On the use of guards for logics with data

Gabriele Puppis

LaBRI / CNRS

based on joint works with

Thomas Colcombet
and Clemens Ley

What is this talk about?

Data languages: sets of finite words over an infinite alphabet
invariant under permutations of the letters.

Lifting of some classical results to data languages, e.g.
@ translations between monoids and logic

@ characterization of first-order definability

Example
L

{w e N* : at most 2 distinct values in w}

{e, ®, @ @00, 000 0000 ...}

{e, O, QOO, QOQO, ...}
Nl

Logics, automata, and monoids over finite alphabets:

all classical languages

N\SO e(m\nlStIC finite aute,

(\‘de\ LOUS finite aUtoma ’hata
Mﬂ\g\c finite a%ta

&

&
Periodic finite mO’f‘o eiC ¥
CoUnter-free deter\’\'\‘
logic

Logics, automata, and monoids over infinite alphabets:

all classical languages

Logics, automata, and monoids over infinite alphabets:

all cldataal languages

ic with data
O \ogic W
\1\5

FO Iogic with data

Logics, automata, and monoids over infinite alphabets:

all data

o \ogic with data tests

S
Fo logic with data et

Logics, automata, and monoids over infinite alphabets:

Al data langua

o \ogic with data tests

Logics corresponding to:

orbit-finite data monoids
[Bojanczyk 2011]

aperiodic orbit-finite data m.

S
Fo logic with data et

Finite alphabet: Infinite alphabet:

@ MSO logic @ MSO logic with data tests
3X. firste X A last ¢ X 3IX. firste X A last ¢ X
ANVy.yeXoy+1¢X ANVy. yeXeoy+1l¢X

ANVy,zeX - yn~z

Finite alphabet: Infinite alphabet:

e MSO logic @ MSO logic with data tests
3X. firste X A last ¢ X IX. firste X A last ¢ X
ANVy.yeXoy+1¢X ANVy. yeXoy+1l¢X

ANVy,zeX - yn~z

@ Finite Automata @ Finite Memory Automata

RN N N e

Finite alphabet:

e MSO logic

IX. firste X A last¢ X
ANVy.yeXoy+1¢X

@ Finite Automata

RN N N e

@ Finite monoids

Infinite alphabet:

@ MSO logic with data tests

3X. firste X A last ¢ X
ANVy. yeXoy+1l¢X
ANVy,zeX - yn~z

@ Finite Memory Automata

DOED A

@ Orbit-finite Data Monoids

s(0®) t(®) = s(@®)
t(@) s(e®) = t(@®)

Consider the Myhill-Nerode equivalence =; for the data language
L = {weN* : at most 2 distinct values in w}

N*

Iz
[1]

0®)

N*

Consider the Myhill-Nerode equivalence =; for the data language
L = {weN* : at most 2 distinct values in w}

Ni=

0®)

.
. m
=

T o

This gives a data monoid with products defined by equations like
s(@) -s(@) =t(e®) t(0®) s(®)=0

§Z& The data monoid is orbit-finite because
it has finitely many elements up to renamings

Consider the Myhill-Nerode equivalence =; for the data language
L = {w eN* : w contains at most one occurrence of each value}

Consider the Myhill-Nerode equivalence =; for the data language
L = {w eN* : w contains at most one occurrence of each value}

§& This syntactic data monoid is not orbit-finite
(unbounded “"memory” — infinitely many orbits!)

Languages recognized by orbit-finite data monoids:

& Closed under all boolean operations

/ First value = last value

\/ At least two distinct values

\/ At least three distinct values

X First value reappears later
X Some value appears twice

X Every value appears at most once

Languages recognized by orbit-finite data monoids:

& Closed under all boolean operations

& First value = last value
Qo @ Ix,y. x~y A x=first A y=Ilast

\/ At least two distinct values

\/ At least three distinct values

X First value reappears later
X Some value appears twice

X Every value appears at most once

Languages recognized by orbit-finite data monoids:

& Closed under all boolean operations

& First value = last value
Qo @ Ix,y. x~y A x=first A y=Ilast

\/ At least two distinct values
.....:..... X, y. x+y A y=x+1

\/ At least three distinct values

X First value reappears later
X Some value appears twice

X Every value appears at most once

Languages recognized by orbit-finite data monoids:

& Closed under all boolean operations
& First value = last value
o @ Ix,y. x~y A x=first A y=last

\/ At least two distinct values

---..:..--- IX, Y. xX+y A y=x+1
\/ At least three distinct values
Ix,y. x+y A (xex+1l) A (y-1+y)

¥\ ¥\
.....&..... ANPze[x+1l,y-2]. (z+2z+1)

X First value reappears later

X Some value appears twice

X Every value appears at most once

Languages recognized by orbit-finite data monoids:

& Closed under all boolean operations

/ First value = last value
o @ Ix,y. x~y A x=first A y=last 4

\/ At least two distinct values
---..:..--- Ix,y. x+y A y=x+144

\/ At least three distinct values
Ix,y. x+y A (x+x+1) A (y—lr/uy)<

¥\ ¥\
.....&..... ANPze[x+1,y-2]. (z+z+1)

X First value reappears later

All data tests are

X Some value appears twice guarded by formulas
defining bijections!

X Every value appears at most once

Definition
Rigidly guarded MSO" is the fragment of MSO with data tests
defined by the following grammar:

o > x<y [xeY | -p | orp | x| 3IY. 0|
X~y A a(xy)

where a(x, y) is generated by the same grammar and is rigid
i.e. in every word, it determines x from y and vice versa.

Definition
Rigidly guarded MSO" is the fragment of MSO with data tests
defined by the following grammar:
¢ » x<y|xeY [-p|orp | 3Ix |3V 0|
X~y A a(xy)

where a(x, y) is generated by the same grammar and is rigid
i.e. in every word, it determines x from y and vice versa.

§Z Rigidity can be checked, or enforced syntactically like in
a™(x,y) = alx,y) A By Xy Telxy] A alx.y)

§& We can use shorthands like

alx,y) A x+y = alxy) A -(a(xy) A x~y)
alx,y) - x~y = -a(x,y) Vv (a(x,y) A X~y)

Theorem 1
Rigidly guarded MSO~
Il
Orbit-finite data monoids.

...and as in the Schiitzenberger-McNaughton-Papert’s theorem:

Theorem 2

Rigidly guarded FO~
Il

Aperiodic orbit-finite data monoids.

From logic to monoids: induction and closure properties

@ Negation: easy, by definition of recognizability

@ Conjunction: product of orbit-finite data monoids

From logic to monoids: induction and closure properties

@ Negation: easy, by definition of recognizability
@ Conjunction: product of orbit-finite data monoids

© Existential quantification: powerset construction
i.e. given h: (NxB)* - M, construct h': N* - P(M):

for a formula ¢ (X) for the quantified formula 3X. p(X)

o elements of (M) are sets of elements of M

e product is naturally defined by S- T ={s-t | seS, te T}

From logic to monoids: induction and closure properties

@ Negation: easy, by definition of recognizability
@ Conjunction: product of orbit-finite data monoids

© Existential quantification: powerset construction
i.e. given h: (NxB)* - M, construct h': N* - P(M):

for a formula ¢ (X) for the quantified formula 3X. p(X)

o elements of (M) are sets of pairwise orbit-distinct elements of M
e product is naturally defined by S- T ={s-t | seS, te T}

e stronger invariant (projectability) that forbids the following case
h(w,X)=s(®) and h(w,X")=5(@)

From logic to monoids: induction and closure properties

@ Negation: easy, by definition of recognizability
@ Conjunction: product of orbit-finite data monoids

© Existential quantification: powerset construction
i.e. given h: (NxB)* - M, construct h': N* - P(M):

for a formula ¢ (X) for the quantified formula 3X. p(X)
o elements of (M) are sets of pairwise orbit-distinct elements of M
e product is naturally defined by S- T ={s-t | seS, te T}

e stronger invariant (projectability) that forbids the following case
h(w,X)=s(®) and h(w,X")=5(@)

© Rigidly guarded data tests: product with non-projectable morphism
i.e. given h: (NxBxB)* - M, construct b : (NxB xB)* > M’

for a rigid guard a(x,y) for the data test a(x,y) Ax ~y

From monoids to logic: generalization of Schiitzenberger’'s proof

Given a morphism h: N* - M, logically define the language h=1(s)
by induction on the size of the infix-closed set s" = {t | se M-t-M}.

From monoids to logic: generalization of Schiitzenberger’'s proof

Given a morphism h: N* - M, logically define the language h=1(s)
by induction on the size of the infix-closed set s" = {t | se M-t-M}.

Key ingredients in the classical aperiodic case:

Q@s=(-MnM-s)ns

From monoids to logic: generalization of Schiitzenberger’'s proof

Given a morphism h: N* - M, logically define the language h=1(s)
by induction on the size of the infix-closed set s" = {t | se M-t-M}.

Key ingredients in the classical aperiodic case:

Q@s=(-MnM-s)ns

Q@ h(w)e(s-M) < 3 prefix u-a of w such that h(u) - h(a) € (s- M)
(w.l.o.g. let u be maximal such that h(u)' ¢ s')

From monoids to logic: generalization of Schiitzenberger’'s proof

Given a morphism h: N* - M, logically define the language h=1(s)
by induction on the size of the infix-closed set s" = {t | se M-t-M}.

Key ingredients in the classical aperiodic case:

Q@s=(-MnM-s)ns

Q@ h(w)e(s-M) < 3 prefix u-a of w such that h(u) - h(a) € (s- M)
(w.l.o.g. let u be maximal such that h(u)' ¢ s')

©Q h(w)es! < VYinfixesa-u-bofw, h(a)-h(u)-h(b)es!
(w.l.o.g. let u be maximal such that h(u)' ¢ s')

From monoids to logic: generalization of Schiitzenberger’'s proof

Given a morphism h: N* - M, logically define the language h=1(s)
by induction on the size of the infix-closed set s" = {t | se M-t-M}.

Key ingredients in the classical aperiodic case:
Q@s=(-MnM-s)ns
Q@ h(w)e(s-M) < 3 prefix u-a of w such that h(u) - h(a) € (s- M)

(w.l.o.g. let u be maximal such that h(u)' ¢ s')
©Q h(w)es! < VYinfixesa-u-bofw, h(a)-h(u)-h(b)es!

(w.l.o.g. let u be maximal such that h(u)' ¢ s')
Additional difficulties with data monoids:
@ products depend on data values

@ data tests must be performed under rigid guards
€@ ‘“data groups’ must be considered to keep track of data values

Example
Consider the product s(@0Q) - t(®) = r(0@) of two elements

Vs (X, 21,22, y) 'l/}t(jl- z.y")

©..@...0...0] - [0...@0...0]

Example
Consider the product s(@0Q) - t(®) = r(0@) of two elements
Ys(x. 21,2, y) Pe(X's 2. y")
Sl AN L

©..®@...0..0 - [0...@0...0]

\//

Y, (X, 22, Z1y

Example
Consider the product s(@0) - t(®) = r(0@) of two elements

/

O...@.. .@...0]

\//

Yr(X, 22, z ,

Ys(x, 21,22, y) Ye(X. 2z, y")
/' xy\ L

Stronger inductive hypothesis

Given a morphism h:N* - M and an orbit s(O, ..., 0).
one can construct the following objects by induction on s':

@ a formula @l(x,y) that defines the infixes w[x, y] € h™1(s")

Example
Consider the product s(@0) - t(®) = r(0@) of two elements

/

O... ®@. .@...0]

\//

Y, (X, 22, z1

Ys(x, 21,22, y) Ye(X. 2z, y")
AT i

Stronger inductive hypothesis

Given a morphism h:N* - M and an orbit s(O, ..., 0).
one can construct the following objects by induction on s':

@ a formula (pl(x,y) that defines the infixes w[x, y] € h™1(s")

@ for each rigid guard a(x, y) that entails @l(x, y),
a rigid formula Y&(x, z1, ..., zk, y) such that

w kY2 (x, 21, ...z, y) — h(wlx,y]) = s(w(z1), ..., w(z)) |

From monoids to logic: non-aperiodic case

@ Check that h(w) € (M-s) n (s-M) n s'

From monoids to logic: non-aperiodic case

@ Check that h(w) € (M-s) n (s-M) n s’
W1 w2

A A
7~ N N
@ Factorize w = ([0 (EDC) C20 0 GHEEE G,

with h(u;)" ¢ s' and v; maximal such that h(v;)! ¢ s'

From monoids to logic: non-aperiodic case

@ Check that h(w) € (M-s) n (s-M) n s’
W1 w2

A A
7~ Y N
@ Factorize w = ([0 (EDC) C20 0 GHEEE G,

with h(u;)" ¢ s' and v; maximal such that h(v;)! ¢ s'

© Guess elements s1, s, ... (over a bounded data domain) and
using i.h. and products, check that each s; is a renaming of h(w;)

From monoids to logic: non-aperiodic case

@ Check that h(w) € (M-s) n (s-M) n s’

w1 Wo

A A
7~ Y N
@ Factorize w = ([0 (EDC) C20 0 GHEEE G,

with h(u;)" ¢ s' and v; maximal such that h(v;)! ¢ s'

© Guess elements s1, s, ... (over a bounded data domain) and
using i.h. and products, check that each s; is a renaming of h(w;)

@ Check that each pair sj, sj;1 is a renaming of h(w;), h(w;,1)
and, similarly, that s;, s, is a renaming of h(w;), h(wy)

From monoids to logic: non-aperiodic case

@ Check that h(w) € (M-s) n (s-M) n s’

w1 Wo

A A
7~ Y N
@ Factorize w = ([0 (EDC) C20 0 GHEEE G,

with h(u;)" ¢ s' and v; maximal such that h(v;)! ¢ s'

© Guess elements s1, s, ... (over a bounded data domain) and
using i.h. and products, check that each s; is a renaming of h(w;)

@ Check that each pair sj, sj;1 is a renaming of h(w;), h(w;,1)
and, similarly, that s;, s, is a renaming of h(w;), h(wy)

@ Inductively compute the partial products s;-...-s;, fori=1,..., n:

Lemma

Sp+...-Spis arenaming of h(w) = h(wy)-...-h(wy,).

Logics, automata, and monoids over infinite alphabets:

all data

o \ogic with data tests

S
Fo logic with data et

Logics, automata, and monoids over infinite alphabets:

Al data langua

o \ogiC with data tests

(An interesting class:

e decidable equivalence?
e closed under complement?
e logical characterization?

S
Fo logic with data et

