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First and foremost…
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interrupt!

ask! (in any language)



Organization

4

Slides available at 

Format: 45 min slots / 20 min breaks:  45’ + 20’ + 45’ + 20’ + 45’

Evaluation: A short test on Saturday

http://www.labri.fr/perso/dfigueir/ECI15/

Schedule:

EF games, 0-1 law, Locality

Conjunctive Queries

First-Order logic

Relational Algebra databases

lo
gi

c

com
plexity

http://www.labri.fr/perso/dfigueir/ECI15/


Databases

*

mediate between 
humans, processes 
  & 
data

* [Abitebou, Hull, Vianu “Foundations of databases”]
5

database  = a collection of data,  
structured in some way

a way of defining, querying,  
updating the data inside

+



Databases

*

mediate between 
humans, processes 
  & 
data

* [Abitebou, Hull, Vianu “Foundations of databases”]
5

database  = a collection of data,  
structured in some way

a way of defining, querying,  
updating the data inside

+

DBMS also implement: transactions, concurrency, access control, resiliency…

Data model 
   • how the data is logically organized 
   • mathematical abstraction for representing data 
   • independent from physical organisation



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 

a “tuple” (a “3-tuple”)



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 

()            0-tuple
a “tuple” (a “3-tuple”)



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

1 a 2
2 b 6
2 a 1

like:   “              ”

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 

()            0-tuple
a “tuple” (a “3-tuple”)



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes
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Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

Films (Title:string, Director:string, Actor:string) 

Schedule (Theatre:string, Title:string)

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Films Schedule

Title Director Actor
8 1/2 Fellini Mastroianni

Shining Kubrick Nicholson
Dr. Strangelove Kubrick Sellers

8 femmes Ozon Ardant

Theatre Title
Utopia Dr. Strangelove
Utopia 8 1/2
UGC Dr. Strangelove
UGC 8 femmes

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases
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Relational data model = data logically organised into relations (“tables”).

 We assume all elements come from  
     a fixed set of constants or data values U.



Relational databases: queries
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returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 
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A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 
computable!

generic! 
(order independent) Boolean query: r=0 

Either “yes” { () } or “no” { }



Relational databases: queries
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A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 

What do we care about queries?

expressive power evaluation static analysis



The fundamental questions:

9

How to query the relational data model? 

How efficient/expressive is it?
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expressiveness efficiency

How to query the relational data model? 

How efficient/expressive is it?



Query languages
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Syntax 

Expressions for querying the db, 
governed by syntactic rules 

“Select X from Y” 

“y :- ∀x (x ≤ y)”

Semantics 

Interpretation of symbols  
in terms of some structure 

Retrieves all strings  
in column X of table Y 

Returns the maximum element 
of the set.

+

Query Language



Relational Algebra (RA)
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[Codd, 1970]

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠
• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}( {(1,2,1), (2,2,2)} ) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}( {(1,2,1), (2,2,2)} ) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} :  Projection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 
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A procedural query language σ{1=3,1≠2}( {(1,2,1), (2,2,2)} ) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} :  Projection

π{1,3}( {(1,2,1),(2,2,2)} ) = {(1,1), (2,2)}
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• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

Question 2:  π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for  
                    { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?
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c 4
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a 2

R1 R2
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b 2
a 1
b 3

[Codd, 1970]
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Answer: π{1,3}(σ1≠3(R1 × R2))
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FO = First-Order logic
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A = (D, R1, …, Rn, f1, … fn)

D is a non-empty set, the domain 

Ri is an m-ary relation for some m  (ie,  Ri ⊆ Dm ) 

fi is an n-ary function for some n    (ie,  fi : Dn ⟶ D )

A structure is:

A graph G = (V,E) 
• V: nodes 
• E ⊆ V 2: edges (binary relation) 
• (no functions)

A group, like (ℕ,+) 

• ℕ: natural numbers 
• (no relations) 

• +: ℕ2 ⟶ ℕ addition (binary function) 
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variables x, y, z, … 
quantifiers: ∃,∀ 

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures 

Variables range over the domain 

Atomic formulas: R(x1, …, xm), x=y

A graph G = (V,E) 

  • V: nodes 

  • E ⊆ V 2: edges (binary relation) 

  • (no functions)

Language to talk about graphs 

Variables range over nodes 

Atomic formulas: E(x,y), x = y

Formulas: Atomic formulas + connectives + quantifiers
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“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

Question:   • How to express in FO 

                            “Every two neighbours have a common neighbour” ? 

                   • Does it have free variables? Is it a sentence?

Answer:     ∀x∀y (¬E(x,y) ⋁ ∃z ( (E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y)) ) )

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free

the formula is a sentence  
= no free variables 
(a property of the graph)ψ =
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                                      that maps free variables of φ to nodes of G.

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧α φ    if   α = {x↦v}

G

v
v'

v''“Every node has at least two neighbours” 
  ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧∅ ψ

“G,α satisfy φ” “φ is satisfiable”



First-order logic
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Formal Semantics of FO

G ⊧α ∃x φ       iff     for some v ∈ V and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α ∀x φ       iff     for every v ∈ V and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α φ⋀ψ      iff     G ⊧α φ and G ⊧α ψ 

G ⊧α ¬φ          iff     it is not true that G ⊧α φ 

G ⊧α x=y        iff     α(x)=α(y) 

G ⊧α E(x,y)    iff     (α(x),α(y)) ∈ E
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φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { ( α(x1),…,α(xn) )  |  G ⊧α φ,  α: {x1,…,xn} ⟶ V }
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Formulas as queries

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with 
  at least two neighbours”⤳

21

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { ( α(x1),…,α(xn) )  |  G ⊧α φ,  α: {x1,…,xn} ⟶ V }

φ(G) = {v, v', v''} 
φ(G') = {v, v'}

G

v
v'

v''

G'

v
v'

v''

  ψ(G) = {()}  ⤳ set with one element: the 0-tuple

“Every node has two neighbours” 
  ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

  ψ(G') = {}    ⤳ empty set
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Question:      Which bindings α verify G ⊧α φ for 

                                   φ(x,y) = ∃z (E(x,z) ⋀ E(z,y)) 

                        

                                    and                                                   ?G = v
v'

v''
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Question:      Which bindings α verify G ⊧α φ for 

                                   φ(x,y) = ∃z (E(x,z) ⋀ E(z,y)) 

                        

                                    and                                                   ?G = v
v'

v''

Answer:    • α = { x ↦ v, y ↦ v’ }, 

                    • α = { x ↦ v, y ↦ v }, 

                    • α = { x ↦ v', y ↦ v’ }, 

                    • … and all the rest

φ(G) = {v,v', v''} × {v,v', v''}
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Formulas as queries

23

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples

Particular to databases: 

   • Use of constants 

   • No functions 

   • Finite structure 

   • Quantification over  

      active domain

Finite model theory

⊧finite  is different from  ⊧

There are formulas φ that are satisfiable 
only on infinite structures. 

Like which?

   φ = “ R(x,y) is an infinite linear order ”



Formulas as queries

RA and FO logic have roughly* the same expressive power!
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   Tables  =  Relations 
Queries  =  Formulas 
    Rows  =  Tuples How  = What

[E.F. Codd 1972]

RA  =* FO

*FO without functions, with equality, on finite domains, …

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer



Formulas as queries
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• R1 × R2              ⤳   R1(x1, …, xn) ⋀ R2(xn+1, …, xm) 

• R1 ∪ R2              ⤳   R1(x1, …, xn) ∨ R2(x1, …, xn) 

• σ{i1=j1,…,in=jn}(R)   ⤳   R(x1, …, xm) ⋀ (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

) 

• π{i1,…,in}(R)         ⤳   ∃({x1,…,xm} \ {xi1
,…,xin

}). R(x1, …, xm) 

• R1 \ R2              ⤳   R1(x1, …, xn) ⋀ ¬R2(x1, …, xn) 

• …

RA ⊆ FO
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elements in the relations

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

φ1(x,y) = ¬E(x,y) 
φ1(G)   = {(v1,v1),(v3,v1)} 

φ2(x)   = ∀y E(y,x) 
φ2(G) = {v2}

G = v1

v2

v3v4

FOact  
=  

FO restricted 
to active domain

FO ⊆ RA/



First-order logic restricted to active domain
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Formal Semantics of FOact

G ⊧α ∃x φ     iff     for some v ∈ ACT(G) and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α ∀x φ     iff     for every v ∈ ACT(G) and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α φ⋀ψ    iff     G ⊧α φ and G ⊧α ψ 

G ⊧α ¬φ        iff     it is not true that G ⊧α φ 

G ⊧α x=y        iff     α(x)=α(y) 

G ⊧α E(x,y)    iff     (α(x),α(y)) ∈ E

ACT(G) = {v | for some v': (v,v') ∈ E or (v',v) ∈ E}
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FOact ⊆ RA

Assume:  

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

∃x1,x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)
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FOact ⊆ RA

Assume:  

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• ( ∃xi φ(xi1,…,xin) )✢ ⤳ π{i1,…,in}\{i}( φ✢ ) 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × … × Adom ) 

• (ψ1(x1,…,xn) ⋀ ψ2(x1,…,xn))✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬φ(xi1,…,xin))✢ ⤳ Adom × … × Adom  \  φ✢

∃x1,x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

Tr
an

sla
tio

n



`

28

FOact ⊆ RA

Assume:  

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• ( ∃xi φ(xi1,…,xin) )✢ ⤳ π{i1,…,in}\{i}( φ✢ ) 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × … × Adom ) 

• (ψ1(x1,…,xn) ⋀ ψ2(x1,…,xn))✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬φ(xi1,…,xin))✢ ⤳ Adom × … × Adom  \  φ✢

∃x1,x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

A∩B = (A∪B) \ A \ B

Tr
an

sla
tio

n
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FOact is equivalent to RA
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Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠
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Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x2 . ( ∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5) )

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)
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Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x2 . ( ∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5) )

Answer:  π1(σ{2=3,1≠4}(R1 × R1))

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠
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Logic Algebra Programming 
language

= =FO RA SQL
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Logic Algebra Programming 
language

= =FO RA SQL

very basic
on finite 
domains

over 
active domain
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Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?
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Algorithmic problems for query languages

32

Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem:  Given a query Q, is there a database instance db 
                                  so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem:  Given queries Q1, Q2, is 
                                                   Q1(db) = Q2(db) 
                                    for all database instances db?

⇝ Can we safely replace a query with another? (Query optimization)
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  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  
by a function f : N ⟶ N if 
Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE
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34

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                             G ⊧αφ   iff   G ⊧αψ  
                                      for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem



Algorithmic problems for FO

35

[Trakhtenbrot ’50]

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite
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Algorithmic problems for FO

35

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P':   Algorithm that solves P using a O(1) procedure  
                                                                              “  P'(x) ” 
                                                 that returns the truth value of P'(x).

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite
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The (undecidable) Domino problem

Input:  4-sided dominos:

Rules:  sides must match, 
            you can’t rotate the dominos,  but you can ‘clone’ them.

Output:  Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

. . .. . .

 Domino 
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The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 
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1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…
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Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                              a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem
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φ is satisfiable  iff  φ is not equivalent to ⊥

Satisfiability problem undecidable  ⇝  Equivalence problem undecidable

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Actually, there are reductions in both senses: 
φ(x1,…,xn) and ψ(y1,…,ym) are  equivalent  iff  
   •  n=m 
   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ φ(x1,…,xn) ⋀ ¬ψ(y1,…,yn) is unsatisfiable 
   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ ψ(x1,…,xn) ⋀ ¬φ(y1,…,yn) is unsatisfiable
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Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem
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φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:
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Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|), 
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:



Evaluation problem for FO

42

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|), 
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

Encoding of α = {x1,…,xn} ⟶ V

• each node is coded with a bit string of size log(|V|),

Cost of coding: ||α|| = n·log(|V|)

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:
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φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:
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A database of size 106

A query of size 100
Problem: Usual scenario in database

[Vardi, 1982]

database query+Input:
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A database of size 106

A query of size 100
Problem: Usual scenario in database

[Vardi, 1982]

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =

database query+Input:
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Separation of concerns:    How the resources grow with respect to 
                                                 • the size of the data 
                                                 • the query size

Query and data play very different roles.

[Vardi, 1982]
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Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|
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Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is 

O(|query| + 2|data|) is 

exponential in combined complexity 
exponential in query complexity 
linear in data complexity

exponential in combined complexity 
linear in query complexity 
exponential in data complexity
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Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space



47

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity
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(combined  
 complexity)

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 
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(combined  
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Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ’(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)
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(combined  
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ’(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 

ψ'(x)=∃p ∀q . ( (p=x) ⋁ ¬(q=x) )

∃x ∃p ∀q . ( (p=x) ⋁ ¬(q=x) )
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LOGSPACEPSPACEUNDECIDABLE

Domino

Eval-FO 
(combined)

Eval-FO 
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF
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