Decidability of the Theory of the Totally Unbounded ω -Layered Structure

Angelo Montanari and Gabriele Puppis

Dipartimento di Matematica e Informatica, Università di Udine via delle Scienze 206, 33100 Udine, Italy {montana,puppis}@dimi.uniud.it

- MSO logics over tree structures
- Layered structures
- The automaton-based approach
- A solution to the decision problem
- Further work

Let $\Lambda = \{1, \ldots, k\}$ be a finite set of edge labels.

We consider tree structures extended with tuples of unary **predicates**, namely, structures of the form

$$(\mathcal{T}, \overline{V}) = (S, (E_l)_{l \in \Lambda}, (V_i)_{i \in [1,m]})$$

where

- $S = \Lambda^*$ (set of vertices)
- $E_l = \{(v, vl) : v \in S\}$ (*l*-labeled edges)
- $V_i \subseteq S$ for all $1 \le i \le m$ (unary predicates)

Formulas over a tree structure \mathcal{T} are built up from atoms:

- $x_i = x_j$ " x_i and x_j denote the same vertex"
- $X_i \subseteq X_j$ "X_i denotes a subset of X_j "
- $E_l(x_i, x_j)$ " (x_i, x_j) denotes a *l*-labeled edge"
- $X_k(x_i)$ " x_i denotes a vertex in X_k "

...through connectives \land , \lor , \neg and quantifiers \forall , \exists over first-order and second-order variables.

Remark: we can restrict ourselves to an expressively equivalent framework devoid of *first-order variables*.

Free second-order variables X_1, \ldots, X_m will be interpreted by tuples of (unary) predicates V_1, \ldots, V_m .

Given a formula $\varphi(\bar{X})$, we write $\mathcal{T} \vDash \varphi[\bar{V}]$ to say that $\varphi(\bar{X})$ holds in \mathcal{T} by substituting V_i for X_i , for all $1 \le i \le m$.

The decision problem $MTh(\mathcal{T}, \overline{V})$ is the problem of deciding whether, for a given formula $\varphi(\overline{X})$,

 $\mathcal{T}\vDash \varphi[\bar{V}]$

Layered structures: totally unbounded

Goal: we want to decide the MSO theory of the **totally unbounded** ω **-layered structure (TULS)**:

- The structure contains arbitrarily fine/coarse layers
- Arrows map elements of a given layer to elements of the immediately finer layer
- Black vertices denote the elements of a distinguished layer ("layer 0") with an (optional) successor relation $+_0$

Decidability of the Theoryof the Totally Unbounded ω -Layered Structure – p. 6/2

Layered structures: downward unbounded

The TULS embeds the **downward unbounded** ω **-layered** structure (DULS)

(i.e., the structure with a top layer and an infinite number of finer and finer layers):

 \Rightarrow The DULS allows one to express properties like "*P holds true densely in an interval*".

Layered structures: upward unbounded

...and it embeds the **upward unbounded** ω -layered structure (UULS)

(i.e., the structure with a bottom layer and an infinite number of coarser and coarser layers):

 \Rightarrow The UULS allows one to express properties like "*P holds at all time points* 2^{i} ".

Layered structures: a tree embedding

The totally unbounded ω -layered structure can, in its turn, be embedded into an infinite complete **ternary tree** T_{TULS} :

Any expanded tree structure $(\mathcal{T}, \overline{V})$ can be encoded by a (*vertex-colored*) tree $\mathcal{T}_{\overline{V}}$ (canonical representation).

 \Rightarrow **Idea:** to exploit the correspondence between logic over tree structures and Rabin tree automata in order to *reduce a decision problem to an acceptance problem*.

A **Rabin automaton** works on colored trees in a top-down fashion: it "spreads" its states inside a tree (according to the transition relation) and it verifies that suitable acceptance conditions are met.

We say that a colored tree $\mathcal{T}_{\bar{V}}$ is **accepted** by M ($\mathcal{T}_{\bar{V}} \in \mathscr{L}(M)$) if such conditions are satisfied.

[Rabin's Theorem] For every formula $\varphi(\bar{X})$, there is a Rabin automaton M (and vice versa) such that

$$\mathcal{T} \vDash \varphi[\bar{V}] \quad \Leftrightarrow \quad \mathcal{T}_{\bar{V}} \in \mathscr{L}(M)$$

 \Rightarrow the decision problem $MTh(\mathcal{T}, \overline{V})$ for MSO formulas reduces to an **acceptance problem** $Acc(\mathcal{T}_{\overline{V}})$ for Rabin automata

 \Rightarrow we can restrict our attention to the decidability of the acceptance problem for Rabin tree automata.

Notation: Hereafter, we shall drop the subscript \overline{V} from $\mathcal{T}_{\overline{V}}$.

The automaton based approach - 3

Proposition: $Acc(\mathcal{T})$ is decidable for any infinite **regular** tree \mathcal{T} (i.e., a tree with *only finitely many distinct subtrees*).

However, the colored tree T_{TULS} that embeds the TULS is **not** regular.

 \Rightarrow we look for a larger class of colored trees for which the acceptance problem turns out to be decidable.

The automaton based approach - 4

Idea: Given an automaton M, we decide whether $\mathcal{T} \in \mathscr{L}(M)$ by reducing it to a simpler problem $\mathcal{T}' \in \mathscr{L}(M)$, where \mathcal{T}' is a regular tree equivalent to \mathcal{T} , namely,

$$\mathcal{T} \in \mathscr{L}(M) \quad \Leftrightarrow \quad \mathcal{T}' \in \mathscr{L}(M)$$

(recall that regular trees enjoys a decidable acceptance problem)

Such a reduction works effectively for several non-regular trees.

In particular, we can reduce the acceptance problem for T_{TULS} to a decidable acceptance problem over an *equivalent regular tree*.

A digression into Büchi automata - 1

Given a Büchi automaton M, we can define an equivalence \equiv_M over finite words s.t. $u \equiv_M u'$ iff, for every pair of states r,s,

Properties:

- 1. \equiv_M has **finite index**
- 2. \equiv_M is a **congruence** w.r.t. concatenation
- 3. \equiv_M -equivalent factorizations are **indistinguishable** by M, namely, if $u_i \equiv_M u'_i$ for all $i \ge 0$, then

$$u_0 u_1 u_2 \ldots \in \mathscr{L}(M) \quad \Leftrightarrow \quad u'_0 u'_1 u'_2 \ldots \in \mathscr{L}(M)$$

A digression into Büchi automata - 2

[Carton and Thomas] Given an ω -word $w = u_0 u_1 u_2 \dots$, if for any congruence \equiv_M there are p, q such that $\forall i > p. u_i \equiv_M u_{i+q}$

 $w \in \mathscr{L}(M)$ $(u_0 \dots u_p)(u_{p+1} \dots u_{p+q})(u_{p+q+1} \dots u_{p+2q}) \dots \in \mathscr{L}(M)$ $(u_0 \dots u_p) \cdot (u_{p+1} \dots u_{p+q})^{\omega} \in \mathscr{L}(M)$

 \Rightarrow if such p and q are computable for any congruence \equiv_M , then Acc(w) can be effectively reduced to a decidable acceptance problem over an **ultimately periodic word**.

Similar results hold for infinite trees...

Basic ingredients:

notion of tree concatenation \$\mathcal{T}_1 \cdot_c \$\mathcal{T}_2\$
(defined as the substitution in \$\mathcal{T}_1\$ of each \$c\$-colored leaf by \$\mathcal{T}_2\$)

- notion of **factorization** for infinite trees (i.e. infinite concatenation of the form $\mathcal{T}_0 \cdot_{c_0} \mathcal{T}_1 \cdot_{c_1} \ldots$)
- notion of **congruence** \equiv_M w.r.t. tree concatenations

[Main result] Given an infinite tree \mathcal{T} generated by a factorization $\mathcal{T}_0 \cdot_{c_0} \mathcal{T}_1 \cdot_{c_1} \dots$, if for any congruence \equiv_M there are p, q such that $\forall i > p$. $\mathcal{T}_i \equiv_M \mathcal{T}_{i+q}$, then:

Remark. The last factorization is ultimately periodic and it generates a (decidable) **regular** tree \mathcal{T}' .

A tree T is said **residually regular** if we can provide a factorization $T_0 \cdot_{c_0} T_1 \cdot_{c_1} \dots$ that is *effectively ultimately periodic* w.r.t. any congruence \equiv_M .

- \Rightarrow we solve $Acc(\mathcal{T})$ as follows:
- 1. we take a factorization S of T which is ultimately periodic w.r.t. any congruence \equiv_M
- 2. given automaton M, we compute an ultimately periodic factorization S' that is \equiv_M -equivalent to S
- 3. we know that \mathcal{S}' generates a regular tree \mathcal{T}' and $\mathcal{T}' \in \mathscr{L}(M) \quad \Leftrightarrow \quad \mathcal{T} \in \mathscr{L}(M)$
- 4. we solve $Acc(\mathcal{T}')$ on automaton M
- 5. we accordingly return Yes or No to the original problem $Acc(\mathcal{T})$

In general, residually regular trees are non-regular trees which however *exhibit a definite pattern* in their structure.

Example. The tree T_{TULS} , which embeds the TULS, can be proved to be **residually regular**:

The sequence of factors is ultimately periodic w.r.t. any equivalence \equiv_M

 $\Rightarrow \text{ the tree } \mathcal{T}_{TULS} \text{ (and hence the TULS itself) enjoys a} \\ \textbf{decidable MSO theory.} \\ \text{Decidability of the Theoryof the Totally Unbounded} \\ \textbf{\omega}-Layered Structure - p. 19/2} \\ \textbf{w} = \frac{1}{2} \frac{1}{2}$

Conclusions

Results:

- we developed an original automaton-based method to decide the TULS
- as a by-product, we obtained new uniform decidability proofs for the DULS and UULS

Further work:

- to exploit the proposed technique to decide variants of the theories of the DULS and UULS (MSO fragments extended with *equi-level/equi-column* predicates)
- to determine the generality of the proposed method (e.g., to compare it with the transformational approach developed by Caucal)