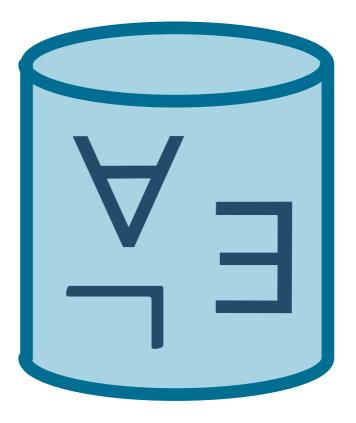
Day 4: CQ

ECI 2015 Buenos Aires



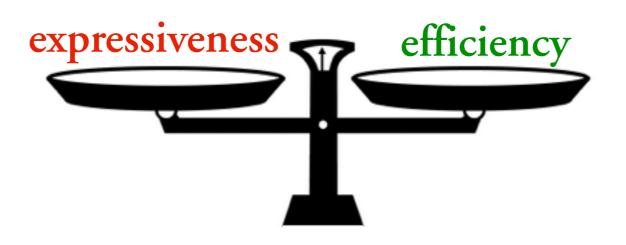
Fundamentos lógicos de bases de datos (Logical foundations of databases)

Diego Figueira

Gabriele Puppis

CNRS LaBRI

Trading expressiveness for efficiency



Alternation of quantifiers significantly affects complexity (recall that evaluation of QBF is PSPACE-complete: $\forall x \exists y \forall z \exists w \dots \phi$).

What happens if we disallow \forall and \neg ?

$LOGSPACE \subseteq PTIME \subseteq PSPACE \subseteq EXPTIME$

$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

NP = Problems whose solutions can be witnessed by a *certificate* to be guessed and checked in *polynomial time* (e.g. a colouring)

Examples:

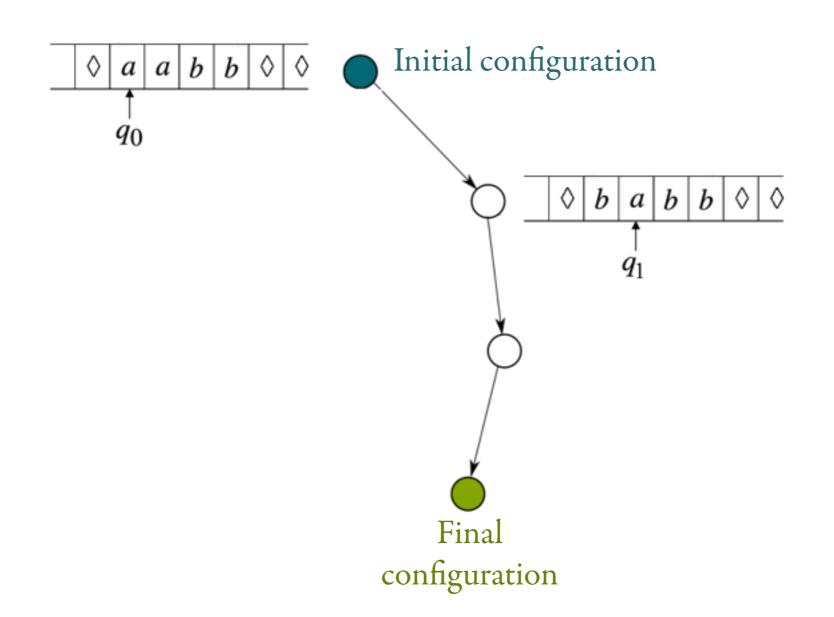
• 3-COLORABILITY: Given a graph G, can we assign a colour from $\{R,G,B\}$ to each node so that adjacent nodes have always different colours ?

 SAT: Given a propositional formula, e.g. (p ∨ ¬q ∨ r) ∧ (¬p ∨ s) ∧ (¬s ∨ ¬p), can we assign a truth value to each variable so that the formula becomes true ?

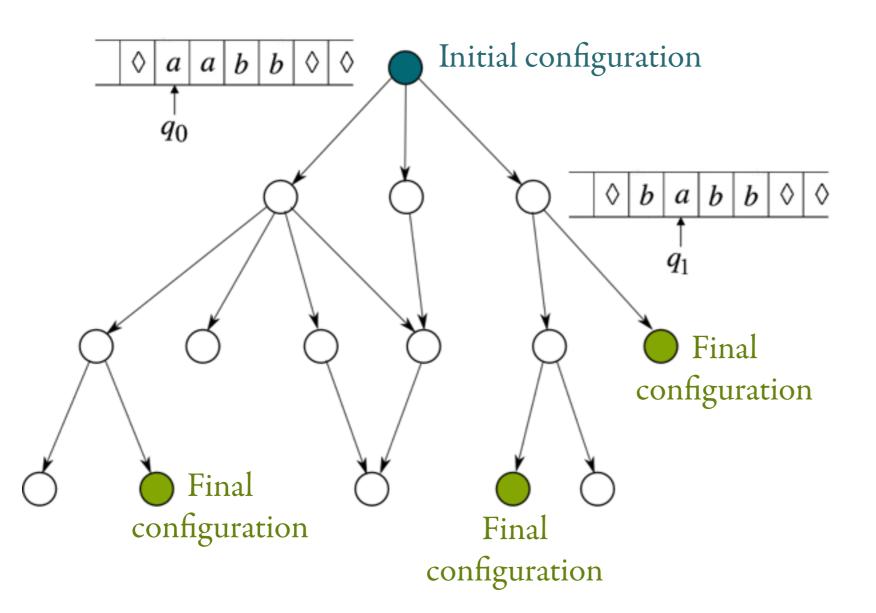
• MONEY-CHANGE: Given an amount of money A and a set of coins $\{B_1, ..., B_n\}$, can we find a subset $S \subseteq \{B_1, ..., B_n\}$ such that $\sum S = A$?

$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

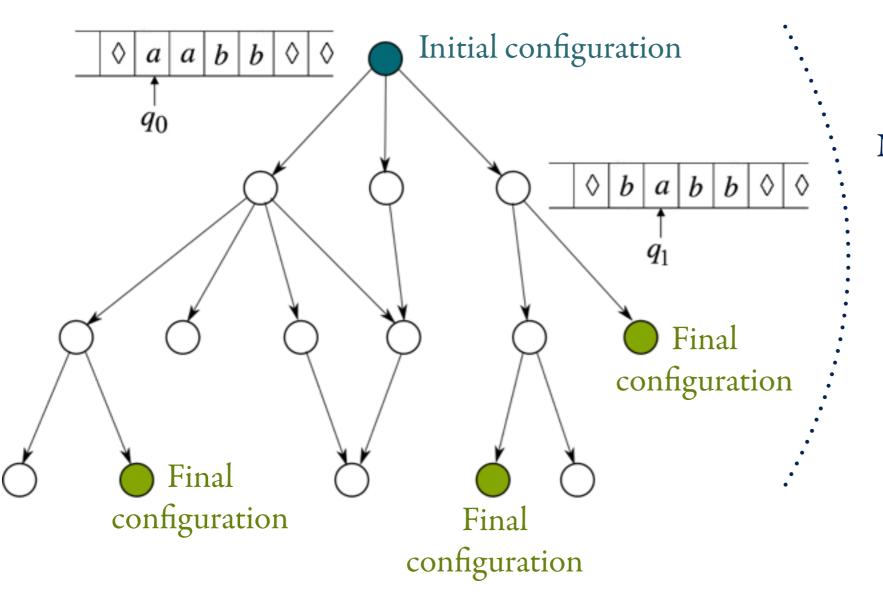


$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$



$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

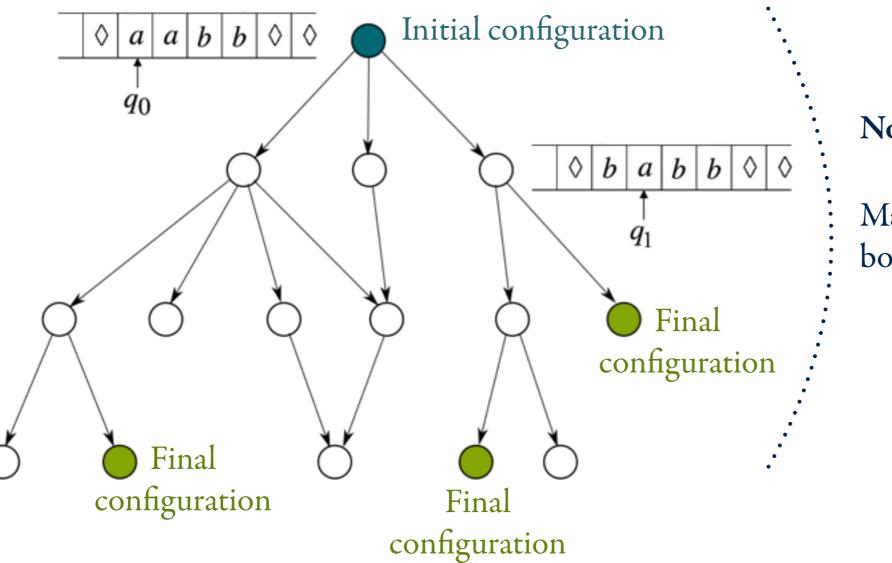
NP = Problems whose solutions can be witnessed by a *certificate* to be guessed and checked in *polynomial time* (e.g. a colouring)



Non-deterministic transitions

$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

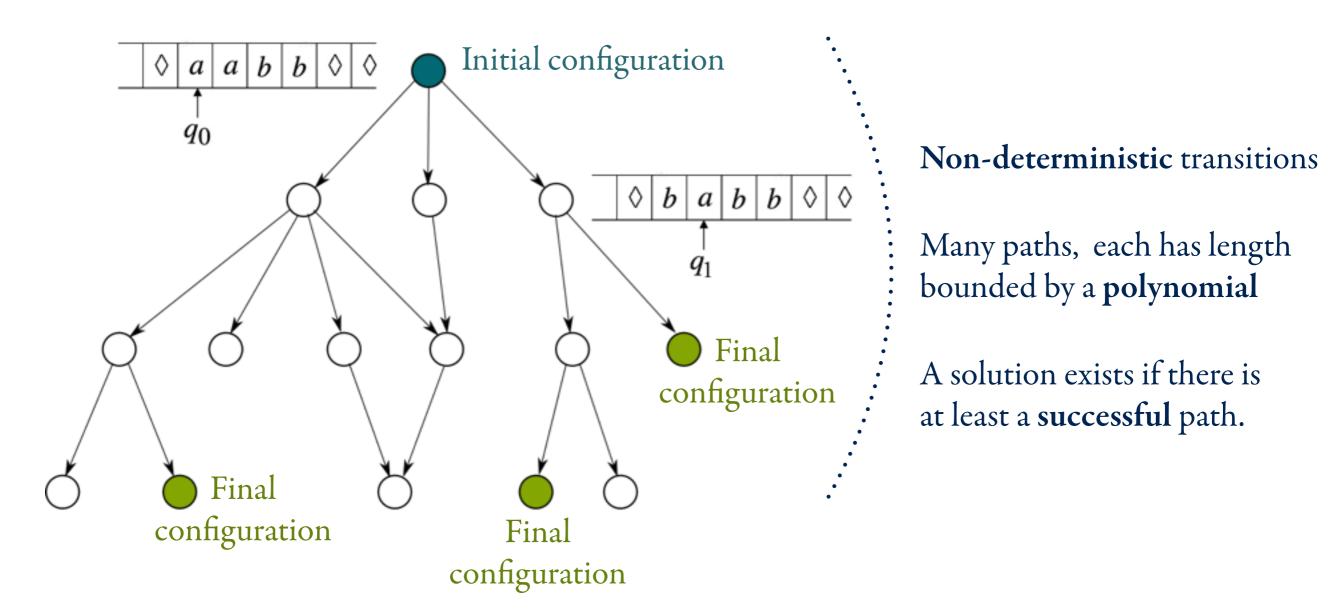
NP = Problems whose solutions can be witnessed by a *certificate* to be guessed and checked in *polynomial time* (e.g. a colouring)



Non-deterministic transitions

Many paths, each has length bounded by a **polynomial**

$LOGSPACE \subseteq PTIME \subseteq NP \subseteq PSPACE \subseteq EXPTIME$



Question

Consider: **Positive FO** = FO without \forall, \neg

E.g.
$$\phi = \exists x \exists y \exists z . (E(x, y) \lor E(y, z)) \land (y = z \lor E(x, z))$$

What is the complexity of evaluating Positive FO on graphs ?

Question

Consider: Positive FO = FO without \forall, \neg

E.g.
$$\phi = \exists x \exists y \exists z . (E(x, y) \lor E(y, z)) \land (y = z \lor E(x, z))$$

What is the complexity of evaluating Positive FO on graphs ?

Solution

This is in NP: Given ϕ and G=(V, E)it suffices to guess a binding $\alpha : \{x, y, z, ...\} \rightarrow V$ and then verify that the formula holds.

Conjunctive Queries

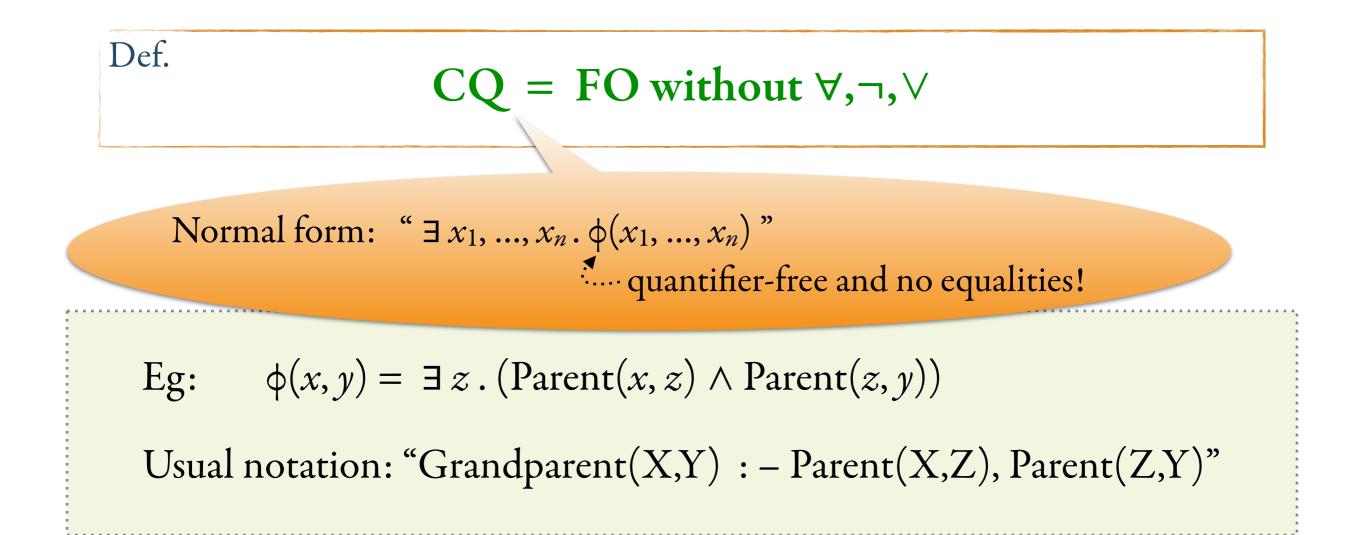
Def.

CQ = FO without \forall, \neg, \lor

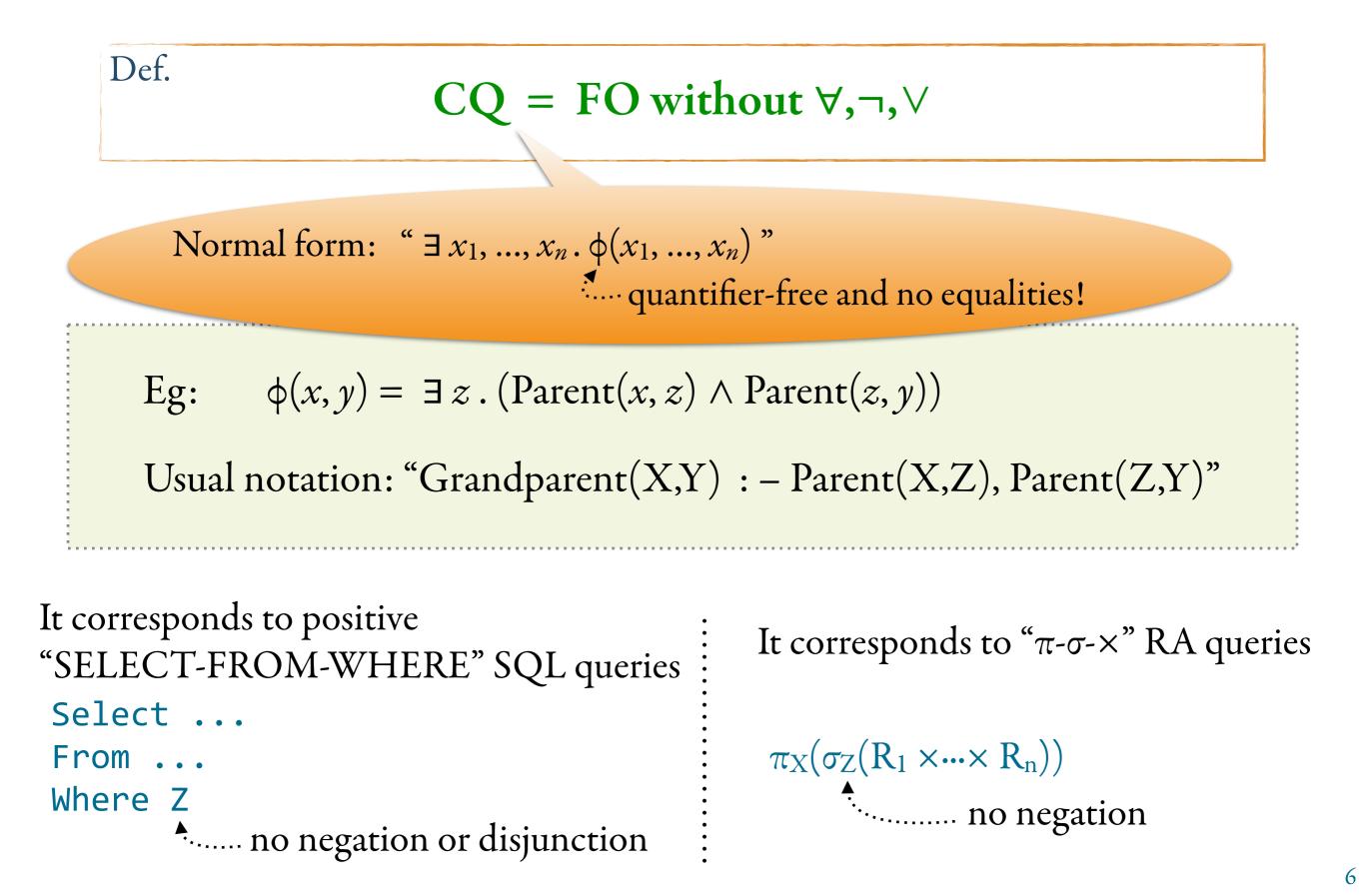
Eg: $\phi(x, y) = \exists z . (Parent(x, z) \land Parent(z, y))$

Usual notation: "Grandparent(X,Y) : - Parent(X,Z), Parent(Z,Y)"

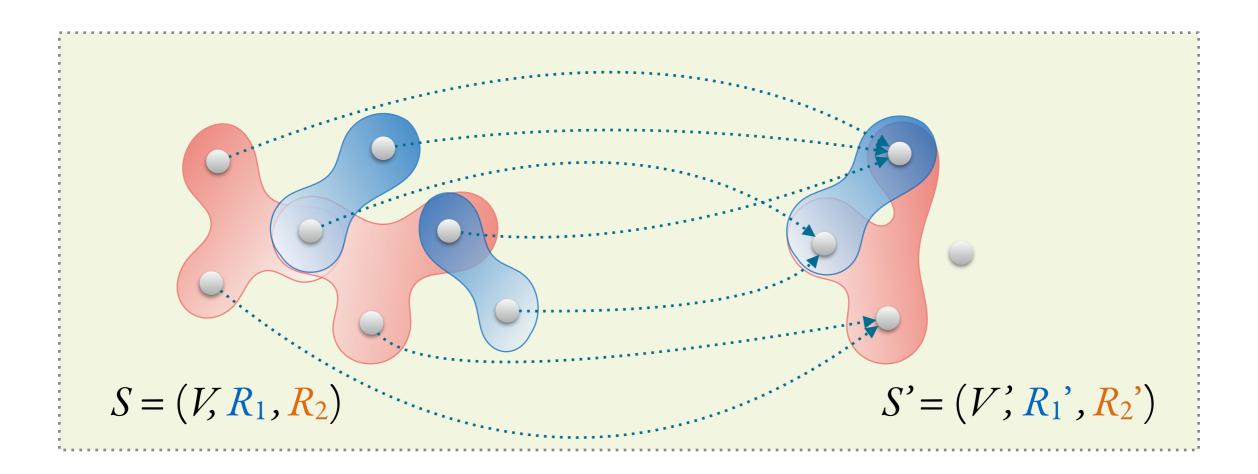
Conjunctive Queries



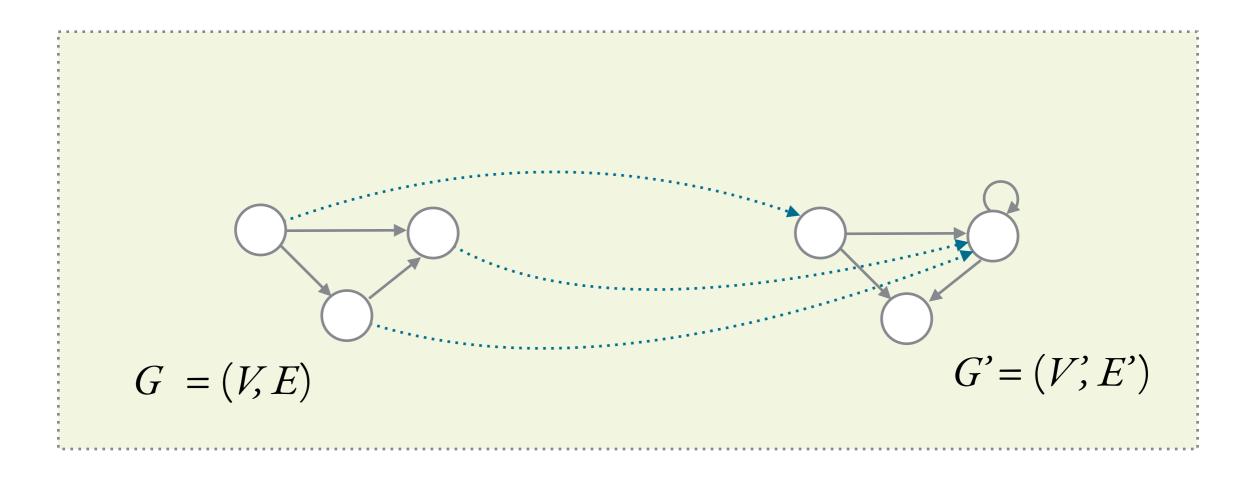
Conjunctive Queries



Homomorphism between structures $S=(V, R_1, ..., R_n)$ and $S'=(V', R_1', ..., R_n')$ is a function $h: V \to V'$ such that $(x_1, ..., x_n) \in R_i$ implies $(h(x_1), ..., h(x_n)) \in R_i'$



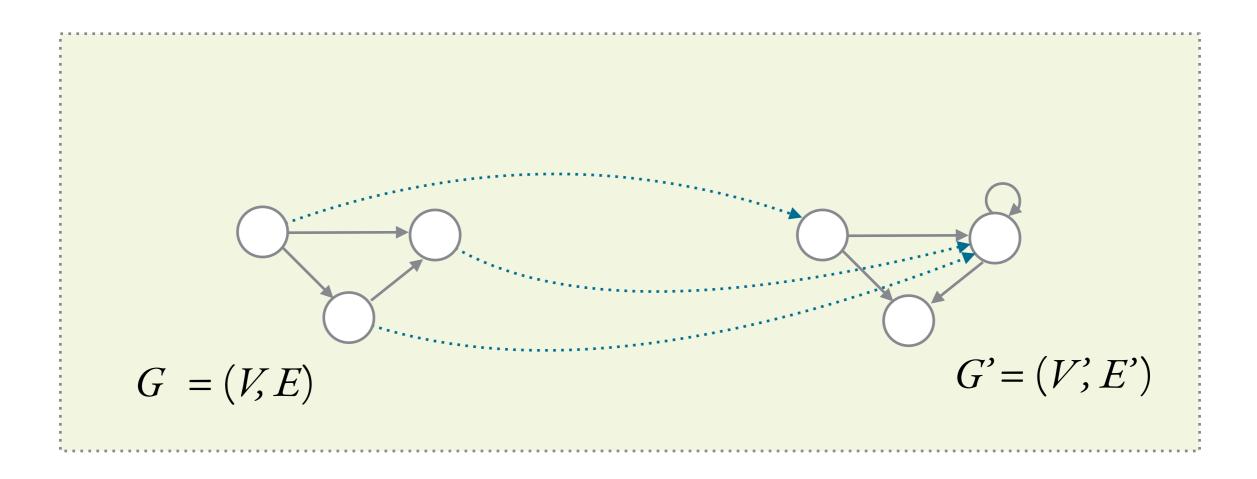
Homomorphism between structures $S=(V, R_1, ..., R_n)$ and $S'=(V', R_1', ..., R_n')$ is a function $h: V \to V'$ such that $(x_1, ..., x_n) \in R_i$ implies $(h(x_1), ..., h(x_n)) \in R_i'$



Canonical structure S_{ϕ} of a Conjunctive Query ϕ has

- variables as nodes
- tuples $(x_1, ..., x_n) \in R_i$

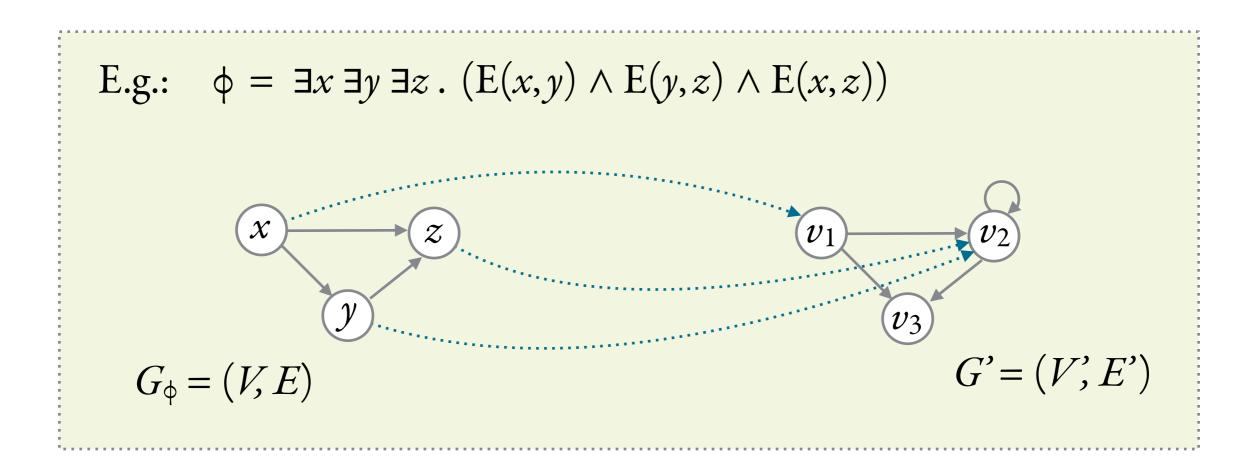
for all atomic sub-formulas $R_i(x_1,...,x_n)$ of ϕ



Canonical structure S_{ϕ} of a Conjunctive Query ϕ has

- variables as nodes
- tuples $(x_1, ..., x_n) \in R_i$

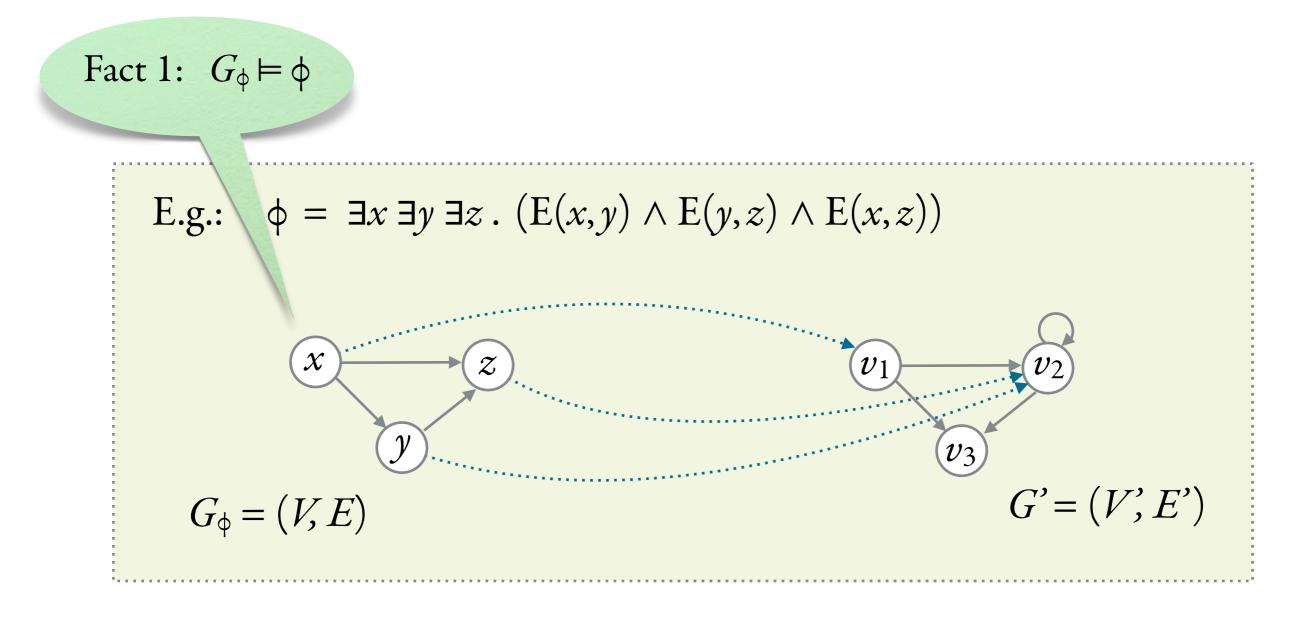
for all atomic sub-formulas $R_i(x_1,...,x_n)$ of ϕ

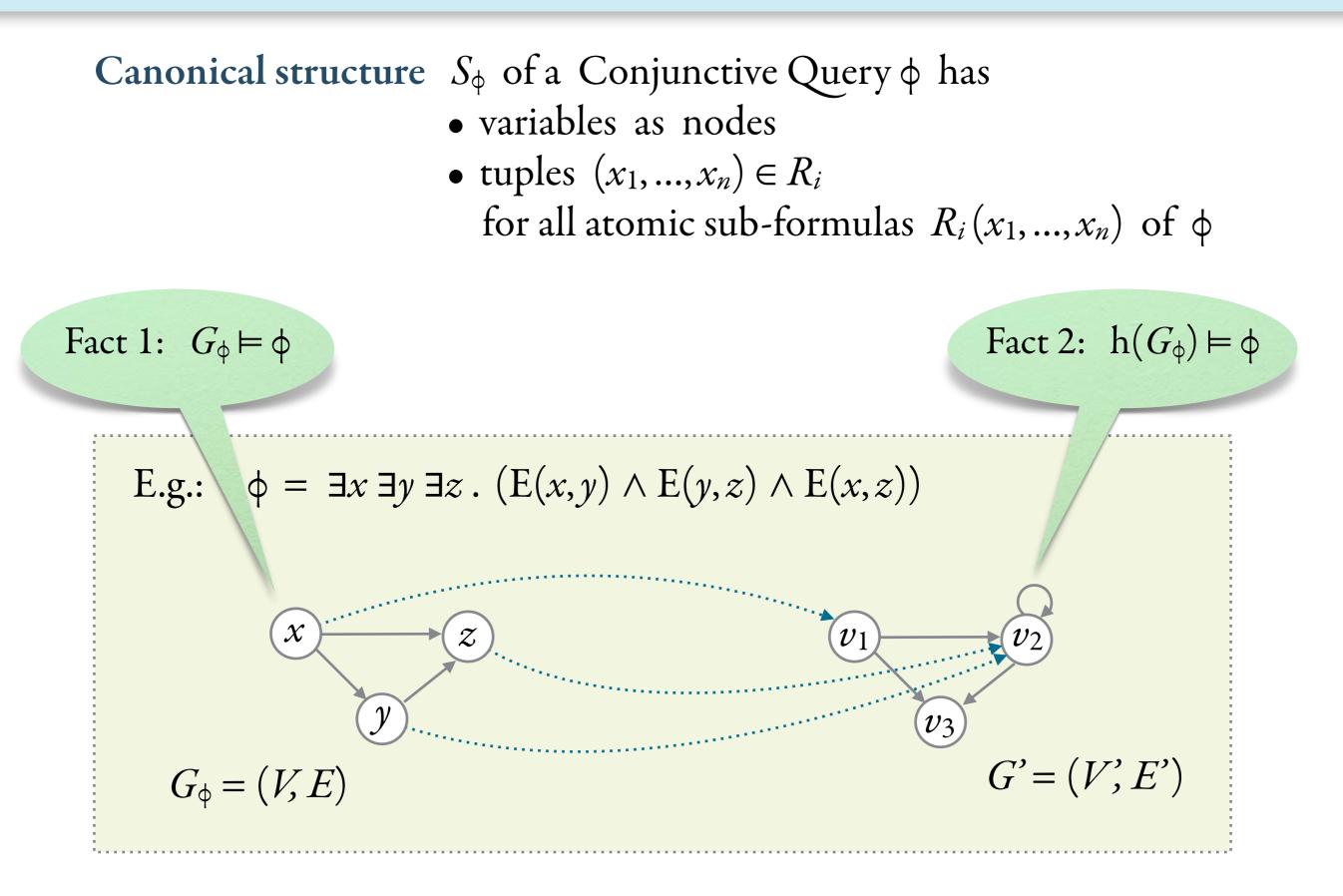


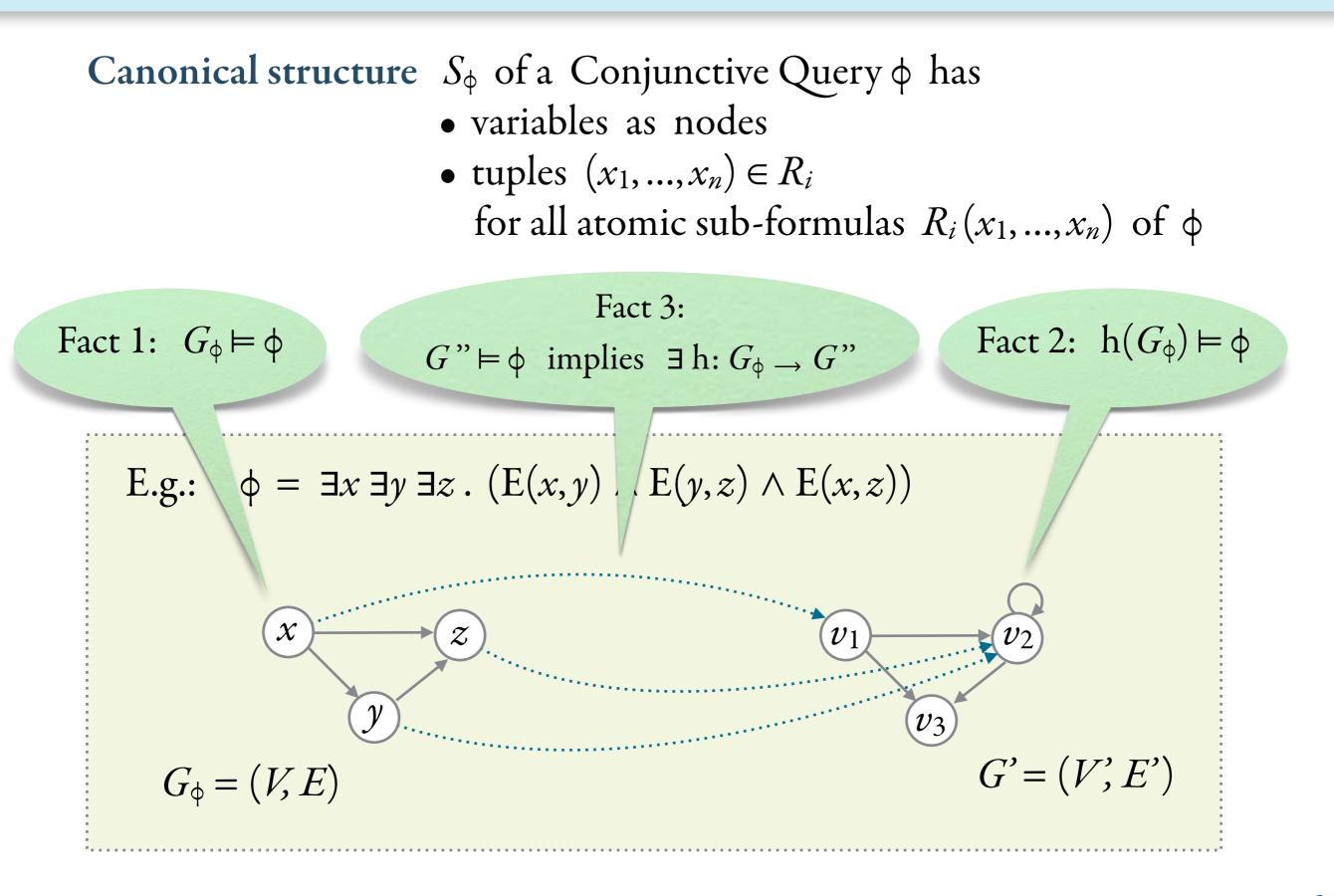
Canonical structure S_{ϕ} of a Conjunctive Query ϕ has

- variables as nodes
- tuples $(x_1, ..., x_n) \in R_i$

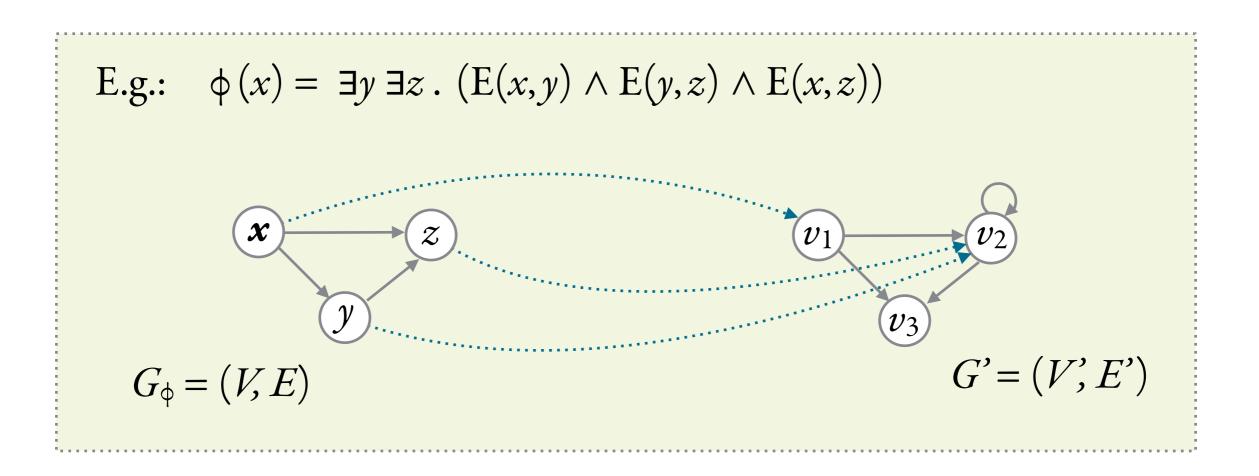
for all atomic sub-formulas $R_i(x_1,...,x_n)$ of ϕ

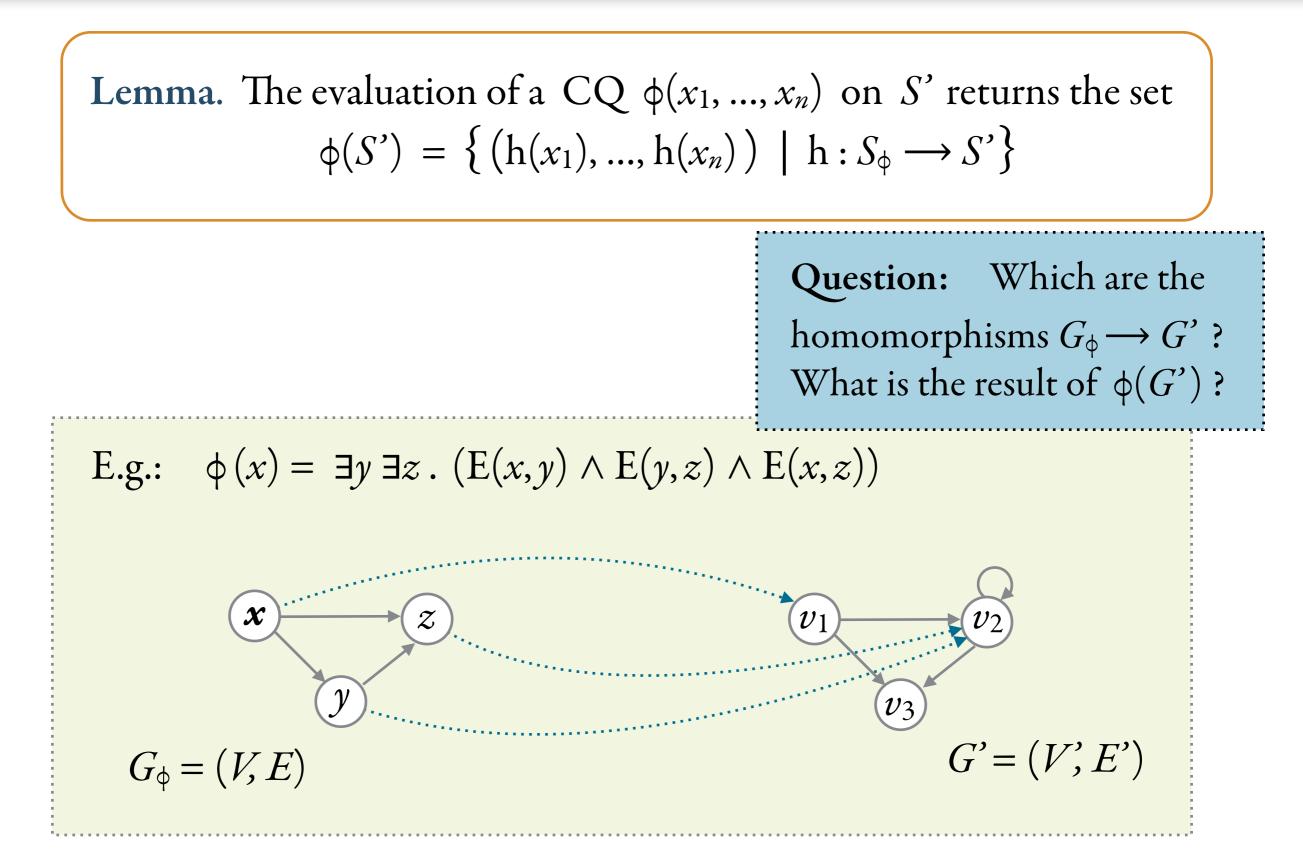


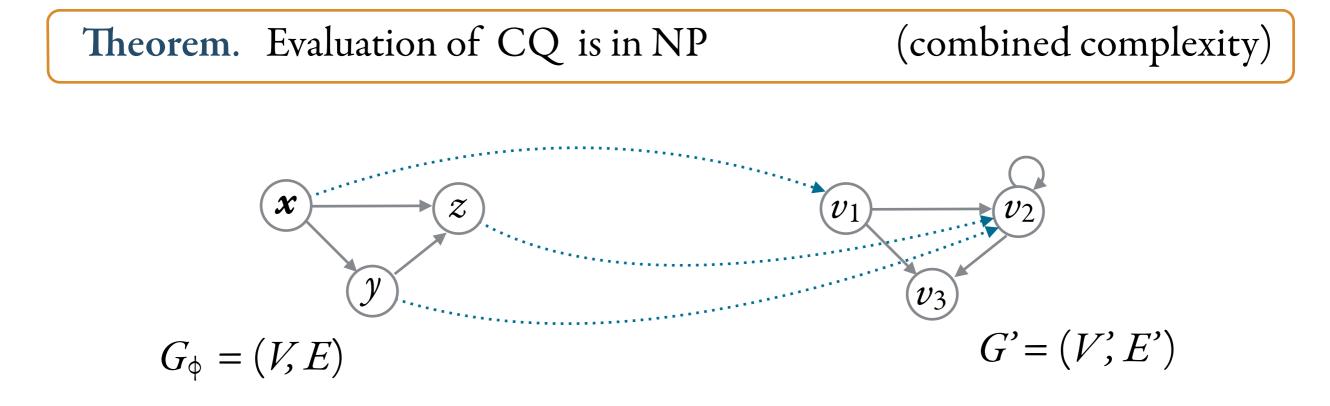




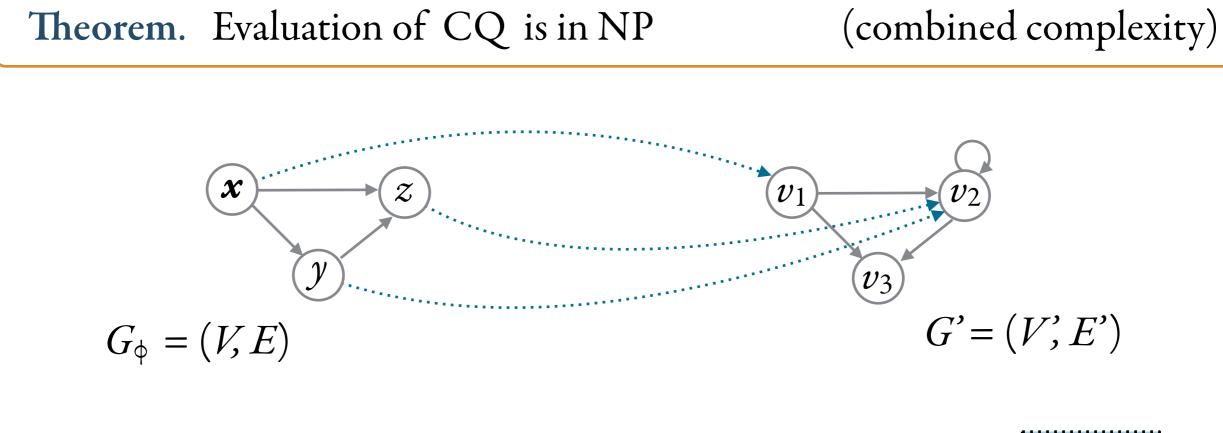
Lemma. The evaluation of a CQ
$$\phi(x_1, ..., x_n)$$
 on S' returns the set
 $\phi(S') = \{(h(x_1), ..., h(x_n)) \mid h: S_{\phi} \longrightarrow S'\}$



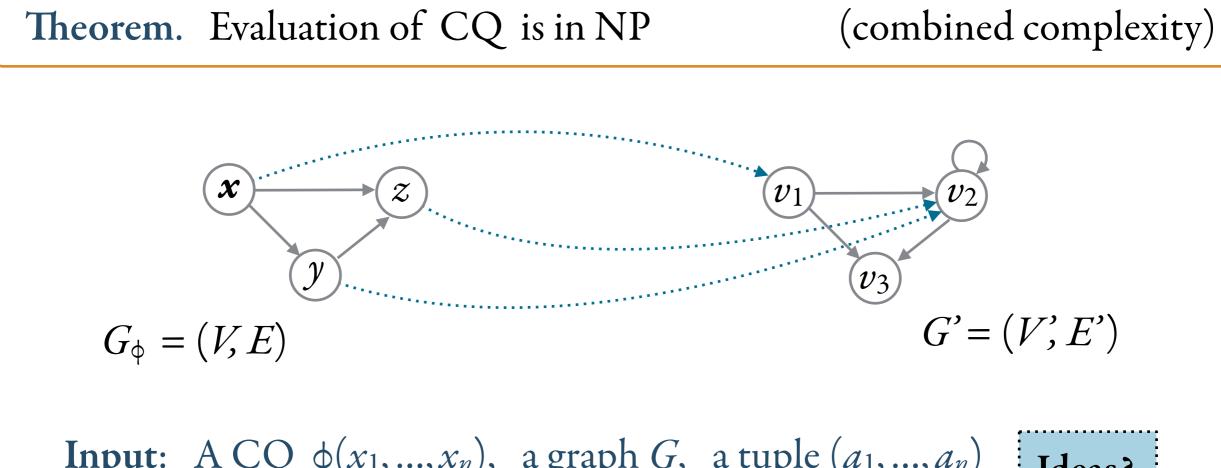




Input: A CQ $\phi(x_1, ..., x_n)$, a graph G, a tuple $(a_1, ..., a_n)$ Output: Is $(a_1, ..., a_n) \in \phi(G)$?



Input: A CQ $\phi(x_1, ..., x_n)$, a graph G, a tuple $(a_1, ..., a_n)$ Ideas? Output: Is $(a_1, ..., a_n) \in \phi(G)$?



Input: A CQ $\phi(x_1, ..., x_n)$, a graph *G*, a tuple $(a_1, ..., a_n)$ **Output:** Is $(a_1, ..., a_n) \in \phi(G)$?

Ideas?

- 1. Guess h: $G_{\Phi} \rightarrow G$
- 2. Check that it is a homomorphism
- 3. Output YES if $(h(x_1), ..., h(x_n)) = (a_1, ..., a_n)$; NO otherwise.

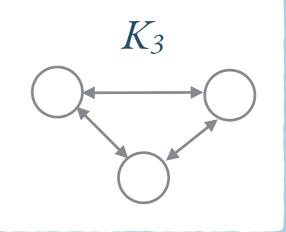
Theorem. Evaluation of CQ is NP-complete (combined complexity)

Theorem. Evaluation of CQ is NP-complete (combined complexity)

-NP-complete problem: 3-COLORABILITY – Input: A graph *G*

Output: Can we assign a colour from $\{R,G,B\}$ to each node so that adjacent nodes have always different colours ?

Is there a *homomorphism* from G to K_3 ?

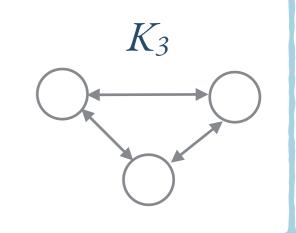


Theorem. Evaluation of CQ is NP-complete (combined complexity)

-NP-complete problem: 3-COLORABILITY — Input: A graph *G*

Output: Can we assign a colour from $\{R,G,B\}$ to each node so that adjacent nodes have always different colours ?

Is there a *homomorphism* from G to K_3 ?



Reduction 3COL \rightarrow CQ-EVAL: 1. Given *G*, build a CQ ϕ such that $G_{\phi} = G$. 2. Test if () $\in \phi(G)$.

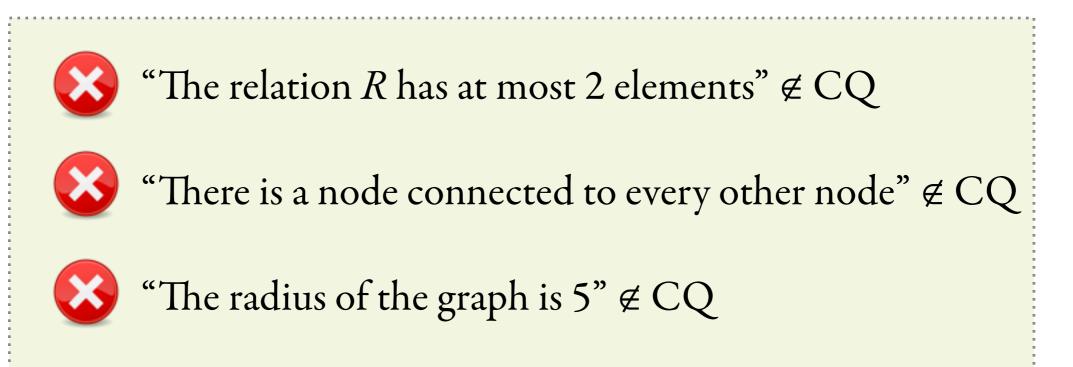
Lemma. Every CQ is monotone: $S \subseteq S'$ implies $\phi(S) \subseteq \phi(S')$

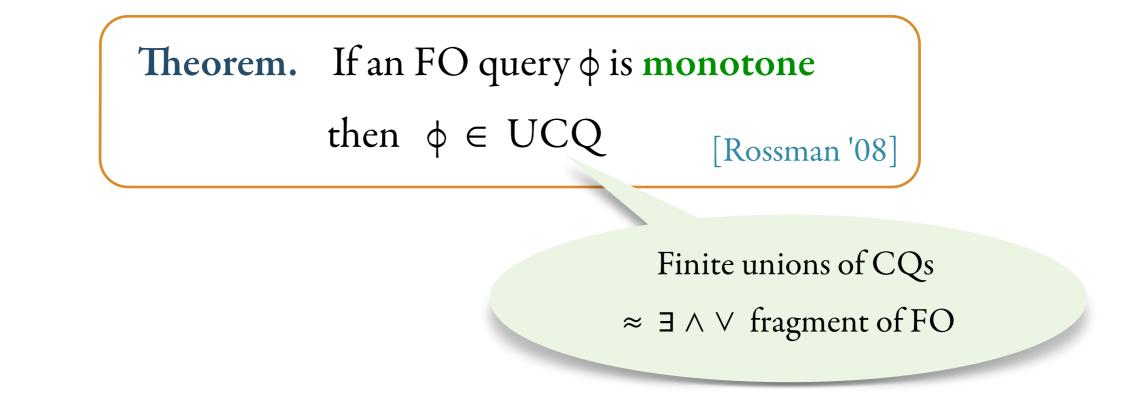
Lemma. Every CQ is monotone: $S \subseteq S'$ implies $\phi(S) \subseteq \phi(S')$

Proof: by closure under homomorphisms.

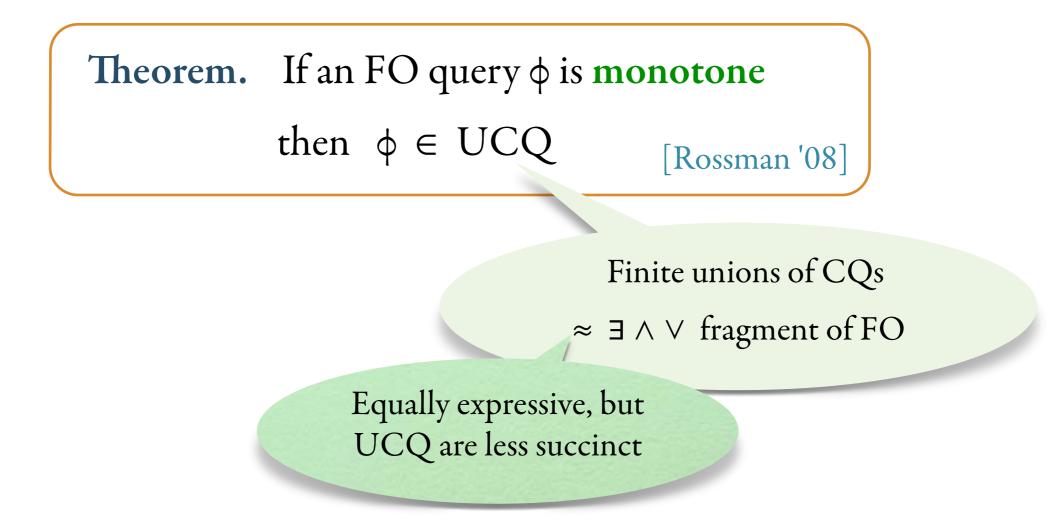
Lemma. Every CQ is monotone: $S \subseteq S'$ implies $\phi(S) \subseteq \phi(S')$

Proof: by closure under homomorphisms.

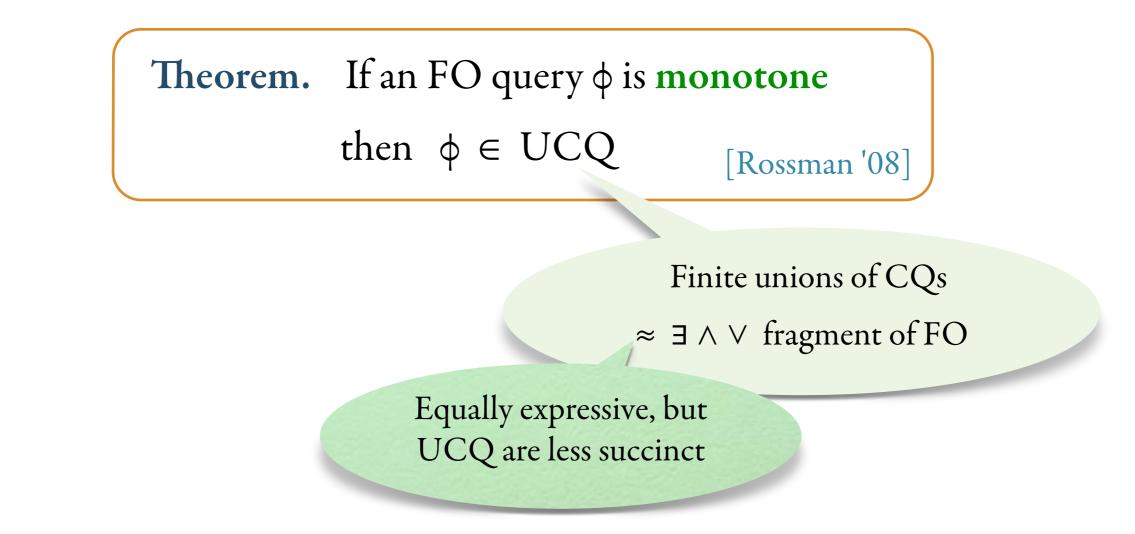




Monotonicity and preservation theorems



Monotonicity and preservation theorems



- One example of the few properties which still hold on finite structures.
- Proof in the finite is difficult and independent.

The satisfiability problem for CQ is decidable...

Question: What is the algorithm for CQ-SAT? What is the complexity?

The satisfiability problem for CQ is decidable...

Question: What is the algorithm for CQ-SAT? What is the complexity?

Answer: CQs are always satisfiable by their canonical structure!

 $G_{\varphi} \vDash \phi$

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure *S* ?

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure S?

Theorem. The containment problem for CQ is NP-complete

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure S?

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure *S* ?

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?

Answer: None!

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure *S* ?

Theorem. The containment problem for CQ is NP-complete

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

- 2. There is $g: S_{\psi} \longrightarrow S_{\phi}$
- 3. $g(y_i) = x_i$ for all *i*

Question: Is this combined or data complexity?

Answer: None!

problem: CQ-CONTAINMENT

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) \subseteq \psi(S)$ holds for every structure S?

Theorem. The containment problem for CQ is NP-complete

 $\phi(x_1, ..., x_n) \text{ is contained in } \psi(y_1, ..., y_m) \text{ iff } 1. n = m$ 2. There is $g: S_{\psi} \longrightarrow S_{\phi}$ Why?
2. ()

3.
$$g(y_i) = x_i$$
 for all *i*

Question: Is this combined or data complexity?

Answer: None!

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

- 2. There is $g: S_{\psi} \longrightarrow S_{\phi}$
- 3. $g(y_i) = x_i$ for all *i*

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

2. There is $g: S_{\psi} \longrightarrow S_{\phi}$

3.
$$g(y_i) = x_i$$
 for all i

 $[\Rightarrow]$ Suppose $\forall S \quad \varphi(S) \subseteq \psi(S)$

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1. n = m

$$\{(h(x_1), ..., h(x_n)) \mid h: S_{\phi} \to S\}$$
$$[\Rightarrow] Suppose \forall S \quad \phi(S) \subseteq \psi(S)$$

2. There is $g: S_{\psi} \longrightarrow S_{\phi}$

3.
$$g(y_i) = x_i$$
 for all *i*

 $\phi(x_1, ..., x_n) \text{ is contained in } \psi(y_1, ..., y_m) \text{ iff } 1. n = m$ $\{(h(x_1), ..., h(x_n)) \mid h: S_{\phi} \to S\}$ $2. \text{ There is } g: S_{\psi} \to S_{\phi}$ $3. g(y_i) = x_i \text{ for all } i$ $[\Rightarrow] \text{ Suppose } \forall S \quad \phi(S) \subseteq \psi(S)$ $\{(g(y_1), ..., g(y_n)) \mid g: S_{\psi} \to S\}$

 $\phi(x_1, ..., x_n) \text{ is contained in } \psi(y_1, ..., y_m) \text{ iff } 1. n = m$ $\{ (h(x_1), ..., h(x_n)) \mid h: S_{\phi} \to S \}$ $(A \cap (x_1), ..., h(x_n)) \mid h: S_{\phi} \to S \}$ $(A \cap (x_1), ..., h(x_n)) \mid h: S_{\phi} \to S \}$ $(A \cap (x_1), ..., h(x_n)) \mid h: S_{\phi} \to S \}$ $(A \cap (x_1, ..., x_n) \mid g(y_n)) \mid g: S_{\psi} \to S \}$ $(A \cap (x_1, ..., x_n) \mid g(y_n)) \mid g: S_{\psi} \to S \}$ $(A \cap (x_1, ..., x_n) \mid g(y_n)) \mid g: S_{\psi} \to S \}$ $(A \cap (x_1, ..., x_n) \mid g(y_n)) \mid g: S_{\psi} \to S \}$

 $\phi(x_1,...,x_n)$ is contained in $\psi(y_1,...,y_m)$ iff 1, n = m2. There is $g: S_{\psi} \longrightarrow S_{\phi}$ $\{(\mathbf{h}(x_1), ..., \mathbf{h}(x_n)) \mid \mathbf{h}: S_{\phi} \longrightarrow S\}$ 3. $g(\gamma_i) = x_i$ for all *i* $[\Rightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\left\{ \left(g(y_1), ..., g(y_n) \right) \mid g: S_{\psi} \longrightarrow S \right\}$ If there is $h: S_{\phi} \longrightarrow S$ Then there is $g: S_{\psi} \rightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = S_{\phi}$ and h = identity.

 $\phi(x_1, ..., x_n)$ is contained in $\psi(y_1, ..., y_m)$ iff 1, n = m2. There is $g: S_{\psi} \longrightarrow S_{\phi}$ $\{(\mathbf{h}(x_1), \dots, \mathbf{h}(x_n)) \mid \mathbf{h}: S_{\phi} \longrightarrow S\}$ 3. $g(\gamma_i) = x_i$ for all *i* $[\Rightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\left\{ \left(g(y_1), ..., g(y_n) \right) \mid g: S_{\psi} \longrightarrow S \right\}$ If there is $h: S_{\phi} \longrightarrow S$ Then there is $g: S_{\psi} \rightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = S_{\phi}$ and h = identity.

 $[\Leftarrow] \quad \text{Consider } (v_1, \dots, v_m) \in \phi(S)$

 $\phi(x_1, ..., x_n)$ is contained in $\psi(y_1, ..., y_m)$ iff 1, n = m2. There is $g: S_{\psi} \longrightarrow S_{\phi}$ $\{(\mathbf{h}(x_1), \dots, \mathbf{h}(x_n)) \mid \mathbf{h}: S_{\phi} \longrightarrow S\}$ 3. $g(\gamma_i) = x_i$ for all *i* $[\Rightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\left\{ \left(g(\gamma_1), ..., g(\gamma_n) \right) \mid g: S_{\psi} \longrightarrow S \right\}$ If there is $h: S_{\phi} \longrightarrow S$ Then there is $g: S_{\psi} \longrightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = S_{\phi}$ and h = identity. $(v_1,...,v_m) = (h(x_1),...,h(x_n))$ for some $h: S_{\phi} \longrightarrow S$ Consider $(v_1,...,v_m) \in \phi(S)$ $[\Longrightarrow]$

 $\phi(x_1, ..., x_n)$ is contained in $\psi(y_1, ..., y_m)$ iff 1. n = m2. There is $g: S_{\psi} \longrightarrow S_{\phi}$ $\{(\mathbf{h}(x_1), \dots, \mathbf{h}(x_n)) \mid \mathbf{h}: S_{\phi} \longrightarrow S\}$ 3. $g(\gamma_i) = x_i$ for all *i* $[\Rightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\{(g(\gamma_1), ..., g(\gamma_n)) \mid g: S_{\psi} \longrightarrow S\}$ If there is $h: S_{\phi} \longrightarrow S$ Then there is $g: S_{\psi} \longrightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = S_{\phi}$ and h = identity. $(v_1,...,v_m) = (h(x_1),...,h(x_n))$ for some $h: S_{\phi} \longrightarrow S$ $[\Leftarrow]$ Consider $(v_1, \dots, v_m) \in \phi(S)$ Since $g(y_1, ..., y_m) = (x_1, ..., x_n)$, then $(v_1, ..., v_m) = h(x_1, ..., x_n) = h(g(y_1, ..., y_m))$

 $\phi(x_1, ..., x_n)$ is contained in $\psi(y_1, ..., y_m)$ iff 1, n = m2. There is $g: S_{\psi} \longrightarrow S_{\phi}$ $\{(\mathbf{h}(x_1), \dots, \mathbf{h}(x_n)) \mid \mathbf{h} : S_{\phi} \longrightarrow S\}$ 3. $g(\gamma_i) = x_i$ for all *i* $[\Rightarrow]$ Suppose $\forall S \quad \phi(S) \subseteq \psi(S)$ $\{(g(\gamma_1), ..., g(\gamma_n)) \mid g: S_{\Psi} \longrightarrow S\}$ If there is $h: S_{\phi} \longrightarrow S$ Then there is $g: S_{\psi} \longrightarrow S$ such that $h(x_1, ..., x_n) = g(y_1, ..., y_m)$ Take $S = S_{\phi}$ and h = identity. $(v_1,...,v_m) = (h(x_1),...,h(x_n))$ for some $h: S_{\phi} \longrightarrow S$ $[\Leftarrow]$ Consider $(v_1, \dots, v_m) \in \phi(S)$ Since $g(y_1, ..., y_m) = (x_1, ..., x_n)$, then $(v_1, ..., v_m) = h(x_1, ..., x_n) = h(g(y_1, ..., y_m))$ hg is a homomorphism from S_{ψ} to S. Hence, $(v_1, ..., v_m) \in \psi(G)$.

problem: CQ-EQUIVALENCE

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) = \psi(S)$ holds for every S? (we write " $\phi \equiv \psi$ ")

problem: CQ-EQUIVALENCE

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) = \psi(S)$ holds for every S? (we write " $\phi \equiv \psi$ ")

Theorem. The equivalence problem for CQ is NP-complete

problem: CQ-EQUIVALENCE

Input: Two CQs ϕ, ψ **Output:** Does $\phi(S) = \psi(S)$ holds for every S? (we write " $\phi \equiv \psi$ ")

Theorem. The equivalence problem for CQ is NP-complete

Amounts to testing if G_{ϕ} and G_{ψ} are **hom-equivalent** (i.e. there are homomorphisms in both senses)

problem: CQ-MINIMIZATION -

Input: A CQ ϕ **Output:** Is there a "smaller" CQ ψ such that $\psi \equiv \phi$?

problem: CQ-MINIMIZATION

Input: A CQ ϕ **Output:** Is there a "smaller" CQ ψ such that $\psi \equiv \phi$?

Theorem. The minimization problem for CQ is NP-complete

problem: CQ-MINIMIZATION

Input: A CQ ϕ **Output:** Is there a "smaller" CQ ψ such that $\psi \equiv \phi$?

Theorem. The minimization problem for CQ is NP-complete

Amounts to testing if there is a non-injective endomorphism $g: G_{\varphi} \longrightarrow G_{\varphi}$

or, equally, if the smallest graph hom-equivalent to G_{φ} is G_{φ} itself (we say that G_{φ} is a core)

A functional dependency is a sentence of the form

$$\boldsymbol{\gamma} = \forall \dots R(x_1, \dots, x_n) \land R(x_1, \dots, x_n') \land \bigwedge_j (x_{ij} = x_{ij}') \Rightarrow (x_i = x_i')$$

A functional dependency is a sentence of the form

$$\boldsymbol{\gamma} = \forall \dots R(x_1, \dots, x_n) \land R(x_1, \dots, x_n') \land \bigwedge_j (x_{ij} = x_{ij}') \Rightarrow (x_i = x_i')$$

Example: In the following relation we may enforce the functional dependency

$$\boldsymbol{\gamma} = \forall x, y, z, x', y', z' \ R(x, y, z) \land R(x', y', z') \land (x = x') \Rightarrow (y = y')$$

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes
3	Jason Bourne	BMW

A functional dependency is a sentence of the form

$$\boldsymbol{\gamma} = \forall \dots R(x_1, \dots, x_n) \land R(x_1, \dots, x_n') \land \bigwedge_j (x_{ij} = x_{ij}') \Rightarrow (x_i = x_i')$$

Example: In the following relation we may enforce the functional dependency

$$\boldsymbol{\gamma} = \forall x, y, z, x', y', z' \ R(x, y, z) \land R(x', y', z') \land (x = x') \Rightarrow (y = y')$$

Agent	Name	Drives
007	James Bond	Aston Martin
200	Mr Smith	Cadillac
201	Mrs Smith	Mercedes
3	Jason Bourne	BMW

We often abbreviate this with

 $R: 1 \rightarrow 2$

A functional dependency (FD) is a sentence of the form

$$F = \forall \dots R(x_1, \dots, x_n) \land R(x_1, \dots, x_n') \land \bigwedge_j (x_{ij} = x_{ij}') \Rightarrow (x_i = x_i')$$

All the previous problems:

CQ-CONTAINMENTCQ-EQUIVALENCECQ-MINIMIZATION

remain in NP if we further restrict finite structures so as to satisfy any set of functional dependencies

A functional dependency (FD) is a sentence of the form

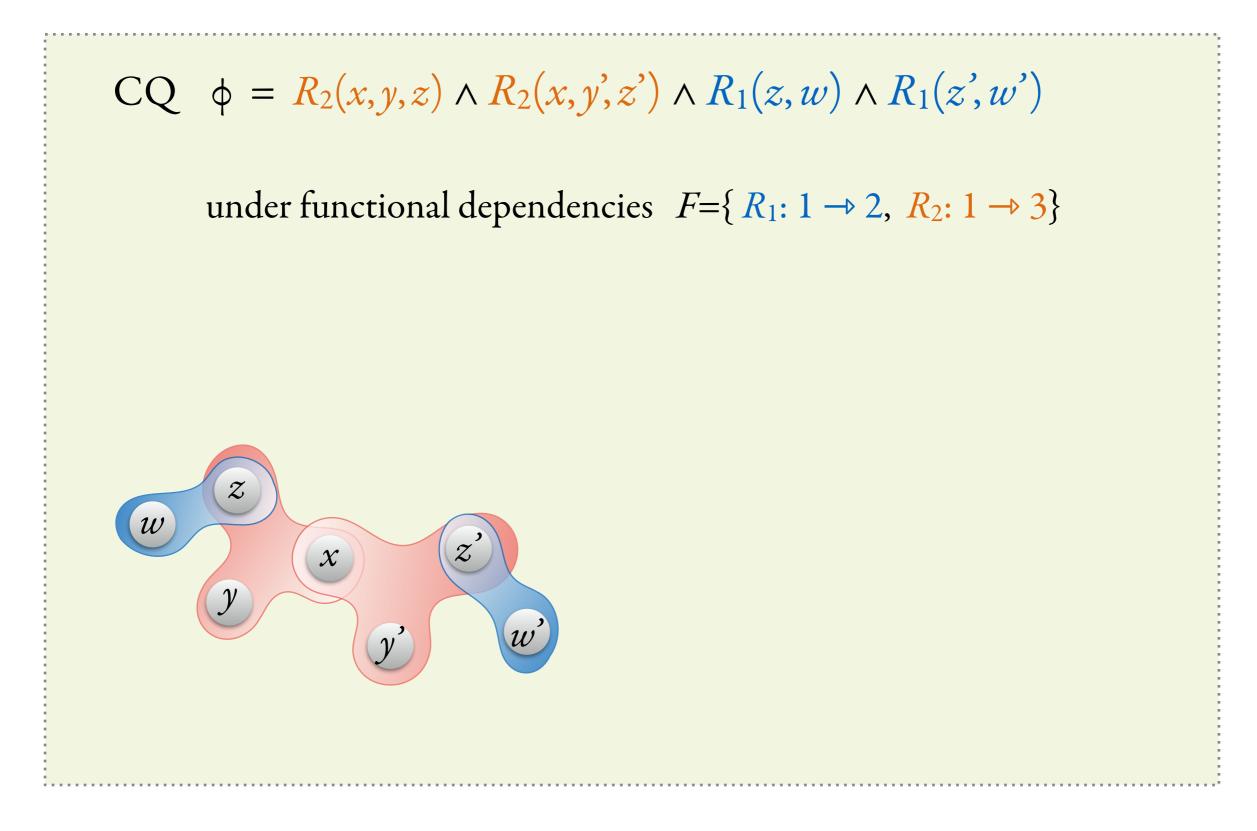
$$F = \forall \dots R(x_1, \dots, x_n) \land R(x_1, \dots, x_n') \land \bigwedge_j (x_{ij} = x_{ij}') \Rightarrow (x_i = x_i')$$

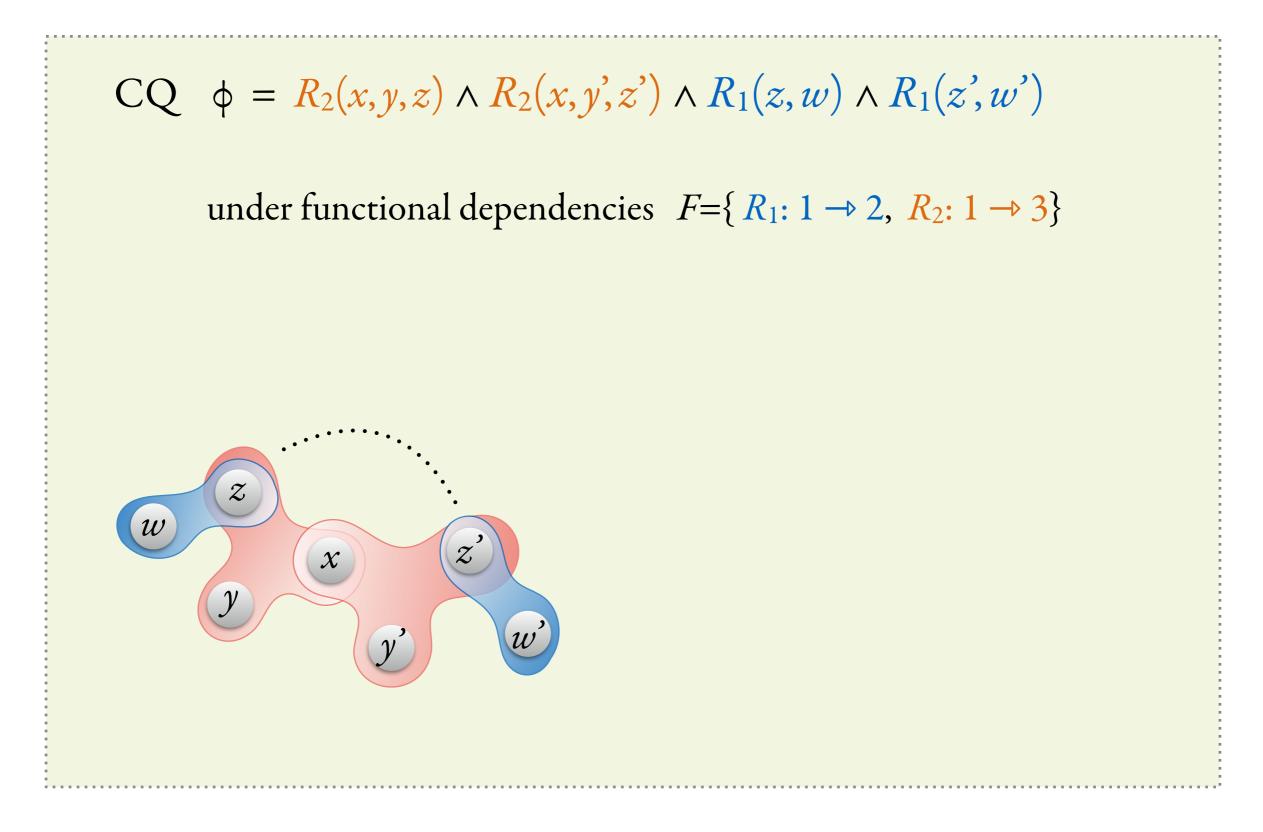
All the previous problems:

Modify the canonical structure S_{ϕ} ...

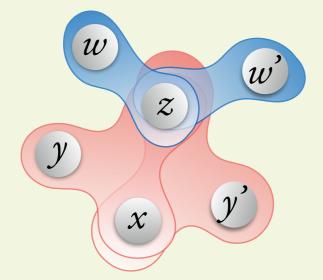
• CQ-CONTAINMENT • CQ-EQUIVALENCE • CQ-MINIMIZATION

remain in NP if we further restrict finite structures so as to satisfy any set of functional dependencies

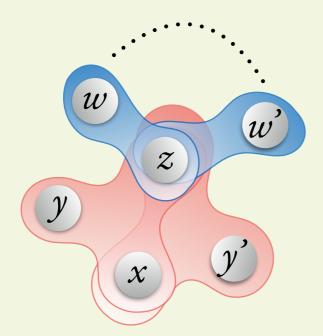




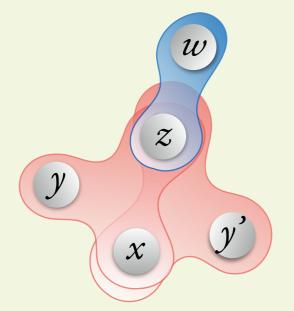
under functional dependencies $F = \{ R_1 : 1 \rightarrow 2, R_2 : 1 \rightarrow 3 \}$

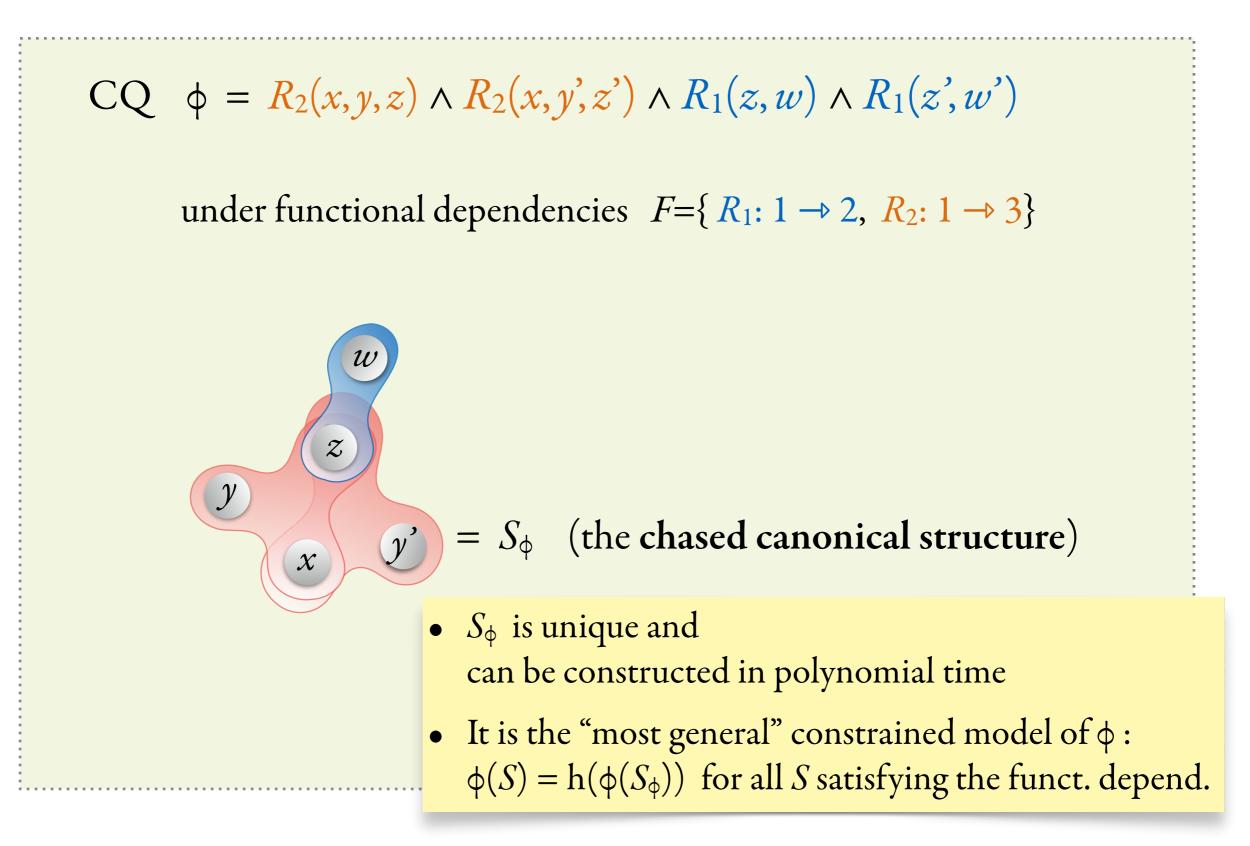


under functional dependencies $F = \{ R_1 : 1 \rightarrow 2, R_2 : 1 \rightarrow 3 \}$



under functional dependencies $F = \{ R_1 : 1 \rightarrow 2, R_2 : 1 \rightarrow 3 \}$





$$\varphi \in CQ$$

$$FD's F=\{fd_1, ..., fd_n\}$$

$$chase$$

$$chase$$

$$chase_F(\varphi) \in CQ$$

The static analysis problems restricted to FD's can now be also shown in NP

- CQ-Containment $\phi \subseteq_F \psi$ iff $chase_F(\phi) \subseteq chase_F(\psi)$
- CQ-Equivalence $\phi \equiv_F \psi$ iff $chase_F(\phi) \equiv chase_F(\psi)$
- CQ-Minimization ϕ is minimal wrt structures verifying F iff chase_F(ϕ) is minimal