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Recap

• Relational model (tables) 

• Relational Algebra (union, product, difference, selection, projection) 

• SQL (SELECT … FROM … WHERE …) 

• First-order logic (syntax, semantics, active domain) 

• Expressiveness (FOact = RA = basic SQL) 

• Undecidable problems (Halting ≤ Domino ≤ Satisfiability ≤ Equivalence) 

• Data complexity / Combined complexity 

• Complexity of evaluation (LOGSPACE / PSPACE complexity)
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Goal:   check which  properties / queries  are  expressible in FO 

 Example.   Q (G) = { (u, v)  |  G contains a path from u to v }  
 
                     Is Q expressible as a first-order formula?
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Sub-goal:   Given a property P and a number n,  
                      tell whether P is expressible by a sentence of quantifier rank at most n.

 Definition.   Quantifier rank of φ   =  max number of nested quantifiers in φ.
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Suppose that there are S1 ∈ P, S2 ∉ P  s.t.  
                                   S1  and  S2  are  n - equivalent. 

Then  P  is  not expressible  by any sentence of quantifier rank n. 

 Definition.   Two structures S1 and S2 are   n-equivalent 
                                                                       iff    
                          they satisfy the same FO sentences of quantifier rank ≤ n  
                         ( i.e.  S1 ⊨ φ  iff  S2 ⊨ φ for all φ∈FO with qr(φ)≤n)                       

[Tarski ’30]

 Example.   P = { finite structures }  seems to be not FO-definable. 
 One could then aim at proving that   

                        for all n there are S1 ∈ P  and S2 ∉ P  s.t.   S1 , S2  n-equivalent…

Note:  if the above happens 
∀ n,  then P is not 

expressible by any FO 
sentence.
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Expressive power via games

Characterization of the expressive power of FO in terms of Games

a player of the game has a winning strategy  
iff  

S,S' are indistinguishable

Idea:   For every two structures (S,S') there is a game where



Ehrenfeucht-Fraïssé games

A game between two players

SpoilerDuplicator

S1 and S2 are  
n-equivalent!

No they’re 
NOT!!!!

One player plays in one structure, the other player answers in the other structure.

If after n rounds Duplicator doesn’t lose:  S1, S2 are n-equivalent

Board:  (S1, S2)
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 Definition.   Partial isomorphism between S1 and S2   =    injective partial map  

                                                                   f :  nodes of S1  ⟶  nodes of S2 

                         so that                             E(x,y)   iff   E( f (x), f (y) )

                           and                               play for  n  rounds on the board S1, S2DuplicatorSpoiler

or 

2.        Spoiler chooses a node  yi  from S2  

            and Duplicator answers with a node  xi  from S1,

At each round  i : 

1.        Spoiler chooses a node  xi  from S1  

            and Duplicator answers with a node  yi  from S2,

or           Spoiler wins  if  { xi ↦ yi  | 1 ≤ i ≤ n}  is not a partial isomorphism between S1 and S2.
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 Theorem.                              S1 and S2 are  n - equivalent 
                                                                         iff     

                      Duplicator has a strategy to survive n rounds in the EF game on S1 and S2 .

[Fraïssé '50, Ehrenfeucht '60]

Exercise:   prove that the following corollary of the theorem. 

 
If  P is a property  and   
    for all n  there are S1 ∈ P, S2 ∉ P s.t. Duplicator can survive n rounds on S1 and S2  

Then P is  not definable in FO.

Proof:    Suppose that  P is defined by an FO sentence φ  and  ❅  holds. 

                From  ❅  and the above theorem:  ∀ n  ∃ S1 ∈ P  ∃ S2 ∉ P .   S1, S2  are  n - equivalent. 

                In particular, when n = quantifier rank of  φ,   S1 ⊨ φ  iff  S2 ⊨ φ . 

                A contradiction!

❅



Ehrenfeucht-Fraïssé games

 Theorem.   S1 and S2 are  n - equivalent 
              iff    Duplicator has a strategy to survive n rounds in the EF game on S1 and S2 .

[Fraïssé '50, Ehrenfeucht '60]

Proof ideas for the if-direction (from Duplicator’s winning strategy to n - equivalence)



Ehrenfeucht-Fraïssé games

Consider  φ  with quantifier rank n.                   Suppose  S1 ⊨ φ  and  Duplicator survives n rounds on S1, S2 .  

                                                                                     We need to prove that S2 ⊨ φ .

 Theorem.   S1 and S2 are  n - equivalent 
              iff    Duplicator has a strategy to survive n rounds in the EF game on S1 and S2 .

[Fraïssé '50, Ehrenfeucht '60]

Proof ideas for the if-direction (from Duplicator’s winning strategy to n - equivalence)



Ehrenfeucht-Fraïssé games

Consider  φ  with quantifier rank n.                   Suppose  S1 ⊨ φ  and  Duplicator survives n rounds on S1, S2 .  

                                                                                     We need to prove that S2 ⊨ φ .

 Theorem.   S1 and S2 are  n - equivalent 
              iff    Duplicator has a strategy to survive n rounds in the EF game on S1 and S2 .

[Fraïssé '50, Ehrenfeucht '60]

Proof ideas for the if-direction (from Duplicator’s winning strategy to n - equivalence)

A new game to evaluate formulas….
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…

Assume w.l.o.g. that  φ  is in  negation normal form.

Whether  S ⊨ φ  can be decided by a new game between two players, True and False: 

• φ = E(x,y)          →    True wins if nodes marked x and y are connected by an edge, otherwise he loses 

• φ = ∃ x  φ'(x)     →    True moves by marking a node  x  in  S, the game continues with φ' 

• φ = ∀ y  φ'(y)     →    False moves by marking a node  y  in  S, the game continues with φ' 

• φ = φ1 ∨ φ2        →    True moves by choosing  φ1  or  φ2, the game continues with what he chose 

• φ = φ1 ⋀ φ2        →    False moves by choosing  φ1  or  φ2, the game continues with what he chose 

• …
 Lemma.   S ⊨ φ   iff   True wins the semantics game.
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Consider  φ  with quantifier rank n.                   Suppose  S1 ⊨ φ  and  Duplicator survives n rounds on S1, S2 .  

                                                                                     We need to prove that S2 ⊨ φ .

True wins the game on S1

True wins the game on S2

Turn winning strategy for True in S1  into winning strategy for True in S2 ….
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Several properties can be proved to be not FO-definable: 

•   connectivity ( previous slide )

•   even / odd size Your turn now!      …given n,  take   S1 = large even structure 
                                                                 S2 = large odd structure…

…
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•   2-colorability Given n,  take   S1 = large even cycle    S2 = large odd cycle

•   finiteness

•   acyclicity

  …
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