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Given an alphabet A = {@®, @}, let

A° = {all countable words on A}
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§Z Interest on “regular” (= robust & decidable) languages L c A°



Formalisms for classical regular languages

MSO logic




Formalisms for classical regular languages

closures - ~
decidability
normal forms MSO logic

periodic models
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Recognizability of languages via semigroups

A°=| = € associative product IT: (A4°)° - A°

;::“ e.g. H( (.......) (.......) ) = @@o---00@
n((.)(....l.......)(.)) = @@c----00@®

S = associative product 7: 5°—> S
° ® ° e.g. 77(.’......) - @
"(00®) - ®

i Lc A°recognized by (S,7) < 3Jh: (A% 1) - (S,7)
3FcS
L=hY(F)
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Properties of recognizable languages

Q Closure under complementations, unions, projections, ...
eqg. if L=hY(F) then A°~L = h"Y(S\F)

Q Capture all languages definable in MSO

negations — complementations
disjunctions — unions
existential quantifications — projections

@ Algorithms for emptiness, universality, ... ?

PROBLEM: need to finitely represent countable products!
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Algebras as representations of countable products

N

\Q’ We use the same approch as in classical semigroups
e. 7(0000) -0 @ @ @

§Z Given a semigroup (S, ), the induced algebra consists of
m binary product - : SxS8 - §
® O -(00)

m tw-powers zw : S - S
Q" = 7(@@ee- )
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m perfect shuffle n : £2(S) - S
{.7 o, .}77 = 7r(-o-.-o-.-o-.-o-.-o-.-o—.-o-.-o-)

€ Equations derived from associativity
eg. if {0.0.0}"=-@ then @ @ @ =
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Recovering countable products from algebras

w =

@
\Q’ To define 7(w) repeatedly simplify w by evaluating infixes
m finite words: use operator -
m perfect shuffles: use operator 7
m +w-iterations: use operators w and —w

gz evaluation strategy = well-founded tree where siblinghoods
can be easily evaluated using -, n, w, —w

m existence: Theorems a-la Ramsey + Axiom of Choice
m well-definedness: Equations for associativity + Induction
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From semigroups to MSO in normal form

i

Recognizable languages can be defined in 3VMSO
i.e. byformulas 3 X. VY. p(X,Y)

S
FO formula

To check whether w € L, one needs again to evaluate 7w (w)

PROBLEM: evaluation strategy must be guessed in MSO!

new evaluation strategy = Factorization Forest [Simon '90]

[Colcombet *10]

tree of small (bounded) height that
eases evaluation of subwords via FO
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bounded height

Internal nodes of a factorization forest can have:
m 2 children with arbitrary values
m several children with same idempotent (e-e=¢)

#% There always exist a factorization forest of height < k||

we L < 3 factorization forest X. value(w) € F

AV subword Y. V factorization Z. value(Y) = [I value(Y;)
Y; factorof Z
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Other applications

= Yields of trees A

L regular language of countable words

T = {t : yield(t) € L} regular language of trees

m Logics with cuts in the background [Gurevitch & Rabinovitch]

variables x, X, ... for positions

|@[@fe[st-|-+isje|0|@)| # X, ... for cuts
MSO[Q, Q] is undecidable (like MSO[R])
MSO[Q, Q] defines same predicates over Q as MSO[Q]

m Characterizations of FO-definable languages...



