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* [Abitebou, Hull, Vianu “Foundations of databases”]
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Databases

DBMS = a collection of data, 4 away of defining, querying,

structured in some way updating the data inside

X X X
N1 humans, processe

DBMS mediate between &

T data

. Data model
* how the data is logically organised
 mathematical abstraction for representing data -
e independent from physical organisation

DBMS also implement: transactions, concurrency, access control, resiliency...

* [Abitebou, Hull, Vianu “Foundations of databases”]



Relational databases, historical outlook

1970-72: E.F. Codd (IBM San Jose research lab) introduces the

"relational data model” and two query languages: "relational algebra”

and "relational calculus"

1974-75: IBM researchers start implementing

o "System R": first relational database management system (RDBMS).

e SEQUEL: a query langauge based on relational algebra

1983: IBM "DB2" is released, based on System R.
And UC Berkley released Ingres RDBMS

1979: Oracle Corporation is founded

1981: Codd receives Turing award

Now: multi-billion industry

Company | 2006 2006
Revenue Market
Share
Oracle 7.168B 47.1%
IBM 3.204B 21.1%
Microsoft 2.654B 17.4%
Teradata 494.2M 3.2%
Sybase 486.7M 3.2%
Other 1.2B 7.8%
Total 15.2B 100%
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Relational databases

Relational data model = data logically organised into relations (“tables”).

, . * a (finite) subset of the cartesian product of sets
What's a relation?

e a2 “table” with rows and columns

A . names of tables and attributes

Films (Title:string, Director:string, Actor:string)

DB

Schedule (Theatre:string, Title:string)

Schedule
Title Director Actor
81/2 Fellini =~ Mastroianni Utopia  Dr. Strangelove
Shining Kubrick  Nicholson Utopia 81/2
Dr. Strangelove  Kubrick Sellers UGC  Dr. Strangelove
8 femmes Ozon Ardant UGC 8 femmes




Relational databases

Relational data model = data logically organised into relations (“tables”).

We assume all elements come from
a fixed set of constants or data values U.
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Relational databases: queries

computable!

What is a query g 2 e, E

A manoine that takes a database instance D :
; PPLUS returns a relation g(D) € Urof fixed arity r

generic!
Boolean query: r=0

(order independent) .
Either “yes” { () } or “no” {}




Relational databases: queries

What isaqueryq? .................................

A mannine that takes a database instance D :
PPIng returns a relation g(D) € Urof fixed arity r

expressive power evaluation
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How efticient/expressive is it?
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The fundamental questions:

How to query the relational data model:

How efticient/expressive is it?

expressiveness efficiency
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Query languages

Query Language

—

Syntax

Expressions for querying the db,
governed by syntactic rules

“Select X from Y”

Vi-Vx (x Zy)”

+

\

Semantics

Interpretation of symbols
in terms of some structure

Retrieves all strings
in column X of table Y

Returns the maximum element
of the set.

11
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Relational Algebra (RA) [Codd, 1970]

where M C N

O C N x{=#2} xN

e R, U Ry : Set union 5{1_3,1¢2}( 1(1,2,1),(2,2,2)} ) ={(1,2,1)}
* R; x Ry: Cartesian product m13(1(1,2,1),(2,2,2)} ) ={(1,1), (2,2)}

e R;\ Ry : Set difference
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Relational Algebra (RA) [Codd, 1970]

. : Set union

. : Cartesian product

. : Set difference

o ={(x1, ..., xm) € R | (x;=x;)A -+ A (x; =x; )} : Selection
o = {(X;»....%; ) | (X1, ..., xm) € R} : Projection

Question 1: What is the RA expression for
| { (v1,v2) | there are wi# w3 so that (vi,w1) € Rj and (v2,w2) € Ra} ?

. a b

~ Answer: (131(0123(R1 X Ry)) b a R; R

] C a

. a 3 a 4
| C_| b b 2 b 1
 Question 2: m(01=3(m2 (01=3(R1 X R2)) xRz))=2 c 4 b 2
: b 3 1
- Answer (only one element): | b . | o Z 3




RA = Basic SQL

no domain-specific features,
aggregation, etc

Select X
From Ri,..,Rn < TIx (Oz( R; x - x
Where Z

. or .. < union

. not in (..) < difference

n))
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RA = Basic SQL

no domain-specific features, Select X

aggregation, etc From Ri,..,Rn <= TIx(O0z(Ri x---x Ry))
e —" Where Z

.. Or .. < union
. not in (..) < dlfference

5 Select R:.2 as foo R, R,
11 §) (O'1¢3(R1 X Rz)) ~ From Ri, R *

~— _— Where R;1.1 # Ry.1

' %

O T 0O T O
N WA N W
O o O O o
W = o= A

Select foo

'I'l'z(()'1=3(3$E sz)) ~ From %, R
Where foo = Rj.2



Denotational languages

Algebra ~ How to obtain the result

Logics ~ What is the property of the result
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Denotational languages

> Relational Algebra

operations on tables

... Algebra ~ How to obtain the result

.-~Logics ~ What is the property of the result

. First Order logic
2
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FO = First-Order logic
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Relational structures

A structure 1s:

A=(D Ry, ... Ry fis ... )

D is a non-empty set, the domain

R; is an m-ary relation for some m (ie, R;C D")

fi is an z-ary function for some 7

(ie, i: D"—> D)
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Relational structures

A structure 1s:

A=(D Ry, ... Ry fis ... )

D is a non-empty set, the domain

R; is an m-ary relation for some m (ie, R;C D")

fiis an n-ary function for some n (i, f;: D"— D)

A graph G = (V,E)
e V: nodes :
o E C V2: edges (binary relation)

e (no functions)

A group, like (N,+)

- o N: natural numbers

e (no relations)

e +: N2— N addition (binary function)

17
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First-order logic

variables x, y, z, ...
quantifiers: 3,V

Boolean connectives: =, N, V

A language to talk about structures

Variables range over the domain

Atomic formulas: R(xy, ..., xp), x=y

18
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First-order logic

variables x, y, z, ... A graph G = (V,E)
quantifiers: 3,V . V: nodes
Boolean connectives: ~ A, V e E C V2 edges (binary relation)é

e (no functions)

A language to talk about structures Language to talk about graphs
Variables range over the domain Variables range over nodes
Atomic formulas: R(xy, ..., xp), x=y Atomic formulas: E(x,y), x =y

Formulas: Atomic formulas + connectives + quantitiers

18



“The node x has at least two neighbours”
Jy 3z (~(y=2) A E(x,y) A E(x,2))
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“The node x has at least two neighbours”

Jy 3z (=(y=z) A E(x,y) A E(x,2))

“Each node has at least two neighbours”

vx 3y 3z (=(y=2) A E(x,y) A E(x,2))

X is = not quantified

(a property of a node in the graph)

- the formula is a
. = no free variables

- (a property of the graph)
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(a property of the graph)
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e Does it have free variables? Is it a sentence?
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“The node x has at least two neighbours” : xis - not quantified
3y 3z (~(y=2) A E(x,y) A E(x,z)) . (& property of anode in the graph)

« . » the formula is a
Each node has at least two neighbours

vx Ay 3z (~(y=z) A E(x,y) A E(x,2))

= no free variables

(a property of the graph)
Question: * How to express in FO
“Every two adjacent nodes have a common neighbour” ?

e Does it have free variables? Is it a sentence?

Answer:  VxVy (—IE(X, ) V 3z ( (E(Xal) v E(ZaX)) A (E(y,z) v E(Z>Y)) ) )

19



Binding

To evaluate a formula ¢ we need a graph G=(V,E) and a binding a
that maps free variables of ¢ to nodes of G.

G Fy ®(X150e0sXn) o : {x1,...xn} —> V  assigns nodes to free variables
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Binding

To evaluate a formula ¢ we need a graph G=(V,E) and a binding a
that maps free variables of ¢ to nodes of G.

> “G,asatisty ¢7 - » “¢ is satisfiable”

Gk, S(X1,eeeXn) o : {x1,...xn} —> V  assigns nodes to free variables

“The node x has at least two neighbours”

$(x) = 3y 3z (=(y=2) A E(xy) A E(x.2)) o
Gk, ¢ if a={x—v} O
“Every node has at least two neighbours” @
v = vx 3y 3z (-(y=z) A E(x,y) A E(x,2)) G
GEgV

20



First-order logic

Formal Semantics of FO

Gk, 3x¢ it forsomeveVanda =au{x~ v we have GFy; ¢

Gk, Vx¢ it foreveryveVanda' =a U {x~ v} we have Gk, ¢

Glzaq)/\\[/ iff Gkaq)andGI:oc\lf
GF,n¢  iff  itis not true that Gk, ¢
Ghx=y iff  a(x)=a(y)

Gk E(xy) iff (a(x)a(y))€E

21



Formulas as queries

¢(X1, ..

., Xn) evaluated on G=(V,E) yields all the bindings that satisty ¢:
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Formulas as queries

&(x1, .., Xn) evaluated on G=(V,E) yields all the bindings that satisfy ¢:
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Formulas as queries

&(x1, .., Xn) evaluated on G=(V,E) yields all the bindings that satisfy ¢:

“The node x has at least two neighbours” “Return all nodes with
 ¢(x) =3y 3z (=(y=2) A E(xy) A E(x2)) at least two neighbours”

$(G) = v, v, V'
$(G') =1v. v'}

- “Every node has two neighbours”

Vv = Vx Iy 3z (1(y=z) A E(x,y) A E(x,2)) G

V(G) ={()} ~ set with one element: the 0-tuple

V(G') ={} ~ empty set



Question:

Which bindings a verify Gk, ¢ for
d(xy) = 3z (E(x,z) A E(z))

and G = ﬁ ?
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Question:

Answer:

Which bindings a verify Gk, ¢ for
o(xy) = 3z (E(x,z) A E(zy))

and G = ﬁ ?

oo ={XPV,yPV },

o0 = {XHV, yl—>V}, ¢(G) = {V,V', V"} X {V,V', V"}
ool ={XPV,yPV }, .

o ... and all the rest

23
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we express the properties of the answer

Tables = Relations
Queries = Formulas

Rows = Tuples
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Formulas as queries

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Tables = Relations
Queries = Formulas

Rows = Tuples

» koo 18 different from E

Particular to databases:

* Use of constants There are formulas ¢ that are satisfiable

e No functions only on infinite structures.

e Hinite structure

 Quantification over S
active domain . & =“R(xy) is an infinite linear order”

Finite model theory
2%



Formulas as queries

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Tables = Relations
Rows = Tuples

Queries = Formulas

[E.E. Codd 1972]
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Formulas as queries

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Tables = Relations RA —* FO

Rows = Tuples
Queries = Formulas How = What

[E.E. Codd 1972]
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Formulas as queries

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Tables = Relations RA = FO

Rows = Tuples
Queries = Formulas How = What

'RA and FO logic have roughly* the same expressive power! \

\. J

*FO without functions, with equality, on finite domains, ...

25



Formulas as queries

RACFO|
e R; xRy ~ Ri(x1, ..o, Xn) A Ra(Xn+1, oor Xm)
e R1UR; ~ Ri(x1, oo, Xn) V Ro(x1, ..., Xn)
. G{n:jl,...,in:jn}(R) ~ R(X1, ooy Xm) A (xu:le)/\ A (Xlnzxjn)

26
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Formulas as queries

FO¢RA|

“the complement of R” z le{g . -R(x)

..-> elements in the relations

~» We restrict variables to range over active domain

FOaCt ¢1(X) = Vy E(Y,X) @
= i 1(G) =1v2
FO restricted Q)= 1wl G = @‘

to active domain d2(x,y) = 7E(x,y)



First-order logic restricted to active domain

Formal Semantics of FOa<t

GF,3x¢ iff forsomeve ACT(G)anda' =au{x+ v} we have Gky ¢

Gk, Vx¢ iff foreveryve ACT(G)anda' =a U {x~ v} we have Gk, ¢

Gk, oAV iff GE,dand GE,V
GF,~¢  iff itisnot true that Gk, ¢
G |:0C X:y IH OC<X>:OL<Y)

Gk, E(xyy) it (a(x),a(y)) € E

ACT(G) ={v | for some v'": (v,v') € E or (viv) € E}

28



First-order logic restricted to active domain

[Fow C RA]
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First-order logic restricted to active domain

[Fow C RA]

1. ¢ hasvariables xi,...,xn,
Assume:

2. ¢ innormal form: (3* (=3)*)* + quantifier-free V(x1,...,Xn)
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[Fow C RA]

1. ¢ hasvariables xi,...,xn,
Assume:

2. ¢ innormal form: (3* (=3)*)* + quantifier-free V(x1,...,Xn)

Adom = RA expression for active domain = “m(E) U m2(E)”

o (R(xj,5-Xj ) > R

o (\lfl (Xil ..... Xin) A \[fz(Xil ..... Xin)) ~ \‘/1’3‘ N \[/2’1‘

O (ﬂq)(Xil,...,Xin))’x‘ ~ Adom X ... x Adom \ ¢—x—
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First-order logic restricted to active domain

[Fow C RA]

1. ¢ hasvariables xi,...,xn,
Assume:

2. ¢ innormal form: (3* (=3)*)* + quantifier-free V(x1,...,Xn)

Adom = RA expression for active domain = “m(E) U m2(E)”

o (R(xj,5-Xj ) > R

AnB =(AuB)\A\B

o (\lfl (Xil ..... Xin) A \[fz(Xil ..... Xin)) ~ \‘/1’3‘ N \[/2’1‘

O (ﬂq)(Xil,...,Xin))’x‘ ~ Adom X ... x Adom \ ¢—x—
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Corollary

[F()a“ is equivalent to RA]

30



Question 1: How is 2 (o1=3(m2(01=3(R1 X R2)) X Ry)) expressed in FO?
Remember: Ri,R; are binary

Question 2: How is 3y,z . (Ri(x,y) A Ri(y,z) A x#z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

0R1UR2
0R1><R2
e R\ R

- -
° U{ilijl,...,inijn}<R) :={(X1, ..., Xm) € R | (Xilzle)/\ vee A\ (Xinzxjn)}

(x1, ..., Xm) € R}

® ﬂ'{il,...,in}(R) = {(X119'°"Xin)

31



Question 1: How is 2 (o1=3(m2(01=3(R1 X R2)) X Ry)) expressed in FO?
Remember: Ri,R; are binary

Answer: 3x; . ( 3x1,X4 . (R1 (x1,x2) A Rz(Xl,X4)) A Ra(x2,xs) )

Question 2: How is 3y,z . (Ri(x,y) A Ri(y,z) A x#z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

0R1UR2
0R1><R2
e Ri\ R

x *
= G{ilijl,...,in;jn}(R> ‘:{(Xl, cees Xm) e R | (Xi1:Xj1)/\ e A (Xin:Xjn)}

(x1, ..., Xm) € R}

® ﬂ'{il,...,in}(R) = {(Xil""’Xin)

31



: How is m2(o1=3(m2(01=3(R1 X R2)) x Ry)) expressed in FO?
Remember: Ri,R; are binary

Answer: 3x; . ( 3x1,X4 . (R1 (x1,x2) A Rz(Xl,X4)) A Ra(x2,xs) )

: How is Ay,z . (Ri(x,y) A Ri(y,z) A x#2z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

o R1 U Rz
O R1 X Rz
e Ri\R;
* *
= G{ilijl,...,in;jn}(R> ‘:{(Xl, cees Xm) e R | (Xi1:Xj1>/\ e A (Xinzxjn)}
o W{il,...,in}(R) = {(Xh’”"Xin) (X1 ..., Xm) € R}

Answer: T1(op2=31-4(R1 X R}))

31



Logic

Algebra

Programming

language

32



over

active domain

Logic

on finite

. domains

Algebra

very basic

Programming

language

32



Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db,

and a tuple t, is t € Q(db) ?

~ How hard is it to retrieve data?
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and a tuple t, is t € Q(db) ?

~ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db

so that Q(db) # @ ?

~ Does Q make sense? Is it a contradiction? (Query optimization)
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Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db,
and a tuple t, is t € Q(db) ?

~ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db

so that Q(db) # @ ?

~ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q1, Qa, is

Q1(db) = Q2(db)

for all database instances db?

~» Can we safely replace a query with another? (Query optimization)

33



Complexity theory

What can be mechanized? ~ decidable/undecidable

How hard is it to mechanise? ~ complexity classes

34
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Complexity theory H’s 10th pep

Domino
K

What can be mechanized? ~ decidable/undecidable

How hard is it to mechanise? ~ complexity classes

-------------- » usage of resources: ® time
* memory

 Algorithm Alg is TIME-bounded
by a function f: N — N if
-~ Alg(input) uses less than £ (|input|) units of TIME.
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Domino
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- Algorithm Alg is [1:4+=bounded
by a function f: N — N if SPACE. -E Alg
Alg(input) uses less than f(|input|) units of HNIE. — >

LOGSPACE ¢ PTIME ¢ PSPACE ¢ EXPTIME ¢ - ..
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Complexity theory H’s 10th pep

Domino
K
What can be mechanized? ~ decidable/undecidable :
How hard is it to mechanise? ~ complexity classes
T » usage of resources: ® time
* memory

- Algorithm Alg is [1:4+=bounded
by a function f: N — N if SPACE. -E Alg
- Alg(inpuz) uses less than f (|imput|) units of FHVIE. — -

f—> TIME-bounded by a polynomial

LOGSPACE ¢ PTIME ¢ PSPACE ¢ EXPTIME ¢ - ..

\ N~ -+ SPACE-bounded by a polynomial
SPACE-bounded by log(n)

34



Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(xi, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

Equivalence problem: Given FO formulae ¢,V is
Gk it GEV
for all graphs G and bindings «?
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Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(xi, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

DECIDABLE w foundations of the database industry

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

& UNDECIDABLE  both for k and Egpic

Equivalence problem: Given FO formulae ¢,V is
Gk it GEV
for all graphs G and bindings «?

&3 UNDECIDABLE «» by reduction to the satisfiability problem
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Algorithmic problems for FO

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k¢ ?

@ UNDECIDABLE « both for F and kfpjee [ Trakhtenbrot 50]
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Algorithmic problems for FO

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

@ UNDECIDABLE « both for F and kfpjee [ Trakhtenbrot 50]

Proof: By reduction from the Domino (aka Tiling) problem.

36



Algorithmic problems for FO

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k¢ ?

@ UNDECIDABLE « both for F and kfpjee [ Trakhtenbrot 50]

Proof: By reduction from the Domino (aka Tiling) problem.

Reduction from P to P': Algorithm that solves P using a O(1) procedure
. (44 P'(X> »
that returns the truth value of P'(x).



The (undecidable) Domino problem

Domino

Input: 4-sided dominos:



The (undecidable) Domino problem

Domino

Input: 4-sided dominos:

Output: s it possible to form a white-bordered rectangle? (of any size)
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The (undecidable) Domino problem

Domino

Input: 4-sided dominos:

Output: s it possible to form a white-bordered rectangle? (of any size)

Rules: sides must match,
you can't rotate the dominos, but you can ‘clone’ them.



The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:
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rewritten, head moves right)




The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:

i W (head is elsewhere,

symbol is not modified)
y

(head is here, symbol is
rewritten, head moves right)

(head is here, symbol is

rewritten, head moves left)

X P D
> P 4




The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:

W (head is elsewhere,

symbol is not modified)

(head is here, symbol is

rewritten, head moves right)

4 (head is here, symbol is

rewritten, head moves left)

% % (initial configuration)

>4 P4 B4 B4
X




The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:

7 (head is elsewhere,
/Nl L\ symbol is not modified)
N4

(head is here, symbol is
rewritten, head moves right)

4 (head is here, symbol is

rewritten, head moves left)

XD D B
X



Domino «» Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...
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Domino «» Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...
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Domino «» Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

U H, 2. Assign one domino to each node:
vl a unary relation
A5 D
H, X
7
) X
L for each domino




Domino «» Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

.. H-»O 2. Assign one domino to each node:
vl a unary relation
H D X
.
7

X
for each domino

¢I

O=O=CF

3. Match the sides VX,y
if H(x,y), then D,(x) A Dy(y)

for some dominos a,b that ‘match’
horizontally  (Idem vertically)



Domino «» Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

.. H-»O 2. Assign one domino to each node:
vl a unary relation
H D X
.
7

X
for each domino

¢I

O=O=CF

3. Match the sides VX,y
if H(x,y), then D,(x) A Dy(y)

for some dominos a,b that ‘match’

horizontally ~ (Idem vertically)
4. Borders are white.



Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(x1, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

DECIDABLE w foundations of the database industry

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k¢ ?

& UNDECIDABLE  both for k and Egpic

Equwalence problem: Given FO formulae ¢,V is
Gk it GEV
for all graphs G and bindings «?

&3 UNDECIDABLE «» by reduction to the satisfiability problem



Algorithmic problems for FO

Equlvalence problem: Given FO formulae ¢,V is
Gk iff GEY
for all graphs G and bindings «?

& UNDECIDABLE «» by reduction from the satisfiability problem .
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Algorithmic problems for FO

¢ is satisfiable ift ¢ is not equivalent to L

Satistiability problem undecidable «» Equivalence problem undecidable

Equwalence problem: Given FO formulae ¢,V is
Gk it GEY
for all graphs G and bindings «?
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Algorithmic problems for FO

¢ is satisfiable ift ¢ is not equivalent to L

Satistiability problem undecidable «» Equivalence problem undecidable

Actually, there are reductions in both senses:

&(x1,....Xn) and W(y1s...,ym) are equivalent iff
e N=m
o (x1=y1) A e+ A (Xa=Yn) A &(X1,...,Xn) A TV(Y1,...,yn) is unsatisfiable
o (x1=y1) A v+ A (Xa=Yn) A V(X15e.0Xn) A 1B(Y1s...,yn) is unsatisfiable

Equlvalence problem: Given FO formulae ¢,V is
Gk it GEY
for all graphs G and bindings «?

& UNDECIDABLE «» by reduction from the satisfiability problem .



Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(x1, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

;, DECIDABLE w foundations of the database industry

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k¢ ?

& UNDECIDABLE  both for k and Egpic

Equivalence problem: Given FO formulae ¢,V is
Gk it GEV
for all graphs G and bindings «?

&3 UNDECIDABLE «» by reduction to the satisfiability problem
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Evaluation problem for FO

¢(X1,...,Xn)
Input: ( G = (VE)

Output: GE, ¢ ?
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Evaluation problem for FO

S(X1,0+05Xn)
Input: G = (V.E) Output: GE, ¢ ?

= {X1,e.Xn} — V

Encoding of G = (V, E)

o cach node is coded with a bit string of size log(|V]),
e edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

Cost of coding: ||G]| = |E|-2-log(|V]) = |V| (mod a polynomial)
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Evaluation problem for FO

S(X1,0+05Xn)
Input: G = (V.E) Output: GE, ¢ ?

= 1{X1,.0,Xn} — V

Encoding of G = (V, E)

o cach node is coded with a bit string of size log(|V]),
e edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

Cost of coding: ||G]| = |E|-2-log(|V]) = |V| (mod a polynomial)

Encoding of & = {x1,....xn} — V

o cach node is coded with a bit string of size log(|V]),

Cost of coding: ||a|| = n-log(|V])

43



Evaluation problem for FO

¢(X1,...,Xn)
Input: ( G = (V.E)

Output:

Gy 2
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Evaluation problem for FO

¢(X1,...,Xn)
G =(ViE) Output: Gk, ¢ ?

= 1{X1,.0,Xn} — V

Input:

o Ifd(x1,....xn) = E(x5,xj):
answer YES iff (a(xi),a(x)) € E

o Ifd(x1.e0xn) = V(X1,ee0xn) A V'(X1,0005Xn):
answer YES ift GE,Vand Gk, V'

. Ifq)(XL...,Xn) = _I'\l/(Xl,...,Xn)Z
answer NO ift Gk, ¥

o Ifd(x1,.0sXn) = Iy . V(X100 Xn,Y):

answer YES iff for somev e Vand a'=au{y-v}
we have G kg V.

44
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we have G kg V.

Question:
How much space
does it take? "
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Combined, Query, and Data complexities [Vardi, 1982]

A database of size 10°
Problem: Usual scenario in database

A query of size 100

Input:
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A database of size 10°
Problem: Usual scenario in database

A query of size 100

Input: e query +
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Combined, Query, and Data comy

Problem: Usual sce

S database



Combined, Query, and Data co

Problem: Usual sce

S database

TIME(2laveryl 4+ |datal)
But we don’t distinguish this in the analysis: =

TIME(|query| + 2datal)



Combined, Query, and Data complexities [Vardi, 1982]

Separation of concerns:

Query and data play very different roles.

How the resources grow with respect to
* the size of the data

* the query size
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Combined, Query, and Data complexities

Combined complexity: input size is |query| + |data]
Query complexity (|data| fixed): input size is |query]|

Data complexity (|query| fixed): input size is |data]
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Combined, Query, and Data complexities

Combined complexity: input size is |query| + |data]
Query complexity (|data| fixed): input size is |query]|

Data complexity (|query| fixed): input size is |data]

exponential in combined complexity

O(2lauen| 4 |datal) is exponential in query complexity
linear in data complexity

exponential in combined complexity
O(|query]| + 2/4@l) is  linear in query complexity
exponential in data complexity
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Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query]|

combined complexity, input size: |data| + |query|

] - 2 - log(|G|) + k-log(|e|+|G|) space



Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query]|

combined complexity, input size: |data| + |query|

4] -2 - log(|G|) + k-log(|ae|+|G|) space

query ‘J \/ data

PSPACE combined and query complexity

O(log(|datal)-|query]) space
LOGSPACE data complexity



Evaluation pb for FO is PSPACE-complete (EZ;IE;:;C:Y)

PSPACE-complete problem: QBF

(satistaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)
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PSPACE-complete problem: QBF

(satistaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

[Theorem: Evaluation for FO is PSPACE-complete (combined C)]
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Evaluation pb for FO is PSPACE-complete (EZEE;:;C:Y)

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

[Theorem: Evaluation for FO is PSPACE-complete (combined c)]

Polynomial reduction QBF ~ FO: 1. Givenv € QBF,

let V'(x) be the replacement
of each p’ with ‘p=x"in V.

2. Note: Ix ' holds in a 2-element
graph ift V is QBF-satisfiable

3. Testif GEgV' for G=({vv'},i})
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Evaluation pb for FO is PSPACE-complete (EZ;IE;:;C:Y)

PSPACE-complete problem: QBF

(satistaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

[Theorem: Evaluation for FO is PSPACE-complete (combined c)]

Polynomial reduction QBF ~ FO: 1. Givenv € QBF,

let V'(x) be the replacement
V'(x)=3p vq. ((p=x) V =(q=x) ) of each p’ with ‘p=x"in .
OSSOSO | 2. Note: 3Ix ' holds in a 2-element

- Ix 3p vq. ((p=x) V =(q=x) ) graph ift V is QBF-satisfiable

3. Testif GEgV' for G=({vv'},i})
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(data)

LOGSPACE
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