
Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Verification of infinite state systems

Angelo Montanari and Gabriele Puppis

Department of Mathematics and Computer Science
University of Udine, Italy

{montana,puppis}@dimi.uniud.it



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Outline of the course (and tentative schedule)

Day 1 Introduction

Day 1-2 Basics results and techniques for MSO

Day 3 Context-free and prefix-recognizable graphs

Day 3-4 Contraction method

Day 4 Rational and automatic graphs

Day 5 Reachability over pushdown systems and Petri nets



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Aim of the course

To present selected techniques and results about
automatic verification of properties of systems.

⇒ two aspects need to be taken into account:

what kind of systems?

transitions systems (e.g., programs, devices, protocols, ...)
that have infinitely many possible configurations/states.

what kind of properties?

reachability properties (e.g., ‘does the system never reach
a dangerous configuration from a given initial one?’) and,
more generally, properties expressed by logical formulas
(e.g., monadic second-order logic formulas).



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Aim of the course

To present selected techniques and results about
automatic verification of properties of systems.

⇒ two aspects need to be taken into account:

what kind of systems?

transitions systems (e.g., programs, devices, protocols, ...)
that have infinitely many possible configurations/states.

what kind of properties?

reachability properties (e.g., ‘does the system never reach
a dangerous configuration from a given initial one?’) and,
more generally, properties expressed by logical formulas
(e.g., monadic second-order logic formulas).



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Transition systems

Definition (Transition system)

A transition system is described by

a set S of possible configurations

a set δ ⊆ S × S of transitions (non-determinism is allowed).

Note: transition systems can perform actions
and react to stimuli from external environments.

How to model system actions and external events?

We assign to each transition a label from a finite alphabet A
⇒ we replace δ with a tuple (δa)a∈A of transition relations.

How to distinguish good configurations from dangerous ones?

We assign to each configuration a color from a finite alphabet C
⇒ the system is expanded with a partition (Pc)c∈C of S .



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Transition systems

Definition (Transition system)

A transition system is described by

a set S of possible configurations

a set δ ⊆ S × S of transitions (non-determinism is allowed).

Note: transition systems can perform actions
and react to stimuli from external environments.

How to model system actions and external events?

We assign to each transition a label from a finite alphabet A
⇒ we replace δ with a tuple (δa)a∈A of transition relations.

How to distinguish good configurations from dangerous ones?

We assign to each configuration a color from a finite alphabet C
⇒ the system is expanded with a partition (Pc)c∈C of S .



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Transition systems

Definition (Transition system)

A transition system is described by

a set S of possible configurations

a set δ ⊆ S × S of transitions (non-determinism is allowed).

Note: transition systems can perform actions
and react to stimuli from external environments.

How to model system actions and external events?

We assign to each transition a label from a finite alphabet A
⇒ we replace δ with a tuple (δa)a∈A of transition relations.

How to distinguish good configurations from dangerous ones?

We assign to each configuration a color from a finite alphabet C
⇒ the system is expanded with a partition (Pc)c∈C of S .



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Transition systems

Abstract format of transition systems

Any (labeled/colored) transition system can be viewed as
a (decorated) directed graph (transition graph), where

vertices represent system configurations
(colors can be associated with vertices),

edges represent system transitions
(labels can be associated with edges).

A : repeat forever
atomic

produce
count := count+1

B : repeat forever
atomic

if count>0 then
consume
count := count–1

A, 0 A, 1 A, 2

B, 0 B, 1 B, 2

produce produce produce

sw
itch

to
B

sw
itch

to
B

sw
itch

to
B

sw
it

ch
to

A

sw
it

ch
to

A

sw
it

ch
to

A

consume consume consume



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Transition systems

In order to effectively manipulate and reason
about infinite state systems, we need to
provide them with finite presentations.

We distinguish between two kinds of presentation:

internal presentations:
configurations and transitions are explicitly given
by means of (different variants of) rewriting systems

external presentations:
transition systems are described (up to isomorphism)
as the graphs resulting from applications of suitable
transformations, starting from well-known structures.

Note: there exist alternative (internal and external)
presentations for several classes of transition systems.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability properties are evaluated over
a transition system T = (S , δ) and two sets I ,F ⊆ S :

Overview of reachability problems

Different kinds of reachability properties can be
evaluated on a transition system, for instance

plain reachability:
does T contain a path from I to F?

recurrent reachability:
does T contain a path from I that meets F infinitely often?

universal reachability:
does every path in T that starts in I eventually meet F?

...

We shall focus on the plain reachability problem (experience
shows that this is a crucial problem in automatic verification).



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

IIII FFFF

IIII FFFF



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

δ(I)δ(I)δ(I)δ(I)IIII FFFF

IIII FFFF



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

δ2(I)δ2(I)δ2(I)δ2(I)δ(I)δ(I)δ(I)δ(I)IIII FFFF

IIII FFFF



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

FFFFδn(I)δn(I)δn(I)δn(I)...δ2(I)δ2(I)δ2(I)δ2(I)δ(I)δ(I)δ(I)δ(I)IIII

∃ path π in T . I π−−→ F

m
δ∗(I )∩F 6= ∅

IIII FFFF



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

FFFFδn(I)δn(I)δn(I)δn(I)...δ2(I)δ2(I)δ2(I)δ2(I)δ(I)δ(I)δ(I)δ(I)IIII

∃ path π in T . I π−−→ F

m
δ∗(I )∩F 6= ∅

...or via backward analysis...

IIII FFFF



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

FFFFδn(I)δn(I)δn(I)δn(I)...δ2(I)δ2(I)δ2(I)δ2(I)δ(I)δ(I)δ(I)δ(I)IIII

∃ path π in T . I π−−→ F

m
δ∗(I )∩F 6= ∅

...or via backward analysis...

IIII δ−1(F )δ−1(F )δ−1(F )δ−1(F ) FFFF



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

FFFFδn(I)δn(I)δn(I)δn(I)...δ2(I)δ2(I)δ2(I)δ2(I)δ(I)δ(I)δ(I)δ(I)IIII

∃ path π in T . I π−−→ F

m
δ∗(I )∩F 6= ∅

...or via backward analysis...

IIII δ−2(F )δ−2(F )δ−2(F )δ−2(F )δ−1(F )δ−1(F )δ−1(F )δ−1(F ) FFFF



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Reachability problems are usually solved via forward analysis...

FFFFδn(I)δn(I)δn(I)δn(I)...δ2(I)δ2(I)δ2(I)δ2(I)δ(I)δ(I)δ(I)δ(I)IIII

∃ path π in T . I π−−→ F

m
δ∗(I )∩F 6= ∅

...or via backward analysis...

IIII δ−n(F )δ−n(F )δ−n(F )δ−n(F ) ... δ−2(F )δ−2(F )δ−2(F )δ−2(F )δ−1(F )δ−1(F )δ−1(F )δ−1(F ) FFFF

∃ path π in T . I π−−→ F

m
(δ−1)∗(F )∩I 6= ∅



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

For finite transition systems...

...reachability properties can be easily
checked via forward/backward analysis.

For infinite transition systems...

...two problems arise:

the sets δn(I ) and δ−n(F ) may be infinite
⇒ finite symbolic representations are needed

in order to establish that no path from I to F exists
an infinite number of steps may be required
⇒ employment of suitable acceleration techniques.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Fact

The reachability problem is undecidable
for certain classes of infinite transition systems.

Example

Let T = (S , δ) be the transition graph of a Turing machine:

configurations (= vertices) are given by

a tape inscription a1, ..., an

a head position m, with 1 ≤ m ≤ n
a control state q

⇒ we encode a configuration with the word a1...am−1qam...an

transitions (= edges) are of the following forms

a1...am−1qam...an a1...am−1qam...an a1...am−1qam...an

↓ ↓ ↓
a1...am−1q′a′m...am a1...am−2q′am−1a′m...am a1...am−1a′mq′am+1...am



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Fact

The reachability problem is undecidable
for certain classes of infinite transition systems.

Example

Let T = (S , δ) be the transition graph of a Turing machine:

configurations (= vertices) are given by

a tape inscription a1, ..., an

a head position m, with 1 ≤ m ≤ n
a control state q

⇒ we encode a configuration with the word a1...am−1qam...an

transitions (= edges) are of the following forms

a1...am−1qam...an a1...am−1qam...an a1...am−1qam...an

↓ ↓ ↓
a1...am−1q′a′m...am a1...am−2q′am−1a′m...am a1...am−1a′mq′am+1...am



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Example (continued)

There is no algorithm that decides whether a given Turing machine
reaches the halting state from a given initial configuration.

⇒ the reachability problem is undecidable
for transition graphs of Turing machines.

We shall present meaningful classes of transition systems
that enjoy decidable reachability problems

(e.g., the transition graphs of pushdown automata
and the transition graphs of Petri nets under
suitable conditions).



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Reachability properties

Example (continued)

There is no algorithm that decides whether a given Turing machine
reaches the halting state from a given initial configuration.

⇒ the reachability problem is undecidable
for transition graphs of Turing machines.

We shall present meaningful classes of transition systems
that enjoy decidable reachability problems

(e.g., the transition graphs of pushdown automata
and the transition graphs of Petri nets under
suitable conditions).



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Logics can be used as formal languages to express
interesting properties of transition systems
(e.g., safety, liveness, termination, ...).

Given a logical language L and a class C of transition systems,
we are interested in solving the following problem:

Definition (Model checking problem)

Input: a sentence ψ in L and
(a finite presentation of) a transition system T in C

Problem: decide whether ψ holds in T , denoted T � ψ

Definition (L -theory of T )

The L -theory of a given transition system T is
the set of all sentences ψ ∈ L such that T � ψ.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Definition (First-Order (FO) Logic)

Given a (labeled and colored) transition system
T = (S , (δa)a∈A, (Pc)c∈C ), FO-formulas over T
are defined as follows:

variables x , y , z , ... denote single elements in S

atomic formulas have one of the following forms:

x = y , meaning ‘x denotes the same vertex as y ’
δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
and the existential and universal quantifications ∃x ,∀x .

Example

‘The system can always switch from a good state to a bad one’
is translated into ∀ x .

(
Pgood(x) → ∃ y . δ(x , y) ∧ Pbad(y)

)
.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Definition (First-Order (FO) Logic)

Given a (labeled and colored) transition system
T = (S , (δa)a∈A, (Pc)c∈C ), FO-formulas over T
are defined as follows:

variables x , y , z , ... denote single elements in S

atomic formulas have one of the following forms:

x = y , meaning ‘x denotes the same vertex as y ’
δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
and the existential and universal quantifications ∃x ,∀x .

Example

‘The system can always switch from a good state to a bad one’
is translated into ∀ x .

(
Pgood(x) → ∃ y . δ(x , y) ∧ Pbad(y)

)
.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Definition (First-Order (FO) Logic)

Given a (labeled and colored) transition system
T = (S , (δa)a∈A, (Pc)c∈C ), FO-formulas over T
are defined as follows:

variables x , y , z , ... denote single elements in S

atomic formulas have one of the following forms:

x = y , meaning ‘x denotes the same vertex as y ’
δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
and the existential and universal quantifications ∃x ,∀x .

Example

‘The system can always switch from a good state to a bad one’
is translated into ∀ x .

(
Pgood(x) → ∃ y . δ(x , y) ∧ Pbad(y)

)
.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Definition (First-Order (FO) Logic)

Given a (labeled and colored) transition system
T = (S , (δa)a∈A, (Pc)c∈C ), FO-formulas over T
are defined as follows:

variables x , y , z , ... denote single elements in S

atomic formulas have one of the following forms:

x = y , meaning ‘x denotes the same vertex as y ’
δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
and the existential and universal quantifications ∃x ,∀x .

Example

‘The system can always switch from a good state to a bad one’
is translated into ∀ x .

(
Pgood(x) → ∃ y . δ(x , y) ∧ Pbad(y)

)
.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

First-order logic cannot express reachability properties.

⇒ we extend it with set-variables.

Definition (Monadic Second-Order (MSO) Logic)

Given a transition system T = (S , (δa)a∈A, (Pc)c∈C ),
MSO-formulas over T are defined as follows:

FO-variables x , y , z , ... denote single elements in S

MSO-variables X ,Y ,Z , ... denote subsets of S

atomic formulas have one of the following forms:

δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’
X (y), meaning ‘y denotes a vertex in the set X ’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
quantifications ∃x ,∀x over FO-variables
quantifications ∃X ,∀X over MSO-variables.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

First-order logic cannot express reachability properties.
⇒ we extend it with set-variables.

Definition (Monadic Second-Order (MSO) Logic)

Given a transition system T = (S , (δa)a∈A, (Pc)c∈C ),
MSO-formulas over T are defined as follows:

FO-variables x , y , z , ... denote single elements in S

MSO-variables X ,Y ,Z , ... denote subsets of S

atomic formulas have one of the following forms:

δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’
X (y), meaning ‘y denotes a vertex in the set X ’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
quantifications ∃x ,∀x over FO-variables
quantifications ∃X ,∀X over MSO-variables.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

First-order logic cannot express reachability properties.
⇒ we extend it with set-variables.

Definition (Monadic Second-Order (MSO) Logic)

Given a transition system T = (S , (δa)a∈A, (Pc)c∈C ),
MSO-formulas over T are defined as follows:

FO-variables x , y , z , ... denote single elements in S

MSO-variables X ,Y ,Z , ... denote subsets of S

atomic formulas have one of the following forms:

δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’
X (y), meaning ‘y denotes a vertex in the set X ’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
quantifications ∃x ,∀x over FO-variables
quantifications ∃X ,∀X over MSO-variables.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

First-order logic cannot express reachability properties.
⇒ we extend it with set-variables.

Definition (Monadic Second-Order (MSO) Logic)

Given a transition system T = (S , (δa)a∈A, (Pc)c∈C ),
MSO-formulas over T are defined as follows:

FO-variables x , y , z , ... denote single elements in S

MSO-variables X ,Y ,Z , ... denote subsets of S

atomic formulas have one of the following forms:

δa(x , y), meaning ‘(x , y) denotes an a-labeled edge’
Pc(x), meaning ‘x denotes a c-colored vertex’
X (y), meaning ‘y denotes a vertex in the set X ’

more complex formulas are build up via

the Boolean connectives ∧ , ∨ ,¬
quantifications ∃x ,∀x over FO-variables
quantifications ∃X ,∀X over MSO-variables.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Definability of reflexive and transitive closures

The reflexive and transitive closure δ∗

of any relation δ is definable in MSO logic:

δ∗(x , y) := ∀ X .
(
X (x) ∧ ∀ z ,w . (X (z) ∧ δ(z ,w) → X (w))

)
→ X (y)

⇒ MSO logic is powerful enough to express non-trivial
properties of systems like reachability, planarity...

Example (1)

‘The system can eventually reach a bad state from a good one’
is translated into ∃ x , y .

(
Pgood(x) ∧ Pbad(y) ∧ δ∗(x , y)

)
.

Example (2)

‘The system satisfies the Church-Rosser property’ is translated into
∀ x , y , z .

(
(δ∗(x , y) ∧ δ∗(x , z)) → ∃ w . (δ∗(y ,w) ∧ δ∗(z ,w))

)
.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Definability of reflexive and transitive closures

The reflexive and transitive closure δ∗

of any relation δ is definable in MSO logic:

δ∗(x , y) := ∀ X .
(
X (x) ∧ ∀ z ,w . (X (z) ∧ δ(z ,w) → X (w))

)
→ X (y)

⇒ MSO logic is powerful enough to express non-trivial
properties of systems like reachability, planarity...

Example (1)

‘The system can eventually reach a bad state from a good one’
is translated into ∃ x , y .

(
Pgood(x) ∧ Pbad(y) ∧ δ∗(x , y)

)
.

Example (2)

‘The system satisfies the Church-Rosser property’ is translated into
∀ x , y , z .

(
(δ∗(x , y) ∧ δ∗(x , z)) → ∃ w . (δ∗(y ,w) ∧ δ∗(z ,w))

)
.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Unfortunately, model checking problems for MSO logic
(and even MSO-theories of single graphs) are often undecidable.

Example (Undecidability of the MSO-theory of the grid)

Consider the infinite grid G and
a generic Turing machine M.

We build an MSO-sentence ψM

such that G � ψM iff
M reaches the halting state
(starting from the empty tape).

q0

qhalt

‘the first row is the initial configuration of M’

‘the next row is the next configuration of M’

‘there is a row containing the halting state of M’



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Unfortunately, model checking problems for MSO logic
(and even MSO-theories of single graphs) are often undecidable.

Example (Undecidability of the MSO-theory of the grid)

We mark the vertices of G with
tape symbols and control states
to encode, row by row, each
configuration of a halting run.

ψM expresses the existence
of such a marking as follows:

q0

qhalt

‘the first row is the initial configuration of M’

‘the next row is the next configuration of M’

‘there is a row containing the halting state of M’



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Unfortunately, model checking problems for MSO logic
(and even MSO-theories of single graphs) are often undecidable.

Example (Undecidability of the MSO-theory of the grid)

We mark the vertices of G with
tape symbols and control states
to encode, row by row, each
configuration of a halting run.

ψM expresses the existence
of such a marking as follows:

q0

qhalt

q0 t t t t

‘the first row is the initial configuration of M’

‘the next row is the next configuration of M’

‘there is a row containing the halting state of M’



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Unfortunately, model checking problems for MSO logic
(and even MSO-theories of single graphs) are often undecidable.

Example (Undecidability of the MSO-theory of the grid)

We mark the vertices of G with
tape symbols and control states
to encode, row by row, each
configuration of a halting run.

ψM expresses the existence
of such a marking as follows:

q0

qhalt

q0 t t t t

a q1 t t t

‘the first row is the initial configuration of M’

‘the next row is the next configuration of M’

‘there is a row containing the halting state of M’



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Unfortunately, model checking problems for MSO logic
(and even MSO-theories of single graphs) are often undecidable.

Example (Undecidability of the MSO-theory of the grid)

We mark the vertices of G with
tape symbols and control states
to encode, row by row, each
configuration of a halting run.

ψM expresses the existence
of such a marking as follows:

q0

qhalt

q0 t t t t

a q1 t t t

qhalt a b t t

‘the first row is the initial configuration of M’

‘the next row is the next configuration of M’

‘there is a row containing the halting state of M’



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Example (Some details)

we use one MSO-variable Xq for each control state q

to represent the set of grid positions where q occurs

we use one MSO-variable Ya for each tape symbol a

∀ position x , ∃! state q or symbol a such that Xq(x) or Ya(x)

each row contains exactly one position x such that Xq(x) for some q

‘the first row is the initial configuration of M’:

∃ x .
�
@ y . (δh(y , x) ∨ δv (y , x)) ∧ Xq0(x) ∧ ∀ y . (δ∗h (x , y) → Yt(y)

�

‘there is one row containing the halting state of M’:

∃ x . Xqhalt (x)

‘the next row is the next configuration of M’:

consider a generic window of 4× 2 cells

the marking on the second cell in the lower row is uniquely

determined by M-transitions and the marking on the upper row

⇒ we can write a formula constraining 8-tuples of

FO-variables to be compatible with M-transitions.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

Example (Some details)

we use one MSO-variable Xq for each control state q

to represent the set of grid positions where q occurs

we use one MSO-variable Ya for each tape symbol a

∀ position x , ∃! state q or symbol a such that Xq(x) or Ya(x)

each row contains exactly one position x such that Xq(x) for some q

‘the first row is the initial configuration of M’:

∃ x .
�
@ y . (δh(y , x) ∨ δv (y , x)) ∧ Xq0(x) ∧ ∀ y . (δ∗h (x , y) → Yt(y)

�

‘there is one row containing the halting state of M’:

∃ x . Xqhalt (x)

‘the next row is the next configuration of M’:

consider a generic window of 4× 2 cells

the marking on the second cell in the lower row is uniquely

determined by M-transitions and the marking on the upper row

⇒ we can write a formula constraining 8-tuples of

FO-variables to be compatible with M-transitions.



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Logics

We shall describe basic techniques for establishing the
decidability of FO/MSO-theories of infinite transition systems

(e.g., interpretations, unfoldings, reductions).

We shall present meaningful classes of transition systems that
enjoy decidable model checking problems for FO/MSO logics

(e.g., the transition graphs of pushdown automata,
prefix-recognizable graphs, automatic graphs).

Note: one could also consider logics in between FO and MSO
(e.g., reachability logics, µ-calculus, ...)



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Go



Introduction Basic results and techniques for MSO Context-free and prefix-recognizable graphs

Go


	Introduction
	Transition systems
	Reachability properties
	Logics

	Basic results and techniques for MSO
	Context-free and prefix-recognizable graphs

