

ECI 2015 Buenos Aires

Fundamentos lógicos de bases de datos (Logical foundations of databases)

Diego Figueira

Gabriele Puppis

CNRS LaBRI

- NP complexity class (SAT, 3COL,)
- Conjunctive Queries (correspondence with SQL and Relational Algebra)
- Homomorphisms and canonical structure
- Evaluation of CQ (NP-completeness)
- Containment, Equivalence, Minimisation of CQ (NP-completeness)
- Extension to functional dependencies (chased canonical structure)

On graphs: CQ φ is acyclic if G_φ is tree-like

underlying undirected graph is acyclic

On graphs: CQ ϕ is **acyclic** if G_{ϕ} is tree-like

On graphs: CQ ϕ is acyclic if G_{ϕ} is tree-like

On graphs: CQ ϕ is acyclic if G_{ϕ} is tree-like

On arbitrary structures: a CQ ϕ is acyclic if it has a join tree

 $\phi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$

On graphs: CQ φ is acyclic if G_φ is tree-like

On arbitrary structures: a CQ ϕ is acyclic if it has a join tree

$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- \bullet for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

On graphs: CQ φ is acyclic if G_φ is tree-like

$$\phi(\mathbf{x},\mathbf{y}) = \exists z . E(\mathbf{x},z) \land E(z,t) \land E(y,z)$$

On arbitrary structures: a CQ ϕ is acyclic if it has a join tree

$$\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$$

If x occurs in two nodes, then it occurs in the path linking the two nodes.

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

On graphs: CQ φ is acyclic if G_φ is tree-like

$$\phi(\mathbf{x},\mathbf{y}) = \exists z . E(\mathbf{x},z) \land E(z,t) \land E(y,z)$$

x Alternatively, if its canonical hyper-graph is α-acyclic.

On arbitrary structures: a CQ ϕ is acyclic if it has a join tree

 $\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

On graphs: C

A reduced hypergraph F = (V,E) is *a-acyclic* if for each $U \subseteq V$, if $F|_U$ is connected and has more than one edge, then it has an **articulation set**.

 $\phi(\mathbf{x},\mathbf{y}) = \exists z . E(\mathbf{x},z) \land E(z,t) \land E(y,z)$

Alternatively, if its canonical hyper-graph is **α-acyclic**.

On arbitrary structures: a CQ ϕ is acyclic if it has a join tree

 $\varphi(\bar{y}) = \exists \bar{z} . R_1(\bar{z}_1) \land ... \land R_m(\bar{z}_m)$

- \bullet nodes are the atoms $R_i(\bar{z}_i)$
- for every variable x of φ the set of $\,R_i(\bar z_i)$'s with $x\in \bar z_i$ forms a subtree of T

 $\phi(\mathbf{x},\mathbf{y}) = \exists z . E(\mathbf{x},z) \land E(\mathbf{x},t) \land E(\mathbf{y},z)$

 $\varphi = \exists x,y,z,t . R(x,y,z) \land S(z,t) \land S(x,z) \land T(z) \land T(x)$

The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$

[Yannakakis]

The evaluation problem for acyclic CQ sentences is in $O(|\phi|.|D|)$

The semi-join $R \ltimes_{\{i_1=j_1,...,i_n=j_n\}} S = \{ (x_1,...,x_n) \in R \mid \text{there is } (y_1,...,y_m) \in S$ where $x_{i_k} = y_{j_k}$ for all k} Note: $R \ltimes_{\{i_1=j_1,...,i_n=j_n\}} S \subseteq R$

[Yannakakis]

- 1. Compute the join tree T for φ
- 2. Populate the nodes of T with tuples from corresponding relations of D
- 3. For every leaf $S(x_1,...,x_n)$ with parent $R(y_1,...,y_m)$ replace tuples of parent with $R \Join \{i=j | x_i = y_j\} S$ and delete the leaf $S(x_1,...,x_n)$.
- 4. Repeat until we are left with one node. If it contains a non-empty relation, then D satisfies ϕ , otherwise it does not.

- 1. Compute the join tree T for ϕ
- 2. Populate the nodes of T with tuples from corresponding relations of D
- 3. For every leaf $S(x_1,...,x_n)$ with parent $R(y_1,...,y_m)$ replace tuples of parent with $R \Join \{i=j | x_i = y_j\} S$ and delete the leaf $S(x_1,...,x_n)$.
- 4. Repeat until we are left with one node. If it contains a non-empty relation, then D satisfies ϕ , otherwise it does not.

The evaluation problem for acyclic CQ sentences is in $O(|\varphi|.|D|)$

[Yannakakis]

1. Compute the join tree T for φ

remove all the tuples from the parent that do not match a tuple from the child

- 2. Populate the nodes of T with tuples from correspond
- 3. For every leaf $S(x_1,...,x_n)$ with parent $R(y_1,...,y_m)$ replace tuples of parent with $R \Join \{i=j | x_i = y_j\} S$ and delete the leaf $S(x_1,...,x_n)$.
- 4. Repeat until we are left with one node. If it contains a non-empty relation, then D satisfies ϕ , otherwise it does not.


```
\phi = \exists x, y, z, t . R(x, y, z) \land S(z, t) \land S(x, z) \land T(z) \land T(x)
R = \{(1,4,4), (4,1,4)\}
S = \{(4,5), (5,2), (4,4)\}
                                             S(z,t) : \{(4,5), (5,2), (4,4)\}
T = \{1, 2, 3, 4\}
                                             S(x,z) : \{(4,5), (5,2), (4,4)\}
```


How to compute a join tree?

GYO reducts [Graham, Yu, Ozsoyoglu]

An ear of a hypergraph (V,E) is a hyperedge e in E such that one of the following conditions holds:

(1) There is a witness e' in E, such that $e' \neq e$ and each

vertex from e is either

(a) **only** in **e** or

(b) in **e'**; or

(2) e has no intersection with any other hyperedge.

Definition: The GYO **reduct** of a hyper-graph is the result of removing ears until no more ears are left.

Definition: The GYO **reduct** of a hyper-graph is the result of removing ears until no more ears are left.

Theorem: TFAE

- The GYO reduct of a hyper graph G is empty
- \bullet A CQ φ having G as underlying canonical hyper-graph is acyclic
- The hyper graph G is α -acyclic

Definition: The GYO **reduct** of a hyper-graph is the result of removing ears until no more ears are left.

Theorem: TFAE

- The GYO reduct of a hyper graph G is empty
- \bullet A CQ φ having G as underlying canonical hyper-graph is acyclic
- The hyper graph G is α -acyclic

We can test acyclicity by computing the GYO reduct!

Ears?

Acyclic!

How to compute a join tree?

How to compute a join tree?

GYO algorithm [Graham, Yu, Ozsoyoglu] Given the query $Q = \{ R_1(X_1),...,R_n(X_n) \}$ Consider its canonical structure G_Q For $R_i(X_i)$ an ear with witness $R_j(Y_j)$ Put an edge between $R_i(X_i)$ and $R_j(X_j)$, and remove R_i from Q. Repeat.

> **E.g.** R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

How to compute a join tree?

GYO algorithm [Graham, Yu, Ozsoyoglu] Given the query $Q = \{ R_1(X_1),...,R_n(X_n) \}$ Consider its canonical structure G_Q For $R_i(X_i)$ an ear with witness $R_j(Y_j)$ Put an edge between $R_i(X_i)$ and $R_j(X_j)$, and remove R_i from Q. Repeat.

> E.g. R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y) T(x,x) R(x,y,z) R(x,x,y) S(x,y)T(y,y)

How to compute a join tree?

E.g.

$$R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)$$

 $T(x,x)$
 $R(x,y,z)$
 $R(x,x,y)$
 $S(x,y)$
 $T(y,y)$

How to compute a join tree?

E.g.

$$R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)$$

$$T(x,x)$$

$$R(x,y,z) - R(x,x,y)$$

$$S(x,y) - T(y,y)$$

How to compute a join tree?

E.g.

$$R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)$$

 $T(x,x)$
 $R(x,y,z)$
 $R(x,y,z)$
 $R(x,x,y)$

How to compute a join tree?

How to compute a join tree?

GYO algorithm [Graham, Yu, Ozsoyoglu] Given the query $Q = \{ R_1(X_1),...,R_n(X_n) \}$ Consider its canonical structure G_Q For $R_i(X_i)$ an ear with witness $R_j(Y_j)$ Put an edge between $R_i(X_i)$ and $R_j(X_j)$, and remove R_i from Q. Repeat.

Remove ears until you're left with only one!

E.g.

$$R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)$$

 $T(x,x)$
 $R(x,y,z)$
 $R(x,y,z)$
 $R(x,x,y)$
 $R(x,x,y)$

[Gottlob, Leone, Scarcello]

- Evaluation problem for boolean ACQ's is LOGCFL-complete
- $NL \subseteq LOGCFL \subseteq AC^1 \subseteq NC^2 \subseteq P$

the class of problems logspace-reducible to a context-free language

Beyond acyclic CQ's

- (Hyper-)Treewidth = a measure of the cyclicity of (hyper-)graphs tw(Q) = tw(canonical hypergraph of Q) tw = 1 are forests, tw = 2 are graphs without K₄ as a minor, ...
- For fixed k,

computing whether Q has tw ≤k and calculating a tree decomposition can be done in **linear time**

Beyond acyclic CQ's

- (Hyper-)Treewidth = a measure of the cyclicity of (hyper-)graphs tw(Q) = tw(canonical hypergraph of Q) tw = 1 are forests, tw = 2 are graphs without K₄ as a minor, ...
- For fixed k,

computing whether Q has tw ≤k and calculating a tree decomposition can be done in **linear time**

Bounded tree width queries = a class of CQ's so that for some k, every query has tw $\leq k$

Beyond acyclic CQ's

CQ's with bounded treewidth can be evaluated in PTIME

CQ's with bounded treewidth can be evaluated in PTIME

Containment of CQ's with bounded treewidth is in PTIME

 $\varphi \subseteq \psi \text{ iff } \psi(G_{\varphi}) \neq \emptyset$

Containment of CQ's with bounded treewidth is in PTIME

CQ's with bounded treewidth can be evaluated in PTIME

Containment of CQ's with bounded treewidth is in PTIME

A class *C* of CQ's can be evaluated in PTIME iff they have bounded tree width!

For graphs, assuming $W[1] \neq FPT$, and C a r.e. class of graphs. [Grohe, Schwentick, Segoufin]

Querying with semi-joins

The semi-join $R \ltimes_{\{i_1=j_1,...,i_n=j_n\}} S = \{ (x_1,...,x_n) \in R \mid \text{there is } (y_1,...,y_m) \in S$ where $x_{i_k} = y_{j_k}$ for all k}

The semi-join algebra (SA): variant of RA with operations:

 \ltimes , \cup , π , σ , \setminus , *dupcol*

Querying with semi-joins

The semi-join $R \ltimes_{\{i_1=j_1,...,i_n=j_n\}} S = \{ (x_1,...,x_n) \in R \mid \text{there is } (y_1,...,y_m) \in S$ where $x_{i_k} = y_{j_k}$ for all k}

The semi-join algebra (SA): variant of RA with operations:

 \ltimes , \cup , π , σ , \setminus , *dupcol*

Output at most linear in the database. Further,

The evaluation problem for SA is in $O(|\phi|.|D|)$

Logical characterisation: "stored-tuples guarded fragment of FO"

- every intermediate relation is **linear** in |D|
- we apply $|\varphi|$ semi-joins

What if we allow intermediate relations to be **polynomial** in |D|?

Def.

FO^k = The fragment of FO restricted to k variable names

G

Def. FO^k = The fragment of FO restricted to k variable names

 $\begin{aligned} \varphi(x) &= \text{``Every neighbour of } x \text{ has an outgoing path of length 2''} \\ &= \forall y. \left(E(x, y) \implies \exists z \exists w \left(E(y, z) \land E(z, w) \right) \right) \in FO^4 \\ &= \forall y. \left(E(x, y) \implies \exists x \left(E(y, x) \land \exists y E(x, y) \right) \right) \in FO^2 \end{aligned}$

G

The evaluation problem for FO^k is in PTIME (combined c.)

The evaluation problem for FO^k is in PTIME (combined c.)

Algorithm for a FO^k formula ψ of **quantifier rank r**:

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

qr 1

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of **quantifier rank r**:

qr 1

qr 2

The evaluation problem for FO^k is in PTIME (combined c.)

→ Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...))))$ " qr 0 qr 1

Algorithm for a FO^k formula ψ of quantifier rank r:

- 1. Evaluate qr=0 subformulas α and output result in relations $R_{0,\alpha}$
- 2. Evaluate qr=1 subformulas β based on $R_{0,\alpha}$ and output in $R_{1,\beta}$
- 3. Evaluate qr=2 subformulas γ based on $R_{1,\beta}$ and output in $R_{1,\gamma}$
- 4. . . .

qr2
Bounded variable FO

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of **quantifier rank r**:

- 1. Evaluate qr=0 subformulas α and output result in relations $R_{0,\alpha}$ $\rightsquigarrow |V|^k \cdot (|\alpha| \cdot |G|)^p$
- 2. Evaluate qr=1 subformulas β based on $R_{0,\alpha}$ and output in $R_{1,\beta}$
- 3. Evaluate qr=2 subformulas γ based on $R_{1,\beta}$ and output in $R_{1,\gamma}$
- 4. ... : r. ...

qr1

qr 2

Bounded variable FO

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

1. Evaluate qr=0 subformulas α and output result in relations $R_{0,\alpha}$ $\rightsquigarrow |V|^k \cdot (|\alpha| \cdot |G|)^p$

2. Evaluate qr=1 subformulas β based on $R_{0,\alpha}$ and output in $R_{1,\beta}$ $\rightsquigarrow |V|^k \cdot (|\beta| \cdot (|G| + |R_1|))^p$

3. Evaluate qr=2 subformulas γ based on $R_{1,\beta}$ and output in $R_{1,\gamma}$

qr 1

qr 2

Bounded variable FO

The evaluation problem for FO^k is in PTIME (combined c.)

Maximum number of nested quantifiers " $\exists x(... \forall y(... \exists x(... \exists z(...)))))$ "

Algorithm for a FO^k formula ψ of quantifier rank r:

1. Evaluate qr=0 subformulas α and output result in relations $R_{0,\alpha}$ $\rightsquigarrow |V|^k \cdot (|\alpha| \cdot |G|)^p$

2. Evaluate qr=1 subformulas β based on $R_{0,\alpha}$ and output in $R_{1,\beta}$ $\rightsquigarrow |V|^k \cdot (|\beta| \cdot (|G| + |R_1|))^p$

3. Evaluate **qr=2** subformulas γ based on $R_{1,\beta}$ and output in $R_{1,\gamma} \leq |V|^k$ $\Rightarrow |V|^k \cdot (|\gamma| \cdot (|G| + |R_2|))^p \leq |V|^k$

qr 1

gr 2

Desirable:

• Given k and a FO query ϕ , is ϕ in FO^k? \longrightarrow Undecidable (even w.o. \neg)

Desirable:

• Given k and a FO query ϕ , is ϕ in FO^k? \longrightarrow Undecidable (even w.o. \neg)

• Given k and a CQ query ϕ , is ϕ in FO^k? \longrightarrow NP-complete

Desirable:

• Given k and a FO query ϕ , is ϕ in FO^k? \longrightarrow Undecidable (even w.o. \neg)

• Given k and a CQ query ϕ , is ϕ in FO^k? \longrightarrow NP-complete

• Satisfiability for FO^k

→ Undecidable if $k \ge 3$ (Domino)

••• NEXPTIME-complete if k=2

Equivalence-RA

Equivalence-SQL

Equivalence-FO

Sat-FO

Domino

UNDECIDABLE

Eval-FO (combined)

QBF

PSPACE

Eval-CQ (combined)

3COL

SAT

NP

Eval-FO^k (combined)

PTIME

Cont-CQ

Eval-FO (data)

LOGSPACE

Descriptive complexity

What properties can be checked efficiently? E.g. 3COL can be tested in NP

Metatheorem "A property can be expressed in [insert some logic here] iff it can be checked in [some complexity class here]"

Descriptive complexity

What properties can be checked efficiently? E.g. 3COL can be tested in NP

Metatheorem "A property can be expressed in [insert some logic here] iff it can be checked in [some complexity class here]"

 \rightsquigarrow "A property is FO-definable iff it can be tested in AC⁰"

----- "A property is <code>3SO-definable</code> iff it can be tested in NP" [Fagin 73]

---> Open problem: which logic captures PTIME?

Recursion

Recursion

Can we enhance query languages with recursion ? E.g. express reachability properties

Datalog (semantics based on least fixpoint)
Ancestor(X,Y) :- Parent(X,Z), Ancestor(Z,Y)
Ancestor(X,X) :- .
?- Ancestor("Louis XIV",Y)

Recursion

Can we enhance query languages with recursion ? E.g. express reachability properties

Datalog (semantics based on least fixpoint)
Ancestor(X,Y) :- Parent(X,Z), Ancestor(Z,Y)
Ancestor(X,X) :- .
?- Ancestor("Louis XIV",Y)

---> Incomparable with FO (has recursion, but is monotone)

---> Evaluation is in PTIME (for data complexity, but also for bounded arity)

Semi-structured data

Tree-structured or graph-structures dbs in place of relational dbs.

Semi-structured data

Tree-structured or graph-structures dbs in place of relational dbs.

Satisfiability for FO²[↓,~] is decidable [Bojanczyk, Muscholl, Schwentick, Segoufin 09]

Incomplete information

Incomplete information

How to correctly treat NULL values, missing tuples, noisy data ?

Incomplete information

How to correctly treat NULL values, missing tuples, noisy data ?

Recap

- Relational Algebra = simple SQL = FO on active domain
- Evaluation, Satisfiability, Equivalence, Containment
- Data / Combined complexity
- Expressiveness of FO: EF games, 0-1 law, Rado structure, Locality
- Conjunctive Queries: Homomorphism lemma, Canonical structures
- Acyclic CQ
- FO^k

• Abiteboul, Hull, Vianu, "Foundations of Databases", Addison-Wesley, 1995.

(freely available at http://webdam.inria.fr/Alice/)

• Libkin, "Elements of Finite Model Theory", Springer, 2004.

• Immerman, "Descriptive Complexity", Springer, 1999.