
Fundamentos lógicos de bases de datos

∀∃¬

ECI 2015
Buenos Aires

CNRS LaBRI

Diego Figueira Gabriele Puppis
(Logical foundations of databases)

Day 4: CQ

2

Trading expressiveness for efficiency

expressiveness efficiency

Alternation of quantifiers significantly affects complexity
(recall that evaluation of QBF is PSPACE-complete: ∀x ∃y ∀z ∃w … φ).
 

What happens if we disallow ∀ and ¬ ?

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

3

The class NP

⊆

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

3

The class NP

⊆ NP ⊆

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

3

The class NP

⊆ NP ⊆

 Examples:

• 3-COLORABILITY: Given a graph G, can we assign a colour from {R,G,B} to each node 
 so that adjacent nodes have always different colours ?  

• SAT: Given a propositional formula, e.g. (p ⋁ ¬q ⋁ r) ⋀ (¬p ⋁ s) ⋀ (¬s ⋁ ¬p), 
 can we assign a truth value to each variable so that the formula becomes true ? 

• MONEY-CHANGE: Given an amount of money A and a set of coins {B1, …, Bn}, 
 can we find a subset S ⊆ {B1, …, Bn} such that ∑ S = A ?

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

4

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

4

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

4

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

4

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

4

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

Many paths, each has length 
bounded by a polynomial

Initial configuration

Final 
configuration

LOGSPACE ⊆ PTIME PSPACE ⊆ EXPTIME

4

The class NP

NP = Problems whose solutions can be witnessed by a certificate  
 to be guessed and checked in polynomial time (e.g. a colouring)

⊆ NP ⊆

Final 
configuration

Final 
configuration

Non-deterministic transitions

A solution exists if there is
at least a successful path.

Many paths, each has length 
bounded by a polynomial

Initial configuration

Final 
configuration

5

Question

Consider: Positive FO = FO without ∀,¬

E.g. φ = ∃ x ∃ y ∃ z . (E(x, y) ⋁ E(y, z)) ⋀ (y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?

5

Question

Consider: Positive FO = FO without ∀,¬

E.g. φ = ∃ x ∃ y ∃ z . (E(x, y) ⋁ E(y, z)) ⋀ (y=z ⋁ E(x, z))

What is the complexity of evaluating Positive FO on graphs ?

Solution

This is in NP: Given φ and G=(V, E)
 it suffices to guess a binding α : { x, y, z, … } → V  
 and then verify that the formula holds.

6

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

6

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Normal form: “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!

6

Conjunctive Queries

Def.
CQ = FO without ∀,¬,⋁

Usual notation: “Grandparent(X,Y) : – Parent(X,Z), Parent(Z,Y)”

Eg: φ(x, y) = ∃ z . (Parent(x, z) ⋀ Parent(z, y))

Select	
 ...	

From	
 ...	

Where	
 Z

no negation or disjunction

It corresponds to positive
“SELECT-FROM-WHERE” SQL queries

πX(σZ(R1 ×···× Rn))
no negation

It corresponds to “π-σ-×” RA queries

Normal form: “ ∃ x1, …, xn . φ(x1, …, xn) ”
quantifier-free and no equalities!

7

Homomorphisms

S = (V, R1 , R2) S’ = (V ’, R1’ , R2’)

Homomorphism between structures S=(V, R1, …, Rn) and S ’=(V ’, R1’, …, Rn’) 
 is a function h : V ⟶ V ’ such that
 (x1, …, xn) ∈ Ri implies (h(x1), …, h(xn)) ∈ Ri’

8

Homomorphisms

G = (V, E) G’ = (V’, E’)

Homomorphism between structures S=(V, R1, …, Rn) and S ’=(V ’, R1’, …, Rn’) 
 is a function h : V ⟶ V ’ such that
 (x1, …, xn) ∈ Ri implies (h(x1), …, h(xn)) ∈ Ri’

9

Gφ = (V, E) G’ = (V’, E’)

Canonical structures
Canonical structure Sφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

9

Gφ = (V, E) G’ = (V’, E’)

Canonical structures
Canonical structure Sφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z v1 v2

v3

9

Gφ = (V, E) G’ = (V’, E’)

Canonical structures
Canonical structure Sφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1: Gφ ⊨ φ

v1 v2

v3

9

Gφ = (V, E) G’ = (V’, E’)

Canonical structures
Canonical structure Sφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1: Gφ ⊨ φ Fact 2: h(Gφ) ⊨ φ

v1 v2

v3

9

Gφ = (V, E) G’ = (V’, E’)

Canonical structures
Canonical structure Sφ of a Conjunctive Query φ has

• variables as nodes
• tuples (x1, …, xn) ∈ Ri 

 for all atomic sub-formulas Ri (x1, …, xn) of φ

Gφ = (V, E)

E.g.: φ = ∃x ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

Fact 1: Gφ ⊨ φ Fact 2: h(Gφ) ⊨ φ
Fact 3: 

G ’’ ⊨ φ implies ∃ h: Gφ ⟶ G ’’

v1 v2

v3

Gφ = (V, E) G’ = (V’, E’)Gφ = (V, E)

E.g.: φ (x) = ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

10

Evaluation via homomorphisms

Lemma. The evaluation of a CQ φ(x1, …, xn) on S’ returns the set 
 φ(S’) = { (h(x1), …, h(xn)) | h : Sφ ⟶ S’ }

v1 v2

v3

Gφ = (V, E) G’ = (V’, E’)Gφ = (V, E)

E.g.: φ (x) = ∃y ∃z . (E(x, y) ⋀ E(y, z) ⋀ E(x, z))

x

y

z

10

Evaluation via homomorphisms

Lemma. The evaluation of a CQ φ(x1, …, xn) on S’ returns the set 
 φ(S’) = { (h(x1), …, h(xn)) | h : Sφ ⟶ S’ }

Question: Which are the  
homomorphisms Gφ ⟶ G’ ?
What is the result of φ(G’) ?

v1 v2

v3

11

Evaluation via homomorphisms

 Input: A CQ φ(x1, …, xn), a graph G, a tuple (a1, …, an)
Output: Is (a1, …, an) ∈ φ(G) ?

Gφφ= (V, E) G’ = (V’, E’)

v1 v2

v3

x

y

z

Theorem. Evaluation of CQ is in NP (combined complexity)

11

Evaluation via homomorphisms

 Input: A CQ φ(x1, …, xn), a graph G, a tuple (a1, …, an)
Output: Is (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G’ = (V’, E’)

v1 v2

v3

x

y

z

Theorem. Evaluation of CQ is in NP (combined complexity)

11

Evaluation via homomorphisms

1. Guess h: Gφ ⟶ G

2. Check that it is a homomorphism

3. Output YES if (h(x1), …, h(xn)) = (a1, …, an); NO otherwise.

 Input: A CQ φ(x1, …, xn), a graph G, a tuple (a1, …, an)
Output: Is (a1, …, an) ∈ φ(G) ?

Ideas?

Gφφ= (V, E) G’ = (V’, E’)

v1 v2

v3

x

y

z

Theorem. Evaluation of CQ is in NP (combined complexity)

12

Evaluation via homomorphisms

Theorem. Evaluation of CQ is NP-complete (combined complexity)

12

Evaluation via homomorphisms

K3

Input: A graph G

Output: Can we assign a colour from {R,G,B} to each node  
 so that adjacent nodes have always different colours ?
 =
 Is there a homomorphism from G to K3 ?

NP-complete problem: 3-COLORABILITY

Theorem. Evaluation of CQ is NP-complete (combined complexity)

12

Evaluation via homomorphisms

K3

Input: A graph G

Output: Can we assign a colour from {R,G,B} to each node  
 so that adjacent nodes have always different colours ?
 =
 Is there a homomorphism from G to K3 ?

NP-complete problem: 3-COLORABILITY

Reduction 3COL ⤳ CQ-EVAL: 1. Given G, build a CQ φ such that Gφ = G.
 2. Test if () ∈ φ(G).

Theorem. Evaluation of CQ is NP-complete (combined complexity)

13

Monotonicity and preservation theorems

Lemma. Every CQ is monotone:

 S ⊆ S ’ implies φ(S) ⊆ φ(S ’)

13

Monotonicity and preservation theorems

Lemma. Every CQ is monotone:

 S ⊆ S ’ implies φ(S) ⊆ φ(S ’)

Proof: by closure under homomorphisms.

13

Monotonicity and preservation theorems

Lemma. Every CQ is monotone:

 S ⊆ S ’ implies φ(S) ⊆ φ(S ’)

Proof: by closure under homomorphisms.

“The relation R has at most 2 elements” ∉ CQ

“There is a node connected to every other node” ∉ CQ

“The radius of the graph is 5” ∉ CQ

14

Monotonicity and preservation theorems

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

14

Monotonicity and preservation theorems

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

 Finite unions of CQs

≈ ∃ ⋀ ⋁ fragment of FO

14

Monotonicity and preservation theorems

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

 Finite unions of CQs

≈ ∃ ⋀ ⋁ fragment of FO

Equally expressive, but 
UCQ are less succinct

14

Monotonicity and preservation theorems

• One example of the few properties which still hold on finite structures.

• Proof in the finite is difficult and independent.

Theorem. If an FO query φ is monotone

 then φ ∈ UCQ [Rossman '08]

 Finite unions of CQs

≈ ∃ ⋀ ⋁ fragment of FO

Equally expressive, but 
UCQ are less succinct

15

The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT? What is the complexity?

15

The satisfiability problem for CQ is decidable…

Static analysis with CQs

Question: What is the algorithm for CQ-SAT? What is the complexity?

Answer: CQs are always satisfiable by their canonical structure!

Gφ ⊨ φ

16

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

16

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

16

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?

16

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

16

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

16

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) ⊆ ψ(S) holds for every structure S ?

problem: CQ-CONTAINMENT

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity? Answer: None!

Why?

17

Static analysis with CQs

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

{ (g(y1), …, g(yn)) | g : Sψ ⟶ S }

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

If there is h: Sφ ⟶ S  
Then there is g: Sψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

{ (g(y1), …, g(yn)) | g : Sψ ⟶ S }

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

If there is h: Sφ ⟶ S  
Then there is g: Sψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Sφ and h = identity.

{ (g(y1), …, g(yn)) | g : Sψ ⟶ S }

[⟸] Consider (v1,…,vm) ∈ φ(S)

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

If there is h: Sφ ⟶ S  
Then there is g: Sψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Sφ and h = identity.

{ (g(y1), …, g(yn)) | g : Sψ ⟶ S }

[⟸] Consider (v1,…,vm) ∈ φ(S)

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

If there is h: Sφ ⟶ S  
Then there is g: Sψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Sφ and h = identity.

{ (g(y1), …, g(yn)) | g : Sψ ⟶ S }

(v1,…,vm) = (h(x1), …, h(xn)) 
for some h : Sφ ⟶ S

[⟸] Consider (v1,…,vm) ∈ φ(S)

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

If there is h: Sφ ⟶ S  
Then there is g: Sψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Sφ and h = identity.

{ (g(y1), …, g(yn)) | g : Sψ ⟶ S }

(v1,…,vm) = (h(x1), …, h(xn)) 
for some h : Sφ ⟶ S

Since g(y1, …, ym) = (x1, …, xn), then (v1, …, vm) = h(x1, …, xn) = h(g(y1, …, ym))

[⟸] Consider (v1,…,vm) ∈ φ(S)

17

Static analysis with CQs

[⟹] Suppose ∀ S φ(S) ⊆ ψ(S)

1. n = m

2. There is g: Sψ ⟶ Sφ

3. g(yi) = xi for all i

φ(x1, …, xn) is contained in ψ(y1, …, ym) iff

{ (h(x1), …, h(xn)) | h : Sφ ⟶ S }

If there is h: Sφ ⟶ S  
Then there is g: Sψ ⟶ S such that h(x1, …, xn) = g(y1, …, ym)

Take S = Sφ and h = identity.

{ (g(y1), …, g(yn)) | g : Sψ ⟶ S }

(v1,…,vm) = (h(x1), …, h(xn)) 
for some h : Sφ ⟶ S

Since g(y1, …, ym) = (x1, …, xn), then (v1, …, vm) = h(x1, …, xn) = h(g(y1, …, ym))
h g is a homomorphism from Sψ to S. Hence, (v1, …, vm) ∈ ψ(G).

18

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) = ψ(S) holds for every S ? (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

18

Static analysis with CQs

Input: Two CQs φ, ψ
Output: Does φ(S) = ψ(S) holds for every S ? (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem. The equivalence problem for CQ is NP-complete

18

Static analysis with CQs

Amounts to testing if Gφ and Gψ are hom-equivalent
 (i.e. there are homomorphisms in both senses)

Input: Two CQs φ, ψ
Output: Does φ(S) = ψ(S) holds for every S ? (we write “φ≣ψ”)

problem: CQ-EQUIVALENCE

Theorem. The equivalence problem for CQ is NP-complete

19

Static analysis with CQs

Input: A CQ φ
Output: Is there a “smaller” CQ ψ such that ψ≣φ ?

problem: CQ-MINIMIZATION

19

Static analysis with CQs

Input: A CQ φ
Output: Is there a “smaller” CQ ψ such that ψ≣φ ?

problem: CQ-MINIMIZATION

Theorem. The minimization problem for CQ is NP-complete

19

Static analysis with CQs

Input: A CQ φ
Output: Is there a “smaller” CQ ψ such that ψ≣φ ?

problem: CQ-MINIMIZATION

Amounts to testing if there is a non-injective endomorphism  
 g: Gφ ⟶ Gφ  
 
or, equally, if the smallest graph hom-equivalent to Gφ is Gφ itself
 (we say that Gφ is a core)

Theorem. The minimization problem for CQ is NP-complete

20

Adding functional dependencies

 A functional dependency is a sentence of the form

 𝜸 = ∀… R(x1, …, xn) ∧ R(x1’, …, xn’) ∧ ⋀j (xij = xij’) ⇒ (xi = xi’)

20

Adding functional dependencies

 A functional dependency is a sentence of the form

 𝜸 = ∀… R(x1, …, xn) ∧ R(x1’, …, xn’) ∧ ⋀j (xij = xij’) ⇒ (xi = xi’)

Agent Name Drives

007 James Bond Aston Martin

200 Mr Smith Cadillac

201 Mrs Smith Mercedes

3 Jason Bourne BMW

Example: In the following relation we may enforce the functional dependency

 𝜸 = ∀ x, y, z, x’, y’, z’ R(x, y, z) ∧ R(x’, y’, z’) ∧ (x = x’) ⇒ (y = y’)

20

Adding functional dependencies

 A functional dependency is a sentence of the form

 𝜸 = ∀… R(x1, …, xn) ∧ R(x1’, …, xn’) ∧ ⋀j (xij = xij’) ⇒ (xi = xi’)

Agent Name Drives

007 James Bond Aston Martin

200 Mr Smith Cadillac

201 Mrs Smith Mercedes

3 Jason Bourne BMW

Example: In the following relation we may enforce the functional dependency

 𝜸 = ∀ x, y, z, x’, y’, z’ R(x, y, z) ∧ R(x’, y’, z’) ∧ (x = x’) ⇒ (y = y’)

 
We often abbreviate this with

R: 1 ⇾ 2

21

All the previous problems: 

• CQ-CONTAINMENT
• CQ-EQUIVALENCE
• CQ-MINIMIZATION

remain in NP if we further restrict finite structures 
so as to satisfy any set of functional dependencies

Adding functional dependencies

 A functional dependency (FD) is a sentence of the form

 F = ∀… R(x1, …, xn) ∧ R(x1’, …, xn’) ∧ ⋀j (xij = xij’) ⇒ (xi = xi’)

21

All the previous problems: 

• CQ-CONTAINMENT
• CQ-EQUIVALENCE
• CQ-MINIMIZATION

remain in NP if we further restrict finite structures 
so as to satisfy any set of functional dependencies

Adding functional dependencies

 A functional dependency (FD) is a sentence of the form

 F = ∀… R(x1, …, xn) ∧ R(x1’, …, xn’) ∧ ⋀j (xij = xij’) ⇒ (xi = xi’)

Modify the canonical structure Sφ …

22

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’) 

 under functional dependencies F={ R1: 1 ⇾ 2, R2: 1 ⇾ 3}

x
y

z

y’

z’

w’

w

22

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’) 

 under functional dependencies F={ R1: 1 ⇾ 2, R2: 1 ⇾ 3}

x
y

z

y’

z’

w’

w

22

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’) 

 under functional dependencies F={ R1: 1 ⇾ 2, R2: 1 ⇾ 3}

y’

z’

y
z

w

x

w’

22

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’) 

 under functional dependencies F={ R1: 1 ⇾ 2, R2: 1 ⇾ 3}

y’

z’

y
z

w

x

w’

22

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’) 

 under functional dependencies F={ R1: 1 ⇾ 2, R2: 1 ⇾ 3}

y’

z’

w

y
z

x

22

Adding functional dependencies

CQ φ = R2(x, y, z) ∧ R2(x, y’, z’) ∧ R1(z, w) ∧ R1(z’, w’) 

 under functional dependencies F={ R1: 1 ⇾ 2, R2: 1 ⇾ 3}

y’

z’

w

y
z

x = Sφ (the chased canonical structure)

• Sφ is unique and  
 can be constructed in polynomial time

• It is the “most general” constrained model of φ :  
 φ(S) = h(φ(Sφ)) for all S satisfying the funct. depend.

23

Adding functional dependencies

φ ∈ CQ
FD’s F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ

23

Adding functional dependencies

φ ∈ CQ
FD’s F={fd1, …, fdn}

chase
chaseF(φ) ∈ CQ

The static analysis problems restricted to FD’s can now be also shown in NP

• CQ-Containment

• CQ-Equivalence

• CQ-Minimization

φ ⊆F ψ iff chaseF(φ) ⊆ chaseF(ψ)

φ ≣F ψ iff chaseF(φ) ≣ chaseF(ψ)

iff chaseF(φ) is minimalφ is minimal wrt  
structures verifying F

