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Recap

• NP complexity class  (SAT, 3COL, ….) 

• Conjunctive Queries  (correspondence with SQL and Relational Algebra) 

• Homomorphisms and canonical structure 

• Evaluation of CQ  (NP-completeness) 

• Containment, Equivalence, Minimisation of CQ  (NP-completeness) 

• Extension to functional dependencies  (chased canonical structure)
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A join tree is a tree T s.t.: 
   • nodes are the atoms Ri(z̄i) 
   • for every variable x of φ the set of  Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

If x occurs in two nodes, 
then it occurs in the path linking 

the two nodes.
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On graphs: CQ φ is acyclic if Gφ is tree-like

   φ(x,y) = ∃z . E(x,z) ⋀ E(z,t) ⋀ E(y,z) z t

y
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On arbitrary structures: a CQ φ is acyclic if it has a join tree

φ(ȳ) = ∃z̄ . R1(z̄1) ⋀ … ⋀ Rm(z̄m)

A join tree is a tree T s.t.: 
   • nodes are the atoms Ri(z̄i) 
   • for every variable x of φ the set of  Ri(z̄i)’s with x ∈ z̄i forms a subtree of T

Alternatively, if its 
canonical hyper-graph is 

α-acyclic.

A reduced hypergraph F =(V,E) is 
α-acyclic if for each U ⊆V,  

if F|U is connected and has more than one 
edge, then it has an articulation set.
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Acyclic CQ’s

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

The semi-join

R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S 
                                                                    where xik = yjk for all k} 

Note: R ⋉{i1=j1,…,in=jn} S ⊆ R
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Acyclic CQ’s

1. Compute the join tree T for φ 

2. Populate the nodes of T with tuples from corresponding relations of D 

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) replace tuples of parent with  
 
and delete the leaf S(x1,…,xn). 

4. Repeat until we are left with one node. If it contains a non-empty relation, then 
D satisfies φ, otherwise it does not.

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S
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D satisfies φ, otherwise it does not.

in linear time
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Acyclic CQ’s

1. Compute the join tree T for φ 

2. Populate the nodes of T with tuples from corresponding relations of D 

3. For every leaf S(x1,…,xn) with parent R(y1,…,ym) replace tuples of parent with  
 
and delete the leaf S(x1,…,xn). 

4. Repeat until we are left with one node. If it contains a non-empty relation, then 
D satisfies φ, otherwise it does not.

The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)
[Yannakakis]

R ⋉{i=j |xi = yj} S

remove all the 
tuples from the  parent that 
do not match a tuple from 

the child
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R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}
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The evaluation problem for acyclic CQ sentences is in O(|φ|.|D|)

S(z,t)

S(x,z)

R(x,y,z) T(z) T(x)

   φ = ∃x,y,z,t . R(x,y,z) ⋀ S(z,t) ⋀ S(x,z) ⋀ T(z) ⋀ T(x)

:{1,2,3,4}:{1,2,3,4}:{(1,4,4),(4,1,4)}

:{(4,5),(5,2),(4,4)}

:{(4,5),(5,2),(4,4)} ≠ ∅

R={(1,4,4),(4,1,4)} 
S={(4,5),(5,2),(4,4)} 
T={1,2,3,4}
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Acyclic CQ’s
How to compute a join tree?

GYO reducts [Graham, Yu, Ozsoyoglu] 

x4

An ear of a hypergraph (V,E) is a hyperedge e in E such that one of the 
following conditions holds: 
     (1) There is a witness e' in E, such that e' ≠ e and each 
             vertex from e is either  
                   (a) only in e or  
                   (b) in e'; or 
     (2) e has no intersection with any other hyperedge.

x1x2

x5

x6
x7

x3

ears?
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Ears?
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x3 x4

x1

x2

x5

x6
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Definition: The GYO reduct of a hyper-graph is the result of  

                       removing ears until no more ears are left.
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Ears!

Definition: The GYO reduct of a hyper-graph is the result of  

                       removing ears until no more ears are left.

Theorem: TFAE 

                    • The GYO reduct of a hyper graph G is empty 

                    • A CQ φ having G as underlying canonical hyper-graph is acyclic 

                    • The hyper graph G is α-acyclic

We can test acyclicity by 
computing the GYO reduct!
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Ears?

x4

x1

x2

x5

x6

x3

Acyclic!
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Acyclic CQ’s

How to compute a join tree?

Given the query Q = { R1(X1),…,Rn(Xn) } 
Consider its canonical structure GQ 
   For Ri(Xi) an ear with witness Rj(Yj) 
   Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from Q. 
   Repeat.

GYO algorithm [Graham, Yu, Ozsoyoglu]
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Acyclic CQ’s

How to compute a join tree?

Given the query Q = { R1(X1),…,Rn(Xn) } 
Consider its canonical structure GQ 
   For Ri(Xi) an ear with witness Rj(Yj) 
   Put an edge between Ri(Xi) and Rj(Xj), and remove Ri from Q. 
   Repeat.

E.g. 
R(x,y,z), S(x,y), T(x,x), R(x,x,y), T(y,y)

S(x,y)

R(x,y,z)

T(x,x)

R(x,x,y)

T(y,y)

Remove ears 
until you’re left 
with only one!

GYO algorithm [Graham, Yu, Ozsoyoglu]
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Acyclic CQ’s

• Evaluation problem for boolean ACQ’s is LOGCFL-complete 

• NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P

[Gottlob, Leone, Scarcello]

the class of problems 
logspace-reducible to  

a context-free language
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Beyond acyclic CQ’s

• (Hyper-)Treewidth = a measure of the cyclicity of (hyper-)graphs 
       tw(Q) = tw(canonical hypergraph of Q) 
       tw = 1 are forests,  
       tw = 2 are graphs without K4 as a minor, … 

• For fixed k,  
       computing whether Q has tw ≤k and 
       calculating a tree decomposition 
can be done in linear time
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• (Hyper-)Treewidth = a measure of the cyclicity of (hyper-)graphs 
       tw(Q) = tw(canonical hypergraph of Q) 
       tw = 1 are forests,  
       tw = 2 are graphs without K4 as a minor, … 

• For fixed k,  
       computing whether Q has tw ≤k and 
       calculating a tree decomposition 
can be done in linear time

Bounded tree width queries = a class of CQ’s so that for some k,  

                                                          every query has tw ≤ k
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Beyond acyclic CQ’s

CQ’s with bounded treewidth can be evaluated in PTIME

Containment of CQ’s with bounded treewidth is in PTIME

φ ⊆ ψ   iff   ψ(Gφ)≠∅
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Beyond acyclic CQ’s

CQ’s with bounded treewidth can be evaluated in PTIME

A class C of CQ’s can be evaluated in PTIME iff they have bounded tree width!

[Grohe, Schwentick, Segoufin]For graphs, assuming W[1]≠︎ FPT, and C a r.e. class of graphs.

Containment of CQ’s with bounded treewidth is in PTIME



16

Querying with semi-joins

The semi-join
R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S 
                                                                    where xik = yjk for all k}

The semi-join algebra (SA): variant of RA with operations:  
                                    
                                        ⋉, ∪, π, σ, \, dupcol
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The semi-join
R ⋉{i1=j1,…,in=jn} S = { (x1,…,xn) ∈ R | there is (y1,…,ym) ∈ S 
                                                                    where xik = yjk for all k}

The semi-join algebra (SA): variant of RA with operations:  
                                    
                                        ⋉, ∪, π, σ, \, dupcol

Output at most linear in the database. Further,

The evaluation problem for SA is in O(|φ|.|D|)

Logical characterisation: “stored-tuples guarded fragment of FO”
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Acyclic CQs: 
• every intermediate relation is linear in |D| 
• we apply |φ| semi-joins

What if we allow intermediate relations to be polynomial in |D|?



Def.

18

Bounded variable FO

FOk  =  The fragment of FO restricted to  k  variable names



φ(x)  =  “Every neighbour of x has an outgoing path of length 2” 

          =  ∀y. ( E(x, y)  ⟹  ∃z ∃w ( E(y, z) ⋀ E(z, w) ) )   ∈  FO4
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          =  ∀y. ( E(x, y)  ⟹  ∃z ∃w ( E(y, z) ⋀ E(z, w) ) )   ∈  FO4
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. . .

1. Evaluate  qr=0 subformulas  α  and output result in relations R0,α  

2. Evaluate  qr=1 subformulas  β  based on R0,α  and output in   R1,β 

3. Evaluate  qr=2 subformulas  γ  based on R1,β  and output in   R1,γ 
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Bounded variable FO

Desirable: 

    • Given k  and a FO query φ,  is φ in FOk ?      ⇝ 💀 Undecidable (even w.o. ¬) 
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Bounded variable FO

Desirable: 

    • Given k  and a FO query φ,  is φ in FOk ?      ⇝ 💀 Undecidable (even w.o. ¬) 

    • Given k  and a CQ query φ,  is φ in FOk ?     ⇝ NP-complete 

    • Satisfiability for FOk                                                                ⇝ Undecidable if  k≥3  (Domino) 

                                                                                         ⇝ NEXPTIME-complete if  k=2
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Recap

LOGSPACEPTIMEPSPACEUNDECIDABLE

Domino

Eval-FO 
(combined)

Eval-FO 
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF

NP

Cont-CQ

Eval-FOk 
(combined)SAT

3COL

Eval-CQ 
(combined)



Some more cool stuff…

Descriptive complexity
What properties can be checked efficiently?      E.g.   3COL can be tested in NP  

   Metatheorem 
    
   “A property can be expressed in  [insert some logic here]  
                                            iff  
                         it can be checked in  [some complexity class here]”
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Descriptive complexity
What properties can be checked efficiently?      E.g.   3COL can be tested in NP  

[Fagin 73]

⇝ “A property is FO-definable iff it can be tested in AC0”  

⇝ “A property is ∃SO-definable iff it can be tested in NP” 

⇝ Open problem: which logic captures PTIME?

   Metatheorem 
    
   “A property can be expressed in  [insert some logic here]  
                                            iff  
                         it can be checked in  [some complexity class here]”
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Recursion
Can we enhance query languages with recursion ?    E.g.  express reachability properties  

⇝ Incomparable with FO  (has recursion, but is monotone) 

⇝ Evaluation is in PTIME  (for data complexity, but also for bounded arity)

   Datalog                                    (semantics based on least fixpoint) 
  
	  	  Ancestor(X,Y)	  :-‐	  Parent(X,Z),	  Ancestor(Z,Y)  
	  	  Ancestor(X,X)	  :-‐	  . 
	  	  ?-‐	  Ancestor(“Louis	  XIV”,Y)



Some more cool stuff…

Semi-structured data
Tree-structured or graph-structures dbs in place of relational dbs.

  XML,  XPath,  Stream processing,  … 
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⇝ Evaluation of XPath is in linear time  (data complexity) 
⇝ Satisfiability for FO2[↓,~] is decidable [Bojanczyk, Muscholl, Schwentick, Segoufin 09]

[Bojanczyk, Parys 08]
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Some more cool stuff…

Incomplete information
How to correctly treat NULL values, missing tuples, noisy data ?

 

  Certain Query Answers (CQA) 

  

V

φ ⟦V⟧   =  ∩D ∈ ⟦V⟧
  φ (D)

⟦V⟧

⇝  CQA computable in PTIME w.r.t. view size. [Abiteboul, Kanellakis, Grahne 91]



Recap

• Relational Algebra = simple SQL = FO on active domain 

• Evaluation, Satisfiability, Equivalence, Containment 

• Data / Combined complexity 

• Expressiveness of FO: EF games, 0-1 law, Rado structure, Locality 

• Conjunctive Queries: Homomorphism lemma, Canonical structures 

• Acyclic CQ 

• FOk



27

Bibliography

• Abiteboul, Hull, Vianu, “Foundations of Databases”, Addison-Wesley, 1995. 

(freely available at http://webdam.inria.fr/Alice/) 

• Libkin, “Elements of Finite Model Theory”, Springer, 2004. 

• Immerman, “Descriptive Complexity”, Springer, 1999.

http://webdam.inria.fr/Alice/

