Decidability of MSO Theories of Deterministic Tree Structures

Gabriele Puppis
puppis@dimi.uniud.it

(joint work with Angelo Montanari)

Department of Mathematics and Computer Science
University of Udine, Italy
Outline

- MSO logics over tree structures
- The automaton-based approach
- Reduction to acceptance of regular trees
- Structural properties
- Application examples
- Further work
Let $\Lambda = \{1, \ldots, k\}$ be a finite set of edge labels.

We consider infinite deterministic trees extended with tuples of unary predicates:

$$(T, \vec{V}) = (\Lambda^*, (E_l)_{l \in \Lambda}, (V_i)_{i \in [1,m]})$$

Example.

$$V_1 = \{\varepsilon, 1, 11, 111, \ldots\}$$
$$V_2 = \{11, 12, \ldots, 1k, 21, 22, \ldots, 2k, \ldots\}$$
MSO formulas over a tree \mathcal{T} are built up from atoms:

- $E_i(X_i, X_j)$ “X_i, X_j denote singletons $\{u\}, \{v\}$ with (u, v) being an l-labeled edge”
- $X_i \subseteq X_j$ “X_i denotes a subset of X_j”

...through connectives \lor, \neg and quantifier \exists over variables.

- Each free variable X_i in a formula $\varphi(\bar{X})$ is interpreted by a designated subset V_i.
- $\mathcal{T} \models \varphi[\bar{V}]$ iff $\varphi(\bar{X})$ holds in \mathcal{T} by interpreting V_i for X_i, for all i.

The **model-checking problem** for (\mathcal{T}, \bar{V}) is to decide whether $\mathcal{T} \models \varphi[\bar{V}]$, for any given formula $\varphi(\bar{X})$.
Example. The formula

\[\varphi(X) = X(\varepsilon) \land \forall x. \exists y. (X(x) \land E_2(x, y) \rightarrow X(y)) \]

holds in the binary tree extended with the predicate \(V \) represented by black colored vertices:

![Diagram of a binary tree](image)

Remark. We identify a tree structure \((\mathcal{T}, \bar{V})\) with its canonical representation \(\mathcal{T}_{\bar{V}}\) (i.e. an infinite complete *vertex-colored* tree).
We consider **tree automata** accepting colored trees in a *top-down* fashion:

- they ‘spread’ states inside the input tree (in accordance to transition relations),
- they ‘verify’ that suitable acceptance conditions (envisaging occurrences of states) are satisfied for each path in the tree.

We write $T \bar{\nu} \in \mathcal{L}(M)$ to say that the tree $T \bar{\nu}$ is accepted by automaton M.

Example. (Rabin acceptance condition)

Given $AC = \{(L_1, U_1), \ldots, (L_n, U_n)\}$, we require that, for each infinite path, there is a pair $(L_i, U_i) \in AC$ such that *at least one state in U_i, but no state in L_i, is visited infinitely often.*
The automaton based approach (2)

Step 1. We reduce the *model checking problem* to an *acceptance problem* by exploiting the correspondence between MSO formulas over tree structures and Rabin tree automata.

[Rabin ’69]
For every formula $\varphi(\bar{X})$, there is a Rabin tree automaton M (and vice versa) such that for every tree structure (\mathcal{T}, \bar{V})

$$\mathcal{T} \models \varphi[\bar{V}] \iff \mathcal{T}_{\bar{V}} \in \mathcal{L}(M)$$

\Rightarrow the decision problem for $MTh(\mathcal{T}, \bar{V})$ reduces to the acceptance problem $Acc(\mathcal{T}_{\bar{V}})$ for Rabin tree automata.
Remark. The problem $\text{Acc}(\mathcal{T}_V)$ can be decided for any regular tree \mathcal{T}_V (i.e. a tree with only finitely many distinct subtrees)...

...by simply considering the intersection with the tree automaton generating \mathcal{T}_V...
The automaton based approach (4)

Step 2. We extend the class of trees for which the acceptance problem turns out to be decidable.

Idea. Given an automaton M, we define an equivalence \cong_M that groups together those (finite or infinite) trees on which M ‘behaves’ in a similar way.

In particular, for two infinite complete trees T, T', $T \cong_M T'$ will imply $T \in \mathcal{L}(M) \iff T' \in \mathcal{L}(M)$.

Fact. Many non-regular trees turn out to be equivalent to some (computable) regular trees.

\Rightarrow in such cases we will be able to solve $\text{Acc}(T)$ by reducing it to the decidable problem $\text{Acc}(T')$.
Given a Büchi automaton M, we can define an equivalence \cong_M over finite words s.t. $u \cong_M u'$ iff, for every pair of states r, s,

- $r \xrightarrow{u} s \iff r \xrightarrow{u'} s$
- $r \xrightarrow{\circ} s \iff r \xrightarrow{\circ} s$

Properties:

- \cong_M has finite index
- \cong_M is a congruence w.r.t. concatenation
- \cong_M-equivalent factorizations are indistinguishable by M, namely, if $u_i \cong_M u'_i$ for all $i \geq 0$, then

$$u_0u_1u_2\ldots \in \mathcal{L}(M) \iff u'_0u'_1u'_2\ldots \in \mathcal{L}(M)$$
A digression into Büchi automata (2)

[Elgot, Rabin, Carton and Thomas...]

Let w be an infinite word.

If we can provide a factorization $u_0 \cdot u_1 \cdot u_2 \ldots$ of w such that,

\[\text{for any congruence } \equiv_M \text{ there are } p, q \text{ computable such that} \]
\[\forall \ i > p. \ u_i \equiv_M u_{i+q} \]

Then:
\[w \in \mathcal{L}(M) \]
\[\uparrow \]
\[(u_0 \ldots u_p)(u_{p+1} \ldots u_{p+q})(u_{p+q+1} \ldots u_{p+2q}) \ldots \in \mathcal{L}(M) \]
\[\uparrow \]
\[(u_0 \ldots u_p)(u_{p+1} \ldots u_{p+q})(u_{p+1} \ldots u_{p+q}) \ldots \in \mathcal{L}(M) \]
\[\uparrow \]
\[(u_0 \ldots u_p) \cdot (u_{p+1} \ldots u_{p+q})^\omega \in \mathcal{L}(M) \]

⇒ we can decide whether M accepts w.
A Reduction to acceptance of regular trees

We define the **tree concatenation** $T_1 \cdot_c T_2$ of two (finite or infinite) trees T_1, T_2 as the **substitution of all the c-colored leaves in T_1 by T_2**:

![Diagram](image)

The notion can be extended to *infinite* sequences of trees, henceforth called **factorizations** (e.g. $T_0 \cdot_{c_0} T_1 \cdot_{c_1} T_2 \cdot_{c_2} \ldots$).

Proposition. Any **ultimately periodic** factorization consisting of **only regular trees** generates a *regular* tree.
The notion of equivalence

Given an automaton M and a (finite or infinite) tree T, we need to quantify over all the possible partial runs of M on T (i.e. ‘run fragments’).

Definition. $T_1 \simeq M T_2$ iff

\forall partial run P_1 on T_1, \exists a partial run P_2 on T_2 (and vice versa) such that for $i = 1$ and $i = 2$ we have the same

- pair $(T_i(\varepsilon), P_i(\varepsilon))$
 (color and state at the root)
- set $\{(T_i(u), P_i(u))_{u \text{ leaf}}\}$
 (pairs color-state at the frontier)
- set $\{\text{Img}(P_i|\pi)\}_{\pi \text{ fin. path}}$
 (sets of states occurring along finite full paths)
- set $\{\text{Inf} (P_i|\pi)\}_{\pi \text{ inf. path}}$
 (sets of states occurring infinitely often along infinite paths)
Properties of \cong_M

Properties:

- \cong_M has finite index
- \cong_M is a congruence w.r.t. concatenations namely, if $T_1 \cong_M T_1'$ and $T_2 \cong_M T_2'$, then

$$T_1 \cdot_c T_2 \cong_M T_1' \cdot_c T_2'$$

- \cong_M-equivalent factorizations are indistinguishable by M namely, if $T_i \cong_M T_i'$ for all $i \geq 0$, then

$$T_0 \cdot_{c_0} T_1 \cdot_{c_1} \ldots \in \mathcal{L}(M) \Leftrightarrow T'_0 \cdot_{c_0} T'_1 \cdot_{c_1} \ldots \in \mathcal{L}(M)$$
The key ingredient

Let \mathcal{T} be an infinite complete tree.

If we can provide a factorization $\mathcal{T}_0 \cdot c_0 \; \mathcal{T}_1 \cdot c_1 \; \ldots$ of \mathcal{T} such that,

_for any congruence \cong_M there are p, q computable such that_

$\forall i > p. \; \mathcal{T}_i \cong_M \mathcal{T}_{i+q}$

Then:

$\mathcal{T} \in \mathcal{L}(M)$

\[\updownarrow \]

$\mathcal{T}_0 \cdot c_0 \; \ldots \mathcal{T}_p \cdot c_p \; \mathcal{T}_{p+1} \cdot c_{p+1} \; \ldots \mathcal{T}_{p+q} \cdot c_{p+q} \; \mathcal{T}_{p+q+1} \cdot c_{p+q+1} \; \ldots \in \mathcal{L}(M)$

\[\updownarrow \]

$\mathcal{T}_0 \cdot c_0 \; \ldots \mathcal{T}_p \cdot c_p \; \mathcal{T}_{p+1} \cdot c_{p+1} \; \ldots \mathcal{T}_{p+q} \cdot c_{p+q} \; \mathcal{T}_{p+1} \cdot c_{p+q+1} \; \ldots \in \mathcal{L}(M)$

Remark. The last factorization is ultimately periodic,

\Rightarrow it generates a (decidable) _regular_ tree \mathcal{T}'

provided that $\mathcal{T}_0, \mathcal{T}_1, \ldots$ are _regular_ trees.
Definition. Residually regular trees are defined as follows:

- A tree T is level 1 residually regular tree if we can provide a factorization $T_0 \cdot c_0 T_1 \cdot c_1 \cdots$ (with T_0, T_1, \ldots regular trees) which is effectively ultimately periodic w.r.t. any congruence \cong_M.

- We extend the notion to level $n > 1$ (for n countable ordinal) by allowing the factors to be level $n' < n$ residually regular trees.

\Rightarrow this gives rise to a hierarchy that is strictly increasing at least for the initial (finite ordinal) levels.
The main result

Theorem. $MTh(\mathcal{T}, \bar{V})$ is decidable for every residually regular tree \mathcal{T}_V.

Proof sketch. We decide $MTh(\mathcal{T}, \bar{V})$ as follows:

1. let $S = \mathcal{T}_0 \cdot c_0 \mathcal{T}_1 \cdot c_1 \ldots$ be a level n residually ultimately periodic factorization for \mathcal{T}_V
2. given a formula φ, let M be the corresponding automaton
3. compute the prefix p and the period q of S w.r.t. \cong_M
4. using induction on n, compute the ultimately periodic factorization S' consisting of only regular trees
5. compute the regular tree \mathcal{T}' resulting from S'
6. solve $Acc(\mathcal{T}')$ on automaton M
7. accordingly, return Yes or No to the original problem $MTh(\mathcal{T}, \bar{V})$
Residually regular trees are in general non-regular trees which however exhibit a definite pattern in their structure.

- We established some structural properties of residually regular trees, such as closure under recursively defined factorizations, iterations, periodical groupings, etc.
Structural properties (2)

Any congruence of finite index \cong_M induces an \textbf{homomorphism} from the set T of trees to a \textbf{finite groupoid} $(T/\cong_M, \cdot_c)$.

\Rightarrow we can exploit structural properties of finite groupoids (e.g. \textit{Pigeonhole Principle}) to provide residually regular factorizations.

\textbf{Example.} Let \mathcal{T} be a finite tree and recursively define \mathcal{T}_i as $\mathcal{T}_0 = \mathcal{T}$ and $\mathcal{T}_{i+1} = \mathcal{T}_i \cdot_c \mathcal{T}$ for each $i \geq 0$. Then

- for any congruence \cong_M, the sequence

 \begin{align*}
 [\mathcal{T}_0]_{\cong_M}, [\mathcal{T}_1]_{\cong_M}, [\mathcal{T}_2]_{\cong_M}, \ldots
 \end{align*}

 is (effectively) \textit{ultimately periodic}.

- the tree $\mathcal{T}' = \mathcal{T}_0 \cdot d \mathcal{T}_1 \cdot d \mathcal{T}_2 \cdot d \ldots$ is \textit{residually regular} and enjoys a decidable theory.
Other examples of structural properties:

- **[Iteration]** Let \mathcal{T} be a residually regular tree. Then the sequence $(\mathcal{T}^{f(i)+1})_{i \in \mathbb{N}}$ is residually periodic provided that f is a ‘well behaved’ function (e.g. $f(n) = n^2$, $f(n) = n!$, $f(n) = Fib(n)$, $f(n) = 2^{2\cdots2}$, etc.)

- **[Grouping]** Let $T_0 \cdot c T_1 \cdot c T_2 \cdot c T_3 \cdot c \ldots$ be a residually periodic factorization. Then we can generate another residually regular factorization by periodically grouping the factors, e.g., $(T_0 \cdot c T_1) \cdot c (T_2 \cdot c T_3) \cdot c \ldots$

- **[Interleaving]** Let $T_0^{(j)} \cdot c T_1^{(j)} \cdot c T_2^{(j)} \cdot c \ldots$ be a family of residually periodic factorizations, for $j \in [1, n]$. Then we can generate another residually periodic factorization by periodically interleaving the factors from each sequence, e.g., $T_0^{(1)} \cdot c T_0^{(2)} \cdot c T_1^{(1)} \cdot c T_1^{(2)} \cdot c \ldots$

- \ldots
Application examples

We exploited the proposed method to decide the theory of some trees \textbf{inside} and \textbf{outside} the Cauca hierarchy
Application examples

We exploited the proposed method to decide the theory of some trees inside and outside the Cauca hierarchy

- The tree \mathcal{T}_{tow} (see Carayol and Wöhrle ’03):

$$
tow(n) = \begin{cases}
1 & \text{if } n = 0, \\
2^{tow(n-1)} & \text{if } n > 0
\end{cases}
$$
Application examples

We exploited the proposed method to decide the theory of some trees inside and outside the Caucaal hierarchy.

- The unfolding of the semi-infinite line:

The factors $T_0, T_1, T_2 \ldots$ can be defined recursively. Thus, by structural properties, the factorization is residually ultimately periodic.
Application examples

We exploited the proposed method to decide the theory of some trees **inside** and outside the Caucal hierarchy

- The **tree generators** associated with the levels of the Caucal hierarchy:

 These trees are obtained by an n-fold application of the unfolding (with backward edges and loops) starting from the infinite binary tree.

 They allow one to obtain **each graph of a level of the Caucal hierarchy** via MSO interpretations.

 As for the case of the unfolding of the semi-infinite line, we proved that they enjoy a *residually ultimately periodic factorization*.
Finally, we exploited the method to decide the theory of the totally unbounded ω-layered structure:

- The structure contains arbitrarily fine/coarse layers
- Arrows map elements of a given layer to elements of the immediately finer layer
- Black vertices denote the elements of a distinguished layer (layer 0) endowed with a (MSO-definable) successor relation $+_0$
Application examples

The totally unbounded ω-layered structure can be interpreted into an infinite complete ternary tree:
Application examples

The resulting tree can be proved to be *residually regular*:

Dashed regions denote factors, which can be defined *recursively*. Thus, by structural properties, the factorization is *residually ultimately periodic*.
Further work

- Extend the notion of congruence to different, more expressive, classes of automata (e.g. automata over tree-like structures).
- Compare the automaton-based approach with other ones.

In particular, we are trying to
- generalize the approach to embed Courcelle’s algebraic trees and the deterministic trees of the Caucal hierarchy,
- exploit possible connections with the compositional method of Shelah.