Fundamentos lógicos de bases de datos
(Logical foundations of databases)

Diego Figueira
Gabriele Puppis

CNRS LaBRI
A different perspective: a coarser view on expressiveness...
A different perspective: a coarser view on expressiveness...

How do FO properties distribute among ALL structures?

Or equally, what percentage of graphs verify a given FO sentence?
\[\mu_n(P) = \text{“the probability that a graph with } n \text{ nodes satisfies property } P” \]
$\mu_n(P) = \text{“the probability that a graph with } n \text{ nodes satisfies property } P\text{”}$

Uniform distribution

(each pair of nodes has an edge with probability $\frac{1}{2}$)
\(\mu_n(P) = \text{“the probability that a graph with } n \text{ nodes satisfies property } P \text{”} \)

\[C_n = \{ \text{graphs with } n \text{ nodes} \} \]

\[\mu_n(P) = \frac{| \{ G \in C_n \mid G \models P \} |}{| C_n |} = \frac{2^{n^2}}{2^{n^2}} \]
\(\mu_n(P) = \) “the probability that a graph with \(n \) nodes satisfies property \(P \)”

\[C_n = \{ \text{graphs with } n \text{ nodes} \} \]

\[\mu_n(P) = \frac{|\{G \in C_n | G \models P\}|}{|C_n|} = \frac{2^{n^2}}{2^{3^2}} \]

E.g. for \(P = \) “the graph is complete”

\[\mu_3(P) = \frac{1}{|C_3|} = \frac{1}{2^{3^2}} \]
0-1 Law

\[\mu_n(P) = \text{“the probability that a graph with } n \text{ nodes satisfies property } P \text{”} \]

\[C_n = \{ \text{graphs with } n \text{ nodes} \} \]

\[\mu_n(P) = \frac{|\{G \in C_n \mid G \models P\}|}{|C_n|} = \frac{2^{n^2}}{2^n} \]

\[\mu_\infty(P) = \lim_{n \to \infty} \mu_n(P) \]

Uniform distribution
(each pair of nodes has an edge with probability \(\frac{1}{2} \))

E.g. for \(P = \text{“the graph is complete”} \)

\[\mu_3(P) = \frac{1}{|C_3|} = \frac{1}{2^{3^2}} \]
Theorem. [Glebskii et al. ’69, Fagin ’76]

For every *FO sentence* ϕ, $\mu_\infty(\phi)$ is either 0 or 1.
Theorem. [Glebskii et al. ’69, Fagin ’76]

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Examples:

- $\phi = “there is a triangle”$
 \[\mu_3(\phi) = \frac{1}{|C_3|} \quad \mu_{3n}(\phi) \geq 1 - \left(1 - \frac{1}{|C_3|}\right)^n \to 1 \]
0-1 Law

Theorem. [Glebskii et al. ’69, Fagin ’76]

For every FO sentence \(\phi \), \(\mu_\infty(\phi) \) is either 0 or 1.

Examples:

- \(\phi = “\text{there is a triangle}” \)

 \[\mu_3(\phi) = \frac{1}{|C_3|} \quad \mu_{3n}(\phi) \geq 1 - (1 - \frac{1}{|C_3|})^n \to 1 \]

- \(\phi = “\text{there no 5-clique}” \)

 \[\mu_\infty(\phi) = 0 \]
0-1 Law

Theorem. [Glebskii et al. ’69, Fagin ’76]

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Examples:

- $\phi =$ “there is a triangle”
 \[\mu_3(\phi) = \frac{1}{|C_3|} \quad \mu_{3n}(\phi) \geq 1 - (1 - \frac{1}{|C_3|})^n \rightarrow 1 \]

- $\phi =$ “there no 5-clique”
 \[\mu_\infty(\phi) = 0 \]

- $\phi_H =$ “there is an occurrence of H as induced sub-graph”
 \[\mu_\infty(\phi_H) = 1 \]
0-1 Law

Theorem. [Glebskii et al. ’69, Fagin ’76]
For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Examples:

- $\phi =$ “there is a triangle”

 $\mu_3(\phi) = \frac{1}{|C_3|}$

 $\mu_3n(\phi) \geq 1 - (1 - \frac{1}{|C_3|})^n \to 1$

- $\phi =$ “there no 5-clique”

- $\phi_H =$ “there is an occurrence of H as induced sub-graph”

 $\mu_\infty(\phi_H) = 1$

- $\phi =$ “even number of edges”

- $\phi =$ “even number of nodes”

Your turn!
Theorem. \[\text{[Glebskii et al. ’69, Fagin ’76]}\]

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Examples:

- $\phi =$ “there is a triangle”
 \[\mu_3(\phi) = \frac{1}{|C_3|} \quad \mu_{3n}(\phi) \geq 1 - (1 - \frac{1}{|C_3|})^n \to 1\]
- $\phi =$ “there no 5-clique”
 \[\mu_\infty(\phi) = 0\]
- $\phi_H =$ “there is an occurrence of H as induced sub-graph”
 \[\mu_\infty(\phi_H) = 1\]
- $\phi =$ “even number of edges”
 \[\mu_\infty(\phi) = \frac{1}{2}\]
- $\phi =$ “even number of nodes”
 $\mu_\infty(\phi)$ not even defined

Your turn!
Theorem. [Glebskii et al. ’69, Fagin ’76]

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Examples:

• $\phi =$ “there is a triangle”
 \[\mu_3(\phi) = \frac{1}{|C_3|}, \quad \mu_{3n}(\phi) \geq 1 - (1 - \frac{1}{|C_3|})^n \rightarrow 1 \]

• $\phi =$ “there no 5-clique”
 \[\mu_\infty(\phi) = 0 \]

• $\phi_H =$ “there is an occurrence of H as induced sub-graph”
 \[\mu_\infty(\phi_H) = 1 \]

• $\phi =$ “even number of edges”

• $\phi =$ “even number of nodes”

• $\phi =$ “more edges than nodes”
 \[\mu_\infty(\phi) = \frac{1}{2} \]

Your turn!

• $\phi =$ “not even defined”
 \[\mu_\infty(\phi) \text{ not even defined} \]

• $\phi =$ “yet not FO-definable!”
 \[\mu_\infty(\phi) = 1 \]
0-1 Law

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Let $k =$ quantifier rank of ϕ

$$\delta_k = \forall x_1, \ldots, x_k \forall y_1, \ldots, y_k \exists z \land_{i,j} x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$

(Extension Axiom)
0-1 Law

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Let $k =$ quantifier rank of ϕ

$$\delta_k = \forall x_1, \ldots, x_k \forall y_1, \ldots, y_k \exists z \wedge_{i,j} x_i \neq y_j \wedge E(x_i, z) \wedge \neg E(y_j, z)$$

(Extension Axiom)

Fact 1: If $G \models \delta_k \wedge H \models \delta_k$ then

Duplicator survives k rounds on G, H
For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Let $k = \text{quantifier rank of } \phi$

\[
\delta_k = \forall x_1, \ldots, x_k \forall y_1, \ldots, y_k \exists z \ (i,j) \ x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)
\]

(Extension Axiom)

Fact 1: If $G \models \delta_k \land H \models \delta_k$ then Duplicator survives k rounds on G, H

Fact 2: $\mu_\infty(\delta_k) = 1$

(δ_k is almost surely true)
For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Let $k = \text{quantifier rank of } \phi$

$$\delta_k = \forall x_1, ..., x_k \forall y_1, ..., y_k \exists z \ \land_{i,j} x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$

(Extension Axiom)

Fact 1: If $G \models \delta_k \land H \models \delta_k$ then
Duplicator survives k rounds on G, H

Fact 2: $\mu_\infty(\delta_k) = 1$
(δ_k is almost surely true)

a) There is $G \models \delta_k \land \phi$ \Rightarrow (by Fact 1) $\forall H$: If $H \models \delta_k$ then $H \models \phi$

Thus, $\mu_\infty(\delta_k) \leq \mu_\infty(\phi)$

\Rightarrow (by Fact 2) $\mu_\infty(\delta_k) = 1$, hence $\mu_\infty(\phi) = 1$
0-1 Law

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1.

Let $k = \text{quantifier rank of } \phi$

$$\delta_k = \forall x_1, ..., x_k \forall y_1, ..., y_k \exists z \ (i,j) x_i \neq y_j \land E(x_i, z) \land \neg E(y_j, z)$$

(Extension Axiom)

Fact 1: If $G \models \delta_k \land H \models \delta_k$ then
Duplicator survives k rounds on G, H

Fact 2: $\mu_\infty(\delta_k) = 1$
\hspace{1cm} (δ_k is almost surely true)

2 cases

\begin{align*}
a) \quad & \text{There is } G \models \delta_k \land \phi \quad \Rightarrow \text{ (by Fact 1) } \forall H: \text{ If } H \models \delta_k \text{ then } H \models \phi \\
& \Rightarrow \text{ (by Fact 2) } \mu_\infty(\delta_k) = 1, \text{ hence } \mu_\infty(\phi) = 1
\end{align*}

b) \quad & \text{There is no } G \models \delta_k \land \phi \quad \Rightarrow \text{ (by Fact 2) there is } G \models \delta_k, \\
& \Rightarrow G \models \delta_k \land \neg \phi \quad \Rightarrow \text{ (by case a) } \mu_\infty(\neg \phi) = 1
For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1, and this depends on whether $\text{RADO} \models \phi$.

RADO =
For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1, and this depends on whether $\text{RADO} \models \phi$.

Each pair of nodes i, j is connected with probability $1/2$.

$\text{RADO} =$
0-1 Law

For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1, and this depends on whether $RADO \models \phi$

RADO =

each pair of nodes i, j is connected if i-th bit of j is 1

each pair of nodes i, j is connected with probability $1/2$
For every FO sentence ϕ, $\mu_\infty(\phi)$ is either 0 or 1, and this depends on whether $\text{RADO} \models \phi$.

\text{RADO} = \text{the unique graph that satisfies } \delta_k \text{ for all } k.

Each pair of nodes i, j is connected with probability $1/2$. Each pair of nodes i, j is connected if the i-th bit of j is 1.
Theorem. The problem of deciding whether an FO sentence is \textit{almost surely true} ($\mu_\infty = 1$) is PSPACE-complete. [Grandjean ’83]
Theorem. The problem of deciding whether an FO sentence is *almost surely true* \((\mu_\infty = 1) \) is PSPACE-complete. [Grandjean ’83]
Theorem. The problem of deciding whether an FO sentence is *almost surely true* ($\mu_\infty = 1$) is PSPACE-complete. [Grandjean ’83]
Theorem. The problem of deciding whether an FO sentence is *almost surely true* ($\mu_\infty = 1$) is PSPACE-complete.

[Grandjean ’83]

Query evaluation on large databases:
Don’t bother evaluating an FO query, it’s either true or false with high probability!
Does the 0-1 Law apply to real-life databases?

Not quite: database constraints easily spoil Extension Axiom.
0-1 Law

Does the 0-1 Law apply to real-life databases?

Not quite: database constraints easily spoil Extension Axiom.

Consider:

- functional constraint $\forall x, x', y, y' \left((E(x,y) \land E(x',y') \Rightarrow y = y') \land (E(x,y) \land E(x',y) \Rightarrow x = x') \right)$ (E is a permutation)

- FO query $\phi = \neg \exists x \ E(x,x)$
Does the 0-1 Law apply to real-life databases?
Not quite: database constraints easily spoil Extension Axiom.

Consider:

- functional constraint \(\forall x, x', y, y' \left(E(x,y) \land E(x',y) \Rightarrow y = y' \right) \land \left(E(x,y) \land E(x',y') \Rightarrow x = x' \right) \) (E is a permutation)

- FO query \(\phi = \neg \exists x \ E(x,x) \)

Probability that a permutation E satisfies \(\phi = \frac{!n}{n!} \to e^{-1} = 0.3679... \)
0-1 Law

Does the 0-1 Law apply to real-life databases?

Not quite: database *constraints* easily spoil Extension Axiom.

Consider:

- functional constraint $\forall x, x', y, y' \left((E(x,y) \land E(x,y') \Rightarrow y = y') \land \right.$

 $\left. (E(x,y) \land E(x',y) \Rightarrow x = x') \right)$ (E is a permutation)

- FO query $\phi = \neg \exists x \ E(x,x)$

Probability that a permutation E satisfies $\phi = \frac{!n}{n!} \rightarrow e^{-1} = 0.3679...$

The 0-1 Law is a tool for proving expressiveness results, not a statement on the real-life probability of queries being non-empty.
Idea: First order logic can only express “local” properties
Idea: First order logic can only express “local” properties

Local = properties of nodes which are close to one another
Definition. The **Gaifman graph** of a structure $S = (V, R_1, \ldots, R_m)$ is the **undirected** graph $G(S) = (V, E)$ where $E = \{ (u, v) \mid \exists (\ldots, u, \ldots, v, \ldots) \in R_i \text{ for some } i \}$.
Definition. The **Gaifman graph** of a structure $S = (V, R_1, \ldots, R_m)$ is the **undirected** graph $G(S) = (V, E)$ where $E = \{ (u, v) \mid \exists (\ldots, u, \ldots, v, \ldots) \in R_i \text{ for some } i \}$

<table>
<thead>
<tr>
<th>Agent</th>
<th>Name</th>
<th>Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>James Bond</td>
<td>Aston Martin</td>
</tr>
<tr>
<td>200</td>
<td>Mr Smith</td>
<td>Cadillac</td>
</tr>
<tr>
<td>201</td>
<td>Mrs Smith</td>
<td>Mercedes</td>
</tr>
<tr>
<td>3</td>
<td>Jason Bourne</td>
<td>BMW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aston Martin</td>
<td>UK</td>
</tr>
<tr>
<td>Cadillac</td>
<td>USA</td>
</tr>
<tr>
<td>Mercedes</td>
<td>Germany</td>
</tr>
<tr>
<td>BMW</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Hanf locality

Definition. The Gaifman graph of a structure $S = (V, R_1, ..., R_m)$ is the undirected graph $G(S) = (V, E)$ where $E = \{ (u, v) | \exists (..., u, ..., v, ...) \in R_i \text{ for some } i \}$

<table>
<thead>
<tr>
<th>Agent</th>
<th>Name</th>
<th>Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>James Bond</td>
<td>Aston Martin</td>
</tr>
<tr>
<td>200</td>
<td>Mr Smith</td>
<td>Cadillac</td>
</tr>
<tr>
<td>201</td>
<td>Mrs Smith</td>
<td>Mercedes</td>
</tr>
<tr>
<td>3</td>
<td>Jason Bourne</td>
<td>BMW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aston Martin</td>
<td>UK</td>
</tr>
<tr>
<td>Cadillac</td>
<td>USA</td>
</tr>
<tr>
<td>Mercedes</td>
<td>Germany</td>
</tr>
<tr>
<td>BMW</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Definition. The Gaifman graph of a structure $S = (V, R_1, \ldots, R_m)$ is the undirected graph $G(S) = (V, E)$ where $E = \{ (u, v) \mid \exists (\ldots, u, \ldots, v, \ldots) \in R_i \text{ for some } i \}$.
Hanf locality

- \(\text{dist}(u, v) = \text{distance} \) between \(u \) and \(v \) in the Gaifman graph
- \(S[u, r] = \text{ball} \) around \(u \) of radius \(r \) = sub-structure induced by \(\{v \mid \text{dist}(u, v) \leq r\} \)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Name</th>
<th>Drives</th>
<th>Car</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>James Bond</td>
<td>Aston Martin</td>
<td>Aston Martin</td>
<td>UK</td>
</tr>
<tr>
<td>200</td>
<td>Mr Smith</td>
<td>Cadillac</td>
<td>Cadillac</td>
<td>USA</td>
</tr>
<tr>
<td>201</td>
<td>Mrs Smith</td>
<td>Mercedes</td>
<td>Mercedes</td>
<td>Germany</td>
</tr>
<tr>
<td>3</td>
<td>Jason Bourne</td>
<td>BMW</td>
<td>BMW</td>
<td>Germany</td>
</tr>
</tbody>
</table>

\[
\text{dist}(u, v) = \text{distance} \quad \text{between} \quad u \quad \text{and} \quad v \quad \text{in the Gaifman graph}
\]
\[
S[u, r] = \text{ball} \quad \text{around} \quad u \quad \text{of radius} \quad r \quad = \text{sub-structure induced by} \quad \{v \mid \text{dist}(u, v) \leq r\}
\]
Hanf locality

- \(\text{dist}(u, v) = \text{distance} \) between \(u \) and \(v \) in the Gaifman graph
- \(S[u, r] = \text{ball around} \ u \ \text{of radius} \ r = \text{sub-structure induced by} \ \{ v \mid \text{dist}(u, v) \leq r \} \)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Name</th>
<th>Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>James Bond</td>
<td>Aston Martin</td>
</tr>
<tr>
<td>200</td>
<td>Mr Smith</td>
<td>Cadillac</td>
</tr>
<tr>
<td>201</td>
<td>Mrs Smith</td>
<td>Mercedes</td>
</tr>
<tr>
<td>3</td>
<td>Jason Bourne</td>
<td>BMW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aston Martin</td>
<td>UK</td>
</tr>
<tr>
<td>Cadillac</td>
<td>USA</td>
</tr>
<tr>
<td>Mercedes</td>
<td>Germany</td>
</tr>
<tr>
<td>BMW</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Hanf locality

- \(\text{dist}(u, v) = \text{distance} \) between \(u \) and \(v \) in the Gaifman graph
- \(S[u, r] = \text{ball} \) around \(u \) of radius \(r \) = sub-structure induced by \(\{ v | \text{dist}(u, v) \leq r \} \)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Name</th>
<th>Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>James Bond</td>
<td>Aston Martin</td>
</tr>
<tr>
<td>200</td>
<td>Mr Smith</td>
<td>Cadillac</td>
</tr>
<tr>
<td>201</td>
<td>Mrs Smith</td>
<td>Mercedes</td>
</tr>
<tr>
<td>3</td>
<td>Jason Bourne</td>
<td>BMW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aston Martin</td>
<td>UK</td>
</tr>
<tr>
<td>Cadillac</td>
<td>USA</td>
</tr>
<tr>
<td>Mercedes</td>
<td>Germany</td>
</tr>
<tr>
<td>BMW</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Hanf locality

- \(\text{dist}(u, v) = \text{distance} \) between \(u \) and \(v \) in the Gaifman graph
- \(S[u, r] = \text{ball} \) around \(u \) of radius \(r \) = sub-structure induced by \(\{ v | \text{dist}(u, v) \leq r \} \)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Name</th>
<th>Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>James Bond</td>
<td>Aston Martin</td>
</tr>
<tr>
<td>200</td>
<td>Mr Smith</td>
<td>Cadillac</td>
</tr>
<tr>
<td>201</td>
<td>Mrs Smith</td>
<td>Mercedes</td>
</tr>
<tr>
<td>3</td>
<td>Jason Bourne</td>
<td>BMW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aston Martin</td>
<td>UK</td>
</tr>
<tr>
<td>Cadillac</td>
<td>USA</td>
</tr>
<tr>
<td>u Mercedes</td>
<td>Germany</td>
</tr>
<tr>
<td>BMW</td>
<td>Germany</td>
</tr>
</tbody>
</table>

[Diagram of agent and car relationships]
Hanf locality

- \(\text{dist}(u, v) = \text{distance} \) between \(u \) and \(v \) in the Gaifman graph
- \(S[u, r] = \text{ball} \) around \(u \) of radius \(r = \) sub-structure induced by \(\{ v | \text{dist}(u, v) \leq r \} \)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Name</th>
<th>Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>007</td>
<td>James Bond</td>
<td>Aston Martin</td>
</tr>
<tr>
<td>200</td>
<td>Mr Smith</td>
<td>Cadillac</td>
</tr>
<tr>
<td>201</td>
<td>Mrs Smith</td>
<td>Mercedes</td>
</tr>
<tr>
<td>3</td>
<td>Jason Bourne</td>
<td>BMW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Car</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aston Martin</td>
<td>UK</td>
</tr>
<tr>
<td>Cadillac</td>
<td>USA</td>
</tr>
<tr>
<td>Mercedes</td>
<td>Germany</td>
</tr>
<tr>
<td>BMW</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Definition. Two structures S_1 and S_2 are **Hanf (r, t)-equivalent**

iff for each structure B, the two numbers

$$\# u \text{ s.t. } S_1 [u, r] \cong B \quad \# v \text{ s.t. } S_2 [v, r] \cong B$$

are *either the same* or *both* $\geq t$.
Hanf locality

Definition. Two structures S_1 and S_2 are **Hanf (r, t)-equivalent**

iff for each structure B, the two numbers

$$\#u \text{ s.t. } S_1[u, r] \cong B \quad \#v \text{ s.t. } S_2[v, r] \cong B$$

are either the same or both $\geq t$.

Example. S_1, S_2 are Hanf (1, 1)-equivalent iff they have the same balls of radius 1
Hanf locality

Definition. Two structures S_1 and S_2 are **Hanf (r,t)-equivalent** iff for each structure B, the two numbers

$$
\# u \text{ s.t. } S_1 [u, r] \cong B \quad \# v \text{ s.t. } S_2 [v, r] \cong B
$$

are either the same or both $\geq t$.

Example. S_1, S_2 are Hanf $(1, 1)$-equivalent iff they have the *same balls* of radius 1.
Hanf locality

Definition. Two structures S_1 and S_2 are **Hanf** (r, t)-equivalent

iff for each structure B, the two numbers

$$\#u \text{ s.t. } S_1[u, r] \cong B \quad \#v \text{ s.t. } S_2[v, r] \cong B$$

are either the same or both $\geq t$.

Example. K_n, K_{n+1} are **not** Hanf $(1, 1)$-equivalent
Hanf locality

Definition. Two structures S_1 and S_2 are **Hanf** (r, t) - equivalent iff for each structure B, the two numbers

$$\# u \text{ s.t. } S_1[u, r] \cong B \quad \# v \text{ s.t. } S_2[v, r] \cong B$$

are either the same or both $\geq t$.

Example. K_n, K_{n+1} are **not** Hanf $(1, 1)$ - equivalent
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]

Exercise: prove that acyclicity is not FO-definable (even on finite structures)
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]

Exercise: prove that *acyclicity* is not FO-definable (even on finite structures)
Hanf locality

Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]

Exercise: prove that *acyclicity* is not FO-definable (even on finite structures)
Exercise: prove that *acyclicity* is not FO-definable (even on finite structures)
Hanf locality

Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]

Exercise: prove that *acyclicity* is not FO-definable (even on finite structures)
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf(r, t)-equivalent, with $r = 3^n$ and $t = n$. [Hanf '60]

Exercise: prove that testing whether a binary tree is complete is not FO-definable.
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]

Exercise: prove that testing whether a binary tree is *complete* is not FO-definable
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$. [Hanf '60]
Theorem. \(S_1, S_2 \) are \(n \)-equivalent (they satisfy the same sentences with quantifier rank \(n \)) whenever \(S_1, S_2 \) are Hanf \((r, t)\)-equivalent, with \(r = 3^n \) and \(t = n \).

[Hanf '60]

Why so BIG?

Remember \(d_k(x, y) = \) “there is a path of length \(2^k \) from \(x \) to \(y \)”
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$. [Hanf '60]

Remember $d_k(x, y) =$ “there is a path of length 2^k from x to y”

$$d_0(x, y) = E(x, y), \text{ and}$$

$$d_k(x, y) = \exists z \left(d_{k-1}(x, z) \land d_{k-1}(z, y) \right)$$

$$qr(d_k) = k$$
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf (r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]

Why so BIG?

Remember $d_k(x, y) = “$there is a path of length 2^k from x to $y”$\)

\[
d_0(x, y) = E(x, y), \text{ and} \\
d_k(x, y) = \exists z \ (d_{k-1}(x, z) \land d_{k-1}(z, y))
\]

\[q_{r}(d_k) = k\]

2·2n + 1

2·2n
Theorem. S_1, S_2 are n-equivalent (they satisfy the same sentences with quantifier rank n) whenever S_1, S_2 are Hanf(r, t)-equivalent, with $r = 3^n$ and $t = n$.

[Hanf '60]

Why so BIG?

Remember $d_k(x, y) = \text{“there is a path of length } 2^k \text{ from } x \text{ to } y\text{”}$

$$d_0(x, y) = E(x, y), \text{ and}$$

$$d_k(x, y) = \exists z (d_{k-1}(x, z) \land d_{k-1}(z, y))$$

$qr(d_k) = k$

Not $(n+2)$-equivalent yet they have the same 2^n-1 balls.
Gaifman locality

What about queries?

Eg: Is reachability expressible in FO?

What about equivalence on the same structure?

When are two points indistinguishable?
Gaifman locality

\[S[(a_1, ..., a_n), r] = \text{induced substructure of } S \]

of elements at distance \(\leq r \) of some \(a_i \) in the Gaifman graph.
Gaifman locality

\[S[(a_1, ..., a_n), r] = \text{induced substructure of } S \]

of elements at distance \(\leq r \) of some \(a_i \) in the Gaifman graph.
Gaifman locality

\[S \left[(a_1, ..., a_n), r \right] = \text{induced substructure of } S \]

of elements at distance \(\leq r \) of some \(a_i \) in the Gaifman graph.
For any $\phi \in \text{FO}$ of quantifier rank k and structure S,

$$S[(a_1, \ldots, a_n), r] \cong S[(b_1, \ldots, b_n), r] \text{ for } r = 3^{k+1}$$

implies

$$(a_1, \ldots, a_n) \in \phi(S) \iff (b_1, \ldots, b_n) \in \phi(S)$$

Idea: If the neighbourhoods of two tuples are the same, the formula cannot distinguish them.
Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:

Hanf-locality relates two different structures,

Gaifman-locality talks about definability in one structure
Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:

Hanf-locality relates **two different structures**, while Gaifman-locality talks about definability in **one structure**.

Inside S,
\[3^{k+1} \text{-balls of } (a_1, \ldots, a_n) = 3^{k+1} \text{-balls of } (b_1, \ldots, b_n) \]
\[\Downarrow \]
\[(a_1, \ldots, a_n) \text{ indistinguishable from } (b_1, \ldots, b_n) \text{ through formulas of } qr \leq k \]
Gaifman locality vs Hanf locality

Difference between Hanf- and Gaifman-locality:

Hanf-locality relates **two different structures**,

- S_1 and S_2 have the same # of balls of radius 3^k, **up to threshold $k**
- \Downarrow
- They verify the same sentences of $qr \leq k$

Gaifman-locality talks about definability in **one structure**

- Inside S,

 3^{k+1}-balls of $(a_1,\ldots,a_n) = 3^{k+1}$-balls of (b_1,\ldots,b_n)

 \Downarrow

 (a_1,\ldots,a_n) indistinguishable from (b_1,\ldots,b_n) through **formulas** of $qr \leq k$
A query \(Q(x_1, \ldots, x_n) \) is not FO-definable if:

for every \(k \) there is a structure \(S_k \) and \((a_1, \ldots, a_n), (b_1, \ldots, b_n) \) such that

1. \(S_k [(a_1, \ldots, a_n), 3^{k+1}] \equiv S_k [(b_1, \ldots, b_n), 3^{k+1}] \)
2. \((a_1, \ldots, a_n) \in Q(S_k), \ (b_1, \ldots, b_n) \notin Q(S_k) \)

Proof: If \(Q \) were expressible with a formula of quantifier rank \(k \), then \((a_1, \ldots, a_n) \in Q(S_k) \) iff \((b_1, \ldots, b_n) \in Q(S_k) \). Absurd!
Reachability is not FO definable.

For every \(k \), we build \(S_k \):
Reachability is not FO definable.

For every k, we build S_k:
Reachability is not FO definable.

For every k, we build S_k:
Gaifman locality

Reachability is not FO definable.

For every k, we build S_k:
Gaifman locality

Reachability is not FO definable.

For every k, we build S_k:

And $S_k [(a_1, a_2), 3^{k+1}] \cong S_k [(b_1, b_2), 3^{k+1}]$
Gaifman locality

Reachability is not FO definable.

For every k, we build S_k:

And $S_k [(a_1, a_2), 3^{k+1}] \equiv S_k [(b_1, b_2), 3^{k+1}]$

However,

- b_2 is reachable from b_1,
- a_2 is not reachable from a_1.
Gaifman locality

Reachability is not FO definable.

For every k, we build S_k:

And $S_k [(a_1, a_2), 3^{k+1}] \equiv S_k [(b_1, b_2), 3^{k+1}]$

However,

- b_2 is reachable from b_1,
- a_2 is not reachable from a_1.

Your turn! $Q(x) = “x$ is a vertex separator”
Gaifman Theorem

Basic local sentence:

$$\exists x_1, \ldots, x_n \quad r \quad x_1 \quad r \quad x_2 \quad \cdots \quad r \quad x_n \quad \land \psi_1(x_1) \land \cdots \land \psi_n(x_n)$$
Gaifman Theorem

Basic local sentence:

$$\exists x_1, \ldots, x_n \quad \land \psi_1(x_1) \land \cdots \land \psi_n(x_n)$$

disjoint r-balls around x_1, \ldots, x_n
Gaifman Theorem

Basic local sentence:

$$\exists x_1, \ldots, x_n$$

$$\exists x_1, \ldots, x_n$$

$$r$$-local formulas

$$\land \psi_1(x_1) \land \cdots \land \psi_n(x_n)$$

disjoint $$r$$-balls around $$x_1, \ldots, x_n$$
Gaifman Theorem

Basic local sentence:

$$\exists x_1, \ldots, x_n \wedge \psi_1(x_1) \wedge \cdots \wedge \psi_n(x_n)$$

disjoint r-balls around x_1, \ldots, x_n

Inside $\psi_i(x_i)$ we interpret $\exists y. \phi$ as $\exists y. d(x_i, y) \leq r \wedge \phi$
Gaifman Theorem

Basic local sentence:

\[\exists x_1, \ldots, x_n \\land \psi_1(x_1) \land \cdots \land \psi_n(x_n) \]

disjoint \(r \)-balls around \(x_1, \ldots, x_n \)

Gaifman Theorem: Every FO sentence is equivalent to a boolean combination of **basic local sentences**.
Recap

EF games

FO sentences with quantifier rank n

= winning strategies for Spoiler in the n-round EF game
Recap

EF games

FO sentences with quantifier rank \(n \)

= winning strategies for Spoiler in the \(n \)-round EF game

0-1 Law

FO sentences are almost always true or almost always false
Recap

EF games

FO sentences with quantifier rank n

= winning strategies for Spoiler in the n-round EF game

0-1 Law

FO sentences are almost always true or almost always false

Hanf locality

FO sentences with quantifier rank n

= counting 3^n sized balls up to n
Recap

EF games

FO sentences with quantifier rank n

= winning strategies for Spoiler in the n-round EF game

0-1 Law

FO sentences are almost always true or almost always false

Hanf locality

FO sentences with quantifier rank n

= counting 3^n sized balls up to n

Gaifman locality

Queries of quantifier rank n output tuples closed under 3^{n+1} balls.
Recap

EF games

FO sentences with quantifier rank n

= winning strategies for Spoiler in the n-round EF game

0-1 Law

FO sentences are almost always true or almost always false

Hanf locality

FO sentences with quantifier rank n

= counting 3^n sized balls up to n

Gaifman locality

Queries of quantifier rank n output tuples closed under 3^{n+1} balls.

Gaifman Theorem

An FO sentence can only say

“there are some points at distance $\geq 2r$

whose r-balls are isomorphic to certain structures”

or a boolean combination of that.

• Otto, “Finite Model Theory”, Springer, 2005
 (freely available at www.mathematik.tu-darmstadt.de/~otto/LEHRE/FMT0809.ps)

 (available at www.math.helsinki.fi/logic/people/jouko.vaanananen/shortcourse.pdf)