LANGUAGES OF
 COUNTABLE WORDS

Loremipsum (Dontriaded this. Betier listen

Gabriele Puppis

LaBRI / CNRS
based on joint works with
Olivier Carton, Thomas Colcombet

Ullam corporis sssipititbecoiosam, nisí...

Given an alphabet $A=\{\bullet, \bullet$, let
$A^{\circ}=\{$ all countable words on $A\}$

Given an alphabet $A=\{\bullet, \bigcirc$, let

Given an alphabet $A=\{\bullet, \bigcirc\}$, let

n湭 Interest on "regular" (= robust \& decidable) languages $L \subseteq A^{\circ}$

Formalisms for classical regular languages

Semigroups

Formalisms for classical regular languages

Recognizability of languages via semigroups

(4) associative product $\Pi:\left(A^{\circ}\right)^{\circ} \rightarrow A^{\circ}$
e.g. $\quad \Pi((\bullet \bullet \bullet \cdots)(\cdots \cdot \bullet \bullet))=\bullet \bullet \bullet \bullet \bullet$

Recognizability of languages via semigroups

(4) associative product $\Pi:\left(A^{\circ}\right)^{\circ} \rightarrow A^{\circ}$

(7) associative product $\pi: S^{\circ} \rightarrow S$

$$
\begin{array}{ll}
\text { e.g. } & \pi(\bigcirc \bullet \bullet \bullet \ldots)
\end{array}=\bigcirc
$$

Recognizability of languages via semigroups

(1) associative product $\Pi:\left(A^{\circ}\right)^{\circ} \rightarrow A^{\circ}$

$$
\begin{array}{ll}
\text { e.g. } & \Pi((\bullet \bullet \ldots \cdots)(\cdots \bullet \bullet \bullet))= \\
& \Pi((\bullet)(\bullet \ldots \ldots \ldots \bullet \bullet)(\bullet))=
\end{array}
$$

(7) associative product $\pi: S^{\circ} \rightarrow S$

$$
\begin{array}{ll}
\text { e.g. } & \pi(\bigcirc \bullet \bullet . . .)
\end{array}=\bigcirc
$$

证 $L \subseteq A^{\circ}$ recognized by $(S, \pi) \quad \Leftrightarrow \quad$..

Recognizability of languages via semigroups

(-) associative product $\Pi:\left(A^{\circ}\right)^{\circ} \rightarrow A^{\circ}$

$$
\begin{array}{ll}
\text { e.g. } & \Pi((\bullet \bullet \bullet \cdots)(\cdots \cdot \bullet \bullet)) \\
& \Pi((\bullet)(\bullet \bullet \cdots \cdots \bullet \bullet)(\bullet)) \\
& =\bullet \bullet \bullet \cdots \cdots \bullet \bullet \bullet \bullet
\end{array}
$$

(7) associative product $\pi: S^{\circ} \rightarrow S$

$$
\text { e.g. } \begin{aligned}
\pi(\bigcirc \bigcirc \bullet \bullet \cdots) & =\bigcirc \\
\pi(\bigcirc \bigcirc \bigcirc) & =\bigcirc
\end{aligned}
$$

四 $L \subseteq A^{\circ}$ recognized by $(S, \pi) \quad \Leftrightarrow \quad \exists h:\left(A^{\circ}, \Pi\right) \rightarrow(S, \pi)$

Recognizability of languages via semigroups

(4) associative product $\Pi:\left(A^{\circ}\right)^{\circ} \rightarrow A^{\circ}$

$$
\left.\begin{array}{ll}
\text { e.g. } & \Pi((\bullet \bullet \bullet \cdots)(\cdots \cdot \bullet \bullet)) \\
& \Pi((\bullet)(\bullet \bullet \cdots \cdots \bullet \bullet)(\bullet))
\end{array}\right)
$$

(7) associative product $\pi: S^{\circ} \rightarrow S$

$$
\text { e.g. } \quad \begin{aligned}
\pi(\bigcirc \bigcirc \bullet \cdots) & =\bigcirc \\
\pi(\bigcirc \bigcirc \bigcirc) & =\bigcirc
\end{aligned}
$$

到 $L \subseteq A^{\circ}$ recognized by $(S, \pi) \quad \Leftrightarrow \quad \exists h:\left(A^{\circ}, \Pi\right) \rightarrow(S, \pi)$

Recognizability of languages via semigroups

(1) associative product $\Pi:\left(A^{\circ}\right)^{\circ} \rightarrow A^{\circ}$
(4) associative product $\pi: S^{\circ} \rightarrow S$

$$
\text { e.g. } \begin{aligned}
\pi(\bigcirc \bullet \bullet \bullet \ldots) & =\bigcirc \\
\pi(\bigcirc \bigcirc \bigcirc) & =\bigcirc
\end{aligned}
$$

司 $L \subseteq A^{\circ}$ recognized by $(S, \pi) \quad \Leftrightarrow \quad \exists h:\left(A^{\circ}, \Pi\right) \rightarrow(S, \pi)$

$$
\exists F \subseteq S
$$

$$
L=h^{-1}(F)
$$

$$
\begin{aligned}
& \text { e.g. } \Pi((\bullet \bullet \cdots \cdots)(\cdots \cdot \bullet \bullet))= \\
& \Pi((\bullet)(\bullet \bullet \ldots \ldots . . \bullet \bullet)(\bullet))=\bullet \bullet \bullet \ldots \ldots . . \bullet \bullet \bullet
\end{aligned}
$$

Properties of recognizable languages

(-) Closure under complementations, unions, projections, ...

$$
\text { e.g. if } \quad L=h^{-1}(F) \quad \text { then } \quad A^{\circ} \backslash L=h^{-1}(S \backslash F)
$$

Properties of recognizable languages

(). Closure under complementations, unions, projections, ...

$$
\text { e.g. if } L=h^{-1}(F) \text { then } A^{\circ} \backslash L=h^{-1}(S \backslash F)
$$

() Capture all languages definable in MSO

$$
\begin{aligned}
\text { negations } & \rightarrow \text { complementations } \\
\text { disjunctions } & \rightarrow \text { unions } \\
\text { existential quantifications } & \rightarrow \text { projections }
\end{aligned}
$$

Properties of recognizable languages

-) Closure under complementations, unions, projections, ...

$$
\text { e.g. if } L=h^{-1}(F) \text { then } A^{\circ} \backslash L=h^{-1}(S \backslash F)
$$

() Capture all languages definable in MSO

$$
\begin{aligned}
\text { negations } & \rightarrow \text { complementations } \\
\text { disjunctions } & \rightarrow \text { unions } \\
\text { existential quantifications } & \rightarrow \text { projections }
\end{aligned}
$$

Algorithms for emptiness, universality, ... ?
PROBLEM: need to finitely represent countable products!

Algebras as representations of countable products

We use the same approch as in classical semigroups
i.e. $\pi(\bigcirc \bigcirc \bigcirc)=\bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc$

Algebras as representations of countable products

We use the same approch as in classical semigroups
i.e. $\pi(\bigcirc \bigcirc \bigcirc)=\bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc$

四 Given a semigroup (S, π), the induced algebra consists of
■ binary product • : $S \times S \rightarrow S$

$$
\bigcirc=\pi(\bigcirc \bigcirc)
$$

Algebras as representations of countable products

We use the same approch as in classical semigroups
i.e. $\pi(\bigcirc \bigcirc \bigcirc)=\bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc$

Given a semigroup (S, π), the induced algebra consists of
■ binary product • : $S \times S \rightarrow S$

$$
\bigcirc \cdot=\pi(\bigcirc \bigcirc)
$$

■ $\pm \omega$-powers $\pm \omega: S \rightarrow S$

$$
\begin{aligned}
\bigcirc^{\omega} & =\pi(\bigcirc \bullet \bullet \bullet \cdots \cdots) \\
\bigcirc^{-\omega} & =\pi(\cdots \cdots \bullet \bullet \bullet \bigcirc)
\end{aligned}
$$

Algebras as representations of countable products

We use the same approch as in classical semigroups
i.e. $\pi(\bigcirc \bigcirc \bigcirc)=\bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc$

目 Given a semigroup (S, π), the induced algebra consists of
■ binary product • : $S \times S \rightarrow S$

$$
\bigcirc \cdot=\pi(\bigcirc \bigcirc)
$$

■ $\pm \omega$-powers $\pm \omega: S \rightarrow S$

$$
\begin{aligned}
\bigcirc^{\omega} & =\pi(\bigcirc \bullet \bullet \bullet \bullet \cdots) \\
\bigcirc^{-\omega} & =\pi(\cdots \cdots \bullet \bullet \bullet \bigcirc)
\end{aligned}
$$

■ perfect shuffle $\eta: \mathscr{P}(S) \rightarrow S$

$$
\{\bigcirc, \bigcirc, \bigcirc\}^{\eta}=\pi(\cdot \bullet \cdot \bullet \cdot \cdot \cdot \bullet \cdot \bullet \cdot \bullet \cdot \cdot \bullet \cdot \bullet \cdot \bullet)
$$

Algebras as representations of countable products

We use the same approch as in classical semigroups
i.e. $\pi(\bigcirc \bigcirc \bigcirc)=\bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc$

Given a semigroup (S, π), the induced algebra consists of
■ binary product • : $S \times S \rightarrow S$

$$
\bigcirc \cdot=\pi(\bigcirc \bigcirc)
$$

■ $\pm \omega$-powers $\pm \omega$: $S \rightarrow S$

$$
\begin{aligned}
\bigcirc^{\omega} & =\pi(\bigcirc \bigcirc \bullet \bullet \cdots \cdots) \\
\bigcirc^{-\omega} & =\pi(\cdots \cdots \bullet \bullet \bullet \bigcirc)
\end{aligned}
$$

■ perfect shuffle $\eta: \mathscr{P}(S) \rightarrow S$

$$
\{\bigcirc, \bigcirc, \bigcirc\}^{\eta}=\pi(\cdot \bullet \cdot \bullet \cdot \bullet \bullet \cdot \bullet \cdot \bullet \cdot \bullet \cdot \bullet \cdot \bullet)
$$

(1) Equations derived from associativity

$$
\begin{aligned}
& \text { e.g. if }\{\bigcirc, \bigcirc, \bigcirc\}^{\eta}=\bigcirc \text { then } \bigcirc \cdot \bigcirc \cdot O=\bigcirc \\
& \{0, \bigcirc\}^{\eta}=\bigcirc
\end{aligned}
$$

Recovering countable products from algebras

当 To define $\pi(w)$ repeatedly simplify w by evaluating infixes

Recovering countable products from algebras

To define $\pi(w)$ repeatedly simplify w by evaluating infixes
■ finite words: use operator .

Recovering countable products from algebras

㖓 To define $\pi(w)$ repeatedly simplify w by evaluating infixes

■ finite words: use operator .

Recovering countable products from algebras

To define $\pi(w)$ repeatedly simplify w by evaluating infixes
■ finite words: use operator •
■ perfect shuffles: use operator η

Recovering countable products from algebras

To define $\pi(w)$ repeatedly simplify w by evaluating infixes
■ finite words: use operator •
■ perfect shuffles: use operator η

Recovering countable products from algebras

$w=$
 \cdots
$\overbrace{\%}^{\prime \prime}$
To define $\pi(w)$ repeatedly simplify w by evaluating infixes
■ finite words: use operator
■ perfect shuffles: use operator η
■ $\pm \omega$-iterations: use operators ω and $-\omega$

Recovering countable products from algebras

曾
To define $\pi(w)$ repeatedly simplify w by evaluating infixes
■ finite words: use operator •
■ perfect shuffles: use operator η
■ $\pm \omega$-iterations: use operators ω and $-\omega$

Recovering countable products from algebras

To define $\pi(w)$ repeatedly simplify w by evaluating infixes
■ finite words: use operator
■ perfect shuffles: use operator η
■ $\pm \omega$-iterations: use operators ω and $-\omega$

吾要 evaluation strategy = well-founded tree where siblinghoods can be easily evaluated using $\cdot, \eta, \omega,-\omega$

Recovering countable products from algebras

```
\(\square\)
```



```
w =
```

\qquad

To define $\pi(w)$ repeatedly simplify w by evaluating infixes
■ finite words: use operator .
■ perfect shuffles: use operator η
■ $\pm \omega$-iterations: use operators ω and $-\omega$

证 evaluation strategy = well-founded tree where siblinghoods can be easily evaluated using $\cdot, \eta, \omega,-\omega$

■ existence: Theorems a-la Ramsey + Axiom of Choice
■ well-definedness: Equations for associativity + Induction

Deciding emptiness of recognizable languages

$$
\begin{aligned}
L & =h^{-1}(F) \\
h(L) & =h\left(h^{-1}(F)\right)
\end{aligned}
$$

Deciding emptiness of recognizable languages

$$
\begin{aligned}
L & =h^{-1}(F) \\
h(L) & =h\left(h^{-1}(F)\right) \\
& =F \cap h\left(A^{\circ}\right)
\end{aligned}
$$

Deciding emptiness of recognizable languages

$$
\begin{aligned}
L & =h^{-1}(F) \\
h(L) & =h\left(h^{-1}(F)\right) \\
& =F \cap h\left(A^{\circ}\right) \\
& =F \cap \underbrace{h(A)}_{\begin{array}{c}
\text { closure of } h(A) \\
\text { under } \cdot, \omega,-\omega, \eta
\end{array}\langle h(A)\rangle}
\end{aligned}
$$

Deciding emptiness of recognizable languages

$$
\begin{aligned}
L & =h^{-1}(F) \\
h(L) & =h\left(h^{-1}(F)\right) \\
& =F \cap h\left(A^{\circ}\right) \\
& =F \cap \underbrace{h(A)}_{\begin{array}{c}
\text { closure of } h(A) \\
\text { under } \cdot \omega,-\omega, \eta
\end{array}\langle h(A)\rangle}
\end{aligned}
$$

证 $L \neq \varnothing \quad$ iff $\quad F \cap\langle h(A)\rangle \neq \varnothing$

Translations between formalisms

Translations between formalisms

From semigroups to MSO in normal form

2Recognizable languages can be defined in $\exists \forall$ MSO
i.e. by formulas $\exists \bar{X} . \forall \bar{Y} . \underbrace{\varphi(\bar{X}, \bar{Y})}_{\text {FO formula }}$

From semigroups to MSO in normal form

设 Recognizable languages can be defined in $\exists \forall$ MSO
i.e. by formulas $\exists \bar{X} . \forall \bar{Y} . \underbrace{\varphi(\bar{X}, \bar{Y})}_{\text {FO formula }}$

To check whether $w \in L$, one needs again to evaluate $\pi(w)$
PROBLEM: evaluation strategy must be guessed in MSO!

From semigroups to MSO in normal form

㬐 Recognizable languages can be defined in $\exists \forall$ MSO
i.e. by formulas $\exists \bar{X} . \forall \bar{Y} . \underbrace{\varphi(\bar{X}, \bar{Y})}_{\text {FO formula }}$

To check whether $w \in L$, one needs again to evaluate $\pi(w)$
PROBLEM: evaluation strategy must be guessed in MSO!
new evaluation strategy $=$ Factorization Forest [Simon '90]
[Colcombet '10]
$=$ tree of small (bounded) height that eases evaluation of subwords via FO

Factorization forests

$$
w=\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet \cdots \bigcirc \bigcirc \bigcirc \bigcirc
$$

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
- several children with same idempotent $\quad(e \cdot e=e)$

Factorization forests

$w=\bigcirc \bigcirc \bigcirc \bullet \bullet \bullet \cdots \bigcirc \bigcirc \bigcirc \bigcirc$

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
\square several children with same idempotent $\quad(e \cdot e=e)$

Factorization forests

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
\square several children with same idempotent $\quad(e \cdot e=e)$

Factorization forests

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
- several children with same idempotent $\quad(e \cdot e=e)$

Factorization forests

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
- several children with same idempotent $\quad(e \cdot e=e)$

Factorization forests

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
\square several children with same idempotent $\quad(e \cdot e=e)$

证 There always exist a factorization forest of height $\leq k|S|$

Factorization forests

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
- several children with same idempotent $\quad(e \cdot e=e)$

酉 There always exist a factorization forest of height $\leq k|S|$
$w \in L \Leftrightarrow \exists$ factorization forest \bar{X}. value $(w) \in F$

Factorization forests

Internal nodes of a factorization forest can have:

- 2 children with arbitrary values
\square several children with same idempotent $\quad(e \cdot e=e)$

证 There always exist a factorization forest of height $\leq k|S|$
$w \in L \Leftrightarrow \exists$ factorization forest \bar{X}. value $(w) \in F$
$\wedge \quad \forall$ subword $Y . \forall$ factorization Z. value $(Y)=\prod_{Y_{i} \text { factor of } Z} \operatorname{value}\left(Y_{i}\right)$

Translations between formalisms (cont'd)

Translations between formalisms (cont'd)

Translations between formalisms (cont'd)

Other applications

■ Yields of trees

L regular language of countable words
$T=\{t:$ yield $(t) \in L\}$ regular language of trees

Other applications

■ Yields of trees

$$
\begin{gathered}
L \text { regula language of countable words } \\
T=\{t: \text { yield }(t) \in L\} \text { regular language of trees }
\end{gathered}
$$

■ Logics with cuts in the background [Gurevitch \& Rabinovitch]

$$
\begin{array}{lr}
|O| \odot|\odot| \rho|\cdots| \cdots \cdot|\cdot| \odot|\odot| O \mid & \text { variables } x, X, \ldots \text { for positions } \\
& \hat{x}, \hat{X}, \ldots \text { for cuts }
\end{array}
$$

Other applications

■ Yields of trees

$$
\begin{gathered}
L \text { regular language of countable words } \\
T=\{t: \text { yield }(t) \in L\} \text { regular language of trees }
\end{gathered}
$$

■ Logics with cuts in the background [Gurevitch \& Rabinovitch]

$$
\begin{array}{lr}
|O| \odot|\odot| \rho|\cdots| \cdots \cdots \cdot|\cdot| \odot|O| & \text { variables } x, X, \ldots \text { for positions } \\
& \hat{x}, \hat{X}, \ldots \text { for cuts } \\
\mathrm{MSO}[\mathbb{Q}, \hat{\mathbb{Q}}] \text { is undecidable } & \text { (like MSO[R]) } \\
\mathrm{MSO}[\mathbb{Q}, \widehat{\mathbb{Q}}] \text { defines same predicates over } \mathbb{Q} \text { as } \mathrm{MSO}[\mathbb{Q}]
\end{array}
$$

Characterizations of FO-definable languages...

