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In this part

We present other two relevant classes of transition systems:

Rational graphs
described by (unrestricted) word transducers

Automatic graphs
described by left-synchronized word transducers

We study the decidability of their FO-theories and we
provide alternative representations of graphs in both classes.
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Word transducers

Definition (Word transducer)

A word transducer is a tuple A = (Q, Γ,∆, I ,F ), where

Q is a finite set of states

Γ is a finite alphabet

∆ ⊆ Q × Γ∗ × Γ∗ × Q

I ⊆ Q is the set of initial states

F ⊆ Q is the set of final states.

Word transducers are used as acceptors of pairs of finite words
over Γ: (u, v) ∈ L (A) if there are u1, ..., un, v1, ..., vn, s0, ..., sn s.t.

u = u1 · ... · un and v = v1 · ... · vn

s0 ∈ I and sn ∈ F
(si−1, ui , vi , si ) ∈ ∆ for all 1 ≤ i ≤ n

(shortly, I
(u,v)−−→
A

F ).
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Word transducers

Example

A word transducer recognizing the set of all
reversed binary expansions of pairs of numbers of the form
(n, n + 1), with n ∈ N (e.g., (111, 0001))
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Rational graphs

If we use finite words over Γ to represent graph vertices,
then we can use word transducers to represent edge relations:

Definition (Rational graph)

Given an alphabet Γ, a finite set A of edge labels,
a finite state automaton Adom over Γ, and
a tuple (Aa)a∈A of word transducers over Γ,
the generated graph, called rational graph, is of the form

T =
(
S , (δa)a∈A

)
S := L (Adom) (vertices := words accepted by Adom)

δa := L (Aa) (edges := pairs accepted by transducers)
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Rational graphs

Example

The infinite grid is a rational graph:

vertices are words over {x , y} of the form x iy j

a-labeled edges connect a word x iy j to x i+1y j

b-labeled edges connect a word x iy j to x iy j+1
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Rational graphs

The previous example shows that the model checking problem
for MSO logic over rational graphs is undecidable.

Actually, things go bad even for FO logic:

Theorem

The model checking problem for FO logic over rational graphs
is undecidable.
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Rational graphs

Proof

We reduce the Post’s Correspondence Problem (PCP) to the
model checking problem for FO logic over rational graphs.

A PCP-instance is a tuple (u1, ..., uk , v1, ..., vk) of words.
A PCP-instance is positive iff there are indices i1, ..., in s.t.

w = ui1 · ... · uin = vi1 · ... · vin = w ′

(checking if a given PCP-instance (ū, v̄) is positive
is an undecidable problem)

Given (ū, v̄), we define the transducer Aū,v̄ : � ui
vi

�
∀i

� ui
vi

�
∀i

The rational graph generated by Aū,v̄ satisfies
ψ := ∃ x . δ(x , x) iff (ū, v̄) is a positive PCP-instance.
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Automatic graphs

We saw that graphs defined by unrestricted word transducers
have an undecidable model checking problem for FO logic.

⇒ let us consider restricted forms of word transducers:

Definition (Synchronized word transducer)

A synchronized word transducer is a word transducer
A = (Q, Γ,∆, I ,F ) where ∆ ⊆ Q × Γ× Γ× Q
(exactly one output symbol for each input symbol).

Note: if A is a synchronized transducer
and (u, v) ∈ L (A), then |u| = |v |

⇒ every connected component in a graph generated
by a synchronized transducer is finite.
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Automatic graphs

A more relaxed form of synchronization can be introduced by using
a padding symbol # to fill up the words and achieve equal length:

Definition (Left-synchronized word transducer)

A left-synchronized word transducer is a word transducer
A = (Q, Γ,∆, I ,F ) where ∆ ⊆ Q × (Γ ∪ {#})× (Γ ∪ {#})× Q.

We say that the pair (u, v) ∈ Γ∗ × Γ∗ is accepted by A iff
either (u ·#|v |−|u|, v) ∈ L (A) or (u, v ·#|u|−|v |) ∈ L (A).

Definition (Automatic graph)

An automatic graph is a graph generated by a finite state
automaton and a tuple of left-synchronized word transducers.
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Automatic graphs

Example

The infinite grid is actually an automatic graph.

We simply need to put the transducers
Aa and Ab in a left-synchronized form:
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Automatic graphs

The previous example shows that the model checking problem
for MSO logic over automatic graphs is undecidable.

Fortunately, we achieve decidability when considering FO logic:

Theorem (Büchi ’60, Hodgson ’76, Khoussainov and Nerode ’94)

The model checking problem for FO logic over automatic graphs
is decidable.
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Automatic graphs

Proof

Let T =
(
S , (δa)a∈A

)
be an automatic graph generated

by a finite state automaton Adom and by tuple of
left-synchronized transducers (Aa)a∈A.

Transducers can be generalized to recognize k-ary relations,
for an arbitrary k: simply let ∆ ⊆ Q × (Γ ∪ {#})k × Q.

Let us prove that for any given FO-formula ψ(x1, ..., xk)
there is a left-synchronized transducer Aψ such that,
for all tuples (u1, ..., uk) ∈ Sk

T � ψ[u1/x1, ..., uk/xk ] iff (u1, ..., uk) ∈ L (Aψ)

Warning: here a transducer defines a relation r ⊆ Sk

( ⇒ it accepts tuples of vertices rather than vertex colorings)
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Automatic graphs

Proof (continued)

The proof goes by induction on the structure of ψ(x1, ..., xk):

if ψ is x1 = x2, then Aψ :=

�
z
z

�
∀z ∈ Γ

if ψ is δa(x1, x2), then Aψ := Aa

if ψ is ϕ1 ∧ ϕ2, then Aψ := Aϕ1 ∩ Aϕ2

if ψ is ϕ1 ∨ ϕ2, then Aψ := Aϕ1 ∪ Aϕ2

if ψ is ¬ϕ, then Aψ is the complement automaton of Aϕ
if ψ is ∃ xi . ϕ(x1, ..., xi , ..., xm), then Aψ is obtained
from Aϕ by first intersecting with Adom and
then removing the i-th symbol in each transition

z3 y3

 z1
z2
—
z4

!  y1
y2
—
y4

!

⇒ The model checking problem for FO logic is reduced
to the emptiness problem for word transducers.
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Automatic graphs

Proposition

The reachability problem over automatic graphs is undecidable.

Proof

Consider a generic Turing machine M where

configurations are encoded by words a1...am−1qam...an

transitions are of the following forms

a1...am−1qam...an a1...am−1qam...an a1...am−1qam...an

↓ ↓ ↓
a1...am−1q′a′m...am a1...am−2q′am−1a′m...am a1...am−1a′mq′am+1...am

Note that

the words that encode a valid configuration of M
can be recognized by a suitable finite state automaton

the transition relations can be recognized by a
suitable left-synchronized word transducer.

⇒ the transition graph of any Turing machine is automatic.
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Automatic graphs

The previous definitions and results can be easily generalized to
relational structures having relations of arbitrary arities:

Definition (Automatic structure)

An automatic structure is a relational structure
R =

(
S , r1, ..., rm

)
, where

S ⊆ Γ∗ is a regular language of finite words

ri ⊆ (Γ∗)ki is a ki -ary relation over
finite words recognized by a left-synchronized word
transducer working with ki -tuples of letters.

Theorem

The model checking problem for FO logic over automatic
structures is decidable.
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Example

Building on previous ideas, one can show that the
Presburger arithmetic (i.e., the FO-theory of (N,+)) is decidable.

It is sufficient to represent

the natural numbers by their reversed binary expansions

the ternary relation + by the left-synchronized transducer�
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Alternative characterizations of automatic/rational
graphs/structures have been given in the literature:

Theorem (Morvan ’00)

A relational graph T is rational iff it can be obtained
from the infinite binary tree via an inverse linear mapping
and a rational restriction.

(an inverse mapping h−1 is linear if, for every label b, h(b)
is a linear context-free language, namely, generated by a
grammar with rules of the form z → ε and z → ū · z ′ · v).

⇒ Special forms of inverse linear mappings
characterize the automatic graphs.
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Theorem (Blumensath ’99)

A relational structure S is automatic iff it can be obtained
from

(
B∗, δ0, δ1,v, L

)
via a FO-interpretation endowed with

a congruence ∼ that defines the vertices of S as ∼-classes.

(the structure
(
B∗, δ0, δ1,v, L

)
is the infinite binary

tree expanded with the ancestor relation v and the equi-level
relation L).

Theorem (Elgot and Rabin ’66, Rubin ’04)

A relational structure S is automatic iff it can be obtained
from L :=

(
N, δ

)
via a WMSO-to-FO-interpretation.

(a WMSO-to-FO-interpretation is an interpretation
where free variables are instantiated by finite sets
⇒ the vertices of S are subsets of the domain of L).
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Theorem (Blumensath ’99)

A relational structure S is automatic iff it can be obtained
from

(
B∗, δ0, δ1,v, L

)
via a FO-interpretation endowed with

a congruence ∼ that defines the vertices of S as ∼-classes.

(the structure
(
B∗, δ0, δ1,v, L

)
is the infinite binary

tree expanded with the ancestor relation v and the equi-level
relation L).

Theorem (Elgot and Rabin ’66, Rubin ’04)

A relational structure S is automatic iff it can be obtained
from L :=

(
N, δ

)
via a WMSO-to-FO-interpretation.

(a WMSO-to-FO-interpretation is an interpretation
where free variables are instantiated by finite sets
⇒ the vertices of S are subsets of the domain of L).
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Generalizations

Richer (automatic-like) structures can be defined using:

transducers over infinite words
⇒ this leads to ω-automatic structures (e.g., (R,+))

transducers over finite trees
⇒ this leads to tree-automatic structures

transducers over infinite trees
⇒ this leads to ω-tree-automatic structures

WMSO-to-FO-interpretations over the binary tree
⇒ this leads to tree-automatic structures as well

WMSO-to-FO-interpretations over Caucal graphs
⇒ this leads to a (strictly increasing)

hierarchy of automatic structures
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