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In this part

We present two interesting classes of transition systems:

Context-free graphs
these are (the connected components of)
transition graphs of pushdown systems

Prefix-recognizable graphs
these are the transition graphs
of prefix rewriting systems

We provide alternative representations of graphs in both classes
and we show that their MSO-theories are decidable.
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Pushdown systems

Definition (Pushdown system)

A pushdown system is a tuple P = (Q, Γ,A,∆), where:

Q is a finite set of control states

Γ is a finite set of stack symbols

A is a finite set of transition labels

∆ ⊆ Q × Γ× A× Q × Γ∗ is a set of transition rules

Configurations:
pairs in Q × Γ∗ (state + stack content).

Transitions:
(q, zw)

a−−→
P

(q′,w ′w) is a transition iff (q, z , a, q′,w ′) ∈ ∆.
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Pushdown systems

Two main differences w.r.t. standard pushdown automata:

no initial state and no initial stack symbol

pushdown systems are not used as language acceptors ...
... we are interested in evaluating
properties of their transition graphs

normalized forms of transition

change: (q, z , a, q′, z ′) with q, q′ ∈ Q, z , z ′ ∈ Γ, a ∈ A
push: (q, z , a, q′, z ′z) with q, q′ ∈ Q, z , z ′ ∈ Γ, a ∈ A
pop: (q, z , a, q′, ε) with q, q′ ∈ Q, z ∈ Γ, a ∈ A

the length of the stack changes at most by one ...
... this is not a restriction: use blocks of stack symbols
to put a generic pushdown system into normal form.



Basic results and techniques for MSO Context-free and prefix-recognizable graphs The contraction method

Pushdown systems

Two main differences w.r.t. standard pushdown automata:

no initial state and no initial stack symbol

pushdown systems are not used as language acceptors ...
... we are interested in evaluating
properties of their transition graphs

normalized forms of transition

change: (q, z , a, q′, z ′) with q, q′ ∈ Q, z , z ′ ∈ Γ, a ∈ A
push: (q, z , a, q′, z ′z) with q, q′ ∈ Q, z , z ′ ∈ Γ, a ∈ A
pop: (q, z , a, q′, ε) with q, q′ ∈ Q, z ∈ Γ, a ∈ A

the length of the stack changes at most by one ...
... this is not a restriction: use blocks of stack symbols
to put a generic pushdown system into normal form.



Basic results and techniques for MSO Context-free and prefix-recognizable graphs The contraction method

Context-free graphs

Definition (Pushdown transition graph)

The transition graph of a pushdown system P = (Q, Γ,A,∆)
is the transition system T =

(
S , (δa)a∈A

)
where

S = Q × Γ∗(
(q,w), (q′,w ′)

)
∈ δa iff (q,w)

a−−→
P

(q′,w ′).

Note: pushdown graphs have bounded out-/in-degree.

Definition (Connected component)

A (strongly) connected component of a graph T is
a maximal subgraph of T such that, for every pair of
vertices u, v , there exist a path π from u to v
(π is allowed to traverse edges in both directions).

A context-free graph is a connected component
of a pushdown transition graph.
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Context-free graphs

Example

Consider the pushdown system P = (Q, Γ,A,∆), where

Q = {q0, q1}
Γ = {z}
A = {a, b, c , d}
∆ consists of the transitions
(q0, z , a, q0, zz), (q0, z , b, q0, ε),
(q0, z , c , q1, z), (q1, z , d , q1, ε)

q0 q1

a push(z)

b pop(z)

c

d pop(z)

The connected component of its transition graph is depicted below:

(q0, ε) (q0, z) (q0, zz) (q0, zzz)

(q1, ε) (q1, z) (q1, zz) (q1, zzz)

a a a

b
b b b

c c c

d d d d
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Context-free graphs

Theorem

Transition graphs of pushdown systems and context-free graphs
can be defined inside the infinite binary tree via inverse
rational mappings (in fact, inverse finite mappings) and
rational restrictions.

Corollary (Muller and Schupp ’85)

The model checking problem for MSO logic
over context-free graphs is decidable.
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Context-free graphs

Theorem

Transition graphs of pushdown systems and context-free graphs
can be defined inside the infinite binary tree via inverse
rational mappings (in fact, inverse finite mappings) and
rational restrictions.

Corollary (Muller and Schupp ’85)

The model checking problem for MSO logic
over context-free graphs is decidable.



Basic results and techniques for MSO Context-free and prefix-recognizable graphs The contraction method

Context-free graphs

Proof of the theorem

Let P = (Q, Γ,A,∆) be a pushdown system
and let T be the infinite Q ∪ Γ-labeled tree.

... ...

... ... ... ...

... ... ... ... ... ... ... ...
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Context-free graphs

Proof of the theorem

We identify a P-configuration (q,w) by the reversed word w̃q
and we color the corresponding vertices of T by black:

k(black) := Γ∗Q

... ...

... ... ... ...

... ... ... ... ... ... ... ...
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Context-free graphs

Proof of the theorem

We define a-labeled transitions via the inverse finite mapping

h(a) := {q̄z̄ w̃ ′q′ : (q, z , a, q′,w ′) ∈ ∆}

(q, zw)
a−−→
P

(q′,w ′w) iff (w̃zq, w̃ w̃ ′q′) is an a-labeled edge in h−1(T ).

z

q

q′a

︷
︸︸

︷
ew ︷ ︸︸ ︷

ew′
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Context-free graphs

Proof of the theorem

Now, h−1(T ), restricted to black-colored vertices,
is the transition graph of P.

To cope with context-free graphs, we must
further restrict the domain of h−1(T ).

Given a P-configuration (q,w), we further
restrict the domain of h−1(T ) to the regular set

L := w̃q ·
(⋃

a∈A

h(a) ∪
⋃
a∈A

h̃(a)

)∗

thus obtaining the connected component of h−1(T )
(i.e., the context-free graph of P) that contains w̃q.



Basic results and techniques for MSO Context-free and prefix-recognizable graphs The contraction method

Prefix rewriting systems

Let thus now consider the class of prefix rewriting systems, which
are a natural generalization of pushdown systems and, unlike
them, may produce graphs with possibly infinite out-/in-degree.

Basic features:

no more distinction between control states and stack letters
(a single alphabet is used)

less restricted forms of rewriting rules
(more than one letter can be rewritten in a single transition)
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Prefix rewriting systems

Definition (Prefix rewriting system)

A prefix rewriting system is a tuple P = (Γ, L,A,∆), where:

Γ is a finite set of symbols

L is a regular language over Γ,

A is a finite set of transition labels

∆ is a finite set of rules of the form (U, a,V ),
where a ∈ A and U,V are regular languages over Γ.

Configurations:
all finite words in L.

Transitions:
uw

a−−→
P

vw is a transition iff ∃ (U, a,V ) ∈ ∆. u ∈ U, v ∈ V .

Note: pushdown systems are special forms of prefix rewriting ones.
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Prefix recognizable graphs

Definition (Prefix-recognizable graph)

A prefix-recognizable graph is the
transition graph of a prefix rewriting system.

Example

Consider the prefix rewriting system P = (Γ, L,A,∆), where

Γ = {z}
L = {z}∗

A = {succ , geq}
∆ consists of the two rules

(
{ε}, succ , {z}

)
,
(
{z}∗, geq, {ε}

)
.
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Prefix recognizable graphs

Theorem (Caucal ’96)

Prefix-recognizable graphs are definable inside the
infinite binary tree via inverse rational mappings
and rational restrictions.

Corollary (Caucal ’96)

The model checking problem for MSO logic
over prefix-recognizable graphs is decidable.
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Prefix recognizable graphs

Theorem (Caucal ’96)

Prefix-recognizable graphs are definable inside the
infinite binary tree via inverse rational mappings
and rational restrictions.

Corollary (Caucal ’96)

The model checking problem for MSO logic
over prefix-recognizable graphs is decidable.
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Prefix recognizable graphs

Proof of the theorem

Let P = (Γ, L,A,∆) be a prefix rewriting system
and let T be the infinite Γ-labeled tree.

... ...

... ... ... ...

... ... ... ... ... ... ... ...
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Prefix recognizable graphs

Proof of the theorem

We identify a P-configuration w ∈ L by the reversed word w̃ ∈ L̃.
and we color the corresponding vertices of T by black:

k(black) := L̃

... ...

... ... ... ...

... ... ... ... ... ... ... ...



Basic results and techniques for MSO Context-free and prefix-recognizable graphs The contraction method

Prefix recognizable graphs

Proof of the theorem

We define a-labeled transitions via the inverse rational mapping

h(a) :=
⋃

(U,a,V )∈∆

U · Ṽ

uw
a−−→
P

vw iff (w̃ ũ, w̃ ṽ) is an a-labeled edge in h−1(T ).

a

︷
︸︸

︷
ew

︷
︸︸

︷

eu ∈ eU

︷ ︸︸ ︷
ev ∈ eV
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Prefix recognizable graphs

So far we know that

pushdown transition graphs are obtained from the infinite
binary tree via inverse finite mappings and rational restrictions.

The converse is also true (Caucal ’96):
inverse finite mappings and rational restrictions
applied to the infinite binary tree yield pushdown
transition graphs.

prefix recognizable graphs are obtained from the infinite binary
tree via inverse rational mappings and rational restrictions.

The converse is also true (Caucal ’96):
inverse rational mappings and rational restrictions
applied to the infinite binary tree yield prefix
recognizable graphs.

⇒ inverse finite/rational mappings and rational restrictions
can be thought of as external presentations of
pushdown/prefix-recognizable graphs.
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Graph grammars

Context-free graphs have alternative representations
based on hyperedge-replacement graph grammars.

Definition (Hypergraph)

A hyperedge is a sequence of k vertices (v1, ..., vk).
(an edge is a special form of hyperedge with 2 vertices only).

A hypergraph is a graph where edges are replaced with hyperedges
(labels can be assigned to the hyperedges of a hypergraph).

A hyperedge replacement is the replacement of a hyperedge
e = (v1, ..., vk) in a hypergraph G with a (hyper)graph H

(a suitable marking of the vertices of H is used to identify
the vertices of H that replace the vertices of G in e).
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Graph grammars

Example (Hyperedge replacement)

e

G H

G[H/e]
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Graph grammars

Example (Hyperedge replacement)

e

G
1

2

3

H

G[H/e]
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Graph grammars

Definition (Graph grammar)

Given a finite set N of nonterminal symbols,
a (hyperedge-replacement) graph grammar is
a tuple G = (Hz)z∈N of hypergraphs that defines
the grammar rules for the replacement of every z-labeled
hyperedge with the hypergraph Hz .

The pattern graph generated by G starting from
an axiom z0 ∈ N is the limit of the sequence of graphs
obtained by the repeated application of replacement rules in G.

Note that

the limit operation does not take into
account the nonterminal hyperedges

every hyperedge is eventually replaced
(replacement order does not matter).
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Graph grammars

Example (a pattern graph)

1 2G : z a

bz

a

b
a

b

a

b

a
b

a

b a

b

z

Note: pattern graphs may have infinite in-/out- degree
and unconnected components ...
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Graph grammars

Example (a pattern graph)

1 2G : z a

bz

a

a

aa

a

a

b

bb

b

b

b

a

Note: pattern graphs may have infinite in-/out- degree
and unconnected components ...
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Graph grammars

Example (a pattern graph)

1 2G : z a

bz

a

a

aa

a

a

b

bb

b

b

b

a

Note: pattern graphs may have infinite in-/out- degree
and unconnected components ...
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Graph grammars

If we restrict ourselves to special graph grammars G = (Hz)z∈N ,
where

nonterminal hyperedges in Hz have no repeated vertices

vertices of nonterminal hyperedges in Hz are not marked

every vertex of a nonterminal hyperedge in Hz is also
a vertex of a terminal edge

every terminal edge in Hz has at least one marked vertex

for every (non-terminal symbol) z ∈ N, the pattern graph
generated by G starting from z is a connected graph,

then:

Theorem (Muller and Schupp ’85)

The context-free graphs are exactly the pattern graphs
generated by special (hyperedge-replacement) graph grammars.
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Graph grammars

An intuitive account (one direction)

Consider the context-free graph T =
(
S , (δa)a∈A

)
q qz qzz qzzz

q′ q′z q′zz q′zzz

a a a

b
b b b

c c c

d d d d

n = 1

One can show that there are only finitely many non-isomorphic
end-components, each one generating a distinct replacement rule

x

b
y

d

y

a

bc y

d
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Graph grammars

An intuitive account (one direction)

The end-components induced by Vn =
{
v ∈ S : |v | ≥ n

}
are

q qz qzz qzzz

q′ q′z q′zz q′zzz

a a a

b
b b b

c c c

d d d d
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One can show that there are only finitely many non-isomorphic
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b
y

d

y

a

bc y
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Graph grammars

An intuitive account (one direction)

The end-components induced by Vn =
{
v ∈ S : |v | ≥ n

}
are

q qz qzz qzzz

q
q′z q′zz q′zzz

a a a

b
b b b

c c c

d d d d

n = 2

One can show that there are only finitely many non-isomorphic
end-components, each one generating a distinct replacement rule

x

b
y

d

y

a

bc y

d
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Graph grammars

An intuitive account (one direction)

The end-components induced by Vn =
{
v ∈ S : |v | ≥ n

}
are

q qz qzz qzzz

q′ q′z q′zz q′zzz

a a a

b
b b b

c c c

d d d d

n = 3

One can show that there are only finitely many non-isomorphic
end-components, each one generating a distinct replacement rule

x

b
y

d

y

a

bc y

d
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q qz qzz qzzz
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x

b
y

d

y

a

bc y

d
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Graph grammars

An analogous characterization holds for prefix-recognizable graphs:

Theorem (Courcelle ’92)

The prefix-recognizable graphs are exactly the pattern graphs
generated by vertex-replacement graph grammars.

Moreover, we have that

Theorem

The prefix-recognizable graphs are exactly the graphs in
the second level of the Caucal hierarchy, namely, the graphs
generated by MSO-interpretations over infinite regular trees.
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