Day 4: CQ ECI 2015

Buenos Aires

Fundamentos logicos de bases de datos

Diego Figueira Gabriele Puppis

CNRS LaBRI

@ i



Trading expressiveness for efliciency

expressiveness efficiency

Alternation of quantifiers significantly affects complexity

(recall that evaluation of QBF is PSPACE-complete: Vx 3y Vz Jw ... ).

What happens if we disallow V and = ?
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N

LOGSPACE < PTIME € NP € PSPACE < EXPTIME

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g. a colouring)

Examples:

¢ 3-COLORABILITY: Given a graph G, can we assign a colour from {R,G,B} to each node

so that adjacent nodes have always different colours ?

e SAT: Given a propositional formula, e.g. (p Vq V) A(mp Vs) A (as V ap),
can we assign a truth value to each variable so that the formula becomes true ?

e MONEY-CHANGE: Given an amount of money A and a set of coins {B1, ..., B,},
can we find a subset § C {Bjy, ..., B,} such that Y S =42
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The class NP

LOGSPACE < PTIME € NP € PSPACE < EXPTIME

N

NP = Problems whose solutions can be witnessed by a certificate
to be guessed and checked in polynomial time (e.g.a colouring)

Olalalb|b| o]0 Initial configuration

q0
Non-deterministic transitions

() () () |0|blalb|b|0]|0

qu Many paths, each has length

: bounded by a polynomial
() O QO () @ Final

. A solution exists if there is
configuration

at least a successful path.
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Question

Consider:  Positive FO = FO without Vv,

Eg ¢=3x3y3z. (Elx,y) VE(32)) A (y=2V E(x, 2))

What is the complexity of evaluating Positive FO on graphs ?



Question

Consider:  Positive FO = FO without V,—

Eg ¢=3x3y3z. (Elx,y) VE(32)) A (y=2V E(x, 2))

What is the complexity of evaluating Positive FO on graphs ?

Solution

This is in NP:  Given ¢ and G=(V, E)
it suffices to guess a bindinga: {x, 7,2, ... } > V
and then verity that the formula holds.



Conjunctive %eries

Def. . ”
CQ = FO without v,—,V

Eg:  &(x,y) = 3z. (Parent(x, z) A Parent(z, y))

Usual notation: “Grandparent(X.Y) : — Parent(X,Z), Parent(Z,Y)”
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Conjunctive %eries

Def.
CQ = FO without V,—,V

»

Normal form: “ I xi, ..., x,. d(x1, ..., X5)

--------------------------------------------------------------

Eg:  &(x,y) = 3z. (Parent(x, z) A Parent(z, y))

Usual notation: “Grandparent(X,Y) : — Parent(X,Z), Parent(Z,Y)”

It corresponds to positive 5
“SELECT-FROM-WHERE” SQL queries :
Select ... :

It corresponds to “m-o-x” RA queries

From ... : ax(oz(Ry x--x Ry))
. A
Where % e no negation

....... no negation or disjunction



Homomorphisms

Homomorphism between structures S=(V,R1,...,R,) and S’=(V",R1,...R,)

isa function h:JV — 7 such that
(X1, ..xn) € R; implies (h(x1),....h(x,)) € R/
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Canonical structures

Canonical structure Sy of a Conjunctive Query ¢ has
e variables as nodes
o tuples (x1,....,x,) € R;
for all atomic sub-formulas R;(x1,...,x,) of ¢
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Canonical structures

Canonical structure S; of a Conjunctive Query ¢ has
e variables as nodes
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Canonical structures

Canonical structure S; of a Conjunctive Query ¢ has
e variables as nodes
o tuples (x1,....,x,) € R;
for all atomic sub-formulas R;(x1,...,x,) of ¢

Fact 3:
G”E¢ implies 3h: Gy -, G”

Fact1: GyE Fact2: h(Gs) =




Evaluation via homomorphisms

-

Lemma. The evaluation ofa CQ ¢(x1, ..., x,) on S’ returns the set

$(8”) = {(h(x1), ., h(x,)) | h: S — 8’}

~

10



Evaluation via homomorphisms

Lemma. The evaluation ofa CQ ¢(x1, ..., x,) on S’ returns the set

$(8”) = {(h(x1), ., h(x,)) | h: S — 8’}

homomorphisms Gy — G~ ?

What is the result of &(G”) ?

---------------------------------------------------------------

Eg: &()= 33z, (E(oy) AE(2) A E(x.2))

-------------
.............
-----
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Evaluation via homomorphisms

[ Theorem. Evaluation of CQ isin NP (combined complexity) ]

Input: A CQ &(x1,....xs), agraph G, atuple (ay,...,4,)
Output: Is (a1,...,2,) € $(G) ?

11



Evaluation via homomorphisms

[ Theorem. Evaluation of CQ isin NP (combined complexity) ]

Input: ACQ ¢(x1,....x), agraph G, atuple (41,....4,) | [deas? :
Output: Is (a1,...,4,) € $(G) ?
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Evaluation via homomorphisms

[ Theorem. Evaluation of CQ isin NP (combined complexity) ]

Input: ACQ ¢(x1,....x), agraph G, atuple (41,....4,) | [deas? :
Output: Is (a1,...,4,) € $(G) ?

1. Guess h: Go— G

2. Check that it is a homomorphism

3. Output YES if (h(x1),....h(x,)) = (a1, ...,4,); NO otherwise.

11



Evaluation via homomorphisms

[ Theorem. Evaluation of CQ is NP-complete (combined complexity)]
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Evaluation via homomorphisms

[ Theorem. Evaluation of CQ is NP-complete (combined complexity)]

NP-complete problem: 3-COLORABILITY
Input: Agraph G

Output: Can we assign a colour from {R,G,B} to each node
so that adjacent nodes have always different colours ?

- K

Is there a homomorphism trom G to K3? ’ O
Q\O/
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Evaluation via homomorphisms

[ Theorem. Evaluation of CQ is NP-complete (combined complexity)]

NP-complete problem: 3-COLORABILITY
Input: Agraph G

Output: Can we assign a colour from {R,G,B} to each node
so that adjacent nodes have always different colours ?

- K
Is there a homomorphism trom G to K3? ’ ’ O
Q\O P

Reduction 3COL ~ CQ-EVAL: 1. Given G, builda CQ ¢ such that G4 = G.
2. Testif () € ¢(G).

12



Monotonicity and preservation theorems

-

, )
Lemma. Every CQ is monotone:

§C S’ implies ¢(S) C ¢(S’) )
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, )
Lemma. Every CQ is monotone:

§C S’ implies ¢(S) C ¢(S’) )

Proof: by closure under homomorphisms.
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Monotonicity and preservation theorems

(" , )
Lemma. Every CQ is monotone:

§C S’ implies ¢(S5) € ¢(S”) )

Proof: by closure under homomorphisms.

Q “The relation R has at most 2 elements” ¢ CQ
Q “There is a node connected to every other node” ¢ CQ

Q “The radius of the graph is 5” ¢ CQ



Monotonicity and preservation theorems

-

\_

N
Theorem. Ifan FO query ¢ is monotone

then ¢ € UCQ [Rossman '08])
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Monotonicity and preservation theorems

4 )
Theorem. Ifan FO query ¢ is monotone

then ¢ € UCQ [Rossman '08]/

\_

Finite unions of CQs

/z 3 AV fragment of FO

L —

Equally expressive, but
UCQ are less succinct

R ————

e One example of the few properties which still hold on finite structures.

e Proof in the finite is difhicult and independent.



Static analysis with CQs

The satisfiability problem for CQ is decidable...
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Static analysis with CQs

problem: CQ-CONTAINMENT

Input: Two CQs ¢,V
Output: Does ¢(S5) € Y(S) holds for every structure S ?
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[ Theorem. The containment problem for CQ is NP-complete ]
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Static analysis with CQs

problem: CQ-CONTAINMENT

Input: Two CQs ¢,V
Output: Does ¢(S5) € Y(S) holds for every structure S ?

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?
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Static analysis with CQs

problem: CQ-CONTAINMENT
Input: Two CQs ¢,V

Output: Does ¢(S5) € Y(S) holds for every structure S ?

Theorem. The containment problem for CQ is NP-complete

Question: Is this combined or data complexity?

Answer: None!
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Static analysis with CQs

problem: CQ-CONTAINMENT

Input: Two CQs ¢,V
Output: Does ¢(S5) € Y(S) holds for every structure S ?

Theorem. The containment problem for CQ is NP-complete

&(x1, ..., Xn) is contained in V(y1, ... ¥m) iff 1. 5 = 1
2. Thereis g: Sy — Ss
3. g(yz) = X; fOI‘ allz'

Question: Is this combined or data complexity? Answer: None!
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Static analysis with CQs

problem: CQ-CONTAINMENT

Input: Two CQs ¢,V
Output: Does ¢(S5) € Y(S) holds for every structure S ?

Theorem. The containment problem for CQ is NP-complete

&(x1, ..., Xn) is contained in V(y1, ... ¥m) iff 1. 5 = 1
2. Thereis g: Sy — Ss

Wh}ﬁ 3 g(yz) = X; fOI‘ allz’

Question: Is this combined or data complexity? Answer: None!
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Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1
2. Thereis g: Sy — S
3. g(%) = X; fOI' allz'
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2. Thereis g: Sy — S
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Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1

2. Thereis g: Sy — S
{ (h(x1), .. h(x)) | h:Se — S}
m— 3. g(y:;) =x; foralli

(=] Suppose VS &(S) € V()
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Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1

2. Thereis g: Sy — S
{(h(x1), .. h(x,)) | h: Sy — S}
/// 3 g()’z) = X; fOl‘ allz'

(=] Suppose VS &(S) € V() .
(g0, - 80)) | g: Sy — 83
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Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1
2. Thereis g: Sy — S

{ (h(x1), ey h(xn) ) | h: S¢ — S} -
S 3. g()’z) = X; for all ;

(=] Suppose VS &(S) € V() .

If there is h: Sy — § {(g01), - 80m) | g: Sy — S}
Then thereis g: Sy — S such that h(xi,....x,) = g(y1, ... ym)

17



Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1

2. Thereis g: Sy — S
{ (h(x1>, ey h(xn) ) | h: S¢ — S} :
I 3. g(y;) =x; foralli

(=] Suppose VS &(S) € V()

If there is h: S5 — S { (g0n)s o g() | 88y — 5}
Then thereis g: Sy — S such that h(xi,....x,) = g(y1, ... ym)

Take §= S84 and h = identity.

17



Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1

2. Thereis g: Sy — Ss
{ (h(x1), ... h(x,)) | h: Sy — S/}

\¥ﬁ\ — 3. g(y;) =x; foralli
(=] Suppose VS &(S) € V()
If thereis h: So — § (01 - 80)) | 838y — S
Then there is g: Sy — § such that h(xi,...,x,) = g(y1, ..., yn)

Take § =38 and h =identiry.

[&=] Consider (v1,....0m) € O(S)
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Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1

2. Thereis g: Sy — Ss

{ (h(x1), ... h(x,)) | h:8y — S}

[=] Suppose VS ¢(S) C \[/(S)

If thereis h: So — § { (80). - 80)) | 828y — S}
Then there is g: Sy — § such that h(xi,...,x,) = g(y1, ..., yn)
Take § =38 and h =identiry.

for some h: Sy — §

[&=] Consider (v1,....0m) € O(S)
Since g(y1, .o, Ym) = (K15 o0 X), then (v1,...,v,) = h(x1, ... x2) = h(g(y1, oo ym))



Static analysis with CQs

&(x1, ..0r X) is contained in V(y1, ..o, V) iff 1. 5 = 1

2. Thereis ¢: Sy — S

{(h(xl), . h(x,)) | h:Ss —>S} SEE STy \
— 3. g(y:) =x; forall:

(=] Suppose VS &(S) € V()

If thereis h: So — § (g0 80m)) | g: 8y — S}

Then there is g: Sy — § such that h(xi,...,x,) = g(y1, ..., yn)

Take § =38 and h =identiry.

for some h: Sy — §

[&=] Consider (v1,....0m) € O(S)

Since g(y1, .o, Ym) = (K15 o0 X), then (v1,...,v,) = h(x1, ... x2) = h(g(y1, oo ym))
hg isahomomorphism from Sy to S.  Hence, (v1, ..., ) € W(G).



Static analysis with CQs

problem: CQ-EQUIVALENCE

Input: Two CQs ¢,V
Output: Does ¢(S) =(S) holds for every S ?

(we write “o={”)
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problem: CQ-EQUIVALENCE

Input: Two CQs ¢,V
Output: Does ¢(S) =V(S) holds forevery 2 (we write “¢o={”)

[ Theorem. The equivalence problem for CQ is NP-complete ]
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Static analysis with CQs

problem: CQ-EQUIVALENCE

Input: Two CQs ¢,V
Output: Does ¢(S) =V(S) holds forevery 2 (we write “¢o={”)

[ Theorem. The equivalence problem for CQ is NP-complete ]

Amounts to testing it G4 and Gy are hom-equivalent
(i.e. there are homomorphisms in both senses)
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Static analysis with CQs

problem: CQ-MINIMIZATION

Input: A CQ ¢
Output: Is there a “smaller” CQ WV such that y=¢ 2
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Static analysis with CQs

problem: CQ-MINIMIZATION

Input: A CQ ¢
Output: Is there a “smaller” CQ WV such that y=¢ 2

[ Theorem. The minimization problem for CQ is NP-complete ]
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Static analysis with CQs

problem: CQ-MINIMIZATION

Input: A CQ ¢
Output: Is there a “smaller” CQ WV such that y=¢ 2

[ Theorem. The minimization problem for CQ is NP-complete ]

Amounts to testing if there is a non-injective endomorphism

g: Gy — Gy

or, equally, if the smallest graph hom-equivalent to G4 is Gy itselt
(we say that Gy is a core)

19



Adding functional dependencies

A functional dependency is a sentence of the form

Yy = V.. R(xl,...,xn) /\R(Xl,,---,xn)) A /\j(xij:xl'j)) = (xz:x/)
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Adding functional dependencies

A functional dependency is a sentence of the form

Y = V... R(x1,..0,%0) AR(X1,sx0”) A /\j(xij:xij)) = (xi=x")

Example: In the following relation we may enforce the functional dependency

Y = V9,297 Rxy2) ARX,y,Z)A(x=x") = (y=%)

Agent Name Drives
007 James Bond Aston Martin
200 Mr Smith Cadillac
201 Mrs Smith Mercedes

3 Jason Bourne BMW




Adding functional dependencies

A functional dependency is a sentence of the form

Y = V... R(x1,..0,%0) AR(X1,sx0”) A /\j(xij:xij)) = (xi=x")

Example: In the following relation we may enforce the functional dependency

Y = V9,297 Rxy2) ARX,y,Z)A(x=x") = (y=%)

Agent Name Drives
We often abbreviate this with
007 James Bond Aston Martin R1—2
200 Mr Smith Cadillac
2071 Mrs Smith Mercedes
3 Jason Bourne BMW

20



Adding functional dependencies

A functional dependency (FD) is a sentence of the form

F =Yoo Rt o) ARG s’ ) AN (x5=57) = (=4

All the previous problems:

e CQ-CONTAINMENT
« CQ-EQUIVALENCE
e CQ-MINIMIZATION

remain in NP if we further restrict finite structures
so as to satisty any set of functional dependencies
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Adding functional dependencies

A functional dependency (FD) is a sentence of the form

F =Y Rt ) ARG s’ ) AN (x5=557) = (=4

N

All the previous problems: v Modity the canonical structure Ss ...

e CQ-CONTAINMENT
« CQ-EQUIVALENCE
e CQ-MINIMIZATION

remain in NP if we further restrict finite structures
so as to satisty any set of functional dependencies

21



Adding functional dependencies
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Adding functional dependencies

CQ ¢ = Ri(x,9,2) A Rao(x,9,2") A Ri(z,w) A Ri(2,w’)

under functional dependencies F={ Ri: 1 =2, R»: 1 — 3}

e\ ) = S (the chased canonical structure)

e Sy isunique and
can be constructed in polynomial time

o Itis the “most general” constrained model of ¢ :

.................................................. &(S) = h(d(Ss)) for all § satisfying the funct. depend.
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Adding functional dependencies

b e CQ chase
FD’s F={fd1, ..., folu} P chaser(9) € CQ
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Adding functional dependencies

b e CQ chase
FD’s F={fd\, ..., fin} P chaser(9) € CQ

The static analysis problems restricted to FD’s can now be also shown in NP

e CQ-Containment ¢ CrV iff chaser(d) € chaser(V)
o CQ—Equivalence b =pV iff chaser(d) = chaser(V)

e CQ-Minimization ¢ is minimal wrt

. ift chaser(®) is minimal
structures verifying F ()

23



