On the use of guards for logics with data

Gabriele Puppis
LaBRI / CNRS

Thomas Colcombet and Clemens Ley

What is this talk about?

Data languages: sets of finite words over an infinite alphabet invariant under permutations of the letters.

Lifting of some classical results to data languages, e.g.

- translations between monoids and logic
- characterization of first-order definability

Example

$$
\begin{aligned}
L & =\left\{w \in \mathbb{N}^{\star}: \text { at most } 2 \text { distinct values in } w\right\} \\
& =\{\varepsilon, 0,0,000,000,0000, \ldots\} \\
& =\{\varepsilon, 0,000,0000, \ldots\}
\end{aligned}
$$

Logics, automata, and monoids over finite alphabets:
all classical languages

MSO logic
non-deterministic finite automata fintar deterministic finite automata
frinte monoids
aperiodic finite monoids
counter-free deterministic aut
FO logic

Logics, automata, and monoids over infinite alphabets:
all classical languages

MSO logic with
non-deterministic finite me
unambiquous finite me automatoztoma de terminists da monoids
सfinitio
aperiodic t-finite da monoi-
counter-free deterministic aut
FO logic with

Logics, automata, and monoids over infinite alphabets:
all cldataal languages
MSO logic with data

FO logic with data

Logics, automata, and monoids over infinite alphabets:
all data languages

FO logic with data tests

Logics, automata, and monoids over infinite alphabets:
all data languages

Finite alphabet:

- MSO logic
$\exists X$. first $\in X \wedge$ last $\notin X$

$$
\wedge \forall y . y \in X \leftrightarrow y+1 \notin X
$$

Infinite alphabet:

- MSO logic with data tests
$\exists X$. first $\in X \wedge$ last $\notin X$

$$
\begin{aligned}
& \wedge \forall y \cdot y \in X \leftrightarrow y+1 \notin X \\
& \wedge \forall y, z \in X \rightarrow y \sim z
\end{aligned}
$$

Finite alphabet:

- MSO logic
$\exists X$. first $\in X \wedge$ last $\notin X$

$$
\wedge \forall y . y \in X \leftrightarrow y+1 \notin X
$$

- Finite Automata

Infinite alphabet:

- MSO logic with data tests
$\exists X$. first $\in X \wedge$ last $\notin X$

$$
\begin{aligned}
& \wedge \forall y \cdot y \in X \leftrightarrow y+1 \notin X \\
& \wedge \forall y, z \in X \rightarrow y \sim z
\end{aligned}
$$

- Finite Memory Automata

Finite alphabet:

- MSO logic
$\exists X$. first $\in X \wedge$ last $\notin X$

$$
\wedge \forall y . y \in X \leftrightarrow y+1 \notin X
$$

- Finite Automata

- Finite monoids

$$
\begin{aligned}
& s \cdot t=s \\
& t \cdot s=t
\end{aligned}
$$

Infinite alphabet:

- MSO logic with data tests
$\exists X$. first $\in X \wedge$ last $\notin X$

$$
\begin{aligned}
& \wedge \forall y \cdot y \in X \leftrightarrow y+1 \notin X \\
& \wedge \forall y, z \in X \rightarrow y \sim z
\end{aligned}
$$

- Finite Memory Automata

- Orbit-finite Data Monoids

$$
\begin{aligned}
& s(\bigcirc \bigcirc) \cdot t(\bigcirc)=s(\bigcirc \bigcirc) \\
& t(\bigcirc) \cdot s(\bigcirc)=t(\bigcirc)
\end{aligned}
$$

Consider the Myhill-Nerode equivalence $\equiv\llcorner$ for the data language $L=\left\{w \in \mathbb{N}^{\star}\right.$: at most 2 distinct values in $\left.w\right\}$

Consider the Myhill-Nerode equivalence $\equiv\llcorner$ for the data language $L=\left\{w \in \mathbb{N}^{\star}\right.$: at most 2 distinct values in $\left.w\right\}$

(words with more than
two data values)

0

This gives a data monoid with products defined by equations like

$$
s(\bigcirc) \cdot s(\bigcirc)=t(\bigcirc) \quad t(\bigcirc) \cdot s(\bigcirc)=0
$$

设㽚 The data monoid is orbit-finite because it has finitely many elements up to renamings

Consider the Myhill-Nerode equivalence $\equiv\llcorner$ for the data language $L=\left\{w \in \mathbb{N}^{\star}: w\right.$ contains at most one occurrence of each value $\}$

Consider the Myhill-Nerode equivalence \equiv_{L} for the data language $L=\left\{w \in \mathbb{N}^{\star}: w\right.$ contains at most one occurrence of each value $\}$

(three values, each occurring once)
(multiple occurrences of some value)

证 This syntactic data monoid is not orbit-finite (unbounded "memory" \rightarrow infinitely many orbits!)

Languages recognized by orbit-finite data monoids:

\checkmark Closed under all boolean operations
\checkmark First value $=$ last value

At least two distinct values
...○○○...
$\sqrt{\checkmark}$ At least three distinct values
$\cdots \circ 000 \cdots \circ 000 \cdots$

X First value reappears later
X Some value appears twice
X Every value appears at most once

Languages recognized by orbit-finite data monoids:

\checkmark Closed under all boolean operations
\checkmark First value $=$ last value

$$
\exists x, y . \quad x \sim y \wedge x=\text { first } \wedge y=\text { last }
$$

At least two distinct values
...○○○...
\ At least three distinct values
$\cdots-000 \cdots 0000 \cdots$

X First value reappears later
\boldsymbol{X} Some value appears twice
\boldsymbol{X} Every value appears at most once

Languages recognized by orbit-finite data monoids:

\checkmark Closed under all boolean operations
\checkmark First value $=$ last value

$$
\exists x, y . \quad x \sim y \wedge x=\text { first } \wedge y=\text { last }
$$

At least two distinct values

$$
\exists x, y . \quad x \nsim y \wedge y=x+1
$$

\ At least three distinct values $\cdots-000 \cdots 0000 \cdots$

X First value reappears later
\boldsymbol{X} Some value appears twice
\boldsymbol{X} Every value appears at most once

Languages recognized by orbit-finite data monoids:
\checkmark Closed under all boolean operations
\checkmark First value $=$ last value

$$
\exists x, y . \quad x \sim y \wedge x=\text { first } \wedge y=\text { last }
$$

At least two distinct values

$$
\exists x, y . \quad x \nsim y \wedge y=x+1
$$

At least three distinct values

$$
\left.\left.\begin{array}{rl}
\exists x, y . & x \nsim y
\end{array}\right)(x \nsim x+1) \wedge(y-1 \nsim y)\right)
$$

\boldsymbol{X} First value reappears later
\boldsymbol{X} Some value appears twice
\boldsymbol{X} Every value appears at most once

Languages recognized by orbit-finite data monoids:
\checkmark Closed under all boolean operations
\checkmark First value $=$ last value

$$
\exists x, y . \quad x \sim y \wedge x=\text { first } \wedge y=\text { last }
$$

At least two distinct values

$$
\exists x, y . \quad x \nsim y \wedge y=x+1
$$

- At least three distinct values

$$
\left.\begin{array}{rl}
\exists x, y . & x \nsim y \\
\wedge & \wedge(x \nsim x+1) \wedge(y-1 \nsim y) \\
& \wedge
\end{array}\right)[x+1, y-2] .(z \nsim z+1) .
$$

$\boldsymbol{\chi}$ First value reappears later
X Some value appears twice
All data tests are guarded by formulas defining bijections!
\boldsymbol{X} Every value appears at most once

Definition

Rigidly guarded MSO ${ }^{\sim}$ is the fragment of MSO with data tests defined by the following grammar:

$$
\begin{aligned}
\varphi \mapsto & x<y|x \in Y| \neg \varphi|\varphi \wedge \varphi| \exists x . \varphi|\exists Y . \varphi| \\
& x \sim y \wedge \alpha(x, y)
\end{aligned}
$$

where $\alpha(x, y)$ is generated by the same grammar and is rigid i.e. in every word, it determines x from y and vice versa.

Definition

Rigidly guarded MSO ${ }^{\sim}$ is the fragment of MSO with data tests defined by the following grammar:

$$
\begin{aligned}
\varphi \mapsto & x<y|x \in Y| \neg \varphi|\varphi \wedge \varphi| \exists x . \varphi|\exists Y . \varphi| \\
& x \sim y \wedge \alpha(x, y)
\end{aligned}
$$

where $\alpha(x, y)$ is generated by the same grammar and is rigid i.e. in every word, it determines x from y and vice versa.
nis Rigidity can be checked, or enforced syntactically like in

$$
\alpha^{\min }(x, y)=\alpha(x, y) \wedge \nexists x, y^{\prime} .\left[x^{\prime}, y^{\prime}\right] \mp[x, y] \wedge \alpha\left(x^{\prime}, y^{\prime}\right)
$$

司 We can use shorthands like

$$
\begin{aligned}
& \alpha(x, y) \wedge x \neq y=\alpha(x, y) \wedge \neg(\alpha(x, y) \wedge x \sim y) \\
& \alpha(x, y) \rightarrow x \sim y=\neg \alpha(x, y) \vee(\alpha(x, y) \wedge x \sim y)
\end{aligned}
$$

Theorem 1

Rigidly guarded MSO~

II
Orbit-finite data monoids.
...and as in the Schützenberger-McNaughton-Papert's theorem:

Theorem 2
Rigidly guarded $\mathbf{F O}^{\sim}$ II
Aperiodic orbit-finite data monoids.
(1) Negation: easy, by definition of recognizability
(2) Conjunction: product of orbit-finite data monoids

From logic to monoids: induction and closure properties

(1) Negation: easy, by definition of recognizability
(2) Conjunction: product of orbit-finite data monoids
(3) Existential quantification: powerset construction

- elements of $\wp(M)$ are sets of elements of M
- product is naturally defined by $S \cdot T=\{s \cdot t \mid s \in S, t \in T\}$

From logic to monoids: induction and closure properties

(1) Negation: easy, by definition of recognizability
(2) Conjunction: product of orbit-finite data monoids
(3) Existential quantification: powerset construction
i.e. given $h:(\mathbb{N} \times \mathbb{B})^{\star} \rightarrow M$, construct $h^{\prime}: \mathbb{N}^{\star} \rightarrow \wp(M)$: for a formula $\varphi(X) \quad$ for the quantified formula $\exists X . \varphi(X)$

- elements of $\wp(M)$ are sets of pairwise orbit-distinct elements of M
- product is naturally defined by $S \cdot T=\{s \cdot t \mid s \in S, t \in T\}$
- stronger invariant (projectability) that forbids the following case

$$
h(w, X)=s(\bigcirc) \quad \text { and } \quad h\left(w, X^{\prime}\right)=s(\bigcirc)
$$

From logic to monoids: induction and closure properties

(1) Negation: easy, by definition of recognizability
(2) Conjunction: product of orbit-finite data monoids
(0) Existential quantification: powerset construction
i.e. given $h:(\mathbb{N} \times \mathbb{B})^{\star} \rightarrow M$, construct $h^{\prime}: \mathbb{N}^{\star} \rightarrow \wp(M)$: for a formula $\varphi(X)$ for the quantified formula $\exists X . \varphi(X)$

- elements of $\wp(M)$ are sets of pairwise orbit-distinct elements of M
- product is naturally defined by $S \cdot T=\{s \cdot t \mid s \in S, t \in T\}$
- stronger invariant (projectability) that forbids the following case

$$
h(w, X)=s(\bigcirc) \quad \text { and } \quad h\left(w, X^{\prime}\right)=s(\bigcirc)
$$

(4) Rigidly guarded data tests: product with non-projectable morphism i.e. given $h:(\mathbb{N} \times \mathbb{B} \times \mathbb{B})^{\star} \rightarrow M$, construct $h^{\prime}:(\mathbb{N} \times \mathbb{B} \times \mathbb{B})^{\star} \rightarrow M^{\prime}$ for a rigid guard $\alpha(x, y)$ for the data test $\alpha(x, y) \wedge x \sim y$

Given a morphism $h: \mathbb{N}^{\star} \rightarrow M$, logically define the language $h^{-1}(s)$ by induction on the size of the infix-closed set $s^{\uparrow}=\{t \mid s \in M \cdot t \cdot M\}$.

Given a morphism $h: \mathbb{N}^{\star} \rightarrow M$, logically define the language $h^{-1}(s)$ by induction on the size of the infix-closed set $s^{\uparrow}=\{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:
(1) $s=(s \cdot M) \cap(M \cdot s) \cap s^{\uparrow}$

From monoids to logic: generalization of Schützenberger's proof

Given a morphism $h: \mathbb{N}^{\star} \rightarrow M$, logically define the language $h^{-1}(s)$ by induction on the size of the infix-closed set $s^{\uparrow}=\{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:
(1) $s=(s \cdot M) \cap(M \cdot s) \cap s^{\uparrow}$
(2) $h(w) \in(s \cdot M) \leftrightarrow \exists$ prefix $u \cdot a$ of w such that $h(u) \cdot h(a) \in(s \cdot M)$ (w.l.o.g. let u be maximal such that $h(u)^{\uparrow} \ddagger s^{\uparrow}$)

From monoids to logic: generalization of Schützenberger's proof

Given a morphism $h: \mathbb{N}^{\star} \rightarrow M$, logically define the language $h^{-1}(s)$ by induction on the size of the infix-closed set $s^{\uparrow}=\{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:
(1) $s=(s \cdot M) \cap(M \cdot s) \cap s^{\uparrow}$
(2) $h(w) \in(s \cdot M) \leftrightarrow \exists$ prefix $u \cdot a$ of w such that $h(u) \cdot h(a) \in(s \cdot M)$ (w.l.o.g. let u be maximal such that $h(u)^{\uparrow} \ddagger s^{\uparrow}$)
(3) $h(w) \in s^{\uparrow} \leftrightarrow \forall$ infixes $a \cdot u \cdot b$ of $w, h(a) \cdot h(u) \cdot h(b) \in s^{\uparrow}$ (w.l.o.g. let u be maximal such that $h(u)^{\uparrow} \mp s^{\uparrow}$)

From monoids to logic: generalization of Schützenberger's proof

Given a morphism $h: \mathbb{N}^{\star} \rightarrow M$, logically define the language $h^{-1}(s)$ by induction on the size of the infix-closed set $s^{\uparrow}=\{t \mid s \in M \cdot t \cdot M\}$.

Key ingredients in the classical aperiodic case:
(1) $s=(s \cdot M) \cap(M \cdot s) \cap s^{\uparrow}$
(2) $h(w) \in(s \cdot M) \leftrightarrow \exists$ prefix $u \cdot a$ of w such that $h(u) \cdot h(a) \in(s \cdot M)$ (w.l.o.g. let u be maximal such that $h(u)^{\uparrow} \ddagger s^{\uparrow}$)
(3) $h(w) \in s^{\uparrow} \leftrightarrow \forall$ infixes $a \cdot u \cdot b$ of $w, h(a) \cdot h(u) \cdot h(b) \in s^{\uparrow}$ (w.l.o.g. let u be maximal such that $h(u)^{\uparrow} \mp s^{\uparrow}$)

Additional difficulties with data monoids:
(-1) products depend on data values
(7) data tests must be performed under rigid guards
(4) "data groups" must be considered to keep track of data values

Example

Consider the product $s(\bigcirc \bigcirc) \cdot t(\bigcirc)=r(\bigcirc \bigcirc)$ of two elements

Example

Consider the product $s(\bigcirc \bigcirc) \cdot t(\bigcirc)=r(\bigcirc \bigcirc)$ of two elements

Example

Consider the product $s(O \bigcirc) \cdot t(\bigcirc)=r(\bigcirc \bigcirc)$ of two elements

Stronger inductive hypothesis

Given a morphism $h: \mathbb{N}^{\star} \rightarrow M$ and an orbit $s(\bigcirc, \ldots, \bigcirc)$, one can construct the following objects by induction on s^{\uparrow} :
(1) a formula $\varphi_{s}^{\uparrow}(x, y)$ that defines the infixes $w[x, y] \in h^{-1}\left(s^{\uparrow}\right)$

Example

Consider the product $s(\bigcirc \bigcirc) \cdot t(\bigcirc)=r(\bigcirc \bigcirc)$ of two elements

Stronger inductive hypothesis

Given a morphism $h: \mathbb{N}^{\star} \rightarrow M$ and an orbit $s(\bigcirc, \ldots, \bigcirc)$, one can construct the following objects by induction on s^{\uparrow} :
(1) a formula $\varphi_{s}^{\uparrow}(x, y)$ that defines the infixes $w[x, y] \in h^{-1}\left(s^{\uparrow}\right)$
(2) for each rigid guard $\alpha(x, y)$ that entails $\varphi_{s}^{\uparrow}(x, y)$,
a rigid formula $\psi_{s}^{\alpha}\left(x, z_{1}, \ldots, z_{k}, y\right)$ such that

$$
w \vDash \psi_{s}^{\alpha}\left(x, z_{1}, \ldots, z_{k}, y\right) \rightarrow h(w[x, y])=s\left(w\left(z_{1}\right), \ldots, w\left(z_{k}\right)\right)
$$

From monoids to logic: non-aperiodic case
(1) Check that $h(w) \in(M \cdot s) \cap(s \cdot M) \cap s^{\uparrow}$

From monoids to logic: non-aperiodic case

(1) Check that $h(w) \in(M \cdot s) \cap(s \cdot M) \cap s^{\uparrow}$
(2) Factorize $w=\overbrace{\left.u_{1} \text { alt } a_{1} \rightarrow b_{1}\right)}^{w_{1}} \overbrace{u_{2}}^{a_{2}}$
with $h\left(u_{i}\right)^{\uparrow} \mp s^{\uparrow}$ and v_{i} maximal such that $h\left(v_{i}\right)^{\uparrow} \mp s^{\uparrow}$

From monoids to logic: non-aperiodic case

(1) Check that $h(w) \in(M \cdot s) \cap(s \cdot M) \cap s^{\uparrow}$
(2) Factorize $w=\overbrace{\left.u_{1} \text { a } a_{1} \leftarrow v_{1} \rightarrow b_{1}\right)}^{w_{1}} \overbrace{u_{2} \text { a } a_{2} \leftarrow v_{2} \rightarrow b_{2}}^{w_{2}} \cdots$ with $h\left(u_{i}\right)^{\uparrow} \mp s^{\uparrow}$ and v_{i} maximal such that $h\left(v_{i}\right)^{\uparrow} \mp s^{\uparrow}$
(3) Guess elements s_{1}, s_{2}, \ldots (over a bounded data domain) and using i.h. and products, check that each s_{i} is a renaming of $h\left(w_{i}\right)$

From monoids to logic: non-aperiodic case

(1) Check that $h(w) \in(M \cdot s) \cap(s \cdot M) \cap s^{\uparrow}$
(2) Factorize $w=\overbrace{\left.u_{1} \text { a } a_{1} \leftarrow v_{1} \rightarrow b_{1}\right)}^{w_{1}} \overbrace{u_{2}}^{a_{2}+v_{2} \rightarrow b_{2}} \ldots$ with $h\left(u_{i}\right)^{\uparrow} \mp s^{\uparrow}$ and v_{i} maximal such that $h\left(v_{i}\right)^{\uparrow} \mp s^{\uparrow}$
(3) Guess elements s_{1}, s_{2}, \ldots (over a bounded data domain) and using i.h. and products, check that each s_{i} is a renaming of $h\left(w_{i}\right)$
(9) Check that each pair s_{i}, s_{i+1} is a renaming of $h\left(w_{i}\right), h\left(w_{i+1}\right)$ and, similarly, that s_{1}, s_{n} is a renaming of $h\left(w_{1}\right), h\left(w_{n}\right)$

From monoids to logic: non-aperiodic case

(1) Check that $h(w) \in(M \cdot s) \cap(s \cdot M) \cap s^{\uparrow}$
(2) Factorize $w=\overbrace{\left.u_{1} \text { (at }-v_{1} \rightarrow b_{1}\right)}^{w_{1}} \overbrace{u_{2} a_{2} t v_{2} \rightarrow b_{2}}^{w_{2}}$. with $h\left(u_{i}\right)^{\uparrow} \mp s^{\uparrow}$ and v_{i} maximal such that $h\left(v_{i}\right)^{\uparrow} \mp s^{\uparrow}$
(0) Guess elements s_{1}, s_{2}, \ldots (over a bounded data domain) and using i.h. and products, check that each s_{i} is a renaming of $h\left(w_{i}\right)$
(Check that each pair s_{i}, s_{i+1} is a renaming of $h\left(w_{i}\right), h\left(w_{i+1}\right)$ and, similarly, that s_{1}, s_{n} is a renaming of $h\left(w_{1}\right), h\left(w_{n}\right)$
(1) Inductively compute the partial products $s_{1} \cdot \ldots \cdot s_{i}$, for $i=1, \ldots, n$:

Lemma

$s_{1} \cdot \ldots \cdot s_{n}$ is a renaming of $h(w)=h\left(w_{1}\right) \cdot \ldots \cdot h\left(w_{n}\right)$.

Logics, automata, and monoids over infinite alphabets:
all data languages

FO logic with data tests

Logics, automata, and monoids over infinite alphabets:
all data languages
lanambig with data tests

FO logic with data tests

