
Decidability of MSO Theories of
Deterministic Tree Structures

Gabriele Puppis
puppis@dimi.uniud.it

(joint work with Angelo Montanari)

Department of Mathematics and Computer Science

University of Udine, Italy



Outline

• MSO logics over tree structures
• The automaton-based approach
• Reduction to acceptance of regular trees
• Structural properties
• Application examples
• Further work



MSO Logics over tree structures (1)

Let Λ = {1, . . . , k} be a finite set of edge labels.

We consider infinite deterministic trees extended with tuples of
unary predicates: (T , V̄ ) = (Λ∗, (El)l∈Λ, (Vi)i∈[1,m])

Example.

. . .

. . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

1
2

k

1
2

k 1
2

k 1
2

k

V1 = {ε, 1, 11, 111, . . .}
V2 = {11, 12, . . . , 1k, 21, 22, . . . , 2k, . . .}

{V1}

{V1}

{V1, V2} {V2} {V2} {V2}{V2} {V2} {V2}{V2} {V2}



MSO Logics over tree structures (2)

MSO formulas over a tree T are built up from atoms:
• El(Xi, Xj) “Xi, Xj denote singletons {u}, {v}

with (u, v) being an l-labeled edge”
• Xi ⊆ Xj “Xi denotes a subset of Xj”

...through connectives ∨ ,¬ and quantifier ∃ over variables.

• Each free variable Xi in a formula ϕ(X̄)
is interpreted by a designated subset Vi.

• T � ϕ[V̄ ] iff ϕ(X̄) holds in T
by interpreting Vi for Xi, for all i.

The model-checking problem for (T , V̄ ) is to decide
whether T � ϕ[V̄ ], for any given formula ϕ(X̄).



MSO Logics over tree structures (3)

Example. The formula

ϕ(X) = X(ε) ∧ ∀ x. ∃ y. (X(x) ∧ E2(x, y) → X(y))

holds in the binary tree extended with the predicate V
represented by black colored vertices:

1 2

1 2 1 2

1 2 1 2 1 2 1 2

. . . . . . . . . . . . . . . . . . . . . . . .

Remark. We identify a tree structure (T , V̄ ) with its canonical
representation TV̄ (i.e. an infinite complete vertex-coloredtree).



The automaton based approach (1)

We consider tree automata accepting colored trees in a
top-downfashion:

• they ‘spread’ states inside the input tree
(in accordance to transition relations),

• they ‘verify’ that suitable acceptance conditions (envisaging
occurrences of states) are satisfied for each path in the tree.

We write TV̄ ∈ L (M) to say that the tree TV̄ is accepted by
automaton M .

Example. (Rabin acceptance condition)
Given AC = {(L1, U1), . . . , (Ln, Un)}, we require that, for each
infinite path, there is a pair (Li, Ui) ∈ AC such that at least one
state inUi, but no state inLi, is visited infinitely often.



The automaton based approach (2)

Step 1. We reduce the model checking problemto an
acceptance problem by exploiting the correspondence between
MSO formulas over tree structures and Rabin tree automata.

[Rabin ’69]
For every formula ϕ(X̄), there is a Rabin tree automaton M (and
vice versa) such that for every tree structure (T , V̄ )

T � ϕ[V̄ ] ⇔ TV̄ ∈ L (M)

⇒ the decision problem for MTh(T , V̄ ) reduces to
the acceptance problem Acc(TV̄ ) for Rabin tree automata.



The automaton based approach (3)

Remark. The problem Acc(TV̄ ) can be decidedfor any regular
tree TV̄ (i.e. a tree with only finitely many distinct subtrees)...

1 2

1 2 1 2

1 2 1 2 1 2 1 2

. . . . . . . . . . . . . . . . . . . . . . . .

...by simply considering the intersection with the tree automaton
generating TV̄ ...

1

2

2 1



The automaton based approach (4)

Step 2. We extend the class of trees for which the acceptance
problem turns out to be decidable.

Idea. Given an automaton M , we define an equivalence
∼=M that groups together those (finite or infinite) trees
on which M ‘behaves’ in a similar way.

In particular, for two infinite complete trees T , T ′,
T ∼=M T ′ will imply T ∈ L (M) ⇔ T ′ ∈ L (M).

Fact. Many non-regular trees turn out to be equivalent
to some (computable) regular trees.

⇒ in such cases we will be able to solve Acc(T )
by reducing it to the decidable problem Acc(T ′)



A digression into Büchi automata (1)

Given a Büchi automaton M , we can define an equivalence ∼=M

over finite words s.t. u ∼=M u′ iff, for every pair of states r, s,

• r
u−−→ s ⇔ r

u′
−−→ s

• r
u−◦→ s ⇔ r

u′
−◦→ s

Properties:
• ∼=M has finite index
• ∼=M is a congruencew.r.t. concatenation
• ∼=M -equivalent factorizations are indistinguishableby M ,

namely, if ui
∼=M u′

i for all i ≥ 0, then

u0u1u2 . . . ∈ L (M) ⇔ u′
0u

′
1u

′
2 . . . ∈ L (M)



A digression into Büchi automata (2)

[Elgot, Rabin, Carton and Thomas...]

Let w be an infinite word.

If we can provide a factorization u0 · u1 · u2 . . . of w such that,
for any congruence∼=M there are p, q computablesuch that
∀ i > p. ui

∼=M ui+q

Then: w ∈ L (M)


(u0 . . . up)(up+1 . . . up+q)(up+q+1 . . . up+2q) . . . ∈ L (M)


(u0 . . . up)(up+1 . . . up+q)(up+1 . . . up+q) . . . ∈ L (M)


(u0 . . . up) · (up+1 . . . up+q)

ω ∈ L (M)

⇒ we can decide whether M accepts w.



A Reduction to acceptance of regular trees

We define the tree concatenation T1 ·c T2

of two (finite or infinite) trees T1, T2 as the
substitution of all thec-colored leaves inT1 byT2:

·gray =1 2 1 2

1 2

1 2 1 2

The notion can be extended to infinite sequences of trees,
henceforth called factorizations (e.g. T0 ·c0 T1 ·c1 T2 ·c2 . . .).

Proposition. Any ultimately periodic factorization
consisting of only regular trees generates a regular tree.



The notion of equivalence

Given an automaton M and a (finite or infinite) tree T ,
we need to quantify over all the possible partial runs
of M on T (i.e. ‘run fragments’).

Definition. T1
∼=M T2 iff

∀ partial run P1 on T1, ∃ a partial run P2 on T2 (and vice versa)
such that for i = 1 and i = 2 we have the same

• pair (Ti(ε),Pi(ε))
(color and state at the root)

• set {(Ti(u),Pi(u))u}u leaf

(pairs color-state at the frontier)
• set {Img(Pi|π)}π fin. path

(sets of states occurring along finite full paths)
• set {Inf (Pi|π)}π inf. path

(sets of states occurring infinitely often along infinite paths)



Properties of ∼=M

Properties:
• ∼=M has finite index
• ∼=M is a congruencew.r.t. concatenations

namely, if T1
∼=M T ′

1 and T2
∼=M T ′

2 , then

T1 ·c T2
∼=M T ′

1 ·c T ′
2

• ∼=M -equivalent factorizations are indistiguishableby M
namely, if Ti

∼=M T ′
i for all i ≥ 0, then

T0 ·c0 T1 ·c1 . . . ∈ L (M) ⇔ T ′
0 ·c0 T ′

1 ·c1 . . . ∈ L (M)



The key ingredient

Let T be an infinite complete tree.

If we can provide a factorization T0 ·c0 T1 ·c1 . . . of T such that,
for any congruence∼=M there are p, q computablesuch that
∀ i > p. Ti

∼=M Ti+q

Then: T ∈ L (M)


T0 ·c0 ...Tp ·cp Tp+1 ·cp+1 ...Tp+q ·cp+q Tp+q+1 ·cp+q+1 ... ∈ L (M)


T0 ·c0 ...Tp ·cp Tp+1 ·cp+1 ...Tp+q ·cp+q Tp+1 ·cp+q+1 ... ∈ L (M)

Remark. The last factorization is ultimately periodic,
⇒ it generates a (decidable) regular tree T ′

provided that T0, T1, . . . are regular trees.



Residually regular trees

Definition. Residually regular trees are defined as follows:

• A tree T is level 1 residually regular tree
if we can provide a factorization T0 ·c0 T1 ·c1 . . .
(with T0, T1, . . . regular trees) which is
effectively ultimately periodic w.r.t. any congruence∼=M .

• We extend the notion to level n > 1
(for n countable ordinal) by allowing the factors to be
leveln′ < n residually regular trees.

⇒ this gives rise to a hierarchy that is strictly increasing
at least for the initial (finite ordinal) levels.



The main result

Theorem. MTh(T , V̄ ) is decidable
for every residually regular tree TV̄ .

Proof sketch. We decide MTh(T , V̄ ) as follows:

1. let S = T0 ·c0 T1 ·c1 . . . be a leveln residually ultimately
periodic factorizationfor TV̄

2. given a formula ϕ, let M be the corresponding automaton

3. compute the prefixp and the periodq of S w.r.t. ∼=M

4. using induction on n, compute the ultimately periodic
factorization S ′ consisting of only regular trees

5. compute the regular tree T ′ resulting from S ′

6. solve Acc(T ′) on automaton M

7. accordingly, return Yes or No to the original problem
MTh(T , V̄ )



Structural properties (1)

Residually regular trees are in general non-regular trees which
however exhibit a definite pattern in their structure.

1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• We established some structural properties of residually
regular trees, such as closure under recursively defined
factorizations, iterations, periodical groupings, etc.



Structural properties (2)

Any congruence of finite index ∼=M induces an homomorphism
from the set T of trees to a finite groupoid (T/∼=M

, ·c).

⇒ we can exploit structural properties of finite
groupoids (e.g. Pigeonhole Principle) to provide
residually regular factorizations.

Example. Let T be a finite tree and recursively define Ti as
T0 = T and Ti+1 = Ti ·c T for each i ≥ 0. Then

• for any congruence ∼=M , the sequence

[T0]∼=M
, [T1]∼=M

, [T2]∼=M
, . . .

is (effectively) ultimately periodic.
• the tree T ′ = T0 ·d T1 ·d T2 ·d . . .

is residually regularand enjoys a decidable theory.



Structural properties (3)

Other examples of structural properties:
• [Iteration] Let T be a residually regular tree. Then the

sequence (T f(i)+1)i∈N is residually periodic provided that
f is a ‘well behaved’ function (e.g. f(n) = n2, f(n) = n!,
f(n) = Fib(n), f(n) = 22...2

, etc.)
• [Grouping] Let T0 ·c T1 ·c T2 ·c T3 ·c . . . be a residually

periodic factorization. Then we can generate another
residually regular factorization by periodically grouping the
factors, e.g., (T0 ·c T1) ·c (T2 ·c T3) ·c . . .

• [Interleaving] Let T (j)
0 ·c T (j)

1 ·c T (j)
2 ·c . . . be a family of

residually periodic factorizations, for j ∈ [1, n]. Then we
can generate another residually periodic factorization by
periodically interleaving the factors from each sequence,

e.g., T (1)
0 ·c T (2)

0 ·c T (1)
1 ·c T (2)

1 ·c . . .

• . . .



Application examples

We exploited the proposed method to decide the theory of some
trees inside and outside the Caucal hierarchy



Application examples

We exploited the proposed method to decide the theory of some
trees inside and outside the Caucal hierarchy

• The tree Ttow (see Carayol and Wöhrle ’03):

...

...

2

1

2

1

2 2

1
2

1

2

1

2

1 1
2

1

2

1

2

1
2

1

n times︷ ︸︸ ︷
}

tow(n) times

where tow(n) =

{
1 if n = 0,

2tow(n−1) if n > 0



Application examples

We exploited the proposed method to decide the theory of some
trees inside and outside the Caucal hierarchy

• The unfolding of the semi-infinite line:
#

1

1̄

#

1

1̄

#

1

1̄

#

1

1̄

#

1

1̄

T0 T1

T0 T0 T1 T1

T0 T1

1 1 1

1̄ 1̄
1

1̄
1

# # #
1 1 1 1 1

1̄ 1̄
1

1̄
1

1̄
1

1̄
1

# # # # #
1 1

1̄
1

1̄
1

# #

T0

T1 T1 T2 T2

The factors T0, T1, T2 . . . can be defined recursively.
Thus, by structural properties, the factorization is residually
ultimately periodic.



Application examples

We exploited the proposed method to decide the theory of some
trees inside and outside the Caucal hierarchy

• The tree generators associated with the levels of the
Caucal hierarchy:

These trees are obtained by an n-fold application of the
unfolding (with backward edges and loops) starting from
the infinite binary tree.

They allow one to obtain each graph of a level of the
Caucal hierarchy via MSO interpretations.

As for the case of the unfolding of the semi-infinite line, we
proved that they enjoy a residually ultimately periodic
factorization.



Application examples

Finally, we exploited the method to decide the theory of the
totally unbounded ω-layered structure:

1

1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

+0 +0 +0 +0

• The structure contains arbitrarily fine/coarse layers
• Arrows map elements of a given layer to elements of the

immediately finer layer
• Black vertices denote the elements of a distinguished layer

(layer 0) endowed with a (MSO-definable) successor
relation +0



Application examples

The totally unbounded ω-layered structure can be
interpreted into an infinite complete ternary tree:

1

1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

3

3

3

1 2 1 2

1 2 1 2

1 2

3

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3



Application examples

The resulting tree can be proved to be residually regular:

Dashed regions denote factors, which can be defined recursively.
Thus, by structural properties, the factorization is residually
ultimately periodic.



Further work

• Extend the notion of congruence to different, more
expressive, classes of automata
(e.g. automata over tree-like structures).

• Compare the automaton-based approach with other ones.

In particular, we are trying to
• generalize the approach to embed Courcelle’s

algebraic trees and the deterministic trees of the
Caucal hierarchy,

• exploit possible connections with the compositional
method of Shelah.


	Outline
	MSO Logics over tree structures (1)
	MSO Logics over tree structures (2)
	MSO Logics over tree structures (3)
	The automaton based approach (1)
	The automaton based approach (2)
	The automaton based approach (3)
	The automaton based approach (4)
	A digression into Büchi automata (1)
	A digression into Büchi automata (2)
	A Reduction to acceptance of regular trees
	The notion of equivalence
	Properties of $cong _M$
	The key ingredient
	Residually regular trees
	The main result
	Structural properties (1)
	Structural properties (2)
	Structural properties (3)
	Application examples
	Application examples
	Application examples
	Application examples
	Application examples
	Application examples
	Application examples
	Further work

