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How do FO properties distribute among ALL structures?  

Or equally, what percentage of graphs verify a given FO sentence?
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 Theorem.  
                    For every  FO sentence φ,  μ∞( φ )  is either  0  or  1 .

[Glebskii et al. ’69, Fagin ’76]

Examples: 

•  φ = “there is a triangle”                                 μ3(φ )  =  1/|C3|      μ3n(φ )  ≥ 1 – (1– 1/|C3|)n  →  1

• φ = “there no 5-clique”                                                                        μ∞( φ ) = 0

• φH = “there is an occurrence of H as induced sub-graph”              μ∞( φH ) = 1

• φ = “even number of edges”                        

• φ = “even number of nodes”                        

• φ = “more edges than nodes”                                                             μ∞( φ ) = 1 
                                                                                                                   ( yet not FO-definable! )

μ∞(φ ) = 1/2

μ∞( φ )  not even defined
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2 cases

a)  There is G    G ⊨ δk ⋀ φ   ⇒  (by Fact 1)  ∀ H  :   If  H ⊨ δk  then  H ⊨ φ  

                                                                                                                  Thus,     μ∞( δk ) ≤ μ∞( φ ) 
                                                ⇒  (by Fact 2)  μ∞( δk ) = 1,    hence  μ∞( φ ) = 1

b)  There is no  G ⊨ δk ⋀ φ     ⇒   (by Fact 2)  there is G ⊨ δk ,  
                                                      ⇒   G ⊨ δk  ⋀ ¬φ    ⇒   (by case a)  μ∞( ¬φ ) = 1
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Query evaluation on large databases: 

Don’t bother evaluating an FO query, 
it’s either true or false with high probability!
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Does the 0-1 Law apply to real-life databases? 

Not quite:   database  constraints  easily spoil Extension Axiom. 

Consider: 

• functional constraint  ∀ x, x’, y, y’   ( E(x,y) ⋀  E(x,y’) ⇒ y = y’ )  ⋀   
                                                                 ( E(x,y) ⋀  E(x’,y) ⇒ x = x’ )                (E is a permutation) 

• FO query   φ  =  ¬∃ x  E(x, x)  

Probability that a permutation E satisfies φ  =  !n/n!  →  e -1  =  0.3679…

The 0-1 Law is a tool for proving expressiveness results, 
not a statement on the real-life probability of queries being non-empty.



Locality

Idea: First order logic can only express “local” properties



Locality

Idea: First order logic can only express “local” properties

Local = properties of nodes which are close to one another
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Not (n+2)-equivalent yet they have the same 2n–1 balls.



Gaifman locality

What about queries?

Eg: Is reachability expressible in FO?

What about equivalence on the same structure?  
When are two points indistinguishable?



Gaifman locality

a1 a2
S:

S [(a1, …, an), r]  =  induced substructure of S  
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For any φ ∈ FO of quantifier rank k and structure S,  
                                 S [(a1, …, an), r]  ≅ S [(b1, …, bn), r]   for  r = 3k+1  
                                                            implies 
                             (a1, …, an) ∈ φ(S)   iff    (b1, …, bn) ∈ φ(S)

Idea: If the neighbourhoods of two tuples are the same,  
           the formula cannot distinguish them.

S [(a1, …, an), r]  =  induced substructure of S  
                                     of elements at distance ≤ r of some ai in the Gaifman graph.
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Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:

Gaifman-locality talks about 
definability in one structure

Hanf-locality relates two 
different structures, 

Inside S, 
3k+1-balls of (a1,…,an) = 3k+1-balls of (b1,…,bn)

(a1,…,an) indistinguishable from (b1,…,bn) 
through formulas of qr ≤ k

⇒

S1 and S2 have the same # of balls 
of radius 3k, up to threshold k⇒

They verify the same  
sentences of qr ≤ k



Gaifman locality

Schema to show non-expressibility results is, as usual:

A query Q(x1,…,xn) is not FO-definable if: 

               for every k there is a structure Sk and (a1, …, an), (b1, …, bn) such that 

                        • Sk [(a1, …, an), 3k+1] ≅ Sk [(b1, …, bn), 3k+1] 

                        • (a1, …, an) ∈ Q(Sk),   (b1, …, bn) ∉ Q(Sk)

Proof: If Q were expressible with a formula of quantifier rank k, 

             then  (a1, …, an) ∈ Q(Sk)  iff  (b1, …, bn) ∈ Q(Sk).    Absurd!
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Gaifman locality

Reachability is not FO definable.

…

…

And Sk [(a1, a2), 3k+1]  ≅ Sk [(b1, b2), 3k+1]

2·3k+1

2·3k+1

For every k, we build Sk :

However,  
           • b2 is reachable from b1, 
                • a2 is not reachable from a1.

Your turn! Q(x) = “x is a vertex separator”
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Basic local sentence:

∃ x1 , …, xn

r

r r
x1

x2 xn

⋀ ψ1(x1) ⋀  · · ·  ⋀ ψn(xn)

disjoint r-balls around x1, …, xn

. . .

Gaifman Theorem:   Every FO sentence is equivalent to  
                                        a boolean combination of basic local sentences.

r-local formulas

Inside  ψi(xi)  we interpret 
∃y . φ  as  ∃y . d(xi, y) ≤ r ⋀ φ
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Recap

FO sentences with quantifier rank n

winning strategies for Spoiler in the n-round EF game
=EF games

FO sentences are almost always true or almost always false0-1 Law

FO sentences with quantifier rank n

counting 3n sized balls up to n
=Hanf locality

Queries of quantifier rank n output tuples closed under 3n+1 balls.Gaifman locality

An FO sentence can only say  

       “there are some points at distance ≥2r  

         whose r-balls are isomorphic to certain structures” 

or a boolean combination of that.

Gaifman Theorem
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