
Word transducers:

from 2-way to 1-way

Gabriele Puppis 
 

joint works with Felix Baschenis 
Olivier Gauwin 
Anca Muscholl

Transductions

Transform objects, here: words

transduction = mapping (or relation) from words to words

santiago sntg erase vowels

santiago ogaitnas reverse

santiago santiagosantiago duplicate

santiago antiagos rotate

Transducers

1DFT = 1-way deterministic finite transducers

santiago sntg erase vowels

Transducers

1DFT = 1-way deterministic finite transducers

santiago sntg erase vowels

santiago ogaitnas reverse

santiago santiagosantiago duplicate

2DFT = 2-way deterministic finite transducers

Transducers

1DFT = 1-way deterministic finite transducers

santiago sntg erase vowels

santiago ogaitnas reverse

santiago santiagosantiago duplicate

2DFT = 2-way deterministic finite transducers

1NFT = … non-deterministic …

2NFT = … non-deterministic …

Transducers

❖ deterministic or non-deterministic

❖ 1-way

❖ write-only registers to store partial outputs

SST = streaming string transducers [Alur, Cerny ’10]

Transducers

❖ deterministic or non-deterministic

❖ 1-way

❖ write-only registers to store partial outputs

SST = streaming string transducers

santiago ogaitnas

a|x := a.x

out(x)

[Alur, Cerny ’10]

Transducers

❖ deterministic or non-deterministic

❖ 1-way

❖ write-only registers to store partial outputs

SST = streaming string transducers

santiago ogaitnas

a|x := a.x

out(x)

[Alur, Cerny ’10]

santiago santiagosantiago

a|x := x.a 
 y := y .a

out(x.y)

Logics

logically define the output inside copies of the input:

❖ domain: unary formula selecting positions in each copy

❖ order: binary formula defining an order on the domain

❖ letters: unary formulas partitioning the domain

MSOT = monadic second-order transductions [Courcelle '95]

Logics

logically define the output inside copies of the input:

❖ domain: unary formula selecting positions in each copy

❖ order: binary formula defining an order on the domain

❖ letters: unary formulas partitioning the domain

santiago santiagosantiago duplicate

φ<(x,y) = “x, y in the same copy and x < y 
 or x in the first copy and y in the second copy”

MSOT = monadic second-order transductions [Courcelle '95]

Automata = logic ?

MSOT2DFT DSST1DFT ⊊ = =
w ↦ w w

Automata = logic ?

MSOT2DFT DSST1DFT ⊊ = =
w ↦ w w

w ↦ Σ|w|

NSST NMSOT2NFT1NFT

⊊⊊ ⊊ ⊊

Automata = logic ?

MSOT2DFT DSST1DFT ⊊ = =

≠
w ↦ w* u v ↦ v u

=⊊

w ↦ w w

w ↦ Σ|w|

NSST NMSOT2NFT1NFT

⊊⊊ ⊊ ⊊

Automata = logic ?

MSOT2DFT DSST1DFT ⊊ = =

≠
w ↦ w* u v ↦ v u

=⊊

w ↦ w w

=[if functional]

[if functional]=
w ↦ Σ|w|

NSST NMSOT2NFT1NFT

⊊⊊ ⊊ ⊊

First part

2NFT vs 1NFT

Second part

Minimising resources

❖ characterisation of 1-way definability

❖ undecidability in the non-functional case

❖ sweeps of 2NFT vs registers of NSST

❖ characterisation of k-sweep definability

1-way definability

Problem:

given a 2NFT, is it 1-way definable (equivalent to some 1NFT) ?

1-way definability

Problem:

given a 2NFT, is it 1-way definable (equivalent to some 1NFT) ?

The above problem is decidable, with non-elementary complexity.

[Filiot, Gauwin, Reynier, Servais ’13]

1-way definability

Our result:

Given a functional 2NFT T,

❖ we can construct a 1NFT T’ ⊊ T (2EXPTIME)

❖ T is 1-way definable iff T’ = T

❖ we can decide the latter (EXPSPACE)

sweeping for simplicity

Example

Fix a regular language R.

 T(w) = {w.w if w ∈ R 
⊥ otherwise

w

w

Example

Fix a regular language R.

 T(w) = {w.w if w ∈ R 
⊥ otherwise

w

w

❖ R = Σ* ⟶ T is not 1-way definable

Example

Fix a regular language R.

 T(w) = {w.w if w ∈ R 
⊥ otherwise

w

w

❖ R = Σ* ⟶ T is not 1-way definable

❖ R = [0]Σ[1]Σ…Σ[2n-1]Σ ⟶ T has size n 
 equivalent 1-way T’ has size ≥ 22n

Example

Fix a regular language R.

 T(w) = {w.w if w ∈ R 
⊥ otherwise

w

w

❖ R = Σ* ⟶ T is not 1-way definable

❖ R = { abc }* ⟶ T is 1-way definable 
 (output “abc” twice every 3 input letters)

❖ R = [0]Σ[1]Σ…Σ[2n-1]Σ ⟶ T has size n 
 equivalent 1-way T’ has size ≥ 22n

Pumping inversions

2NFT

Pumping inversions

2NFT

Inversion
❖ two loops

❖ non-empty outputs produced 
by the intercepted factors

❖ output order ≠ input order

Pumping inversions

2NFT

Inversion
❖ two loops

❖ non-empty outputs produced 
by the intercepted factors

❖ output order ≠ input order

Pumping inversions

2NFT equivalent 1NFT

Inversion
❖ two loops

❖ non-empty outputs produced 
by the intercepted factors

❖ output order ≠ input order

Pumping inversions

2NFT equivalent 1NFT

Pumping inversions

2NFT equivalent 1NFT

Pumping inversions

2NFT equivalent 1NFT

output produced between the inversion is periodic

❖ T is 1-way definable

❖ every inversion produces an output of bounded period

The characterisation

❖ T is 1-way definable

❖ every inversion produces an output of bounded period

T.F.A.E.:

❖ every run admits a stair-like decomposition

The characterisation

❖ T is 1-way definable

❖ every inversion produces an output of bounded period

T.F.A.E.:

❖ every run admits a stair-like decomposition

The characterisation

Periodic

Periodic

Periodic

❖ T is 1-way definable

❖ every inversion produces an output of bounded period

T.F.A.E.:

❖ every run admits a stair-like decomposition

The characterisation

Periodic

Periodic

Periodic

Small

Small

The characterisation

The characterisation

The characterisation

The characterisation

Outputs entirely covered by inversions are periodic…

The characterisation

Small

Small

T.F.A.E.:

❖ T is 1-way definable

❖ every inversion produces an output of bounded period

❖ every run admits a stair-like decomposition

Periodic

Periodic

Periodic

The characterisation

Small

Small

T.F.A.E.:

❖ T is 1-way definable

❖ every inversion produces an output of bounded period

❖ every run admits a stair-like decomposition can be guessed
in ExpSpace

Periodic

Periodic

Periodic

The non-functional case

Whether a non-functional 2NFT is 1-way definable is undecidable.

Reduction from PCP — given morphisms f , g : Σ* → Δ* 
 does ∃ w ∈ Σ+ f (w) = g (w) ?

The non-functional case

Whether a non-functional 2NFT is 1-way definable is undecidable.

Reduction from PCP — given morphisms f , g : Σ* → Δ* 
 does ∃ w ∈ Σ+ f (w) = g (w) ?

❖ Encodings : w.u ↦ w.$m

good if m = |u|
and u = f (w)
and u = g (w)

The non-functional case

Whether a non-functional 2NFT is 1-way definable is undecidable.

Reduction from PCP — given morphisms f , g : Σ* → Δ* 
 does ∃ w ∈ Σ+ f (w) = g (w) ?

❖ Encodings : w.u ↦ w.$m

bad if m ≠ |u|
or u ≠ f (w)
or u ≠ g (w)

The non-functional case

Whether a non-functional 2NFT is 1-way definable is undecidable.

Reduction from PCP — given morphisms f , g : Σ* → Δ* 
 does ∃ w ∈ Σ+ f (w) = g (w) ?

❖ Encodings : w.u ↦ w.$m

bad if m ≠ |u|
or u ≠ f (w)
or u ≠ g (w)

The non-functional case

Whether a non-functional 2NFT is 1-way definable is undecidable.

Reduction from PCP — given morphisms f , g : Σ* → Δ* 
 does ∃ w ∈ Σ+ f (w) = g (w) ?

❖ Encodings : w.u ↦ w.$m

All encodings are bad

iff

T is 1-way definable

bad if m ≠ |u|
or u ≠ f (w)
or u ≠ g (w)

The non-functional case

Whether a non-functional 2NFT is 1-way definable is undecidable.

Reduction from PCP — given morphisms f , g : Σ* → Δ* 
 does ∃ w ∈ Σ+ f (w) = g (w) ?

❖ Encodings : w.u ↦ w.$m

read w.u output w

All encodings are bad

iff

T is 1-way definable

bad if m ≠ |u|
or u ≠ f (w)
or u ≠ g (w)

The non-functional case

Whether a non-functional 2NFT is 1-way definable is undecidable.

Reduction from PCP — given morphisms f , g : Σ* → Δ* 
 does ∃ w ∈ Σ+ f (w) = g (w) ?

❖ Encodings : w.u ↦ w.$m

read w.u output w

guess w = w1.a .w2 , u = u1.u2  
check f (a) not a prefix of u2 
output $|

f (w1)| $|u2|

All encodings are bad

iff

T is 1-way definable

Part 2: minimising resources

What do we mean by resource ? 

❖ number of control states

❖ amount of non-determinism

❖ number of sweeps

❖ number of registers

❖ …

Part 2: minimising resources

What do we mean by resource ? 

❖ number of control states

❖ amount of non-determinism

❖ number of sweeps

❖ number of registers

❖ …

} interesting… but 
poorly understood

Part 2: minimising resources

What do we mean by resource ? 

❖ number of control states

❖ amount of non-determinism

❖ number of sweeps

❖ number of registers

❖ …

} next focus!

} interesting… but 
poorly understood

A previous result

Given a deterministic SST over a unary output alphabet, 
one can compute the minimum number of registers in EXPTIME.

[Alur, 	Raghothaman ’13]

A previous result

Given a deterministic SST over a unary output alphabet, 
one can compute the minimum number of registers in EXPTIME.

[Alur, 	Raghothaman ’13]

Our setting:

❖ arbitrary alphabet

❖ weak restriction on updates…

❖ non-deterministic (but still functional) SST

2NFT vs streaming transducers

Recall 2NFT ≈ SST in the functional case

2NFT vs streaming transducers

Recall 2NFT ≈ SST in the functional case

w1 # w2 # … # wn ↦ rev(w1) # rev(w2) # … # rev(wn)

2NFT vs streaming transducers

Recall 2NFT ≈ SST in the functional case

w1 # w2 # … # wn ↦ rev(w1) # rev(w2) # … # rev(wn)

out(y)

a|x := a.x

#|y := y .#. x
x := ε

2NFT vs streaming transducers

The following are also equally expressive:

❖ concatenation-free SST

❖ sweeping 2NFT

❖ bounded reversal 2NFT

x := y . zx := a.y .b

2NFT vs streaming transducers

The following are also equally expressive:

❖ concatenation-free SST

❖ sweeping 2NFT

❖ bounded reversal 2NFT

out(y . x)

a|x := x.a a|y := y.a

#

u # v ↦ v # u

x := y . zx := a.y .b

Sweeps vs registers

 2k-sweep 2NFT can be transformed into k-register SST

 k-register SST can be transformed into 2k-sweep 2NFT

Sweeps vs registers

 2k-sweep 2NFT can be transformed into k-register SST

 k-register SST can be transformed into 2k-sweep 2NFT

i ch

l 𝜀e
x := i.x.l x := h.x.e x := c.x.𝜀

Sweeps vs registers

 2k-sweep 2NFT can be transformed into k-register SST

 k-register SST can be transformed into 2k-sweep 2NFT

i ch

l 𝜀e
x := i.x.l x := h.x.e x := c.x.𝜀

in 2EXPTIME

in EXPTIME

k-sweep definability

A characterization similar to 1-way definability:

Given a functional sweeping 2NFT T and a number k

❖ we can construct a k-sweep NFT T’ ⊊ T (2EXPTIME)

❖ T is k-sweep definable iff T’ = T

❖ we can decide the latter (EXPSPACE)

Minimisation results

Given a sweeping 2NFT, we can compute:

❖ the minimum # of sweeps (EXPSPACE)

❖ a sweeping 2NFT with the min. # of sweeps (2EXPTIME)

Minimisation results

Given a sweeping 2NFT, we can compute:

❖ the minimum # of sweeps (EXPSPACE)

❖ a sweeping 2NFT with the min. # of sweeps (2EXPTIME)

Given a concatenation-free SST, we can compute:

❖ the minimum # of registers (2EXPSPACE)

❖ a concatenation-free SST with the min. # of registers 
 (3EXPTIME)

Conclusions… what next?

❖ Formalise the results for 2NFT (non-sweeping)

❖ Characterise sweepingness with unknown # of passes

❖ Minimise # of registers of SST (non concatenation-free)

❖ Find decidable non-functional cases (k-valuedness ?)

Conclusions… what next?

❖ Formalise the results for 2NFT (non-sweeping)

❖ Characterise sweepingness with unknown # of passes

❖ Minimise # of registers of SST (non concatenation-free)

❖ Find decidable non-functional cases (k-valuedness ?)

