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A○ = {all countable words on A}

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

Interest on “regular” (= robust & decidable) languages L ⊆ A○



Given an alphabet A = { #, #}, let

A○ = {all countable words on A}

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

Interest on “regular” (= robust & decidable) languages L ⊆ A○



Given an alphabet A = { #, #}, let

A○ = {all countable words on A}

ε
®
0

 #
®
1

 # #
°
2

 #
®
1

 # #
°
2

 # #
°
2

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

Interest on “regular” (= robust & decidable) languages L ⊆ A○



Given an alphabet A = { #, #}, let

A○ = {all countable words on A}

ε

 #

 # #

 #  # #

 # #

 # # # #⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

ω

 # # # #⋯
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

ω

⋯ # # # #
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
−ω

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

Interest on “regular” (= robust & decidable) languages L ⊆ A○



Given an alphabet A = { #, #}, let

A○ = {all countable words on A}

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η

   #   #   #   #   #   #   #  

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

Interest on “regular” (= robust & decidable) languages L ⊆ A○



Given an alphabet A = { #, #}, let

A○ = {all countable words on A}

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ω −ω

⋯ # # # # # # # #⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ζ

 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ω2

Interest on “regular” (= robust & decidable) languages L ⊆ A○



Given an alphabet A = { #, #}, let

A○ = {all countable words on A}

εε

 # #

 # # # #

 # #  # # # #

 # # # #

 # # # #⋯ # # # #⋯

 # # # #⋯ # # # #⋯

⋯ # # # #⋯ # # # #

   #   #   #   #   #   #   #     #   #   #   #   #   #   #  

   #   #   #   #   #   #   #     #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #     #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

Interest on “regular” (= robust & decidable) languages L ⊆ A○



Formalisms for classical regular languages

closures

decidability

normal forms

periodic models

...

MSO logic

Automata Semigroups



Formalisms for classical regular languages

closures

decidability

normal forms

periodic models

...

MSO logic

Automata Semigroups



Recognizability of languages via semigroups

A○ =

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

associative product Π ∶ (A○)○→A○

e.g. Π( ( # # # #⋯) (⋯ # # # #) ) =  # # # #⋯⋯ # # # #

Π(( #)( # # #⋯⋯ # # #)( #)) =  # # # #⋯⋯ # # # #

S =
 #

 #

 #

 #

 #

 #

associative product π ∶ S○→ S
e.g. π( # # # # #⋯) =  #

π( # # #) =  #

h h−1

L ⊆ A○ recognized by (S,π) ⇔ ...

∃ F ⊆ S
L = h−1(F )



Recognizability of languages via semigroups

A○ =

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

associative product Π ∶ (A○)○→A○

e.g. Π( ( # # # #⋯) (⋯ # # # #) ) =  # # # #⋯⋯ # # # #

Π(( #)( # # #⋯⋯ # # #)( #)) =  # # # #⋯⋯ # # # #

S =
 #

 #

 #

 #

 #

 #

associative product π ∶ S○→ S
e.g. π( # # # # #⋯) =  #

π( # # #) =  #

h h−1

L ⊆ A○ recognized by (S,π) ⇔ ...

∃ F ⊆ S
L = h−1(F )



Recognizability of languages via semigroups

A○ =

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

associative product Π ∶ (A○)○→A○

e.g. Π( ( # # # #⋯) (⋯ # # # #) ) =  # # # #⋯⋯ # # # #

Π(( #)( # # #⋯⋯ # # #)( #)) =  # # # #⋯⋯ # # # #

S =
 #

 #

 #

 #

 #

 #

associative product π ∶ S○→ S
e.g. π( # # # # #⋯) =  #

π( # # #) =  #

h h−1

L ⊆ A○ recognized by (S,π) ⇔ ...

∃ F ⊆ S
L = h−1(F )



Recognizability of languages via semigroups

A○ =

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

associative product Π ∶ (A○)○→A○

e.g. Π( ( # # # #⋯) (⋯ # # # #) ) =  # # # #⋯⋯ # # # #

Π(( #)( # # #⋯⋯ # # #)( #)) =  # # # #⋯⋯ # # # #

S =
 #

 #

 #

 #

 #

 #

associative product π ∶ S○→ S
e.g. π( # # # # #⋯) =  #

π( # # #) =  #

h−1h

L ⊆ A○ recognized by (S,π) ⇔ ∃ h ∶ (A○,Π) → (S,π)
...

∃ F ⊆ S
L = h−1(F )



Recognizability of languages via semigroups

A○ =

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

associative product Π ∶ (A○)○→A○

e.g. Π( ( # # # #⋯) (⋯ # # # #) ) =  # # # #⋯⋯ # # # #

Π(( #)( # # #⋯⋯ # # #)( #)) =  # # # #⋯⋯ # # # #

S =
 #

 #

 #

 #

 #

 #

associative product π ∶ S○→ S
e.g. π( # # # # #⋯) =  #

π( # # #) =  #

h−1h

L ⊆ A○ recognized by (S,π) ⇔ ∃ h ∶ (A○,Π) → (S,π)
∃ F ⊆ S
...

L = h−1(F )



Recognizability of languages via semigroups

A○ =

ε

 #

 # #

 #  # #

 # #

 # # # #⋯

 # # # #⋯

⋯ # # # #

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #  

   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  

 # # # #⋯⋯ # # # #

⋯ # # # # # # # #⋯
 # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯ # # # #⋯

associative product Π ∶ (A○)○→A○

e.g. Π( ( # # # #⋯) (⋯ # # # #) ) =  # # # #⋯⋯ # # # #

Π(( #)( # # #⋯⋯ # # #)( #)) =  # # # #⋯⋯ # # # #

S =
 #

 #

 #

 #

 #

 #

associative product π ∶ S○→ S
e.g. π( # # # # #⋯) =  #

π( # # #) =  #

h h−1

L ⊆ A○ recognized by (S,π) ⇔ ∃ h ∶ (A○,Π) → (S,π)
∃ F ⊆ S
L = h−1(F )



Properties of recognizable languages

Closure under complementations, unions, projections, ...

e.g. if L = h−1(F ) then A○ ∖L = h−1(S ∖ F )

Capture all languages definable in MSO

negations → complementations
disjunctions → unions

existential quantifications → projections

Algorithms for emptiness, universality, ... ?

PROBLEM: need to finitely represent countable products!
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Algebras as representations of countable products

We use the same approch as in classical semigroups
i.e. π( # # # #) =  # ⋅  # ⋅  # ⋅  #

Given a semigroup (S,π), the induced algebra consists of

binary product ⋅ : S × S → S
 # ⋅  # = π( # #)

±ω-powers ±ω : S → S
 #ω = π( # # # # # #⋯)
 #−ω = π(⋯  # # # # # #)

perfect shuffle η : P(S) → S
{ #, #, #}η = π(   #   #   #   #   #   #   #   #   #   #   #   #   #   #   #  )

Equations derived from associativity
e.g. if { #, #, #}η =  # then  # ⋅ # ⋅ # =  #

{ #, #}η =  #
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To define π(w) repeatedly simplify w by evaluating infixes

finite words: use operator ⋅
perfect shuffles: use operator η
±ω-iterations: use operators ω and −ω

evaluation strategy = well-founded tree where siblinghoods
can be easily evaluated using ⋅, η, ω,−ω

existence: Theorems a-la Ramsey + Axiom of Choice
well-definedness: Equations for associativity + Induction
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h(L) = h(h−1(F ))

= F ∩ h(A○)

= F ∩ ⟨ h(A) ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

closure of h(A)
under ⋅, ω,−ω, η

h h−1

L ≠ ∅ iff F ∩ ⟨ h(A) ⟩ ≠ ∅
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From semigroups to MSO in normal form

Recognizable languages can be defined in ∃∀∃∀∃∀∃∀∃∀∃∀∃∀∃∀∃∀MSO

i.e. by formulas ∃ X̄. ∀ Ȳ . ϕ(X̄, Ȳ )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
FO formula

To check whether w ∈ L, one needs again to evaluate π(w)
PROBLEM: evaluation strategy must be guessed in MSO!

new evaluation strategy = Factorization Forest [Simon ’90]
[Colcombet ’10]

= tree of small (bounded) height that
eases evaluation of subwords via FO
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Factorization forests

w =  #  #  #  #  #  #  #  # ⋯  #  #  #  #

Internal nodes of a factorization forest can have:
2 children with arbitrary values
several children with same idempotent (e ⋅ e = e)

There always exist a factorization forest of height ≤ k∣S∣
w ∈ L ⇔ ∃ factorization forest X̄. value(w) ∈ F

∧ ∀ subword Y . ∀ factorization Z. value(Y ) = ∏
Yi factor of Z

value(Yi)
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Other applications

Yields of trees

L regular language of countable words
⇕

T = {t ∶ yield(t) ∈ L} regular language of trees

Logics with cuts in the background [Gurevitch & Rabinovitch]

∣ #∣ #∣ #∣ #∣ #∣⋯∣⋯∣ #∣ #∣ #∣ #∣ #∣ variables x,X, ... for positions
x̂, X̂, ... for cuts

MSO[Q, Q̂] is undecidable (like MSO[R])
MSO[Q, Q̂] defines same predicates over Q as MSO[Q]

Characterizations of FO-definable languages...
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