
Fundamentos lógicos de bases de datos

∀∃¬

ECI 2015 
Buenos Aires

CNRS     LaBRI

20/7/2015

Diego Figueira Gabriele Puppis

(Logical foundations of databases)



About the speakers…

2

Gabriele Puppis 
PhD from Udine (Italy) 
post-docs in Oxford 
Works in LaBRI, Bordeaux 
CNRS researcher

Diego Figueira 
PhD from ENS Cachan (France), 
post-docs in Warsaw, Edinburgh 
Works in LaBRI, Bordeaux 
CNRS researcher 
Alma Mater: UBA !



About the speakers…

2

Gabriele Puppis 
PhD from Udine (Italy) 
post-docs in Oxford 
Works in LaBRI, Bordeaux 
CNRS researcher

Diego Figueira 
PhD from ENS Cachan (France), 
post-docs in Warsaw, Edinburgh 
Works in LaBRI, Bordeaux 
CNRS researcher 
Alma Mater: UBA !



About the speakers…

2

Gabriele Puppis 
PhD from Udine (Italy) 
post-docs in Oxford 
Works in LaBRI, Bordeaux 
CNRS researcher

Diego Figueira 
PhD from ENS Cachan (France), 
post-docs in Warsaw, Edinburgh 
Works in LaBRI, Bordeaux 
CNRS researcher 
Alma Mater: UBA !

hermano del inigualable 

                                 !!!



First and foremost…

3

interrupt!

ask! (in any language)



Organization

4

Slides available at 

Format: 45 min slots / 20 min breaks:  45’ + 20’ + 45’ + 20’ + 45’

Evaluation: A short test on Saturday

http://www.labri.fr/perso/dfigueir/ECI15/

Schedule:

EF games, 0-1 law, Locality

Conjunctive Queries

First-Order logic

Relational Algebra databases

lo
gi

c

com
plexity

http://www.labri.fr/perso/dfigueir/ECI15/


Databases

*

mediate between 
humans, processes 
  & 
data

* [Abitebou, Hull, Vianu “Foundations of databases”]
5

database  = a collection of data,  
structured in some way

a way of defining, querying,  
updating the data inside

+



Databases

*

mediate between 
humans, processes 
  & 
data

* [Abitebou, Hull, Vianu “Foundations of databases”]
5

database  = a collection of data,  
structured in some way

a way of defining, querying,  
updating the data inside

+

DBMS also implement: transactions, concurrency, access control, resiliency…

Data model 
   • how the data is logically organized 
   • mathematical abstraction for representing data 
   • independent from physical organisation



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 

a “tuple” (a “3-tuple”)



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 

()            0-tuple
a “tuple” (a “3-tuple”)



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

1 a 2
2 b 6
2 a 1

like:   “              ”

{ (1,a,2), (2,b,6), (2,a,1) } ⊆ N × {a,b} × N

like:

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 

()            0-tuple
a “tuple” (a “3-tuple”)



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

Films (Title:string, Director:string, Actor:string) 

Schedule (Theatre:string, Title:string)

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases

• a (finite) subset of the cartesian product of sets 

• a “table” with rows and columns

6

Films (Title:string, Director:string, Actor:string) 

Schedule (Theatre:string, Title:string)

DB =

An instance: data conforming to the schema

A schema: names of tables and attributes

Films Schedule

Title Director Actor
8 1/2 Fellini Mastroianni

Shining Kubrick Nicholson
Dr. Strangelove Kubrick Sellers

8 femmes Ozon Ardant

Theatre Title
Utopia Dr. Strangelove
Utopia 8 1/2
UGC Dr. Strangelove
UGC 8 femmes

Relational data model = data logically organised into relations (“tables”).

What’s a relation? 



Relational databases

7

Relational data model = data logically organised into relations (“tables”).

 We assume all elements come from  
     a fixed set of constants or data values U.



Relational databases: queries

8

A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 



Relational databases: queries

8

A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 
computable!



Relational databases: queries

8

A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 
computable!

generic! 
(order independent)



Relational databases: queries

8

A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 
computable!

generic! 
(order independent) Boolean query: r=0 

Either “yes” { () } or “no” { }



Relational databases: queries

8

A mapping that
takes a database instance D  
returns a relation q(D) ⊆ Ur of fixed arity r

What is a query q ? 

What do we care about queries?

expressive power evaluation static analysis



The fundamental questions:

9

How to query the relational data model? 

How efficient/expressive is it?



The fundamental questions:

9

expressiveness efficiency

How to query the relational data model? 

How efficient/expressive is it?



Query languages

10

Syntax 

Expressions for querying the db, 
governed by syntactic rules 

“Select X from Y” 

“y :- ∀x (x ≤ y)”

Semantics 

Interpretation of symbols  
in terms of some structure 

Retrieves all strings  
in column X of table Y 

Returns the maximum element 
of the set.

+

Query Language



Relational Algebra (RA)

11

[Codd, 1970]

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠
• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}( {(1,2,1), (2,2,2)} ) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}( {(1,2,1), (2,2,2)} ) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} :  Projection

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

11

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

[Codd, 1970]

≠ ≠ ≠ ≠

A procedural query language σ{1=3,1≠2}( {(1,2,1), (2,2,2)} ) = {(1,2,1)}

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} :  Projection

π{1,3}( {(1,2,1),(2,2,2)} ) = {(1,1), (2,2)}

Syntax: E := R,S,… | E ∪ E | E \ E | E×E  | πM(E) | σϴ(E)

where M ⊆ ℕ
ϴ ⊆ ℕ × {=,≠} × ℕ



Relational Algebra (RA)

12

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

Question 2:  π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for  
                    { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3

[Codd, 1970]

≠ ≠ ≠ ≠
• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} :  Projection



Relational Algebra (RA)

12

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

Question 2:  π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for  
                    { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3

[Codd, 1970]

≠ ≠ ≠ ≠

a b
b a
c a
c b

Answer: π{1,3}(σ1≠3(R1 × R2))

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} :  Projection



Relational Algebra (RA)

12

• R1 ∪ R2 : Set union 

• R1 × R2 : Cartesian product 

• R1 \ R2 : Set difference

Question 2:  π2(σ1=3(π2 (σ1=3(R1 × R2)) × R2))= ?

Question 1: What is the RA expression for  
                    { (v1,v2) | there are w1≠w2 so that (v1,w1) ∈ R1 and (v2,w2) ∈ R2 } ?

a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3bAnswer (only one element): 

[Codd, 1970]

≠ ≠ ≠ ≠

a b
b a
c a
c b

Answer: π{1,3}(σ1≠3(R1 × R2))

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1=xj1)⋀ ··· ⋀ (xin=xjn)} :  Selection

• π{i1,…,in}(R) ≔ {(xi1,…,xin) | (x1, …, xm) ∈ R} :  Projection



RA = Basic SQL

13

Select	
  X	
  
From	
  R1,…,Rn	
  
Where	
  Z

⟺   πX ( σZ( R1 × ··· × Rn ) )
no domain-specific features, 

aggregation, etc

…	
  not	
  in	
  (…) ⟺   difference
…	
  or	
  … ⟺   union



RA = Basic SQL

13

Select	
  X	
  
From	
  R1,…,Rn	
  
Where	
  Z

⟺   πX ( σZ( R1 × ··· × Rn ) )

π2 (σ1≠3(R1 × R2))  ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3

no domain-specific features, 
aggregation, etc

…	
  not	
  in	
  (…) ⟺   difference
…	
  or	
  … ⟺   union



RA = Basic SQL

13

Select	
  X	
  
From	
  R1,…,Rn	
  
Where	
  Z

⟺   πX ( σZ( R1 × ··· × Rn ) )

π2 (σ1≠3(R1 × R2))  ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3

Select	
  R1.2	
  as	
  foo	
  
From	
  R1,	
  R2	
  
Where	
  R1.1	
  ≠	
  R2.1

no domain-specific features, 
aggregation, etc

…	
  not	
  in	
  (…) ⟺   difference
…	
  or	
  … ⟺   union



RA = Basic SQL

13

Select	
  X	
  
From	
  R1,…,Rn	
  
Where	
  Z

⟺   πX ( σZ( R1 × ··· × Rn ) )

π2 (σ1≠3(R1 × R2))  ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3

π2(σ1=3( ❅  × R2)) ⤳

Select	
  R1.2	
  as	
  foo	
  
From	
  R1,	
  R2	
  
Where	
  R1.1	
  ≠	
  R2.1

no domain-specific features, 
aggregation, etc

…	
  not	
  in	
  (…) ⟺   difference
…	
  or	
  … ⟺   union

❅



RA = Basic SQL

13

Select	
  X	
  
From	
  R1,…,Rn	
  
Where	
  Z

⟺   πX ( σZ( R1 × ··· × Rn ) )

π2 (σ1≠3(R1 × R2))  ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3

π2(σ1=3( ❅  × R2)) ⤳

Select	
  R1.2	
  as	
  foo	
  
From	
  R1,	
  R2	
  
Where	
  R1.1	
  ≠	
  R2.1

★

no domain-specific features, 
aggregation, etc

…	
  not	
  in	
  (…) ⟺   difference
…	
  or	
  … ⟺   union

❅



RA = Basic SQL

13

Select	
  X	
  
From	
  R1,…,Rn	
  
Where	
  Z

⟺   πX ( σZ( R1 × ··· × Rn ) )

π2 (σ1≠3(R1 × R2))  ⤳ a 3
b 2
c 4
b 3
a 2

R1 R2
a 4
b 1
b 2
a 1
b 3

π2(σ1=3( ❅  × R2)) ⤳
Select	
  foo	
  
From	
  ★,	
  R2	
  
Where	
  foo	
  =	
  R2.2

Select	
  R1.2	
  as	
  foo	
  
From	
  R1,	
  R2	
  
Where	
  R1.1	
  ≠	
  R2.1

★

no domain-specific features, 
aggregation, etc

…	
  not	
  in	
  (…) ⟺   difference
…	
  or	
  … ⟺   union

❅



Denotational languages

14

Algebra  ⤳  How to obtain the result 

Logics    ⤳  What is the property of the result

Procedural

Declarative



Denotational languages

14

Algebra  ⤳  How to obtain the result 

Logics    ⤳  What is the property of the result

Relational Algebra 

operations on tables{ Procedural

Declarative



Denotational languages

14

Algebra  ⤳  How to obtain the result 

Logics    ⤳  What is the property of the result

First Order logic  

properties on mathematical structures{

Relational Algebra 

operations on tables{ Procedural

Declarative



Denotational languages

14

Algebra  ⤳  How to obtain the result 

Logics    ⤳  What is the property of the result

First Order logic  

properties on mathematical structures{

Relational Algebra 

operations on tables{ Procedural

Declarative



15

FO = First-Order logic



Denotational languages

16

A = (D, R1, …, Rn, f1, … fn)

D is a non-empty set, the domain 

Ri is an m-ary relation for some m  (ie,  Ri ⊆ Dm ) 

fi is an n-ary function for some n    (ie,  fi : Dn ⟶ D )

A structure is:



Denotational languages

16

A = (D, R1, …, Rn, f1, … fn)

D is a non-empty set, the domain 

Ri is an m-ary relation for some m  (ie,  Ri ⊆ Dm ) 

fi is an n-ary function for some n    (ie,  fi : Dn ⟶ D )

A structure is:

A graph G = (V,E) 
• V: nodes 
• E ⊆ V 2: edges (binary relation) 
• (no functions)

A group, like (ℕ,+) 

• ℕ: natural numbers 
• (no relations) 

• +: ℕ2 ⟶ ℕ addition (binary function) 



First-order logic

17



First-order logic

17

variables x, y, z, … 
quantifiers: ∃,∀ 

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures 

Variables range over the domain 

Atomic formulas: R(x1, …, xm), x=y



First-order logic

17

variables x, y, z, … 
quantifiers: ∃,∀ 

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures 

Variables range over the domain 

Atomic formulas: R(x1, …, xm), x=y

A graph G = (V,E) 

  • V: nodes 

  • E ⊆ V 2: edges (binary relation) 

  • (no functions)

Language to talk about graphs 

Variables range over nodes 

Atomic formulas: E(x,y), x = y



First-order logic

17

variables x, y, z, … 
quantifiers: ∃,∀ 

Boolean connectives: ¬, ⋀, ⋁FO

A language to talk about structures 

Variables range over the domain 

Atomic formulas: R(x1, …, xm), x=y

A graph G = (V,E) 

  • V: nodes 

  • E ⊆ V 2: edges (binary relation) 

  • (no functions)

Language to talk about graphs 

Variables range over nodes 

Atomic formulas: E(x,y), x = y

Formulas: Atomic formulas + connectives + quantifiers



18

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))



18

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))
x is free = not quantified 
(a property of a node in the graph)φ(x) =

free



18

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free



18

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free

the formula is a sentence  
= no free variables 
(a property of the graph)ψ =



18

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

Question:   • How to express in FO 

                            “Every two neighbours have a common neighbour” ? 

                   • Does it have free variables? Is it a sentence?

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free

the formula is a sentence  
= no free variables 
(a property of the graph)ψ =



18

“The node x has at least two neighbours” 

            ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Each node has at least two neighbours” 

        ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

Question:   • How to express in FO 

                            “Every two neighbours have a common neighbour” ? 

                   • Does it have free variables? Is it a sentence?

Answer:     ∀x∀y (¬E(x,y) ⋁ ∃z ( (E(x,z) ⋁ E(z,x)) ⋀ (E(y,z) ⋁ E(z,y)) ) )

x is free = not quantified 
(a property of a node in the graph)φ(x) =

free

the formula is a sentence  
= no free variables 
(a property of the graph)ψ =



Binding

19

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α 
                                      that maps free variables of φ to nodes of G.



Binding

19

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α 
                                      that maps free variables of φ to nodes of G.

“G,α satisfy φ” “φ is satisfiable”



Binding

19

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α 
                                      that maps free variables of φ to nodes of G.

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧α φ    if   α = {x↦v}

G

v
v'

v''

“G,α satisfy φ” “φ is satisfiable”



Binding

19

G ⊧α φ(x1,…,xn) α : {x1,…,xn} ⟶ V assigns nodes to free variables

To evaluate a formula φ we need a graph G=(V,E) and a binding α 
                                      that maps free variables of φ to nodes of G.

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧α φ    if   α = {x↦v}

G

v
v'

v''“Every node has at least two neighbours” 
  ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

G ⊧∅ ψ

“G,α satisfy φ” “φ is satisfiable”



First-order logic

20

Formal Semantics of FO

G ⊧α ∃x φ       iff     for some v ∈ V and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α ∀x φ       iff     for every v ∈ V and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α φ⋀ψ      iff     G ⊧α φ and G ⊧α ψ 

G ⊧α ¬φ          iff     it is not true that G ⊧α φ 

G ⊧α x=y        iff     α(x)=α(y) 

G ⊧α E(x,y)    iff     (α(x),α(y)) ∈ E



Formulas as queries

21

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { ( α(x1),…,α(xn) )  |  G ⊧α φ,  α: {x1,…,xn} ⟶ V }



Formulas as queries

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with 
  at least two neighbours”⤳

21

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { ( α(x1),…,α(xn) )  |  G ⊧α φ,  α: {x1,…,xn} ⟶ V }



Formulas as queries

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with 
  at least two neighbours”⤳

21

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { ( α(x1),…,α(xn) )  |  G ⊧α φ,  α: {x1,…,xn} ⟶ V }

φ(G) = {v, v', v''} 
φ(G') = {v, v'}

G

v
v'

v''

G'

v
v'

v''



Formulas as queries

“The node x has at least two neighbours” 
  φ(x) = ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

“Return all nodes with 
  at least two neighbours”⤳

21

φ(x1, …, xn) evaluated on G=(V,E) yields all the bindings that satisfy φ:

φ(G) = { ( α(x1),…,α(xn) )  |  G ⊧α φ,  α: {x1,…,xn} ⟶ V }

φ(G) = {v, v', v''} 
φ(G') = {v, v'}

G

v
v'

v''

G'

v
v'

v''

  ψ(G) = {()}  ⤳ set with one element: the 0-tuple

“Every node has two neighbours” 
  ψ = ∀x ∃y ∃z (¬(y=z) ⋀ E(x,y) ⋀ E(x,z))

  ψ(G') = {}    ⤳ empty set



22

Question:      Which bindings α verify G ⊧α φ for 

                                   φ(x,y) = ∃z (E(x,z) ⋀ E(z,y)) 

                        

                                    and                                                   ?G = v
v'

v''



22

Question:      Which bindings α verify G ⊧α φ for 

                                   φ(x,y) = ∃z (E(x,z) ⋀ E(z,y)) 

                        

                                    and                                                   ?G = v
v'

v''

Answer:    • α = { x ↦ v, y ↦ v’ }, 

                    • α = { x ↦ v, y ↦ v }, 

                    • α = { x ↦ v', y ↦ v’ }, 

                    • … and all the rest

φ(G) = {v,v', v''} × {v,v', v''}



Formulas as queries

23

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples



Formulas as queries

23

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples

Particular to databases: 

   • Use of constants 

   • No functions 

   • Finite structure 

   • Quantification over  

      active domain



Formulas as queries

23

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples

Particular to databases: 

   • Use of constants 

   • No functions 

   • Finite structure 

   • Quantification over  

      active domain

⊧finite  is different from  ⊧



Formulas as queries

23

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples

Particular to databases: 

   • Use of constants 

   • No functions 

   • Finite structure 

   • Quantification over  

      active domain

⊧finite  is different from  ⊧

There are formulas φ that are satisfiable 
only on infinite structures. 

Like which?



Formulas as queries

23

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples

Particular to databases: 

   • Use of constants 

   • No functions 

   • Finite structure 

   • Quantification over  

      active domain

⊧finite  is different from  ⊧

There are formulas φ that are satisfiable 
only on infinite structures. 

Like which?

   φ = “ R(x,y) is an infinite linear order ”



Formulas as queries

23

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer

  Tables = Relations 

Queries = Formulas 

Rows = Tuples

Particular to databases: 

   • Use of constants 

   • No functions 

   • Finite structure 

   • Quantification over  

      active domain

Finite model theory

⊧finite  is different from  ⊧

There are formulas φ that are satisfiable 
only on infinite structures. 

Like which?

   φ = “ R(x,y) is an infinite linear order ”



Formulas as queries

RA and FO logic have roughly* the same expressive power!

24

   Tables  =  Relations 
Queries  =  Formulas 
    Rows  =  Tuples How  = What

[E.F. Codd 1972]

RA  =* FO

*FO without functions, with equality, on finite domains, …

FO can serve as a declarative query language on relational databases : 
we express the properties of the answer



Formulas as queries

25

• R1 × R2              ⤳   R1(x1, …, xn) ⋀ R2(xn+1, …, xm) 

• R1 ∪ R2              ⤳   R1(x1, …, xn) ∨ R2(x1, …, xn) 

• σ{i1=j1,…,in=jn}(R)   ⤳   R(x1, …, xm) ⋀ (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

) 

• π{i1,…,in}(R)         ⤳   ∃({x1,…,xm} \ {xi1
,…,xin

}). R(x1, …, xm) 

• R1 \ R2              ⤳   R1(x1, …, xn) ⋀ ¬R2(x1, …, xn) 

• …

RA ⊆ FO



Formulas as queries

26

 does not hold in general! FO ⊆ RA



Formulas as queries

26

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

 does not hold in general! FO ⊆ RA



Formulas as queries

26

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

FO ⊆ RA/



Formulas as queries

26

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

FO ⊆ RA/



Formulas as queries

26

elements in the relations

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

FOact  
=  

FO restricted 
to active domain

FO ⊆ RA/



Formulas as queries

26

elements in the relations

           ⇝ We restrict variables to range over active domain 

“the complement of R”
∉  RA
∈  FO :  ¬R(x)

φ1(x,y) = ¬E(x,y) 
φ1(G)   = {(v1,v1),(v3,v1)} 

φ2(x)   = ∀y E(y,x) 
φ2(G) = {v2}

G = v1

v2

v3v4

FOact  
=  

FO restricted 
to active domain

FO ⊆ RA/



First-order logic restricted to active domain

27

Formal Semantics of FOact

G ⊧α ∃x φ     iff     for some v ∈ ACT(G) and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α ∀x φ     iff     for every v ∈ ACT(G) and α’ = α ∪ {x ↦ v}  we have G ⊧α' φ 

G ⊧α φ⋀ψ    iff     G ⊧α φ and G ⊧α ψ 

G ⊧α ¬φ        iff     it is not true that G ⊧α φ 

G ⊧α x=y        iff     α(x)=α(y) 

G ⊧α E(x,y)    iff     (α(x),α(y)) ∈ E

ACT(G) = {v | for some v': (v,v') ∈ E or (v',v) ∈ E}



`

28

FOact ⊆ RA



`

28

FOact ⊆ RA

Assume:  

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

∃x1,x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)



`

28

FOact ⊆ RA

Assume:  

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• ( ∃xi φ(xi1,…,xin) )✢ ⤳ π{i1,…,in}\{i}( φ✢ ) 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × … × Adom ) 

• (ψ1(x1,…,xn) ⋀ ψ2(x1,…,xn))✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬φ(xi1,…,xin))✢ ⤳ Adom × … × Adom  \  φ✢

∃x1,x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

Tr
an

sla
tio

n



`

28

FOact ⊆ RA

Assume:  

1. φ has variables x1,…,xn,  

2. φ in normal form: (∃* (¬∃)*)*  +  quantifier-free ψ(x1,…,xn)

Adom = RA expression for active domain = “π1(E) ∪ π2(E)” 

• ( ∃xi φ(xi1,…,xin) )✢ ⤳ π{i1,…,in}\{i}( φ✢ ) 

• (xi = xj)✢ ⤳  σ{i=j}( Adom × … × Adom ) 

• (ψ1(x1,…,xn) ⋀ ψ2(x1,…,xn))✢ ⤳ ψ1✢ ∩ ψ2✢ 

• (¬φ(xi1,…,xin))✢ ⤳ Adom × … × Adom  \  φ✢

∃x1,x2 ¬∃x3 ∃x4 . ( E(x1,x3) ⋀ ¬E(x4,x2) ) ⋁ (x1=x3)

A∩B = (A∪B) \ A \ B

Tr
an

sla
tio

n



Corollary

29

FOact is equivalent to RA



30

Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠



30

Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x2 . ( ∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5) )

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠



30

Question 1: How is π2(σ1=3(π2(σ1=3(R1 × R2)) × R2)) expressed in FO? 
Remember: R1,R2 are binary

Answer: ∃x2 . ( ∃x1,x4 . (R1(x1,x2) ⋀ R2(x1,x4)) ⋀ R2(x2,x5) )

Answer:  π1(σ{2=3,1≠4}(R1 × R1))

Question 2: How is ∃y,z . (R1(x,y) ⋀ R1(y,z) ⋀  x≠z ) expressed in RA? 
Remember: The signature is the same as before (R1,R2 binary)

• R1 ∪ R2 

• R1 × R2 

• R1 \ R2 

• σ{i1=j1,…,in=jn}(R) ≔{(x1, …, xm) ∈ R | (xi1
=xj1

)⋀ ··· ⋀ (xin
=xjn

)} 

• π{i1,…,in}(R) ≔ {(xi1
,…,xin

) | (x1, …, xm) ∈ R}

≠ ≠
≠ ≠



31

Logic Algebra Programming 
language

= =FO RA SQL



31

Logic Algebra Programming 
language

= =FO RA SQL

very basic
on finite 
domains

over 
active domain



Algorithmic problems for query languages

32

Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?



Algorithmic problems for query languages

32

Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem:  Given a query Q, is there a database instance db 
                                  so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)



Algorithmic problems for query languages

32

Evaluation problem:  Given a query Q, a database instance db, 
                                  and a tuple t, is t ∈ Q(db) ?

⇝ How hard is it to retrieve data?

Emptiness problem:  Given a query Q, is there a database instance db 
                                  so that Q(db) ≠ ∅ ?

⇝ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem:  Given queries Q1, Q2, is 
                                                   Q1(db) = Q2(db) 
                                    for all database instances db?

⇝ Can we safely replace a query with another? (Query optimization)



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

K

H’s 10th PCPDomino
. . .



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

usage of resources:   • time 
                               • memory

K

H’s 10th PCPDomino
. . .



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  
by a function f : N ⟶ N if 
Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  
by a function f : N ⟶ N if 
Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

Alg

f

ti
m

e

input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  
by a function f : N ⟶ N if 
Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  
by a function f : N ⟶ N if 
Alg(input) uses less than f (|input|) units of TIME.

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE



Complexity theory

33

  What can be mechanized?    ⤳ decidable/undecidable 

How hard is it to mechanise?  ⤳ complexity classes

LOGSPACE ⊊ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ · · ·

Alg

f

ti
m

e

input size

usage of resources:   • time 
                               • memory

Algorithm Alg is TIME-bounded  
by a function f : N ⟶ N if 
Alg(input) uses less than f (|input|) units of TIME.

SPACE-bounded by log(n)

TIME-bounded by a polynomial

SPACE-bounded by a polynomial

K

H’s 10th PCPDomino
. . .

SPACE.

SPACE



Algorithmic problems for FO

34

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

Equivalence problem:    Given FO formulae φ,ψ, is  
                                             G ⊧αφ   iff   G ⊧αψ  
                                      for all graphs G and bindings α?



Algorithmic problems for FO

34

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

Equivalence problem:    Given FO formulae φ,ψ, is  
                                             G ⊧αφ   iff   G ⊧αψ  
                                      for all graphs G and bindings α?



Algorithmic problems for FO

34

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                             G ⊧αφ   iff   G ⊧αψ  
                                      for all graphs G and bindings α?



Algorithmic problems for FO

34

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                             G ⊧αφ   iff   G ⊧αψ  
                                      for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem



Algorithmic problems for FO

35

[Trakhtenbrot ’50]

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite



Algorithmic problems for FO

35

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite



Algorithmic problems for FO

35

Proof: By reduction from the Domino (aka Tiling) problem.

[Trakhtenbrot ’50]

Reduction from P to P':   Algorithm that solves P using a O(1) procedure  
                                                                              “  P'(x) ” 
                                                 that returns the truth value of P'(x).

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite



The (undecidable) Domino problem

Input:  4-sided dominos:

 Domino 



The (undecidable) Domino problem

Input:  4-sided dominos:

Output:  Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

. . .. . .

 Domino 



The (undecidable) Domino problem

Input:  4-sided dominos:

Rules:  sides must match, 
            you can’t rotate the dominos,  but you can ‘clone’ them.

Output:  Is it possible to form a white-bordered rectangle? (of any size)

. . .

. . .

. . .

. . .. . .

 Domino 



s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. . 
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 



s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. . 
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 

0

0

1

1

2

2 (head is elsewhere,  
 symbol is not modified)



s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. . 
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 

0

0

1

1

2

2 (head is elsewhere,  
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)



s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. . 
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 

0

0

1

1

2

2 (head is elsewhere,  
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

l 1
l

(head is here, symbol is 
 rewritten, head moves left)



s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. . 
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 

0

0

1

1

2

2 (head is elsewhere,  
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

l 1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)



s 0 0 00
s 0

1
r

0

r 0
r

0

0

0

0
1

l 1
l

r 0

0
l

0

0

0

0
l 1

0
q

0

q 0
q

0

0

0

0
0

0

q 0

1

0

r 0

0

0
r r

0

0

1

l 1

r 0

0

0

0
0

0

l 1

0

0

q 0

0

0

l l

q q

. . 
.

The (undecidable) Domino problem

It can easily encode halting computations of Turing machines:

 Domino  -  Why is it undecidable? 

0

0

1

1

2

2 (head is elsewhere,  
 symbol is not modified)

q 0

1
r

2

r 2
r

(head is here, symbol is 
 rewritten, head moves right)

2

l 2
l

q 0

l 1
l

(head is here, symbol is 
 rewritten, head moves left)

s 0 0 0
(initial configuration)

h 0 0 0

. . .

(halting configuration)



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

H
V

∀



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

H

V

∃

H
V

∀



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

. . .

. . 
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V
H

V



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

. . .

. . 
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node: 

    a unary relation 

 
 
 
    for each domino

D ( x )
H

V



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

3. Match the sides             ∀x,y 
    if H(x,y), then Da(x) ⋀ Db(y)  
    for some dominos a,b that ‘match’ 
    horizontally         (Idem vertically)

. . .

. . 
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

H

V

2. Assign one domino to each node: 

    a unary relation 

 
 
 
    for each domino

D ( x )
H

V



Domino ⇝ Sat-FO  (domino has a solution iff φ satisfiable)

1. There is a grid: H( , ) and V( , ) are relations representing bijections such that…

3. Match the sides             ∀x,y 
    if H(x,y), then Da(x) ⋀ Db(y)  
    for some dominos a,b that ‘match’ 
    horizontally         (Idem vertically)

. . .

. . 
.

. .
 .

. .
 .

. .
 .

. . .

. . .H

H

H

H

H

H

H H H H

H H H H

V V

V V V V

V V V V

V V V V

. . .

4. Borders are white.

H

V

2. Assign one domino to each node: 

    a unary relation 

 
 
 
    for each domino

D ( x )
H

V



Algorithmic problems for FO

39

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                              a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                               and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem



Algorithmic problems for FO

40

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem



Algorithmic problems for FO

40

φ is satisfiable  iff  φ is not equivalent to ⊥

Satisfiability problem undecidable  ⇝  Equivalence problem undecidable

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem



Algorithmic problems for FO

40

φ is satisfiable  iff  φ is not equivalent to ⊥

Satisfiability problem undecidable  ⇝  Equivalence problem undecidable

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem

Actually, there are reductions in both senses: 
φ(x1,…,xn) and ψ(y1,…,ym) are  equivalent  iff  
   •  n=m 
   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ φ(x1,…,xn) ⋀ ¬ψ(y1,…,yn) is unsatisfiable 
   •  (x1=y1) ⋀ ··· ⋀ (xn=yn) ⋀ ψ(x1,…,xn) ⋀ ¬φ(y1,…,yn) is unsatisfiable



Algorithmic problems for FO

41

Evaluation problem:      Given a FO formula φ(x1, …, xn),  
                                      a graph G, and a binding α, does G ⊧α φ ?

Satisfiability problem:   Given a FO formula φ, is there a graph G  
                                      and binding α, such that G ⊧αφ ?

DECIDABLE ⇝ foundations of the database industry

💀 UNDECIDABLE ⇝ both for ⊧ and ⊧finite

Equivalence problem:    Given FO formulae φ,ψ, is  
                                                        G ⊧αφ   iff   G ⊧αψ  
                                               for all graphs G and bindings α?

💀 UNDECIDABLE ⇝ by reduction to the satisfiability problem



Evaluation problem for FO

42

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:



Evaluation problem for FO

42

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|), 
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:



Evaluation problem for FO

42

Encoding of G = (V, E)

• each node is coded with a bit string of size log(|V|), 
• edge set is encoded by its tuples, e.g. (100,101), (010, 010), …

Cost of coding: ||G|| = |E|·2·log(|V|) ≈ |V| (mod a polynomial)

Encoding of α = {x1,…,xn} ⟶ V

• each node is coded with a bit string of size log(|V|),

Cost of coding: ||α|| = n·log(|V|)

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:



Evaluation problem for FO

43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

G ⊧α φ ?Input: Output:



Evaluation problem for FO

43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:



Evaluation problem for FO

Question: 
How much space 
does it take? 43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:



Evaluation problem for FO

Question: 
How much space 
does it take? 43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers  ⇝  LOGSPACE



Evaluation problem for FO

Question: 
How much space 
does it take? 43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers  ⇝  LOGSPACE

⇝  MAX( SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')) )



Evaluation problem for FO

Question: 
How much space 
does it take? 43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers  ⇝  LOGSPACE

⇝  MAX( SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')) )

⇝  SPACE(G ⊧α ψ))



Evaluation problem for FO

Question: 
How much space 
does it take? 43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?Input: Output:

use 4 pointers  ⇝  LOGSPACE

⇝  MAX( SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')) )

⇝  SPACE(G ⊧α ψ))

⇝  2·log(|G|) + SPACE(G ⊧α' ψ )



Evaluation problem for FO

Question: 
How much space 
does it take? 43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers  ⇝  LOGSPACE

⇝  MAX( SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')) )

⇝  SPACE(G ⊧α ψ))

⇝  2·log(|G|) + SPACE(G ⊧α' ψ )



Evaluation problem for FO

Question: 
How much space 
does it take? 43

φ(x1,…,xn) 
G = (V,E) 

α = {x1,…,xn} ⟶ V

• If φ(x1,…,xn) = E(xi,xj): 
answer YES  iff  (α(xi),α(xj)) ∈ E 

• If φ(x1,…,xn) = ψ(x1,…,xn) ⋀ ψ'(x1,…,xn): 
answer YES  iff  G ⊧α ψ and G ⊧α ψ'  

• If φ(x1,…,xn) = ¬ψ(x1,…,xn): 
answer NO  iff  G ⊧α ψ  

• If φ(x1,…,xn) = ∃y . ψ(x1,…,xn,y): 
answer YES  iff  for some v ∈ V and α'= α ∪ {y↦v} 
                         we have G ⊧α' ψ.

G ⊧α φ ?

2·log(|G|) + ··· + 2·log(|G|) + k·log(|α|+|G|) space

≤ |φ| times

Input: Output:

use 4 pointers  ⇝  LOGSPACE

⇝  MAX( SPACE(G ⊧α ψ)), SPACE(G ⊧α ψ')) )

⇝  SPACE(G ⊧α ψ))

⇝  2·log(|G|) + SPACE(G ⊧α' ψ )

in PSPACE



Combined, Query, and Data complexities 

44

A database of size 106

A query of size 100
Problem: Usual scenario in database

[Vardi, 1982]



Combined, Query, and Data complexities 

44

A database of size 106

A query of size 100
Problem: Usual scenario in database

[Vardi, 1982]

database query+Input:



Combined, Query, and Data complexities 

44

A database of size 106

A query of size 100
Problem: Usual scenario in database

[Vardi, 1982]

TIME(2|query| + |data|)

TIME(|query| + 2|data|)
But we don’t distinguish this in the analysis: =

database query+Input:



Combined, Query, and Data complexities 

45

Separation of concerns:    How the resources grow with respect to 
                                                 • the size of the data 
                                                 • the query size

Query and data play very different roles.

[Vardi, 1982]



Combined, Query, and Data complexities 

46

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|



Combined, Query, and Data complexities 

46

Combined complexity: input size is |query| + |data|

Query complexity (|data| fixed): input size is |query|

Data complexity (|query| fixed): input size is |data|

O(2|query| + |data|) is 

O(|query| + 2|data|) is 

exponential in combined complexity 
exponential in query complexity 
linear in data complexity

exponential in combined complexity 
linear in query complexity 
exponential in data complexity



47

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space



47

Question

What is the data, query and combined complexity 
for the evaluation problem for FO?

Remember: data complexity, input size: |data|

query complexity, input size: |query|

combined complexity, input size: |data| + |query|

|φ| · 2 · log(|G|) + k·log(|α|+|G|) space

dataquery

O(log(|data|)·|query|) space PSPACE combined and query complexity

LOGSPACE data complexity



Evaluation pb for FO is PSPACE-complete 

48

(combined  
 complexity)

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 



Evaluation pb for FO is PSPACE-complete 

48

(combined  
 complexity)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 



Evaluation pb for FO is PSPACE-complete 

48

(combined  
 complexity)

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 



Evaluation pb for FO is PSPACE-complete 

48

(combined  
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ’(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 



Evaluation pb for FO is PSPACE-complete 

48

(combined  
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ’(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 

ψ'(x)=∃p ∀q . ( (p=x) ⋁ ¬(q=x) )



Evaluation pb for FO is PSPACE-complete 

48

(combined  
 complexity)

Polynomial reduction QBF ⤳ FO : 1. Given ψ ∈ QBF, 
               let ψ’(x) be the replacement  
               of each ‘p’ with ‘p=x’ in ψ.

2. Note: ∃x ψ' holds in a 2-element 
graph  iff  ψ is QBF-satisfiable

3. Test if  G ⊧∅ ψ'  for G=({v,v'},{})

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

∃p ∀q . (p ⋁ ¬q)    where p,q range over {T,F}

QBF = a boolean formula with quantification over the truth values (T,F)

(satisfaction of  Quantified Boolean Formulas)
 PSPACE-complete problem: QBF 

ψ'(x)=∃p ∀q . ( (p=x) ⋁ ¬(q=x) )

∃x ∃p ∀q . ( (p=x) ⋁ ¬(q=x) )



Recap

49
LOGSPACEPSPACEUNDECIDABLE

Domino

Eval-FO 
(combined)

Eval-FO 
(data)

Sat-FO

Equivalence-FO

Equivalence-SQL

Equivalence-RA

QBF



Bibliography

50

Abiteboul, Hull, Vianu, “Foundations of Databases”, Addison-Wesley, 1995. 

(freely available at http://webdam.inria.fr/Alice/)

Chapters 1, 2, 3

http://webdam.inria.fr/Alice/

