Verification of infinite state systems

Angelo Montanari and Gabriele Puppis

Department of Mathematics and Computer Science University of Udine, Italy {montana,puppis}@dimi.uniud.it Go

In this part

We reduce the model checking problem for MSO logic over

- colored semi-infinite lines
- colored infinite trees

to suitable acceptance problems respectively for

- sequential Büchi automata (Büchi Theorem exploited)
- Rabin tree automata (Rabin Theorem exploited)

In analogy to the case of the semi-infinite line, Rabin Theorem

Theorem (Rabin '69)

For any MSO-formula ψ with free variables $X_1, ..., X_m$, one can compute a Rabin tree automaton \mathcal{A}_{ψ} over \mathbb{B}^m such that, for every tuple of unary predicates $P_1, ..., P_m \subseteq \mathbb{B}^*$

 $(\mathbb{B}^*, \delta_0, \delta_1, \overline{P}) \vDash \psi[P_1/X_1, ..., P_m/X_m] \quad iff \quad \mathcal{T}_{2,\overline{P}} \in \mathscr{L}(\mathcal{A}_{\psi})$

can be exploited to reduce the decision problem for the MSO-theory of an *expanded* infinite complete tree $(\mathbb{B}^*, \delta_0, \delta_1, \overline{P})$ to the acceptance problem of $\mathcal{T}_{2,\overline{P}}$ (i.e., the **characteristic colored tree** encoding $(\mathbb{B}^*, \delta_0, \delta_1, \overline{P})$) for Rabin tree automata.

Rational and automatic graphs

Acceptance problem for Rabin tree automata

Definition (Acceptance problem)

The **acceptance problem** of a colored and complete infinite binary tree \mathcal{T} , denoted $Acc_{\mathcal{T}}$, consists in deciding, for any Rabin tree automaton \mathcal{A} , whether

 $\mathcal{T} \in \mathscr{L}(\mathcal{A})$ ($\mathcal{A} \text{ accepts } \mathcal{T}$)

Definition (Acceptance problem)

The **acceptance problem** of a colored and complete infinite binary tree \mathcal{T} , denoted $Acc_{\mathcal{T}}$, consists in deciding, for any Rabin tree automaton \mathcal{A} , whether

 $\mathcal{T} \in \mathscr{L}(\mathcal{A})$ ($\mathcal{A} \text{ accepts } \mathcal{T}$)

Corollary (of RabinTheorem)

The problem of deciding the MSO-theory of a colored and complete infinite binary tree $(\mathbb{B}^*, \delta_0, \delta_1, \overline{P})$ is reducible to the problem $Acc_{\mathcal{T}_{2,\overline{P}}}$.

Such a result can be easily generalized to *k*-ary and non-complete trees (i.e., trees with leaves).

To this end, we slightly modify the notion of tree automaton:

- **(**) the transition relation Δ is now a subset of $Q \times C \times Q^k$
- If a vertex of the input tree is missing

To this end, we slightly modify the notion of tree automaton:

- **(**) the transition relation Δ is now a subset of $Q \times C \times Q^k$
- If a vertex of the input tree is missing

Example

Consider the ternary non-complete { red, blue}-colored tree

and the Rabin tree automaton having

- three states, r, b, and d, that signal which color was seen last
- transitions (r/b, red, r, r, r), (r/b, blue, b, b, b),

To this end, we slightly modify the notion of tree automaton:

- **(**) the transition relation Δ is now a subset of $Q \times C \times Q^k$
- If a vertex of the input tree is missing

Example Consider the ternary non-complete {*red*, *blue*}-colored tree

and the Rabin tree automaton having

- three states, r, b, and d, that signal which color was seen last
- transitions (r/b, red, r, r, r), (r/b, blue, b, b, b),

To this end, we slightly modify the notion of tree automaton:

- **(**) the transition relation Δ is now a subset of $Q \times C \times Q^k$
- If a vertex of the input tree is missing

and the Rabin tree automaton having

- three states, r, b, and d, that signal which color was seen last
- transitions (r/b, red, r, r, r), (r/b, blue, b, b, b),

To this end, we slightly modify the notion of tree automaton:

- **(**) the transition relation Δ is now a subset of $Q \times C \times Q^k$
- If a vertex of the input tree is missing

Example Consider the ternary non-complete $\{red, blue\}$ -colored tree

and the Rabin tree automaton having

- three states, r, b, and d, that signal which color was seen last
- transitions (r/b, red, r, r, r), (r/b, blue, b, b, b),

Proposition

The problem of deciding the MSO-theory of a *k*-ary (possibly incomplete) colored tree $(D, \delta_0, ..., \delta_{k-1}, \overline{P})$ is reducible to the problem $Acc_{\mathcal{T}_k, \overline{P}}$.

In the following, we describe a method to identify infinite colored trees T, including incomplete ones, for which Acc_{T} is decidable.

Rational and automatic graphs

Acceptance problem for Rabin tree automata

Proposition

The acceptance problem of any **regular colored tree** (i.e., the unfolding of a finite colored graph) is decidable.

Rational and automatic graphs

Acceptance problem for Rabin tree automata

Proposition

The acceptance problem of any **regular colored tree** (i.e., the unfolding of a finite colored graph) is decidable.

Proof

Let \mathcal{G} be a finite colored graph

Proposition

The acceptance problem of any **regular colored tree** (i.e., the unfolding of a finite colored graph) is decidable.

Proof

Let \mathcal{G} be a finite colored graph and \mathcal{T} its unfolding.

Proposition

The acceptance problem of any **regular colored tree** (i.e., the unfolding of a finite colored graph) is decidable.

Proof

We view \mathcal{G} as an automaton $\mathcal{A}_{\mathcal{T}}$ recognizing the singleton $\{\mathcal{T}\}$.

Proposition

The acceptance problem of any **regular colored tree** (i.e., the unfolding of a finite colored graph) is decidable.

Proof

We view \mathcal{G} as an automaton $\mathcal{A}_{\mathcal{T}}$ recognizing the singleton $\{\mathcal{T}\}$. \Rightarrow given any automaton $\mathcal{A}, \ \mathcal{T} \in \mathscr{L}(\mathcal{A}) \text{ iff } \mathscr{L}(\mathcal{A}) \cap \mathscr{L}(\mathcal{A}_{\mathcal{T}}) \neq \emptyset$

Goal

We now want to extend the class of colored trees for which the acceptance problem turns out to be decidable.

Goal

We now want to extend the class of colored trees for which the acceptance problem turns out to be decidable.

Idea

Reduce the acceptance problem of a non regular tree \mathcal{T}

to an equivalent acceptance problem of a regular tree $\overrightarrow{\mathcal{T}}$:

- 'distill' the relevant features of each factor F (features describe the behavior of a given automaton A on F)

Solution is a second s

The *features* of *F* w.r.t. \mathcal{A} are called \mathcal{A} -type of *F*. The *feature tree* $\vec{\mathcal{T}}$ is called \mathcal{A} -contraction of \mathcal{T} .

Rational and automatic graphs

Acceptance problem for Rabin tree automata

A picture of the method:

Given a tree $\mathcal T$, decompose it into factors ...

Rational and automatic graphs

Acceptance problem for Rabin tree automata

- A picture of the method:
- ... then consider the equivalence classes induced by the *A*-**types** of the factors ...

Rational and automatic graphs

Acceptance problem for Rabin tree automata

A picture of the method:

... The automaton \mathcal{A} has the **same behavior** on all trees in each equivalence class

Rational and automatic graphs

Acceptance problem for Rabin tree automata

A picture of the method:

⇒ We replace A with an automaton \vec{A} that runs on the (possibly regular) A-contraction and mimics A

Rational and automatic graphs

Factorizations, types, and contractions of trees

Definition (Factorization)

A factorization of a tree ${\mathcal T}$ is an *uncolored* tree Π such that

• $\{root(\mathcal{T})\} \subseteq \mathcal{D}om(\Pi) \subseteq \mathcal{D}om(\mathcal{T})$

Rational and automatic graphs

Factorizations, types, and contractions of trees

Definition (Factorization)

A factorization of a tree ${\mathcal T}$ is an uncolored tree Π such that

• $\{root(\mathcal{T})\} \subseteq \mathcal{D}om(\Pi) \subseteq \mathcal{D}om(\mathcal{T})$

Definition (Factorization)

- $\{root(\mathcal{T})\} \subseteq \mathcal{D}om(\Pi) \subseteq \mathcal{D}om(\mathcal{T})$
- the edges are given by the *ancestor relation* of \mathcal{T}

Definition (Factorization)

- $\{root(\mathcal{T})\} \subseteq \mathcal{D}om(\Pi) \subseteq \mathcal{D}om(\mathcal{T})$
- the edges are given by the *ancestor relation* of \mathcal{T}

Definition (Factorization)

- $\{root(\mathcal{T})\} \subseteq \mathcal{D}om(\Pi) \subseteq \mathcal{D}om(\mathcal{T})$
- the edges are given by the *ancestor relation* of \mathcal{T}
- the edge labels are chosen arbitrarily from a finite set *B*.

Definition (Factorization)

- $\{root(\mathcal{T})\} \subseteq \mathcal{D}om(\Pi) \subseteq \mathcal{D}om(\mathcal{T})$
- the edges are given by the *ancestor relation* of \mathcal{T}
- the edge labels are chosen arbitrarily from a finite set *B*.

Definition (Factorization)

A factorization of a tree ${\mathcal T}$ is an *uncolored* tree Π such that

- $\{root(\mathcal{T})\} \subseteq \mathcal{D}om(\Pi) \subseteq \mathcal{D}om(\mathcal{T})$
- \bullet the edges are given by the *ancestor relation* of ${\cal T}$
- the edge labels are chosen arbitrarily from a finite set *B*.

Note: Π can be a non-deterministic tree and it can have even unbounded/infinite degree.

Definition (Factor)

For any $u \in \mathcal{D}om(\Pi)$, the **factor** \mathcal{T}_u of \mathcal{T} in u is the subgraph of \mathcal{T} induced by the set

Definition (Factor)

For any $u \in \mathcal{D}om(\Pi)$, the **factor** \mathcal{T}_u of \mathcal{T} in u is the subgraph of \mathcal{T} induced by the set

Definition (Factor)

For any $u \in \mathcal{D}om(\Pi)$, the **factor** \mathcal{T}_u of \mathcal{T} in u is the subgraph of \mathcal{T} induced by the set

Definition (Factor)

For any $u \in \mathcal{D}om(\Pi)$, the **factor** \mathcal{T}_u of \mathcal{T} in u is the subgraph of \mathcal{T} induced by the set

Definition (Factor)

For any $u \in \mathcal{D}om(\Pi)$, the **factor** \mathcal{T}_u of \mathcal{T} in u is the subgraph of \mathcal{T} induced by the set

Definition (Factor)

For any $u \in \mathcal{D}om(\Pi)$, the **factor** \mathcal{T}_u of \mathcal{T} in u is the subgraph of \mathcal{T} induced by the set

Rational and automatic graphs

Factorizations, types, and contractions of trees

We also need to expand factors with information about the *edge labels* of the factorization Π :

Definition (Marked factor)

Rational and automatic graphs

Factorizations, types, and contractions of trees

We also need to expand factors with information about the *edge labels* of the factorization Π :

Definition (Marked factor)

Rational and automatic graphs

Factorizations, types, and contractions of trees

We also need to expand factors with information about the *edge labels* of the factorization Π :

Definition (Marked factor)

Rational and automatic graphs

Factorizations, types, and contractions of trees

We also need to expand factors with information about the *edge labels* of the factorization Π :

Definition (Marked factor)

Rational and automatic graphs

Factorizations, types, and contractions of trees

We also need to expand factors with information about the *edge labels* of the factorization Π :

Definition (Marked factor)

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -**type** $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon)\ \{(\mathcal{T}(\mathbf{v}),\mathcal{R}(\mathbf{v}),\mathcal{I}mg(\mathcal{R}|\pi_{\mathbf{v}}))\,:\,\mathbf{v}\in\mathcal{F}r(\mathcal{T})\}\ \{\mathcal{I}nf(\mathcal{R}|\pi)\,:\,\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -**type** $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon)\ \{(\mathcal{T}(v),\mathcal{R}(v),\mathcal{I}mg(\mathcal{R}|\pi_v))\,:\,v\in\mathcal{F}r(\mathcal{T})\}\ \{\mathcal{I}nf(\mathcal{R}|\pi)\,:\,\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -**type** $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon) \ \{(\mathcal{T}(oldsymbol{v}),\mathcal{R}(oldsymbol{v}),\mathcal{Img}(\mathcal{R}|\pi_{oldsymbol{v}})):oldsymbol{v}\in\mathcal{Fr}(\mathcal{T})\} \ \{\mathcal{Inf}(\mathcal{R}|\pi):\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -**type** $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon)\ \{(\mathcal{T}(\mathbf{v}),\mathcal{R}(\mathbf{v}),\mathcal{I}mg(\mathcal{R}|\pi_{\mathbf{v}}))\,:\,\mathbf{v}\in\mathcal{F}r(\mathcal{T})\}\ \{\mathcal{I}nf(\mathcal{R}|\pi)\,:\,\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -type $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon)\ \{(\mathcal{T}(v),\mathcal{R}(v),\mathcal{I}mg(\mathcal{R}|\pi_v))\,:\,v\in\mathcal{F}r(\mathcal{T})\}\ \{\mathcal{I}nf(\mathcal{R}|\pi)\,:\,\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

over all possible **partial runs** \mathcal{R} of \mathcal{A} on \mathcal{T}_u^+ .

There exist finitely many A-types

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -type $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon)\ \{(\mathcal{T}(v),\mathcal{R}(v),\mathcal{I}mg(\mathcal{R}|\pi_v))\,:\,v\in\mathcal{F}r(\mathcal{T})\}\ \{\mathcal{I}nf(\mathcal{R}|\pi)\,:\,\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

over all possible **partial runs** \mathcal{R} of \mathcal{A} on \mathcal{T}_u^+ .

There exist finitely many A-types

 \Rightarrow they induce an equivalence of finite index on the set of trees

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -type $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon)\ \{(\mathcal{T}(v),\mathcal{R}(v),\mathcal{I}mg(\mathcal{R}|\pi_v))\,:\,v\in\mathcal{F}r(\mathcal{T})\}\ \{\mathcal{I}nf(\mathcal{R}|\pi)\,:\,\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

over all possible **partial runs** \mathcal{R} of \mathcal{A} on \mathcal{T}_u^+ .

There exist finitely many A-types

- $\Rightarrow\,$ they induce an equivalence of finite index on the set of trees
- $\Rightarrow\,$ we can see each $\mathcal{A}\text{-type}$ as a color from a finite set

Definition (A-Type)

Given an automaton M and a marked factor \mathcal{T}_{u}^{+} , the \mathcal{A} -type $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$ is the set of triples of the form

$$egin{pmatrix} \mathcal{R}(arepsilon)\ \{(\mathcal{T}(v),\mathcal{R}(v),\mathcal{I}mg(\mathcal{R}|\pi_v))\,:\,v\in\mathcal{F}r(\mathcal{T})\}\ \{\mathcal{I}nf(\mathcal{R}|\pi)\,:\,\pi\in\mathcal{B}ch(\mathcal{T})\} \end{pmatrix}$$

over all possible **partial runs** \mathcal{R} of \mathcal{A} on \mathcal{T}_u^+ .

There exist finitely many A-types

- $\Rightarrow\,$ they induce an equivalence of finite index on the set of trees
- $\Rightarrow\,$ we can see each $\mathcal{A}\text{-type}$ as a color from a finite set
- \Rightarrow we can arrange the A-types of the factors of a tree in a tree-shaped colored structure called A-contraction.

Rational and automatic graphs

Factorizations, types, and contractions of trees

Definition (A-contraction)

Given a tree \mathcal{T} , a factorization Π of \mathcal{T} , and an automaton \mathcal{A} , the \mathcal{A} -contraction $\vec{\mathcal{T}}$ of \mathcal{T} is the tree obtained from Π by coloring its vertices u with the corresponding \mathcal{A} -type $[\mathcal{T}_u^+]_{\mathcal{A}}$.

Rational and automatic graphs

Factorizations, types, and contractions of trees

Definition (A-contraction)

Given a tree \mathcal{T} , a factorization Π of \mathcal{T} , and an automaton \mathcal{A} , the \mathcal{A} -contraction $\vec{\mathcal{T}}$ of \mathcal{T} is the tree obtained from Π by coloring its vertices u with the corresponding \mathcal{A} -type $[\mathcal{T}_u^+]_{\mathcal{A}}$.

Rational and automatic graphs

Factorizations, types, and contractions of trees

Definition (A-contraction)

Given a tree \mathcal{T} , a factorization Π of \mathcal{T} , and an automaton \mathcal{A} , the \mathcal{A} -contraction $\vec{\mathcal{T}}$ of \mathcal{T} is the tree obtained from Π by coloring its vertices u with the corresponding \mathcal{A} -type $[\mathcal{T}_u^+]_{\mathcal{A}}$.

Rational and automatic graphs

Factorizations, types, and contractions of trees

Definition (A-contraction)

Given a tree \mathcal{T} , a factorization Π of \mathcal{T} , and an automaton \mathcal{A} , the \mathcal{A} -contraction $\vec{\mathcal{T}}$ of \mathcal{T} is the tree obtained from Π by coloring its vertices u with the corresponding \mathcal{A} -type $[\mathcal{T}_{u}^{+}]_{\mathcal{A}}$.

Rational and automatic graphs

Factorizations, types, and contractions of trees

To reason on $\vec{\mathcal{T}}$ by tree automata, we must get rid of (tree) non-determinism.

To reason on $\vec{\mathcal{T}}$ by tree automata, we must get rid of (tree) non-determinism.

Idea

Collapse isomorphic subtrees in \vec{T} . If this can be done for every pair of outgoing edges with the same label, then \vec{T} can be given the status of deterministic tree and we can give it in input to a tree automaton \vec{A} .

To reason on $\vec{\mathcal{T}}$ by tree automata, we must get rid of (tree) non-determinism.

Idea

Collapse isomorphic subtrees in \vec{T} . If this can be done for every pair of outgoing edges with the same label, then \vec{T} can be given the status of deterministic tree and we can give it in input to a tree automaton \vec{A} .

To reason on $\vec{\mathcal{T}}$ by tree automata, we must get rid of (tree) non-determinism.

Idea

Collapse isomorphic subtrees in \vec{T} . If this can be done for every pair of outgoing edges with the same label, then \vec{T} can be given the status of deterministic tree and we can give it in input to a tree automaton \vec{A} .

From trees to their contractions

Theorem (Montanari and Puppis '04)

If a tree T has a deterministic A-contraction \vec{T} for any automaton A, then one can build another Rabin tree automaton \vec{A} , called **contraction automaton**, such that

$$\mathcal{T}\in\mathscr{L}(\mathcal{A}) \qquad ext{iff} \qquad ec{\mathcal{T}}\in\mathscr{L}(ec{\mathcal{A}})$$

Theorem (Montanari and Puppis '04)

If a tree T has a deterministic A-contraction \vec{T} for any automaton A, then one can build another Rabin tree automaton \vec{A} , called **contraction automaton**, such that

$$\mathcal{T}\in\mathscr{L}(\mathcal{A}) \qquad ext{iff} \qquad ec{\mathcal{T}}\in\mathscr{L}(ec{\mathcal{A}})$$

Proof idea

- the input alphabet of *A* consists of all *A*-types plus a dummy symbol ⊥ for missing *b*-labeled successors in *T*
- a transition of *A* from a vertex colored by [*T*⁺_u]_A mimics a computation of *A* on the marked factor *T*⁺_u

(note: this can be done since the \mathcal{A} -type $[\mathcal{T}_u^+]_{\mathcal{A}}$ is a finite object that completely characterizes the 'behavior' of \mathcal{A} on the marked factor \mathcal{T}_u^+)

Corollary

Given a tree T and a Rabin tree automaton A, if one can compute a (deterministic) A-contraction \vec{T} with $Acc_{\vec{T}}$ decidable (e.g., a regular A-contraction), then Acc_{T} is decidable.

To summarize

to prove that the acceptance problem of a tree $\ensuremath{\mathcal{T}}$ is decidable:

- $\textbf{9} \ \text{provide a suitable factorization } \Pi \ \text{of} \ \mathcal{T}$
- **2** build the \mathcal{A} -contraction $\overrightarrow{\mathcal{T}}$ of \mathcal{T} w.r.t. Π
- ${f 0}$ show that ${\vec{\cal T}}$ is (bisimilar to) a deterministic tree
- show that $Acc_{\vec{\tau}}$ is decidable (e.g., show that $\vec{\tau}$ is regular).

Rational and automatic graphs

From trees to their contractions

Example

Let \mathcal{T} be a tree with homogeneously-colored levels

Rational and automatic graphs

From trees to their contractions

Example

Let \mathcal{T} be a tree with homogeneously-colored levels Π the factorization of \mathcal{T} such that $\mathcal{D}om(\Pi) = \mathcal{D}om(\mathcal{T})$

Rational and automatic graphs

From trees to their contractions

Example

Let \mathcal{T} be a tree with homogeneously-colored levels Π the factorization of \mathcal{T} such that $\mathcal{D}om(\Pi) = \mathcal{D}om(\mathcal{T})$ and $\vec{\mathcal{T}}$ a corresponding \mathcal{A} -contraction.

Definition (Second-order tree substitution)

The second-order tree substitution $C[[\mathcal{T}/x]]$ is the replacement of each *x*-colored vertex in C with \mathcal{T} .

(a suitable marking on the leaves of T is used to specify the attachment points for the subtrees rooted at the successors of a replacement occurrence).

Definition (Second-order tree substitution)

The second-order tree substitution $C[[\mathcal{T}/x]]$ is the replacement of each *x*-colored vertex in C with \mathcal{T} .

(a suitable marking on the leaves of T is used to specify the attachment points for the subtrees rooted at the successors of a replacement occurrence).

Definition (Second-order tree substitution)

The second-order tree substitution $C[[\mathcal{T}/x]]$ is the replacement of each *x*-colored vertex in C with \mathcal{T} .

(a suitable marking on the leaves of T is used to specify the attachment points for the subtrees rooted at the successors of a replacement occurrence).

Theorem

Second-order tree substitutions respect the A-types:

 $[\mathcal{T}]_{\mathcal{A}} = [\mathcal{T}']_{\mathcal{A}} \quad \Rightarrow \quad \left[\mathcal{C}[\![\mathcal{T}/x]\!]\right]_{\mathcal{A}} = \left[\mathcal{C}[\![\mathcal{T}'/x]\!]\right]_{\mathcal{A}}$

Theorem

Second-order tree substitutions respect the A-types:

 $[\mathcal{T}]_{\mathcal{A}} = [\mathcal{T}']_{\mathcal{A}} \quad \Rightarrow \quad \left[\mathcal{C}[\![\mathcal{T}/x]\!]\right]_{\mathcal{A}} = \left[\mathcal{C}[\![\mathcal{T}'/x]\!]\right]_{\mathcal{A}}$

Corollary

Given an automaton $\mathcal A$ and a function γ such that

 $\gamma(T) = C[T/x]$ for any (marked) tree T

there is a well-defined (computable) function $\gamma_{\mathcal{A}}$ such that

 $\gamma_{\mathcal{A}}([\mathcal{T}]_{\mathcal{A}}) = [\gamma(\mathcal{T})]_{\mathcal{A}}$ for any (marked) tree \mathcal{T}
Theorem

Second-order tree substitutions respect the A-types:

 $[\mathcal{T}]_{\mathcal{A}} = [\mathcal{T}']_{\mathcal{A}} \quad \Rightarrow \quad \left[\mathcal{C}[\![\mathcal{T}/x]\!]\right]_{\mathcal{A}} = \left[\mathcal{C}[\![\mathcal{T}'/x]\!]\right]_{\mathcal{A}}$

Corollary

Given an automaton $\mathcal A$ and a function γ such that

 $\gamma(T) = C[T/x]$ for any (marked) tree T

there is a well-defined (computable) function $\gamma_{\mathcal{A}}$ such that

 $\gamma_{\mathcal{A}}([\mathcal{T}]_{\mathcal{A}}) = [\gamma(\mathcal{T})]_{\mathcal{A}}$ for any (marked) tree \mathcal{T}

The set of all functions $\gamma_{\mathcal{A}}$ with functional composition \circ is a

finite monoid

Rational and automatic graphs

Second-order tree substitutions

Example

Example

Let \mathcal{L} be the semi-infinite line we extend it with **backward edges** and **loops**

Example

Example

Example

Example

Example

We now define the following factorization:

Example

Example

We can write
$$\mathcal{T}_{n+1} = \gamma(\mathcal{T}_n)$$
, hence $[\mathcal{T}_{n+1}]_{\mathcal{A}} = \gamma_{\mathcal{A}}^n([\mathcal{T}_1]_{\mathcal{A}})$

 $\Rightarrow~$ the $\mathcal A\text{-contraction}$ is a regular tree of the form

We just saw an example of a reduction to a regular contraction.

However, one can iterate reductions in order to show that the acceptance problem of a tree \mathcal{T} is decidable ...

We just saw an example of a reduction to a regular contraction.

However, one can iterate reductions in order to show that the acceptance problem of a tree ${\cal T}$ is decidable ...

Example

Consider the problem of deciding if $\mathcal{T} \in \mathscr{L}(\mathcal{A})$:

If \mathcal{T} has an \mathcal{A} -contraction $\vec{\mathcal{T}}$, and $\vec{\mathcal{T}}$ has a *regular* $\vec{\mathcal{A}}$ -contraction $\vec{\vec{\mathcal{T}}}$

Then we can decide if $\vec{\mathcal{T}} \in \mathscr{L}(\vec{\mathcal{A}})$, $\vec{\mathcal{T}} \in \mathscr{L}(\vec{\mathcal{A}})$, and $\mathcal{T} \in \mathscr{L}(\mathcal{A})$.

Theorem

The acceptance problem of any recursively reducible tree is decidable.

Closure properties of rank *n* trees

By exploiting the inductive structure of rank *n* trees, one can show that, for any $n \in \mathbb{N}$, rank *n* trees are closed under:

rational colorings

specified by regular path expressions (like rational restrictions and inverse rational mappings)

(alternative specifications in terms of Mealy tree automata, namely, deterministic tree automata with an output function)

Closure properties of rank *n* trees

By exploiting the inductive structure of rank *n* trees, one can show that, for any $n \in \mathbb{N}$, rank *n* trees are closed under:

rational colorings

specified by regular path expressions (like rational restrictions and inverse rational mappings)

(alternative specifications in terms of Mealy tree automata, namely, deterministic tree automata with an output function)

• rational colorings with bounded lookahead

rational colorings extended with the facility of inspecting the subtree issued from the current position, up to a bounded depth

Closure properties of rank *n* trees

By exploiting the inductive structure of rank *n* trees, one can show that, for any $n \in \mathbb{N}$, rank *n* trees are closed under:

rational colorings

specified by regular path expressions (like rational restrictions and inverse rational mappings)

(alternative specifications in terms of Mealy tree automata, namely, deterministic tree automata with an output function)

• rational colorings with bounded lookahead

rational colorings extended with the facility of inspecting the subtree issued from the current position, up to a bounded depth

regular tree morphisms

specified by a tuple of regular trees $(\mathcal{T}_x)_{x \in X}$ and mapping an input tree \mathcal{C} to $\mathcal{C}\left[\!\left[\mathcal{T}_x/x\right]\!\right]_{x \in X}$

Rational and automatic graphs

Rational and automatic graphs

Context-free and prefix-recognizable graphs

The contraction method

Rational and automatic graphs

Rational and automatic graphs

Rational and automatic graphs

Go