

$$A^{\circ} = \{ all \ countable \ words \ on \ A \}$$

Interest on "regular" (= robust & decidable) languages $L \subseteq A^{\circ}$

Formalisms for classical regular languages

Formalisms for classical regular languages

 $I \subseteq A^{\circ}$ recognized by $(S, \pi) \Leftrightarrow \dots$

 $I \subseteq A^{\circ} \text{ recognized by } (S,\pi) \quad \Leftrightarrow \quad \exists h: (A^{\circ},\Pi) \to (S,\pi)$

 $\begin{array}{ccc} & & & \\$

 $\begin{array}{ccc} & & & \\$

Properties of recognizable languages

....

Closure under complementations, unions, projections, ...

e.g. if $L = h^{-1}(F)$ then $A^{\circ} \smallsetminus L = h^{-1}(S \smallsetminus F)$

Properties of recognizable languages

Closure under complementations, unions, projections, ...

e.g. if $L = h^{-1}(F)$ then $A^{\circ} \setminus L = h^{-1}(S \setminus F)$

Capture all languages definable in MSO

negations → complementations disjunctions → unions existential quantifications → projections Properties of recognizable languages

Closure under complementations, unions, projections, ...

e.g. if $L = h^{-1}(F)$ then $A^{\circ} \setminus L = h^{-1}(S \setminus F)$

Capture all languages definable in MSO

negations → complementations disjunctions → unions existential quantifications → projections

Algorithms for emptiness, universality, ... ?

PROBLEM: need to finitely represent countable products!

We use the same approch as in classical semigroups

i.e. $\pi(\bigcirc \bigcirc \bigcirc \bigcirc) = \bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc$

`<mark>`</mark>/-

We use the same approch as in classical semigroups i.e. $\pi(\bullet \bullet \bullet \bullet) = \bullet \bullet \bullet \bullet \bullet \bullet$

Given a semigroup (S, π) , the **induced algebra** consists of

■ binary product · : $S \times S \rightarrow S$ ● · ● = π (●●)

We use the same approch as in classical semigroups i.e. $\pi(\bigcirc \bigcirc \bigcirc) = \bigcirc \cdot \bigcirc \cdot \bigcirc$

W Given a semigroup (S, π) , the **induced algebra** consists of

■ binary product · :
$$S \times S \rightarrow S$$

• • • = $\pi(\bullet \bullet)$

 $\pm \omega \text{-powers} \quad \pm \omega \quad : \quad S \to S \\ \bullet^{\omega} = \pi (\bullet \bullet \bullet \bullet \cdots) \\ \bullet^{-\omega} = \pi (\cdots \bullet \bullet \bullet \bullet)$

We use the same approch as in classical semigroups i.e. $\pi(\bigcirc \bigcirc \bigcirc) = \bigcirc \cdot \bigcirc \cdot \bigcirc$

W Given a semigroup (S, π) , the **induced algebra** consists of

- binary product · : $S \times S \rightarrow S$ • • • = $\pi(\bullet \bullet)$
- $\pm \omega \text{-powers} \quad \pm \omega \quad : \quad S \to S \\ \bullet^{\omega} = \pi(\bullet \bullet \bullet \bullet \cdots) \\ \bullet^{-\omega} = \pi(\cdots \bullet \bullet \bullet \bullet)$

We use the same approch as in classical semigroups i.e. $\pi(\bigcirc \bigcirc \bigcirc \bigcirc) = \bigcirc \cdot \bigcirc \cdot \bigcirc$

W Given a semigroup (S, π) , the **induced algebra** consists of

- binary product · : $S \times S \rightarrow S$ • • • = $\pi(\bullet \bullet)$
- $\pm \omega \text{-powers} \quad \pm \omega \quad : \quad S \to S \\ \bullet^{\omega} = \pi (\bullet \bullet \bullet \bullet \cdots) \\ \bullet^{-\omega} = \pi (\cdots \bullet \bullet \bullet \bullet)$
- Equations derived from associativity e.g. if $\{ \bullet, \bullet, \bullet \}^{\eta} = \bullet$ then $\{ \bullet, \bullet \}^{\eta} = \bullet$ $\{ \bullet, \bullet \}^{\eta} = \bullet$

To define $\pi(w)$ repeatedly simplify w by evaluating infixes finite words: use operator \cdot

To define $\pi(w)$ repeatedly simplify w by evaluating infixes finite words: use operator \cdot

- finite words: use operator ·
- perfect shuffles: use operator η

- finite words: use operator ·
- perfect shuffles: use operator η

- finite words: use operator ·
- perfect shuffles: use operator η
- $\pm \omega$ -iterations: use operators ω and $-\omega$

- finite words: use operator ·
- perfect shuffles: use operator η
- $\pm \omega$ -iterations: use operators ω and $-\omega$

- finite words: use operator ·
- perfect shuffles: use operator η
- $\pm \omega$ -iterations: use operators ω and $-\omega$
- *evaluation strategy* = well-founded tree where siblinghoods can be easily evaluated using $\cdot, \eta, \omega, -\omega$

To define $\pi(w)$ repeatedly simplify w by evaluating infixes

- finite words: use operator ·
- perfect shuffles: use operator η
- $\pm \omega$ -iterations: use operators ω and $-\omega$

evaluation strategy = well-founded tree where siblinghoods can be easily evaluated using $\cdot, \eta, \omega, -\omega$

existence: Theorems a-la Ramsey + Axiom of Choice

well-definedness: Equations for associativity + Induction

$$L = h^{-1}(F)$$

$$h(L) = h(h^{-1}(F))$$

 $L = h^{-1}(F)$

$$h(L) = h(h^{-1}(F))$$
$$= F \cap h(A^{\circ})$$

$$L = h^{-1}(F)$$

$$h(L) = h(h^{-1}(F))$$
$$= F \cap h(A^{\circ})$$
$$= F \cap (h(A))$$
$$\underset{\text{closure of } h(A)}{\underset{\text{under }, \omega, -\omega, \eta}{\underset{\text{closure of } h(A)}{\underset{\text{closure of$$

$$L = h^{-1}(F)$$

$$h(L) = h(h^{-1}(F))$$
$$= F \cap h(A^{\circ})$$
$$= F \cap (h(A))$$
$$\underset{\text{closure of } h(A)}{\underset{\text{under}}{\underset{\text{of } w}{\underset{\text{closure of } h(A)}{\underset{\text{closure of } h(A)}{\underset{\text{closure of } w}{\underset{\text{closure of } w}{\underset{w}}}}}}}}}}}}}}}}}})}}$$

 $\mathbb{I} = L \neq \emptyset \quad \text{iff} \quad F \cap \langle h(A) \rangle \neq \emptyset$

Translations between formalisms

Translations between formalisms

From semigroups to MSO in normal form

IF Recognizable languages can be defined in ∃∀MSO

i.e. by formulas
$$\exists \bar{X}. \forall \bar{Y}. \underbrace{\varphi(\bar{X}, \bar{Y})}_{\Box o \text{ formula}}$$

From semigroups to MSO in normal form

Image: Recognizable languages can be defined in ∃∀MSO

i.e. by formulas $\exists \bar{X}. \forall \bar{Y}. \underbrace{\varphi(\bar{X}, \bar{Y})}_{\text{FO formula}}$

To check whether $w \in L$, one needs again to evaluate $\pi(w)$ PROBLEM: evaluation strategy must be guessed in MSO! From semigroups to MSO in normal form

Image: Recognizable languages can be defined in ∃∀MSO

i.e. by formulas $\exists \bar{X}. \forall \bar{Y}. \underbrace{\varphi(\bar{X}, \bar{Y})}_{\text{FO formula}}$

To check whether $w \in L$, one needs again to evaluate $\pi(w)$ PROBLEM: evaluation strategy must be guessed in MSO!

new evaluation strategy = Factorization Forest [Simon '90] [Colcombet '10]

 tree of small (bounded) height that eases evaluation of subwords via FO

- **2 children** with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

- **2 children** with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

- **2 children** with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

- **2 children** with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

- **2 children** with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

- **2 children** with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

Internal nodes of a factorization forest can have:

- **2 children** with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

There always exist a factorization forest of height $\leq k|S|$ $w \in L \iff \exists$ factorization forest \overline{X} . value $(w) \in F$

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
- **several children** with same idempotent $(e \cdot e = e)$

 Y_i factor of Z

There always exist a factorization forest of height $\leq k|S|$ $w \in L \iff \exists$ factorization forest \overline{X} . value $(w) \in F$ $\land \forall$ subword Y. \forall factorization Z. value $(Y) = \prod$ value (Y_i)

Translations between formalisms (cont'd)

Translations between formalisms (cont'd)

Translations between formalisms (cont'd)

Other applications

Yields of trees

 $L \ \ {\rm regular\ language\ of\ countable\ words} \\ T = \left\{t\ :\ {\rm yield}(t) \in L\right\} \ \ {\rm regular\ language\ of\ trees} \\$

Other applications

Yields of trees

L regular language of countable words \uparrow $T = \{t : yield(t) \in L\}$ regular language of trees

Logics with cuts in the background [Gurevitch & Rabinovitch]

variables x, X, \dots for positions \hat{x}, \hat{X}, \dots for cuts

$$\begin{split} \mathsf{MSO}[\mathbb{Q},\hat{\mathbb{Q}}] \text{ is undecidable } & (\mathsf{like } \mathsf{MSO}[\mathbb{R}]) \\ \mathsf{MSO}[\mathbb{Q},\hat{\mathbb{Q}}] \text{ defines same predicates over } \mathbb{Q} \text{ as } \mathsf{MSO}[\mathbb{Q}] \end{split}$$

Other applications

Yields of trees

 $L \ \ \text{regular language of countable words} \\ \\ T = \left\{t \ : \ \text{yield}(t) \in L\right\} \ \ \text{regular language of trees} \\ \end{cases}$

Logics with cuts in the background [Gurevitch & Rabinovitch]

$$\begin{split} \mathsf{MSO}[\mathbb{Q},\hat{\mathbb{Q}}] \text{ is undecidable } & (\mathsf{like } \mathsf{MSO}[\mathbb{R}]) \\ \mathsf{MSO}[\mathbb{Q},\hat{\mathbb{Q}}] \text{ defines same predicates over } \mathbb{Q} \text{ as } \mathsf{MSO}[\mathbb{Q}] \end{split}$$

Characterizations of FO-definable languages...