
On the use of guards for logics with data

Thomas Colcombet, Clemens Ley and Gabriele Puppis

MFCS 2011

What is this talk about?

Generalizations of classical results about regular languages
from finite-alphabet case to infinite-alphabet case:

correspondence between logics, automata, and monoids

characterizations of first-order definability

decidability of logics

Applications of languages over infinite alphabets (data languages):

Databases: XML documents with text/attributes

Verification: programs with variables over an infinite domain

A data language is a set of words/trees
over a fixed infinite alphabet D (e.g. D = {0, 1, 2, . . .}).

To make life easier, we enforce some restrictions:

1 Only finite words! (no infinite words, no finite/infinite trees)

2 Languages are invariant under permuations of data values

(e.g. 1|D| 2|D| 1|D| 1|D| 3|D| ∈ L iff 5|D| 3|D| 5|D| 5|D| 7|D| ∈ L)

we focus on properties concerning equalities of data values

An example of data language

L = {w ∈D∗ ∶ at most 2 distinct values in w}

= {ε, #|D|, #|D|, #|D| #|D|, #|D| #|D|, #|D| #|D| #|D|, #|D| #|D| #|D| #|D|, . . .}

Languages over
finite alphabets:

MSO logic

∃ X. first ∈ X
∧ last ∉ X
∧ ∀ y. (y ∈ X ↔ y + 1 ∉ X)

automata

1|D| 0|D| 1|D| 1|D| ⋯|DD| 0|D| 1|D|

q

finite monoids

s ⋅ t = s
t ⋅ s = t

Languages over
infinite alphabets:

MSO logic with data tests

∃ X. first ∈ X
∧ last ∉ X
∧ ∀ y. (y ∈ X ↔ y + 1 ∉ X)
∧ ∀ y, z. (y, z ∈ X → y ∼ z)

register automata

 #|D| #|D| #|D| #|D| ⋯|DD| #|D| #|D|

q+ #|D| #|D|

orbit finite data monoids

s(#, #) ⋅ t(#) = s(#, #)
t(#) ⋅ s(#, #) = t(#)

Languages over
finite alphabets:

MSO logic

∃ X. first ∈ X
∧ last ∉ X
∧ ∀ y. (y ∈ X ↔ y + 1 ∉ X)

automata

1|D| 0|D| 1|D| 1|D| ⋯|DD| 0|D| 1|D|

q

finite monoids

s ⋅ t = s
t ⋅ s = t

Languages over
infinite alphabets:

MSO logic with data tests

∃ X. first ∈ X
∧ last ∉ X
∧ ∀ y. (y ∈ X ↔ y + 1 ∉ X)
∧ ∀ y, z. (y, z ∈ X → y ∼ z)

register automata

 #|D| #|D| #|D| #|D| ⋯|DD| #|D| #|D|

q+ #|D| #|D|

orbit finite data monoids

s(#, #) ⋅ t(#) = s(#, #)
t(#) ⋅ s(#, #) = t(#)

Expressiveness of logics, automata, monoids over

in

finite alphabets:

all languagesclassical

MSO logic

non-deterministic automata
deterministic automata
finitemonoids

Expressiveness of logics, automata, monoids over

in

finite alphabets:

all languagesclassical

MSO logic

non-deterministic automata
deterministic automata
finitemonoids

FO logic
counter-free deterministi

c au
tom

at
a

aperiodic finite monoids

Expressiveness of logics, automata, monoids over infinite alphabets:

all languagesdataclassical

MSO logic with

non-deterministic re automatadeterministic re automata

o finite dmonoids

FO logic with

counter-free deterministic
autom

at
a

aperiodic fin da monoids

Expressiveness of logics, automata, monoids over infinite alphabets:

all languagesclassicaldata

MSO logic with data

non-deterministic regis automata

deterministic regis automata
orb

finite da monoids

FO logic with data

counter-free deterministi
c auto

m
at

a

aperiodic f. data monoids

Expressiveness of logics, automata, monoids over infinite alphabets:

all languagesdata

MSO logic with data tests
non-deterministic register autom
ata

deterministic register autom
ataorb

it finite data monoids

FO logic with data tests

aperiodic o.f. data monoids

Expressiveness of logics, automata, monoids over infinite alphabets:

all languagesdata

MSO logic with data tests
non-deterministic register autom
ata

deterministic register autom
ataorb

it finite data monoids

FO logic with data tests

aperiodic o.f. data monoids

Logical characterizations of:

● non-deterministic
register automata

● orbit finite data monoids

● aperiodic o.f. data monoids

What is an orbit finite data monoid?

Consider the syntactic monoid of the language
L = {w ∈D∗ ∶ at most 2 distinct values in w}:

D∗ ML
h

ε
(empty word)

 # #... #
(words with one data value)

 # # #... #
(words with two data values)

(words with more than

two data values)

⋅ ⋅ ⋅

The product of ML is the union of sets, up to cardinality 2.

Each permutation π on D induces a permutation π̂ on ML

e.g., if π = { #↔ #}, then π̂({ #, #}) = { #, #}.

What is an orbit finite data monoid?

Consider the syntactic monoid of the language
L = {w ∈D∗ ∶ at most 2 distinct values in w}:

D∗ MLML
hh

ε
(empty word)

 # #... #
(words with one data value)

 # # #... #
(words with two data values)

(words with more than

two data values)

∅

{ #}{ #}{ #}
⋅ ⋅ ⋅

{ #, #}{ #, #}{ #, #}
⋅ ⋅ ⋅⋅ ⋅ ⋅

�

The product of ML is the union of sets, up to cardinality 2.

Each permutation π on D induces a permutation π̂ on ML

e.g., if π = { #↔ #}, then π̂({ #, #}) = { #, #}.

What is an orbit finite data monoid?

Consider the syntactic monoid of the language
L = {w ∈D∗ ∶ at most 2 distinct values in w}:

D∗ MLML
hh

ε
(empty word)

 # #... #
(words with one data value)

 # # #... #
(words with two data values)

(words with more than

two data values)

∅

{ #}{ #}{ #}
⋅ ⋅ ⋅

{ #, #}{ #, #}{ #, #}
⋅ ⋅ ⋅⋅ ⋅ ⋅

�

The product of ML is the union of sets, up to cardinality 2.

Each permutation π on D induces a permutation π̂ on ML

e.g., if π = { #↔ #}, then π̂({ #, #}) = { #, #}.

Examples of languages recognized by orbit finite data monoids:

Exactly two/three/... distinct values

Any two consecutive values are different

First value equals last value

“Lifting” by permutations of any classical regular language

First value reappears

Some value appears twice

All values appears at most once

Closure under all boolean operations!

Consider some languages recognized by orbit finite data monoids:

words where first value equals last value:

∃ x,y.

(x = first ∧ y = last)(x = first ∧ y = last)(x = first ∧ y = last)

(x = first ∧ y = last) ∧ (x ∼ y)

words with at least two distinct values (e.g. ... # #...):

∃ x,y.

(y = x + 1)(y = x + 1)(y = x + 1)

(y = x + 1) ∧ (x ≁ y)

words with at least three distinct values (e.g. ... # # # # #...):

∃ x,y.

((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))

((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))
∧ (x ≁ y+1)

...and some languages not recognized by orbit finite data monoids:

words where first value reappears:

∃ x,y.

(x = first ∧ x < y)(x = first ∧ x < y)(x = first ∧ x < y)

(x = first ∧ x < y) ∧ (x ∼ y)

words where all values appear at most once:

¬∃ x,y.

(x < y)(x < y)(x < y)

(x < y) ∧ (x ∼ y)

Consider some languages recognized by orbit finite data monoids:

words where first value equals last value:

∃ x,y. (x = first ∧ y = last)(x = first ∧ y = last)(x = first ∧ y = last)

(x = first ∧ y = last)

∧ (x ∼ y)

words with at least two distinct values (e.g. ... # #...):

∃ x,y. (y = x + 1)(y = x + 1)(y = x + 1)

(y = x + 1)

∧ (x ≁ y)

words with at least three distinct values (e.g. ... # # # # #...):

∃ x,y. ((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))

((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))

∧ (x ≁ y+1)

...and some languages not recognized by orbit finite data monoids:

words where first value reappears:

∃ x,y. (x = first ∧ x < y)(x = first ∧ x < y)(x = first ∧ x < y)

(x = first ∧ x < y)

∧ (x ∼ y)

words where all values appear at most once:

¬∃ x,y. (x < y)(x < y)(x < y)

(x < y)

∧ (x ∼ y)

Consider some languages recognized by orbit finite data monoids:

words where first value equals last value:

∃ x,y. (x = first ∧ y = last)(x = first ∧ y = last)(x = first ∧ y = last)

(x = first ∧ y = last)

∧ (x ∼ y)

words with at least two distinct values (e.g. ... # #...):

∃ x,y. (y = x + 1)(y = x + 1)(y = x + 1)

(y = x + 1)

∧ (x ≁ y)

words with at least three distinct values (e.g. ... # # # # #...):

∃ x,y. ((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))

((x ≁ x+1) ∧ (y ≁ y+1) ∧ ∀ z. (x<z<y→ z ∼ z+1))

∧ (x ≁ y+1)

...and some languages not recognized by orbit finite data monoids:

words where first value reappears:

∃ x,y. (x = first ∧ x < y)(x = first ∧ x < y)(x = first ∧ x < y)

(x = first ∧ x < y)

∧ (x ∼ y)

words where all values appear at most once:

¬∃ x,y. (x < y)(x < y)(x < y)

(x < y)

∧ (x ∼ y)

Definition

Rigidly guarded MSO is the fragment of MSO with data tests,
defined by the following grammar:

ϕ ∶= x < y ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ∃ x. ϕ ∣ ∃ Y. ϕ ∣
ϕrigid(x,y) ∧ x ∼ y

where ϕrigid(x,y) is a rigid guard (generated by the same grammar)

(ϕ(x,y) is rigid if, in every word, x determines y and vice versa).

Rigidity is a semantical restriction.

However, it can be enforced syntactically, e.g.,

ϕrigid = ϕ(x,y) ∧

(∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))(∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))(∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))

(∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))

Is ϕrigid(x,y) ∧ x

≁≁≁

≁y needed?

No: ϕrigid(x,y) ∧

¬(ϕrigid(x,y) ∧ x∼y)¬(ϕrigid(x,y) ∧ x∼y)¬(ϕrigid(x,y) ∧ x∼y)

¬(ϕrigid(x,y) ∧ x∼y)

Definition

Rigidly guarded MSO is the fragment of MSO with data tests,
defined by the following grammar:

ϕ ∶= x < y ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ∃ x. ϕ ∣ ∃ Y. ϕ ∣
ϕrigid(x,y) ∧ x ∼ y

where ϕrigid(x,y) is a rigid guard (generated by the same grammar)

(ϕ(x,y) is rigid if, in every word, x determines y and vice versa).

Rigidity is a semantical restriction.

However, it can be enforced syntactically, e.g.,

ϕrigid = ϕ(x,y) ∧ (∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))(∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))(∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))

(∀ x ′,y ′. [x ′,y ′] ⊊ [x,y] → ¬ϕ(x ′,y ′))

Is ϕrigid(x,y) ∧ x≁≁≁

≁

y needed?

No: ϕrigid(x,y) ∧ ¬(ϕrigid(x,y) ∧ x∼y)¬(ϕrigid(x,y) ∧ x∼y)¬(ϕrigid(x,y) ∧ x∼y)

¬(ϕrigid(x,y) ∧ x∼y)

Main theorem (1)

Languages defined in rigidly guarded MSO

=

Languages recognized by orbit finite data monoids.

...and as in the Schützenberger-McNaughton-Papert’s theorem:

Main theorem (2)

Languages defined in rigidly guarded FO

=

Languages recognized by aperiodic orbit finite data monoids.

(A data monoid is aperiodic if all its sub-groups are trivial)

Main theorem (1)

Languages defined in rigidly guarded MSO

=

Languages recognized by orbit finite data monoids.

...and as in the Schützenberger-McNaughton-Papert’s theorem:

Main theorem (2)

Languages defined in rigidly guarded FO
=

Languages recognized by aperiodic orbit finite data monoids.

(A data monoid is aperiodic if all its sub-groups are trivial)

Proof idea (rigidly guarded MSO → orbit finite data monoid)

By induction on formulas, using closure properties of data monoids:

negation of a formula ⇒ easy, by definition of recognizability

conjunction of formulas ⇒ product of orbit finite data monoids

existential quantification ⇒ powerset of an orbit finite data monoid

Given a formula ϕ(X) construct ∃ X. ϕ(X)

Given a morphism h ∶ (D × {0, 1})∗→M construct h ′ ∶D∗→ 2M

where h ′(w) = {h(⟨w,X⟩) ∶ X ⊆ dom(w)}

Given a monoid M= (M, ⋅, ˆ) construct 2M = (2M,⊙, ˆ̂)
where S⊙ T = {s ⋅ t ∶ s ∈ S, t ∈ T}

ˆ̂π(S) = {π̂(s) ∶ s ∈ S}

Technical problem: this does not preserve orbit finiteness...

Proof idea (rigidly guarded MSO → orbit finite data monoid)

By induction on formulas, using closure properties of data monoids:

negation of a formula ⇒ easy, by definition of recognizability

conjunction of formulas ⇒ product of orbit finite data monoids

existential quantification ⇒ powerset of an orbit finite data monoid

Given a formula ϕ(X) construct ∃ X. ϕ(X)

Given a morphism h ∶ (D × {0, 1})∗→M construct h ′ ∶D∗→ 2M

where h ′(w) = {h(⟨w,X⟩) ∶ X ⊆ dom(w)}

Given a monoid M= (M, ⋅, ˆ) construct 2M = (2M,⊙, ˆ̂)
where S⊙ T = {s ⋅ t ∶ s ∈ S, t ∈ T}

ˆ̂π(S) = {π̂(s) ∶ s ∈ S}

Technical problem: this does not preserve orbit finiteness...

Proof idea (rigidly guarded MSO → orbit finite data monoid)

By induction on formulas, using closure properties of data monoids:

negation of a formula ⇒ easy, by definition of recognizability

conjunction of formulas ⇒ product of orbit finite data monoids

existential quantification ⇒ powerset of an orbit finite data monoid

Given a formula ϕ(X) construct ∃ X. ϕ(X)

Given a morphism h ∶ (D × {0, 1})∗→M construct h ′ ∶D∗→ 2M

where h ′(w) = {h(⟨w,X⟩) ∶ X ⊆ dom(w)}

Given a monoid M= (M, ⋅, ˆ) construct 2M = (2M,⊙, ˆ̂)
where S⊙ T = {s ⋅ t ∶ s ∈ S, t ∈ T}

ˆ̂π(S) = {π̂(s) ∶ s ∈ S}

Technical problem: this does not preserve orbit finiteness...

Proof idea (rigidly guarded MSO → orbit finite data monoid)

By induction on formulas, using closure properties of data monoids:

negation of a formula ⇒ easy, by definition of recognizability

conjunction of formulas ⇒ product of orbit finite data monoids

existential quantification ⇒ powerset of an orbit finite data monoid

Given a formula ϕ(X) construct ∃ X. ϕ(X)

Given a morphism h ∶ (D × {0, 1})∗→M construct h ′ ∶D∗→ 2M

where h ′(w) = {h(⟨w,X⟩) ∶ X ⊆ dom(w)}

Given a monoid M= (M, ⋅, ˆ) construct 2M = (2M,⊙, ˆ̂)
where S⊙ T = {s ⋅ t ∶ s ∈ S, t ∈ T}

ˆ̂π(S) = {π̂(s) ∶ s ∈ S}

Technical problem: this does not preserve orbit finiteness...

Proof idea (rigidly guarded MSO → orbit finite data monoid)

By induction on formulas, using closure properties of data monoids:

negation of a formula ⇒ easy, by definition of recognizability

conjunction of formulas ⇒ product of orbit finite data monoids

existential quantification ⇒ powerset of an orbit finite data monoid

Given a formula ϕ(X) construct ∃ X. ϕ(X)

Given a morphism h ∶ (D × {0, 1})∗→M construct h ′ ∶D∗→ 2M

where h ′(w) = {h(⟨w,X⟩) ∶ X ⊆ dom(w)}

Given a monoid M= (M, ⋅, ˆ) construct 2M = (2M,⊙, ˆ̂)
where S⊙ T = {s ⋅ t ∶ s ∈ S, t ∈ T}

ˆ̂π(S) = {π̂(s) ∶ s ∈ S}

Technical problem: this does not preserve orbit finiteness...

Proof idea (aperiodic o.f. data monoid → rigidly guarded FO)

Follow the same induction as in the Schützenberger’s proof:

Given a morphism h ∶D∗ → M,
construct formulas computing h(w[x,y])
for larger and larger infixes w[x,y] of words.

Technical problem: in order to let the induction go through,
we need to simulate products of the monoid with formulas...

⋯
h(w[x,y])

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋅

h(w[y+1,z])
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋯

?∼
Positions with memorable values
must be compared in a rigid way!

If we drop the assumption of aperiodicity,
we need MSO formulas to compute elements of the monoid.

Unlike in the classical case, we cannot simulate runs of automata
(instad, we need to further generalize Schützenberger’s proof).

Proof idea (aperiodic o.f. data monoid → rigidly guarded FO)

Follow the same induction as in the Schützenberger’s proof:

Given a morphism h ∶D∗ → M,
construct formulas computing h(w[x,y])
for larger and larger infixes w[x,y] of words.

Technical problem: in order to let the induction go through,
we need to simulate products of the monoid with formulas...

⋯
h(w[x,y])

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋅

h(w[y+1,z])
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋯

?∼
Positions with memorable values
must be compared in a rigid way!

If we drop the assumption of aperiodicity,
we need MSO formulas to compute elements of the monoid.

Unlike in the classical case, we cannot simulate runs of automata
(instad, we need to further generalize Schützenberger’s proof).

Proof idea (aperiodic o.f. data monoid → rigidly guarded FO)

Follow the same induction as in the Schützenberger’s proof:

Given a morphism h ∶D∗ → M,
construct formulas computing h(w[x,y])
for larger and larger infixes w[x,y] of words.

Technical problem: in order to let the induction go through,
we need to simulate products of the monoid with formulas...

⋯
h(w[x,y])

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋅

h(w[y+1,z])
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋯

?∼
Positions with memorable values
must be compared in a rigid way!

If we drop the assumption of aperiodicity,
we need MSO formulas to compute elements of the monoid.

Unlike in the classical case, we cannot simulate runs of automata
(instad, we need to further generalize Schützenberger’s proof).

Proof idea (////////////aperiodic o.f. data monoid → rigidly guarded /////FO MSO)

Follow the same induction as in the Schützenberger’s proof:

Given a morphism h ∶D∗ → M,
construct formulas computing h(w[x,y])
for larger and larger infixes w[x,y] of words.

Technical problem: in order to let the induction go through,
we need to simulate products of the monoid with formulas...

⋯
h(w[x,y])

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋅

h(w[y+1,z])
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
 #|D| #|D| #|D| ⋯|DD| #|D| #|D| ⋯

?∼
Positions with memorable values
must be compared in a rigid way!

If we drop the assumption of aperiodicity,
we need MSO formulas to compute elements of the monoid.

Unlike in the classical case, we cannot simulate runs of automata
(instad, we need to further generalize Schützenberger’s proof).

We also considered a relaxation of the rigidity constraints:

Definition

Semi-rigidly guarded MSO is defined by the grammar

ψ ∶= ∃ Z1, ...,Zk. ϕ(Z1, ...,Zk)

ϕ(Z1, ...,Zk) ∶= x < y ∣ x ∈ Y ∣ x ∈ Zi ∣
¬ϕ ∣ ϕ ∧ ϕ ∣ ∃ x. ϕ ∣ ∃ Y. ϕ ∣
ϕsemi-rigid(Z1,...,Zk,x,y) ∧ x ∼ y

where ϕsemi-rigid(Z1,...,Zk,x,y) determines y from Z1, ...,Zk,x.

Example

The formula below defines the language of all words
where some value reappears at the last even position:

ψ = ∃ Z. ∀ z. (z ∈ Z ↔ Even(z))
∧ ∃ x,y. (x < y ∧ y = last(Z)) ∧ x ∼ y.

Theorem (3)

Languages of data words defined in semi-rigidly guarded MSO

=

Languages recognized by non-deterministic register word automata.

Corollary

Satisfiability of semi-rigidly guarded MSO is decidable.

Theorem (3)

trees
Languages of data ////////words defined in semi-rigidly guarded MSO

=

Languages recognized by non-deterministic register //////word automata.
tree

Corollary

Satisfiability of semi-rigidly guarded MSO is decidable.

Theorem (3)

trees
Languages of data ////////words defined in semi-rigidly guarded MSO

=

Languages recognized by non-deterministic register //////word automata.
tree

Corollary

Satisfiability of semi-rigidly guarded MSO is decidable.

Back to our picture...

all languagesdata

MSO logic with data tests
non-deterministic register autom
ata

deterministic register autom
ataorb

it finite data monoids

FO logic with data tests

?

aperiodic o.f. data monoids

----------- no effective characterization poss
ib

le
--

--
--

-

= Semi-rigidly guarded MSO

= Rigidly guarded MSO

= Rigidly guarded FO

A data monoid with infinitely many orbits

Consider the syntactic monoid of the language
L = {w ∈D∗ ∶ first value of w reappears}:

D∗ ML
h

ε
(empty word)

 # # #... #
(words with one data value)

 # # #... # # # #... #
(words with two data values)

 # # #... # # # # #... # #
(words with three data values)

⋮ ⋮ ⋮

L cannot be recognized with finitely many orbits

(but it is recognized by a deterministic register automaton).

A data monoid with infinitely many orbits

Consider the syntactic monoid of the language
L = {w ∈D∗ ∶ first value of w reappears}:

D∗ MLML
hh

ε
(empty word)

 # # #... #
(words with one data value)

 # # #... # # # #... #
(words with two data values)

 # # #... # # # # #... # #
(words with three data values)

⋮ ⋮

∅

{ #} { #}

{ #, #} { #, #}

{ #, #, #} { #, #, #}

⋮⋮ ⋮

L cannot be recognized with finitely many orbits

(but it is recognized by a deterministic register automaton).

A data monoid with infinitely many orbits

Consider the syntactic monoid of the language
L = {w ∈D∗ ∶ first value of w reappears}:

D∗ MLML
hh

ε
(empty word)

 # # #... #
(words with one data value)

 # # #... # # # #... #
(words with two data values)

 # # #... # # # # #... # #
(words with three data values)

⋮ ⋮

∅

{ #} { #}

{ #, #} { #, #}

{ #, #, #} { #, #, #}

⋮⋮ ⋮

L cannot be recognized with finitely many orbits

(but it is recognized by a deterministic register automaton).

