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Trading expressiveness for efficiency

expressiveness efficiency

Alternation of quantifiers significantly affects complexity 
(recall that evaluation of QBF is PSPACE-complete:  ∀x ∃y ∀z ∃w … φ). 
 

What happens if we disallow ∀ and ¬ ? 
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The class NP

⊆ NP ⊆

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)
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The class NP

⊆ NP ⊆

 Examples: 

• 3-COLORABILITY:   Given a graph G, can we assign a colour from {R,G,B} to each node 
                                              so that adjacent nodes have always different colours ?  

• SAT: Given a propositional formula, e.g. (p ⋁ ¬q ⋁ r) ⋀ (¬p ⋁ s ) ⋀ (¬s ⋁ ¬p), 
           can we assign a truth value to each variable so that the formula becomes true ? 

• MONEY-CHANGE: Given an amount of money A and a set of coins {B1, …, Bn}, 
                                            can we find a subset S ⊆ {B1, …, Bn} such that ∑ S = A ?

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)
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⊆ NP ⊆

Initial configuration

Final 
configuration



LOGSPACE    ⊆    PTIME                  PSPACE    ⊆    EXPTIME

4

The class NP

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Initial configuration

Final 
configuration



LOGSPACE    ⊆    PTIME                  PSPACE    ⊆    EXPTIME

4

The class NP

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

Initial configuration

Final 
configuration



LOGSPACE    ⊆    PTIME                  PSPACE    ⊆    EXPTIME

4

The class NP

NP  =  Problems whose solutions can be witnessed by a  certificate  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The class NP

NP  =  Problems whose solutions can be witnessed by a  certificate  
              to be guessed and checked in polynomial time  (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

A solution exists if there is  
at least a successful path.

Many paths,  each has length 
bounded by a polynomial

Initial configuration

Final 
configuration
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Question

Consider: Positive FO  =  FO without ∀,¬

E.g.   φ = ∃ x ∃ y ∃ z .  (E(x, y) ⋁ E(y, z)) ⋀ ( y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?
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Question

Consider: Positive FO  =  FO without ∀,¬

E.g.   φ = ∃ x ∃ y ∃ z .  (E(x, y) ⋁ E(y, z)) ⋀ ( y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?

Solution

This is in NP:    Given φ and G=(V, E) 
                              it suffices to guess a binding α : { x, y, z, … } → V  
                              and then verify that the formula holds.
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Conjunctive Queries

Def.
CQ  =  FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y)  : – Parent(X,Z), Parent(Z,Y)”

Eg:        φ(x, y) =  ∃ z . (Parent(x, z) ⋀ Parent(z, y))
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Usual notation: “Grandparent(X,Y)  : – Parent(X,Z), Parent(Z,Y)”

Eg:        φ(x, y) =  ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Normal form:   “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!
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Conjunctive Queries

Def.
CQ  =  FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y)  : – Parent(X,Z), Parent(Z,Y)”

Eg:        φ(x, y) =  ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Select	
  ...	
  
From	
  ...	
  
Where	
  Z

no negation or disjunction

It corresponds to positive  
“SELECT-FROM-WHERE” SQL queries

πX(σZ(R1 ×···× Rn))
no negation

It corresponds to “π-σ-×” RA queries

Normal form:   “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!
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Homomorphisms

S = (V, R1 , R2) S’ = (V ’, R1’ , R2’)

Homomorphism  between structures  S=(V, R1, …, Rn)  and  S ’=(V ’, R1’, …, Rn’) 
                                   is a function   h : V  ⟶ V ’   such that 
                                                             (x1, …, xn) ∈ Ri   implies   (h(x1), …, h(xn)) ∈ Ri’
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Homomorphisms

G   = (V, E) G’ = (V’, E’ )

Homomorphism  between structures  S=(V, R1, …, Rn)  and  S ’=(V ’, R1’, …, Rn’) 
                                   is a function   h : V  ⟶ V ’   such that 
                                                             (x1, …, xn) ∈ Ri   implies   (h(x1), …, h(xn)) ∈ Ri’
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Gφ = (V, E) G’ = (V’, E’ )

Canonical structures
Canonical structure   Sφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ
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•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 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Gφ = (V, E)

E.g.:     φ  =  ∃x ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))
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Gφ = (V, E) G’ = (V’, E’ )

Canonical structures
Canonical structure   Sφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ

Gφ = (V, E)

E.g.:     φ  =  ∃x ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x
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z

Fact 1:   Gφ ⊨ φ Fact 2:   h(Gφ) ⊨ φ
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Gφ = (V, E) G’ = (V’, E’ )

Canonical structures
Canonical structure   Sφ   of a  Conjunctive Query φ  has 

•  variables  as  nodes 
•  tuples  (x1, …, xn) ∈ Ri 

  for all atomic sub-formulas  Ri (x1, …, xn)  of  φ

Gφ = (V, E)

E.g.:     φ  =  ∃x ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1:   Gφ ⊨ φ Fact 2:   h(Gφ) ⊨ φ
Fact 3: 

G ’’ ⊨ φ   implies   ∃ h: Gφ  ⟶  G ’’

v1 v2

v3



Gφ = (V, E) G’ = (V’, E’ )Gφ = (V, E)

E.g.:     φ (x) =  ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

10

Evaluation via homomorphisms

Lemma.  The evaluation of a  CQ  φ(x1, …, xn)  on  S’  returns the set 
                           φ(S’ )  =  { (h(x1), …, h(xn) )  |  h : Sφ  ⟶ S’ } 

v1 v2

v3
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E.g.:     φ (x) =  ∃y ∃z .  (E(x, y) ⋀ E(y, z) ⋀ E(x, z))
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Evaluation via homomorphisms

Lemma.  The evaluation of a  CQ  φ(x1, …, xn)  on  S’  returns the set 
                           φ(S’ )  =  { (h(x1), …, h(xn) )  |  h : Sφ  ⟶ S’ } 

Question:     Which are the  
homomorphisms Gφ ⟶ G’  ?  
What is the result of  φ(G’ ) ?

v1 v2

v3
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Evaluation via homomorphisms

    Input:   A CQ  φ(x1, …, xn),   a graph G,   a tuple (a1, …, an) 
Output:   Is  (a1, …, an) ∈ φ(G) ?

Gφφ= (V, E) G’ = (V’, E’ )

v1 v2

v3

x

y

z

Theorem.   Evaluation of  CQ  is in NP                      (combined complexity)
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Evaluation via homomorphisms

    Input:   A CQ  φ(x1, …, xn),   a graph G,   a tuple (a1, …, an) 
Output:   Is  (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G’ = (V’, E’ )
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Evaluation via homomorphisms

1. Guess  h: Gφ ⟶ G 

2. Check that it is a homomorphism 

3. Output YES  if  (h(x1), …, h(xn)) = (a1, …, an);  NO otherwise.

    Input:   A CQ  φ(x1, …, xn),   a graph G,   a tuple (a1, …, an) 
Output:   Is  (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G’ = (V’, E’ )

v1 v2

v3

x

y

z

Theorem.   Evaluation of  CQ  is in NP                      (combined complexity)
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Evaluation via homomorphisms

Theorem.   Evaluation of  CQ  is     NP-complete    (combined complexity)
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Evaluation via homomorphisms

K3

Input:      A graph G 

Output:  Can we assign a colour from {R,G,B} to each node  
                  so that adjacent nodes have always different colours ? 
                                                      = 
                  Is there a  homomorphism  from G to K3 ?

NP-complete problem: 3-COLORABILITY

Theorem.   Evaluation of  CQ  is     NP-complete    (combined complexity)
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Evaluation via homomorphisms

K3

Input:      A graph G 

Output:  Can we assign a colour from {R,G,B} to each node  
                  so that adjacent nodes have always different colours ? 
                                                      = 
                  Is there a  homomorphism  from G to K3 ?

NP-complete problem: 3-COLORABILITY

Reduction 3COL ⤳ CQ-EVAL:  1.  Given G,  build a CQ φ  such that  Gφ = G. 
                                                                 2.  Test if  () ∈ φ(G). 

Theorem.   Evaluation of  CQ  is     NP-complete    (combined complexity)
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Monotonicity and preservation theorems

Lemma.    Every CQ is monotone: 

                    S ⊆ S ’   implies   φ(S ) ⊆ φ(S ’)
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Monotonicity and preservation theorems

Lemma.    Every CQ is monotone: 

                    S ⊆ S ’   implies   φ(S ) ⊆ φ(S ’)

Proof:  by closure under homomorphisms.

“The relation R has at most 2 elements” ∉ CQ 

“There is a node connected to every other node” ∉ CQ 

“The radius of the graph is 5” ∉ CQ
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Monotonicity and preservation theorems

Theorem.    If an FO query φ is monotone 

                       then   φ  ∈  UCQ [Rossman '08]
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Monotonicity and preservation theorems

• One example of the few properties which still hold on finite structures. 

• Proof in the finite is difficult and independent.

Theorem.    If an FO query φ is monotone 

                       then   φ  ∈  UCQ [Rossman '08]

  Finite unions of CQs 

≈  ∃ ⋀ ⋁  fragment of FO

Equally expressive, but 
UCQ are less succinct
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The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT?  What is the complexity?
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The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT?  What is the complexity?

Answer: CQs are always satisfiable by their canonical structure!

Gφ  ⊨ φ
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Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) ⊆ ψ(S)  holds for every structure S ?

problem: CQ-CONTAINMENT
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Output:  Does  φ(S) ⊆ ψ(S)  holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem.   The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!
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1.  n = m 

2.  There is  g: Sψ  ⟶ Sφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff
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1.  n = m 

2.  There is  g: Sψ  ⟶ Sφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) ⊆ ψ(S)  holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem.   The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

Why?
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Static analysis with CQs

1.  n = m 

2.  There is  g: Sψ  ⟶ Sφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)

1.  n = m 

2.  There is  g: Sψ  ⟶ Sφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

{ (h(x1), …, h(xn) )  |  h : Sφ  ⟶ S } 

If there is  h: Sφ ⟶ S  
Then there is  g: Sψ ⟶ S  such that  h(x1, …, xn) = g(y1, …, ym)

Take  S = Sφ  and  h = identity.

{ (g(y1), …, g(yn) )  |  g : Sψ  ⟶ S } 
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)

1.  n = m 
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3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff
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Then there is  g: Sψ ⟶ S  such that  h(x1, …, xn) = g(y1, …, ym)

Take  S = Sφ  and  h = identity.

{ (g(y1), …, g(yn) )  |  g : Sψ  ⟶ S } 

(v1,…,vm) = (h(x1), …, h(xn)) 
for some  h :  Sφ  ⟶ S

Since g(y1, …, ym) = (x1, …, xn),  then (v1, …, vm) = h(x1, …, xn) = h(g(y1, …, ym))
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Static analysis with CQs

[⟹]     Suppose     ∀ S      φ(S)  ⊆  ψ(S)

1.  n = m 

2.  There is  g: Sψ  ⟶ Sφ 

3.  g(yi) = xi   for all i

φ(x1, …, xn) is contained in  ψ(y1, …, ym)   iff

{ (h(x1), …, h(xn) )  |  h : Sφ  ⟶ S } 

If there is  h: Sφ ⟶ S  
Then there is  g: Sψ ⟶ S  such that  h(x1, …, xn) = g(y1, …, ym)

Take  S = Sφ  and  h = identity.

{ (g(y1), …, g(yn) )  |  g : Sψ  ⟶ S } 

(v1,…,vm) = (h(x1), …, h(xn)) 
for some  h :  Sφ  ⟶ S

Since g(y1, …, ym) = (x1, …, xn),  then (v1, …, vm) = h(x1, …, xn) = h(g(y1, …, ym))
h g   is a homomorphism from Sψ to S.      Hence, (v1, …, vm) ∈ ψ(G).
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Static analysis with CQs

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) = ψ(S)  holds for every S ?       (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE
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Static analysis with CQs

Amounts to testing if  Gφ and Gψ  are  hom-equivalent 
                                                        (i.e. there are homomorphisms in both senses)

Input:      Two CQs  φ, ψ 
Output:  Does  φ(S) = ψ(S)  holds for every S ?       (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem.   The equivalence problem for CQ is NP-complete
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Static analysis with CQs

Input:      A CQ  φ 
Output:  Is there a “smaller” CQ  ψ  such that  ψ≣φ ?

problem: CQ-MINIMIZATION
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Static analysis with CQs

Input:      A CQ  φ 
Output:  Is there a “smaller” CQ  ψ  such that  ψ≣φ ?

problem: CQ-MINIMIZATION

Amounts to testing if there is a  non-injective endomorphism  
                                                                                            g: Gφ ⟶ Gφ  
 
or, equally, if the smallest graph hom-equivalent to Gφ  is  Gφ  itself 
                                                                                  (we say that  Gφ  is a core)

Theorem.   The minimization problem for CQ is NP-complete
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Adding functional dependencies

   A  functional dependency  is a sentence of the form 

         𝜸  =  ∀…  R(x1, …, xn) ∧ R(x1’, …, xn’ ) ∧ ⋀j ( xij = xij’ )  ⇒  ( xi = xi’ )
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007 James Bond Aston Martin
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Agent Name Drives

007 James Bond Aston Martin

200 Mr Smith Cadillac

201 Mrs Smith Mercedes

3 Jason Bourne BMW

Example:  In the following relation we may enforce the functional dependency 

      𝜸  =  ∀ x, y, z, x’, y’, z’  R(x, y, z) ∧ R(x’, y’, z’ ) ∧ ( x = x’ )  ⇒  ( y = y’ )

 
We often abbreviate this with 

R: 1 ⇾ 2
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All the previous problems: 

• CQ-CONTAINMENT 
• CQ-EQUIVALENCE 
• CQ-MINIMIZATION 

remain in NP if we further restrict finite structures 
so as to satisfy any set of functional dependencies 
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All the previous problems: 

• CQ-CONTAINMENT 
• CQ-EQUIVALENCE 
• CQ-MINIMIZATION 

remain in NP if we further restrict finite structures 
so as to satisfy any set of functional dependencies 

Adding functional dependencies

   A  functional dependency (FD)  is a sentence of the form 

         F  =  ∀…  R(x1, …, xn) ∧ R(x1’, …, xn’ ) ∧ ⋀j ( xij = xij’ )  ⇒  ( xi = xi’ )

Modify the canonical structure Sφ …
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Adding functional dependencies

CQ    φ  =  R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’ ) 

           under functional dependencies   F={ R1: 1 ⇾ 2,  R2: 1 ⇾ 3}

x
y

z

y’

z’

w’

w
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Adding functional dependencies

CQ    φ  =  R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’ ) 

           under functional dependencies   F={ R1: 1 ⇾ 2,  R2: 1 ⇾ 3}

y’

z’

w

y
z

x =  Sφ    (the chased canonical structure)

•   Sφ  is unique and  
  can be constructed in polynomial time 

•   It is the “most general” constrained model of φ :  
  φ(S) = h(φ(Sφ))  for all S satisfying the funct. depend.
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Adding functional dependencies

φ ∈ CQ 
FD’s F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ
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Adding functional dependencies

φ ∈ CQ 
FD’s F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ

The static analysis problems restricted to FD’s can now be also shown in NP

• CQ-Containment 

• CQ-Equivalence 

• CQ-Minimization

φ ⊆F ψ    iff    chaseF(φ) ⊆ chaseF(ψ) 

φ ≣F ψ    iff    chaseF(φ) ≣ chaseF(ψ) 

iff    chaseF(φ) is minimalφ is minimal wrt  
structures verifying F      


