

.....

✓ At least two distinct values
...●●●●●…

✓ At least three distinct values

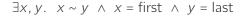
 $\cdots \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \cdots \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \cdots$

X First value reappears later

X Some value appears twice

 \checkmark Closed under all boolean operations

✓ First value = last value



✓ At least two distinct values
...●●●●…

✓ At least three distinct values

 $\cdots \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \cdots \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \cdots$

X First value reappears later

X Some value appears twice

 \checkmark Closed under all boolean operations

✓ First value = last value

 $\exists x, y. x \sim y \land x =$ first $\land y =$ last

✓ At least two distinct values
...●●●●…

 $\exists x, y. \ x \not\sim y \land y = x+1$

✓ At least three distinct values

 $\cdots \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \cdots \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \cdots$

X First value reappears later

X Some value appears twice

 \checkmark Closed under all boolean operations

✓ First value = last value

 $\exists x, y. x \sim y \land x =$ first $\land y =$ last

✓ At least two distinct values
...●●●●…

 $\exists x, y. x \not\sim y \land y = x+1$

✓ At least three distinct values

 $\exists x, y. \quad x \neq y \land (x \neq x+1) \land (y-1 \neq y)$ $\land \nexists z \in [x+1, y-2]. (z \neq z+1)$

First value reappears later

X Some value appears twice

 \checkmark Closed under all boolean operations

✓ First value = last value

).....

✓ At least two distinct values
...●●●●…

✓ At least three distinct values

X First value reappears later

X Some value appears twice

K Every value appears at most once

 $\exists x, y. \ x \neq y \land y = x+1 \blacktriangleleft$ $\exists x, y. \ x \neq y \land (x \neq x+1) \land (y-1 \neq y) \land \exists z \in [x+1, y-2]. \ (z \neq z+1) \checkmark$

 $\exists x, y, x \sim y \land x = \text{first} \land y = \text{last} \blacktriangleleft$

All data tests are **guarded** by formulas defining **bijections**!

Definition

Rigidly guarded MSO[~] is the fragment of MSO with data tests defined by the following grammar:

$$\varphi \mapsto x < y \mid x \in Y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x. \varphi \mid \exists Y. \varphi \mid x \sim y \land \alpha(x, y)$$

where $\alpha(x, y)$ is generated by the same grammar and is **rigid** i.e. in every word, it **determines** *x* **from** *y* **and vice versa**.

Definition

Rigidly guarded MSO[~] is the fragment of MSO with data tests defined by the following grammar:

$$\varphi \mapsto x < y \mid x \in Y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x. \varphi \mid \exists Y. \varphi \mid \\ x \sim y \land \alpha(x, y)$$

where $\alpha(x, y)$ is generated by the same grammar and is **rigid** i.e. in every word, it **determines** x from y and vice versa.

W Rigidity can be checked, or enforced syntactically like in $\alpha^{\min}(x, y) = \alpha(x, y) \land \exists x, y'. [x', y'] \notin [x, y] \land \alpha(x', y')$

🕼 We can use shorthands like

...and as in the Schützenberger-McNaughton-Papert's theorem:

Theorem 2 Rigidly guarded FO~ II Aperiodic orbit-finite data monoids.

- Negation: easy, by definition of recognizability
- Onjunction: product of orbit-finite data monoids

- Negation: easy, by definition of recognizability
- ② Conjunction: product of orbit-finite data monoids
- Sexistential quantification: powerset construction i.e. given $\underbrace{h: (\mathbb{N} \times \mathbb{B})^* \to M}_{\text{for a formula } \varphi(X)}$, construct $\underbrace{h': \mathbb{N}^* \to \mathcal{P}(M)}_{\text{for the quantified formula } \exists X. \varphi(X)}$
 - elements of $\mathcal{P}(M)$ are sets of elements of M
 - product is naturally defined by $S \cdot T = \{s \cdot t \mid s \in S, t \in T\}$

- Negation: easy, by definition of recognizability
- ② Conjunction: product of orbit-finite data monoids
- Sexistential quantification: powerset construction i.e. given $\underbrace{h: (\mathbb{N} \times \mathbb{B})^* \to M}_{\text{for a formula } \varphi(X)}$, construct $\underbrace{h': \mathbb{N}^* \to \mathcal{P}(M)}_{\text{for the quantified formula } \exists X. \varphi(X)}$
 - elements of $\mathcal{P}(M)$ are sets of **pairwise orbit-distinct** elements of M
 - product is naturally defined by $S \cdot T = \{s \cdot t \mid s \in S, t \in T\}$
 - **stronger invariant** (**projectability**) that forbids the following case $h(w, \mathbf{X}) = c(\mathbf{e})$ and $h(w, \mathbf{X}') = c(\mathbf{e})$

 $h(w, X) = s(\bullet)$ and $h(w, X') = s(\bullet)$

- Negation: easy, by definition of recognizability
- ② Conjunction: product of orbit-finite data monoids
- Sexistential quantification: powerset construction i.e. given $\underbrace{h: (\mathbb{N} \times \mathbb{B})^* \to M}_{\text{for a formula } \varphi(X)}$, construct $\underbrace{h': \mathbb{N}^* \to \mathcal{P}(M)}_{\text{for the quantified formula } \exists X. \varphi(X)}$
 - elements of $\mathcal{P}(M)$ are sets of **pairwise orbit-distinct** elements of M
 - product is naturally defined by $S \cdot T = \{s \cdot t \mid s \in S, t \in T\}$
 - **stronger invariant** (**projectability**) that forbids the following case $h(w, X) = s(\bigcirc)$ and $h(w, X') = s(\bigcirc)$
- Rigidly guarded data tests: product with non-projectable morphism i.e. given $h: (\mathbb{N} \times \mathbb{B} \times \mathbb{B})^* \to M$, construct $h': (\mathbb{N} \times \mathbb{B} \times \mathbb{B})^* \to M'$

for a rigid guard $\alpha(x,y)$

for the data test $\alpha(x, y) \wedge x \sim y$

Given a morphism $h: \mathbb{N}^* \to M$, logically define the language $h^{-1}(s)$ by induction on the size of the **infix-closed set** $s^{\uparrow} = \{t \mid s \in M \cdot t \cdot M\}$.

Given a morphism $h: \mathbb{N}^* \to M$, logically define the language $h^{-1}(s)$ by induction on the size of the **infix-closed set** $s^{\uparrow} = \{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:

 $\bullet s = (s \cdot M) \cap (M \cdot s) \cap s^{\uparrow}$

Given a morphism $h: \mathbb{N}^* \to M$, logically define the language $h^{-1}(s)$ by induction on the size of the **infix-closed set** $s^{\uparrow} = \{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:

$$\bullet s = (s \cdot M) \cap (M \cdot s) \cap s^{\uparrow}$$

● h(w) ∈ (s · M) ↔ ∃ prefix u · a of w such that h(u) · h(a) ∈ (s · M)
 (w.l.o.g. let u be maximal such that h(u)[↑] ⊊ s[↑])

Given a morphism $h: \mathbb{N}^* \to M$, logically define the language $h^{-1}(s)$ by induction on the size of the **infix-closed set** $s^{\uparrow} = \{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:

$$\bullet s = (s \cdot M) \cap (M \cdot s) \cap s^{\uparrow}$$

● h(w) ∈ (s · M) ↔ ∃ prefix u · a of w such that h(u) · h(a) ∈ (s · M)
 (w.l.o.g. let u be maximal such that h(u)[↑] ⊊ s[↑])

● h(w) ∈ s[↑] ↔ ∀ infixes a · u · b of w, h(a) · h(u) · h(b) ∈ s[↑]
 (w.l.o.g. let u be maximal such that h(u)[↑] ⊊ s[↑])

Given a morphism $h: \mathbb{N}^* \to M$, logically define the language $h^{-1}(s)$ by induction on the size of the **infix-closed set** $s^{\uparrow} = \{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:

$$\bullet s = (s \cdot M) \cap (M \cdot s) \cap s^{\uparrow}$$

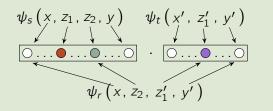
● h(w) ∈ (s · M) ↔ ∃ prefix u · a of w such that h(u) · h(a) ∈ (s · M)
 (w.l.o.g. let u be maximal such that h(u)[↑] ⊊ s[↑])

Additional difficulties with data monoids:

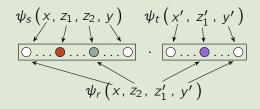
- 😌 products depend on data values
- 🔂 data tests must be performed under rigid guards
- 😌 "data groups" must be considered to keep track of data values

Consider the product $s(\bigcirc) \cdot t(\bigcirc) = r(\bigcirc)$ of two elements

Consider the product $s(\bigcirc) \cdot t(\bigcirc) = r(\bigcirc)$ of two elements



Consider the product $s(\bigcirc) \cdot t(\bigcirc) = r(\bigcirc)$ of two elements

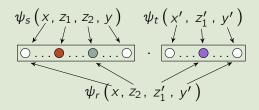


Stronger inductive hypothesis

Given a morphism $h : \mathbb{N}^* \to M$ and an **orbit** $s(\bigcirc, \ldots, \bigcirc)$, one can construct the following objects by induction on s^{\uparrow} :

() a formula $\varphi^{\uparrow}_{s}(x, y)$ that defines the infixes $w[x, y] \in h^{-1}(s^{\uparrow})$

Consider the product $s(\bigcirc) \cdot t(\bigcirc) = r(\bigcirc)$ of two elements



Stronger inductive hypothesis

Given a morphism $h: \mathbb{N}^* \to M$ and an **orbit** $s(\bigcirc, \ldots, \bigcirc)$, one can construct the following objects by induction on s^{\uparrow} :

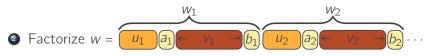
() a formula $\varphi^{\uparrow}_{s}(x, y)$ that defines the infixes $w[x, y] \in h^{-1}(s^{\uparrow})$

If or each rigid guard $\alpha(x, y)$ that entails $\varphi_s^{\uparrow}(x, y)$, a rigid formula $\psi_s^{\alpha}(x, z_1, ..., z_k, y)$ such that

$$w \models \psi_s^{\alpha}(x, z_1, \dots, z_k, y) \rightarrow h(w[x, y]) = s(w(z_1), \dots, w(z_k))$$

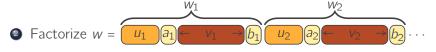
• Check that $h(w) \in (M \cdot s) \cap (s \cdot M) \cap s^{\uparrow}$

• Check that $h(w) \in (M \cdot s) \cap (s \cdot M) \cap s^{\uparrow}$



with $h(u_i)^{\uparrow} \not\subseteq s^{\uparrow}$ and v_i **maximal** such that $h(v_i)^{\uparrow} \not\subseteq s^{\uparrow}$

• Check that $h(w) \in (M \cdot s) \cap (s \cdot M) \cap s^{\uparrow}$



with $h(u_i)^{\uparrow} \subsetneq s^{\uparrow}$ and v_i **maximal** such that $h(v_i)^{\uparrow} \subsetneq s^{\uparrow}$

Guess elements s₁, s₂, ... (over a bounded data domain) and using i.h. and products, check that each s_i is a renaming of h(w_i)

- Check that $h(w) \in (M \cdot s) \cap (s \cdot M) \cap s^{\uparrow}$
- Pactorize $w = \underbrace{u_1 \quad a_1 \leftarrow v_1 \quad \neg b_1 \quad u_2 \quad a_2 \leftarrow v_2 \quad \neg b_2 \cdots$

with $h(u_i)^{\uparrow} \subsetneq s^{\uparrow}$ and v_i **maximal** such that $h(v_i)^{\uparrow} \subsetneq s^{\uparrow}$

- Guess elements s₁, s₂, ... (over a bounded data domain) and using i.h. and products, check that each s_i is a renaming of h(w_i)
- Check that each pair s_i, s_{i+1} is a renaming of $h(w_i), h(w_{i+1})$ and, similarly, that s_1, s_n is a renaming of $h(w_1), h(w_n)$

- Check that $h(w) \in (M \cdot s) \cap (s \cdot M) \cap s^{\uparrow}$
- Sectorize $w = \underbrace{u_1 \quad a_1 \leftarrow v_1 \quad \rightarrow b_1}^{L} \underbrace{u_2 \quad a_2 \leftarrow v_2 \quad \rightarrow b_2}^{L} \cdots$

W2

with $h(u_i)^{\uparrow} \subsetneq s^{\uparrow}$ and v_i **maximal** such that $h(v_i)^{\uparrow} \subsetneq s^{\uparrow}$

 W_1

- Guess elements s₁, s₂, ... (over a bounded data domain) and using i.h. and products, check that each s_i is a renaming of h(w_i)
- Check that each pair s_i, s_{i+1} is a renaming of $h(w_i), h(w_{i+1})$ and, similarly, that s_1, s_n is a renaming of $h(w_1), h(w_n)$
- Solution Inductively compute the partial products $s_1 \cdot \ldots \cdot s_i$, for $i = 1, \ldots, n$:

Lemma

 $s_1 \cdot \ldots \cdot s_n$ is a renaming of $h(w) = h(w_1) \cdot \ldots \cdot h(w_n)$.

