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In this part

We present basic results and techniques related
to the decidability of MSO-theories of
infinite transition systems.

Automaton-based approaches

decidability of the MSO-theory of a finite (discrete) line
Büchi’s Theorem
(decidability of the MSO-theory of the semi-infinite line)
Rabin’s Theorem
(decidability of the MSO-theory of the infinite binary tree)

Transformational approaches

interpretations, inverse mappings, markings
unfoldings
Caucal hierarchy
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The automaton-based approach – The finite line

Consider a finite line Ln =
(
{1, ..., n}, δ

)
δ δ δ δ δ δ δ δ δ

We expand Ln by unary predicates P1, ...,Pm ⊆ {1, ..., n}
and we obtain a colored line Ln,P̄ =

(
{1, ..., n}, δ,P1, ...,Pm

)
We encode Ln,P̄ by a finite word wn,P̄ over Bm = {0, 1}m

such that

|wn,P̄ | = n

wn,P̄ [i ] = (b1, ..., bm) where bj =

{
1 if i ∈ Pj

0 if i 6∈ Pj

Example

The colored line L10,P̄ =
(
{1, ..., 10}, δ,Peven,Pprime

)
is encoded by w10,P̄ =

(
0
0

)(
1
1

)(
0
1

)(
1
0

)(
0
1

)(
1
0

)(
0
1

)(
1
0

)(
0
0

)(
1
0

)
.
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The automaton-based approach – The finite line

W.l.o.g. we can think of each FO-variable x in an MSO-formula
ψ as an MSO-variable X which stands for the singleton {x}.

⇒ we can get rid of FO-variables
(by taking δ(Xi ,Xj), with Xi ,Xj singletons,

and Xi ⊆ Xj as atomic formulas)

We evaluate an MSO-formula ψ with free variables X1, ...,Xm

over the finite line expanded by any tuple of unary predicates
P1, ...,Pm:

Ln,P̄

?
� ψ[P1/X1, ...,Pm/Xm]

The above problem can be reduced to the (decidable)
acceptance problem for finite state automata.
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The automaton-based approach – The finite line

Theorem (Acceptance problem)

For any MSO-formula ψ with free variables X1, ...,Xm,
one can compute a finite state automaton Aψ over Bm

such that, for every n-length colored line Ln,P̄

Ln,P̄ � ψ[P1/X1, ...,Pm/Xm] iff wn,P̄ ∈ L (Aψ)

Intuitively: the words accepted by the automaton Aψ are
all and only the encodings of the linear models of the formula ψ.

Note: if ψ contains no free variables (m = 0),
then Aψ is an input-free automaton.

Corollary

The MSO-theory of a finite line Ln =
(
{1, ..., n}, δ

)
is reducible to the (decidable) acceptance problem
for finite state automata.
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The automaton-based approach – The finite line

Proof of the theorem

By induction on the structure of the formula ψ:

if ψ = δ(X1,X2), then Aψ :=

� 0
0

�

� 1
0

� � 0
1

�

� 0
0

�

if ψ = X1 ⊆ X2, then Aψ :=
� 0

0

�� 0
1

�� 1
1

�

if ψ = ϕ1 ∧ ϕ2, then Aψ := Aϕ1 ∩ Aϕ2

if ψ = ϕ1 ∨ ϕ2, then Aψ := Aϕ1 ∪ Aϕ2

if ψ = ¬ϕ, then Aψ is the complement automaton of Aϕ

if ψ = ∃ Xi . ϕ(X1, ...,Xi , ...,Xm), then Aψ is obtained from
Aϕ by removing the i-th component of each input symbol

1 0

 0
1
—
0

!  1
0
—
0

!
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The automaton-based approach – The semi-infinite line

We exploited closure properties of finite state automata
w.r.t. union, intersection, complementation, and projection

to reduce the problem of deciding the MSO-theory of a finite line
to a (decidable) acceptance problem over finite state automata.

What about the semi-infinite line Lω =
(
N, δ

)
?

Basic ingredients

We need to use infinite words, rather than finite ones,
to encode expansions of Lω by unary predicates

We need to introduce a suitable class of automata
working on infinite words: Büchi automata!
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The automaton-based approach – The semi-infinite line

Definition (Büchi automaton)

It is a non-deterministic finite state automaton that accepts an
infinite word w iff there is a run ρ on w such that Inf (ρ) ∩ F 6= ∅
(‘ρ contains at least one final state that occurs infinitely often’).

Example
1

0

0

0

is a Büchi automaton recognizing the language {0, 1}∗ · {0}ω
(note: non-determinism is needed)

Lemma (Büchi ’62)

Büchi automata are effectively closed under union,
intersection, complementation, and projection.
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The automaton-based approach – The semi-infinite line

Theorem (Büchi ’62)

For any MSO-formula ψ with free variables X1, ...,Xm,
one can compute a Büchi automaton Aψ over Bm such that,
for every tuple of unary predicates P1, ...,Pm ⊆ N

Lω,P̄ � ψ[P1/X1, ...,Pm/Xm] iff wω,P̄ ∈ L (Aψ)

Note: if ψ contains no free variables (m = 0)
then Aψ is input free and it recognizes
either the empty language or a singleton.

Corollary

The MSO-theory of the semi-infinite line L =
(
N, δ

)
is reducible

to the (decidable) emptiness problem for Büchi automata.
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The automaton-based approach – The infinite tree

What about MSO-theories of branching structures,
in particular, of the infinite binary tree T2 =

(
B∗, δ0, δ1

)
?

δ0 δ1

δ0 δ1 δ0 δ1

δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1

δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1

In analogy to the previous cases, we shall describe an
automaton-based method to decide the MSO-theory of T2.
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The automaton-based approach – The infinite tree

Now, expansions of the infinite binary tree T2 with unary
predicates P1, ...,Pm ⊆ B∗ are encoded by Bm-colored trees.

Example

The expanded tree
(
B∗, δ0, δ1,P

)
, where P = {left successors},

is encoded by the colored tree T2,P

δ0 δ1

δ0 δ1 δ0 δ1

δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1

δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1
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The automaton-based approach – The infinite tree

We need a suitable class of automata running on
colored trees, rather than words: Rabin tree automata!

Definition (Rabin tree automaton)

A Rabin tree automaton is a tuple
A =

(
Q,C ,∆, q0, {(G1,F1), ..., (Gk ,Fk)}

)
, where:

Q is a finite set of states

C is a finite set of vertex colors (e.g., Bm)

∆ ⊆ Q × C × Q × Q is a transition relation

q0 ∈ Q is the initial state

for all 1 ≤ i ≤ k, (Gi ,Fi ) is an accepting pair,
with Gi ,Fi ⊆ Q.
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The automaton-based approach – The infinite tree

How does a Rabin tree automaton A accept a colored tree?

Definition (Successful run)

A successful run of A on an infinite binary C -colored tree T
is an infinite binary Q-colored tree R such that:

R(ε) = q0

‘the state at the root is the initial state of A’

for every vertex v ,
(
R(v), T (v),R(v · 0),R(v · 1)

)
∈ ∆

‘if A lies at v with color c = T (v) and state q = R(v), A
can associate the states q′ = R(v · 0), q′′ = R(v · 1) with
the two successors of v iff (q, c , q′, q′′) is a valid transition’

for every infinite path π, there is 1 ≤ i ≤ k such that
Inf (R|π) ∩ Gi 6= ∅ and Inf (R|π) ∩ Fi = ∅
‘at least one state of Gi occurs infinitely often in R along π’
and ‘all states of Fi occur only finitely often in R along π’
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The automaton-based approach – The infinite tree

Example

Consider the {red , blue}-colored tree
r

and the Rabin tree automaton having

two states, r and b, that keep track of which color was seen last

transitions (r , red , r , r), (b, red , r , r),
(r , blue, b, b), (b, blue, b, b)

a single accepting pair (G1,F1), with G1 = {b}, F1 = {r}

⇒ A accepts those trees whose paths encompass

only finitely many red-colored vertices
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The automaton-based approach – The infinite tree

Lemma (Rabin ’69)

Rabin tree automata are effectively closed under union,
intersection, complementation, and projection.

Theorem (Rabin ’69)

For any MSO-formula ψ with free variables X1, ...,Xm,
one can compute a Rabin tree automaton Aψ over Bm

such that, for every tuple of unary predicates P1, ...,Pm ⊆ B∗(
B∗, δ0, δ1, P̄

)
� ψ[P1/X1, ...,Pm/Xm] iff T2,P̄ ∈ L (Aψ)

Corollary

The MSO-theory of the infinite binary tree
(
B∗, δ0, δ1

)
is reducible to the (decidable) emptiness problem
for Rabin tree automata.
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The automaton-based approach – The infinite tree

Summing up, we have the following decidability results:

MSO-theory Model Automata

S1S finite line finite state automata

S1S semi-infinite line Büchi automata

S2S infinite tree Rabin tree automata

What next?
to find infinite transition systems in between the infinite tree
and the infinite grid that enjoy a decidable MSO-theory.
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The transformational approach – MSO-compatibility

Basic ingredients of the transformational approach:

1 We start from a structure T that enjoys a decidable
MSO-theory (e.g., the infinite binary tree)

2 We apply to T a suitable transformation that preserves
the decidability of MSO-theories (e.g., interpretation),
thus obtaining a new (decidable) structure T ′

3 We iterate the above construction to generate
more and more structures

A noticeable class of transformations that preserve decidability of
MSO-theories is the class of MSO-compatible transformations.
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The transformational approach – MSO-compatibility

Definition (MSO-compatible transformation)

A transformation t for transition systems is said to be
MSO-compatible if for any transition system T and any
MSO-sentence ψ over t(T ), one can compute an

MSO-sentence
−�
ψ over T (which depends on ψ only)

such that
t(T ) � ψ iff T �

−�
ψ

Intuitively, MSO-compatibility allows one to map a property
about t(T ) into a corresponding property about T

⇒ If T has a decidable MSO-theory,
then t(T ) has a decidable MSO-theory as well.

The first transformation we consider is the MSO-interpretation.
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The transformational approach – MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree T2.

We describe the infinite ternary tree T3 (= t(T2)) inside T2:

we select some vertices of T2 (black-colored ones)

ψdom(x) :=
(
δ0 ∪ (δ1 ◦ δ0) ∪ (δ1 ◦ δ1)

)∗
(ε, x)

we then define the successor relations δ′0, δ
′
1, δ

′
2 of T3

ψδ′0(x , y) := δ0(x , y) ψδ′i+1
(x , y) := (δ1 ◦ δi )(x , y)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree T2.

We describe the infinite ternary tree T3 (= t(T2)) inside T2:

we select some vertices of T2 (black-colored ones)

ψdom(x) :=
(
δ0 ∪ (δ1 ◦ δ0) ∪ (δ1 ◦ δ1)

)∗
(ε, x)

we then define the successor relations δ′0, δ
′
1, δ

′
2 of T3

ψδ′0(x , y) := δ0(x , y) ψδ′i+1
(x , y) := (δ1 ◦ δi )(x , y)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree T2.

We describe the infinite ternary tree T3 (= t(T2)) inside T2:

we select some vertices of T2 (black-colored ones)

ψdom(x) :=
(
δ0 ∪ (δ1 ◦ δ0) ∪ (δ1 ◦ δ1)

)∗
(ε, x)

we then define the successor relations δ′0, δ
′
1, δ

′
2 of T3

ψδ′0(x , y) := δ0(x , y) ψδ′i+1
(x , y) := (δ1 ◦ δi )(x , y)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree T2.

δ′
0

δ′
1

δ′
2

We describe the infinite ternary tree T3 (= t(T2)) inside T2:

we select some vertices of T2 (black-colored ones)

ψdom(x) :=
(
δ0 ∪ (δ1 ◦ δ0) ∪ (δ1 ◦ δ1)

)∗
(ε, x)

we then define the successor relations δ′0, δ
′
1, δ

′
2 of T3

ψδ′0(x , y) := δ0(x , y) ψδ′i+1
(x , y) := (δ1 ◦ δi )(x , y)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree T2.

δ′
0

δ′
1

δ′
2

δ′
0 δ′

1

δ′
2

We describe the infinite ternary tree T3 (= t(T2)) inside T2:

we select some vertices of T2 (black-colored ones)

ψdom(x) :=
(
δ0 ∪ (δ1 ◦ δ0) ∪ (δ1 ◦ δ1)

)∗
(ε, x)

we then define the successor relations δ′0, δ
′
1, δ

′
2 of T3

ψδ′0(x , y) := δ0(x , y) ψδ′i+1
(x , y) := (δ1 ◦ δi )(x , y)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree T2.

δ′
0

δ′
1

δ′
2

δ′
0 δ′

1

δ′
2

δ′
0 δ′

0 δ′
0

We describe the infinite ternary tree T3 (= t(T2)) inside T2:

we select some vertices of T2 (black-colored ones)

ψdom(x) :=
(
δ0 ∪ (δ1 ◦ δ0) ∪ (δ1 ◦ δ1)

)∗
(ε, x)

we then define the successor relations δ′0, δ
′
1, δ

′
2 of T3

ψδ′0(x , y) := δ0(x , y) ψδ′i+1
(x , y) := (δ1 ◦ δi )(x , y)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree T2.

δ′
0

δ′
1

δ′
2

δ′
0 δ′

1

δ′
2

δ′
0 δ′

0 δ′
0

We describe the infinite ternary tree T3 (= t(T2)) inside T2:

we select some vertices of T2 (black-colored ones)

ψdom(x) :=
(
δ0 ∪ (δ1 ◦ δ0) ∪ (δ1 ◦ δ1)

)∗
(ε, x)

we then define the successor relations δ′0, δ
′
1, δ

′
2 of T3

ψδ′0(x , y) := δ0(x , y) ψδ′i+1
(x , y) := (δ1 ◦ δi )(x , y)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation
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Any MSO-formula φ over T3 can be mapped

into a corresponding formula
−�
φ over T2.

For instance, the formula φ = ∀ x . ∃ y . δ2(x , y) becomes
−�
φ = ∀ x .

(
ψdom(x) → ∃ y . (ψdom(y) ∧ ψδ′2(x , y))

)
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The transformational approach – MSO-interpretation

Definition (MSO-interpretation)

An MSO-interpretation is a tuple of MSO-formulas

ψdom(x)︸ ︷︷ ︸
domain formula

ψb1(x , y) ... ψbk
(x , y)︸ ︷︷ ︸

edge formulas

ψd1(x) ... ψdm(x)︸ ︷︷ ︸
color formulas

It defines a B-labeled D-colored structure T ′

inside an A-labeled C -colored structure T as follows:
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then v is a vertex of T ′



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – MSO-interpretation

Definition (MSO-interpretation)

An MSO-interpretation is a tuple of MSO-formulas

ψdom(x)︸ ︷︷ ︸
domain formula

ψb1(x , y) ... ψbk
(x , y)︸ ︷︷ ︸

edge formulas

ψd1(x) ... ψdm(x)︸ ︷︷ ︸
color formulas

It defines a B-labeled D-colored structure T ′

inside an A-labeled C -colored structure T as follows:

if ψdom(x) holds in T by interpreting x as v ,
then v is a vertex of T ′

if ψbi
(x , y) holds in T by interpreting x as u, resp. y as v

then (u, v) is an bi -labeled transition of T ′
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Definition (MSO-interpretation)
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if ψdom(x) holds in T by interpreting x as v ,
then v is a vertex of T ′

if ψbi
(x , y) holds in T by interpreting x as u, resp. y as v

then (u, v) is an bi -labeled transition of T ′

if ψdj
(x) holds in T by interpreting x as v ,

then v is a dj -colored vertex of T ′
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The transformational approach – MSO-interpretation

Theorem

MSO-interpretations are MSO-compatible.

Proof (sketch)

Rewrite a given MSO-sentence ψ over T ′ into

a corresponding MSO-sentence
−�
ψ over T :

if ψ = δ′bi
(x , y), then

−�
ψ := ψbi

(x , y)

if ψ = Pdi
(x), then

−�
ψ := ψdi

(x)

if ψ = ∃ x . ϕ(x), then
−�
ψ := ∃ x .

(
ψdom(x) ∧ −�ϕ(x)

)
...

Corollary

The infinite ternary tree T3 has a decidable MSO-theory.
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The transformational approach – Inverse rational mappings

Most MSO-formulas with two free variables can be
conveniently written as regular (path) expressions:

let A and C be disjoint sets of edge labels and vertex colors

for each label a ∈ A, we introduce an inverse label ā
denoting a-labeled edges traversed in backward direction

we describe paths traversing edges in both directions
by words over the alphabet A ∪ Ā ∪ C

Example

The set of paths on an A-labeled C -colored transition system that

start from a vertex with color c

traverse a sequence of edges labeled with a

reach a vertex colored with c ′

and finally traverse a edge labeled with a′

in backward direction

is described by the regular expression c · a∗ · c ′ · ā′
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The transformational approach – Inverse rational mappings

Fact

Regular path expressions are shorthands
of (a subset of) MSO-formulas with two free variables.

For instance:

the expression a
abbreviates ψ(x , y) := δa(x , y)

the expression a · a′
abbreviates ψ(x , y) := ∃ z . δa(x , z) ∧ δa′(z , y)

the expression a + ā′

abbreviates ψ(x , y) := δa(x , y) ∨ δa′(y , x)

the expression a∗

abbreviates ψ(x , y) := δ∗a(x , y)

Note: the converse is not true in the general case (e.g.,
ψ(x , y) := @ z .

(
δ0(z , x) ∨ δ1(z , y)

)
∧ @ z .

(
δ0(y , z) ∨ δ1(y , z)

)
).

However, regular path expressions suffice for most cases.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – Inverse rational mappings

Fact

Regular path expressions are shorthands
of (a subset of) MSO-formulas with two free variables.

For instance:

the expression a
abbreviates ψ(x , y) := δa(x , y)

the expression a · a′
abbreviates ψ(x , y) := ∃ z . δa(x , z) ∧ δa′(z , y)

the expression a + ā′

abbreviates ψ(x , y) := δa(x , y) ∨ δa′(y , x)

the expression a∗

abbreviates ψ(x , y) := δ∗a(x , y)

Note: the converse is not true in the general case (e.g.,
ψ(x , y) := @ z .

(
δ0(z , x) ∨ δ1(z , y)

)
∧ @ z .

(
δ0(y , z) ∨ δ1(y , z)

)
).

However, regular path expressions suffice for most cases.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – Inverse rational mappings

For the usual MSO-interpretations, we can replace every
edge formula ψb(x , y) with a regular path expression,
namely, a regular language over A ∪ Ā ∪ C .

Definition (Inverse rational mapping)

A rational mapping is a function h : B → P
(
(A ∪ Ā ∪ C )∗

)
such that ∀b ∈ B, h(b) is a regular language over A ∪ Ā ∪ C .

The ‘inverse’ h−1 of h (inverse rational mapping)
can be applied to an A-labeled transition system T to
produce the B-labeled transition system h−1(T ) such that:

h−1(T ) has the same vertices of T
(u, v) is a b-labeled edge of h−1(T ) iff T contains
a w-marked path from u to v , for some w ∈ h(b).
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The transformational approach – Inverse rational mappings

Example (Inverse rational mapping)

Colored semi-infinite line Lω =
(
N, δa,Peven,Podd ,P0

)

Colored bi-infinite line L−ω,ω =
(
Z, δb,Ppos ,Pneg ,P0

)

δa δa δa δa δa

δb δb δb δb δb δb δb δb δb

We define L−ω,ω inside Lω.
In L−ω,ω we have b-labeled edges of 4 types:

between blue-colored vertices: blue · a · a
between red-colored vertices: red · ā · ā
from the green-colored vertex to the blue-colored vertex: 0 · a · a
from the red-colored vertex to the green-colored one: ā · 0

⇒ h(b) = blue · a · a + red · ā · ā + 0 · a · a + ā · 0
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from the green-colored vertex to the blue-colored vertex: 0 · a · a
from the red-colored vertex to the green-colored one: ā · 0
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Colored semi-infinite line Lω =
(
N, δa,Peven,Podd ,P0

)

Colored bi-infinite line L−ω,ω =
(
Z, δb,Ppos ,Pneg ,P0

)
δa δa δa δa δa

δb δb δb δb δb δb δb δb δb

We define L−ω,ω inside Lω.
In L−ω,ω we have b-labeled edges of 4 types:

between blue-colored vertices: blue · a · a
between red-colored vertices: red · ā · ā
from the green-colored vertex to the blue-colored vertex: 0 · a · a
from the red-colored vertex to the green-colored one: ā · 0

⇒ h(b) = blue · a · a + red · ā · ā + 0 · a · a + ā · 0
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⇒ h(b) = blue · a · a + red · ā · ā + 0 · a · a + ā · 0
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The transformational approach – Rational markings

Similarly, color formulas can be replaced with rational markings:

Definition (Rational marking)

A rational marking is a function k : D → P
(
(A ∪ Ā ∪ C )∗

)
such that ∀d ∈ D, k(d) is a regular language over A ∪ Ā ∪ C .

It induces a recoloring of the rooted transition system T as follows:

for each d ∈ D, the color d is assigned

to all vertices v of T such that there is

a w -marked path from the root to v , for some w ∈ k(d).

Example (Rational marking)

The {pos, neg , 0}-coloring of the bi-infinite line is
encoded in the rooted semi-infinite line Lω =

(
N, δa,P0

)
via the rational marking k such that

k(pos) = 0 · a · a · (a · a)∗ k(neg) = 0 · a · (a · a)∗ k(0) = 0
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The transformational approach – Rational markings

Finally, domain formulas can be
replaced with rational restrictions:

Definition (Rational restriction)

A rational restriction is specified by
a regular language L over A ∪ Ā ∪ C .

It induces a restriction T |L of the
rooted transition system T as follows:

for each vertex v of T , v belongs to T |L iff there is
a w -marked path from the root to v , for some w ∈ L.
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The transformational approach – Unfoldings

Another useful transformation is the unfolding:

Definition (Unfolding)

The unfolding of a rooted transition system T
is the tree Unf (T ) such that:

the vertices of Unf (T ) are all and only
the finite paths in T originating from the root

the edges of Unf (T ) are given by the path-extension relation,
namely, if π is path in T from the root and
π′ is the extension of π with an a-labeled edge,
then (π, π′) is an a-labeled edge in Unf (T )

the color of a vertex in Unf (T ) is the color of
the target vertex of the corresponding path in T
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The transformational approach – Unfoldings

Example (unfoldings)

0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0

1

0

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1
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The transformational approach – Unfoldings

Example (unfoldings)

0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0

1

0

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1
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The transformational approach – Unfoldings

Example (unfoldings)
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1
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0 1 0 1

0 1 0 1 0 1 0 1
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The transformational approach – Unfoldings

Example (unfoldings)
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The transformational approach – Unfoldings
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The transformational approach – Unfoldings

Example (unfoldings)
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The transformational approach – Unfoldings

Theorem (Semenov-Muchnik ’84 – proved by Walukiewicz ’96)

The unfolding operation is MSO-compatible.

⇒ Since finite transition systems enjoy decidable MSO-theories,
Muchnik’s Theorem subsumes Büchi’s and Rabin’s theorems
(in fact, the proof is strongly based on Rabin’s Theorem...)
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The transformational approach – Caucal hierarchy

We know that MSO-interpretation and unfolding preserve
the decidability of MSO-theories of transition systems.

We can start from finite (hence decidable) graphs
and iterate MSO-interpretation and unfolding:

Graph0 := {finite rooted graphs}
Treen+1 := {trees obtained by unfolding graphs in Graphn}
Graphn := {rooted graphs obtained via

interpretation from trees inTreen}

(e.g., Tree1 = {regular trees})

⇒ a hierarchy of graphs with decidable MSO-theories arises
(this is commonly known as Caucal’s hierarchy)
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The transformational approach – Caucal hierarchy

Example

We start from the finite graph

0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a

a

a

c

c

c

d

d

d

b

b

a a a a

c c c c

d d d d
b b b b
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The transformational approach – Caucal hierarchy

Example

We unfold it, obtaining the infinite binary tree ...

0 1

a

a

a

c

c

c

d

d

d

b

b

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a a a a

c c c c

d d d d
b b b b
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The transformational approach – Caucal hierarchy

Example

... we apply the rational marking
k(A) = 0∗, k(B) = 0∗1

0 1

a

a

a

c

c

c

d

d

d

b

b

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a a a a

c c c c

d d d d
b b b b
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The transformational approach – Caucal hierarchy

Example

... the inverse rational mapping
h(a) = 0, h(b) = 1̄0̄1, h(c) = 1, h(d) = 1̄

0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a

a

a

c

c

c

d

d

d

b

b

a a a a

c c c c

d d d d
b b b b



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

The transformational approach – Caucal hierarchy

Example

... and finally the rational restriction L = 0∗ + 0∗1, obtaining
the following transition system (do you remember it?)

0 1

a

a

a

c

c

c

d

d

d

b

b

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a a a a

c c c c

d d d d
b b b b
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Go
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