Fundamentos lógicos de bases de datos
(Logical foundations of databases)

Diego Figueira Gabriele Puppis

CNRS LaBRI
About the speakers…

Gabriele Puppis
PhD from Udine (Italy)
post-docs in Oxford
Works in LaBRI, Bordeaux
CNRS researcher

Diego Figueira
PhD from ENS Cachan (France),
post-docs in Warsaw, Edinburgh
Works in LaBRI, Bordeaux
CNRS researcher
Alma Mater: UBA !
About the speakers...

Gabriele Puppis
PhD from Udine (Italy)
post-docs in Oxford
Works in LaBRI, Bordeaux
CNRS researcher

Diego Figueira
PhD from ENS Cachan (France),
post-docs in Warsaw, Edinburgh
Works in LaBRI, Bordeaux
CNRS researcher
Alma Mater: UBA!
Gabriele Puppis
PhD from Udine (Italy)
post-docs in Oxford
Works in LaBRI, Bordeaux
CNRS researcher

Diego Figueira
PhD from ENS Cachan (France),
post-docs in Warsaw, Edinburgh
Works in LaBRI, Bordeaux
CNRS researcher
Alma Mater: UBA!
First and foremost…

interrupt!

ask! (in any language)
Format: 45 min slots / 20 min breaks: 45’ + 20’ + 45’ + 20’ + 45’

Schedule:
- Relational Algebra
- First-Order logic
- EF games, 0-1 law, Locality
- Conjunctive Queries

Evaluation: A short test on Saturday

Slides available at

http://www.labri.fr/perso/dfigueir/ECI15/
Databases

\[
database = \text{a collection of data, structured in some way} + \text{a way of defining, querying, updating the data inside}
\]

* [Abitebou, Hull, Vianu “Foundations of databases”]
Databases

database = a collection of data, structured in some way + a way of defining, querying, updating the data inside

Data model
- how the data is *logically organized*
- mathematical abstraction for representing data
- independent from physical organisation

DBMS also implement: transactions, concurrency, access control, resiliency…

* [Abitebou, Hull, Vianu “Foundations of databases”]
Relational data model = data logically organised into relations ("tables").

What's a relation?

- a (finite) subset of the cartesian product of sets
- a "table" with rows and columns
Relational databases

Relational data model = data logically organised into relations (“tables”).

What’s a **relation**?
- a (finite) subset of the cartesian product of sets
- a “table” with rows and columns

like:

\[
\{ (1,a,2), (2,b,6), (2,a,1) \} \subseteq \mathbb{N} \times \{a,b\} \times \mathbb{N}
\]
Relational data model = data logically organised into relations (“tables”).

What’s a relation?
- a (finite) subset of the cartesian product of sets
- a “table” with rows and columns

like:

\[\{ (1,a,2), (2,b,6), (2,a,1) \} \subseteq \mathbb{N} \times \{a,b\} \times \mathbb{N} \]

a “tuple” (a “3-tuple”)
Relational data model = data logically organised into relations ("tables").

What's a relation?

- a (finite) subset of the cartesian product of sets
- a "table" with rows and columns

like:

\[\{ (1,a,2), (2,b,6), (2,a,1) \} \subseteq \mathbb{N} \times \{a,b\} \times \mathbb{N} \]

- a "tuple" (a "3-tuple")
- () \rightarrow 0-tuple
Relational data model = data logically organised into relations ("tables").

What's a relation?

- a (finite) subset of the cartesian product of sets
- a "table" with rows and columns

like:

\[
\{ (1, a, 2), (2, b, 6), (2, a, 1) \} \subseteq \mathbb{N} \times \{a, b\} \times \mathbb{N}
\]

a "tuple" (a "3-tuple")

() \rightarrow 0-tuple

like:

\[
\begin{array}{ccc}
1 & a & 2 \\
2 & b & 6 \\
2 & a & 1
\end{array}
\]
Relational databases

Relational data model = data logically organised into relations ("tables").

What’s a **relation**?

- a (finite) subset of the cartesian product of sets
- a “table” with rows and columns

DB = A **schema**: names of tables and attributes

An **instance**: data conforming to the schema
Relational data model = data logically organised into relations ("tables").

What’s a relation?

- a (finite) subset of the cartesian product of sets
- a “table” with rows and columns

DB = A schema: names of tables and attributes

Films (Title:string, Director:string, Actor:string)
Schedule (Theatre:string, Title:string)

An instance: data conforming to the schema
Relational databases

Relational data model = data logically organised into relations (“tables”).

What’s a relation?

- a (finite) subset of the cartesian product of sets
- a “table” with rows and columns

DB = A **schema**: names of tables and attributes

<table>
<thead>
<tr>
<th>Films (Title:string, Director:string, Actor:string)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule (Theatre:string, Title:string)</td>
</tr>
</tbody>
</table>

An **instance**: data conforming to the schema

<table>
<thead>
<tr>
<th>Films</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Director</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>8 1/2</td>
<td>Fellini</td>
</tr>
<tr>
<td>Shining</td>
<td>Kubrick</td>
</tr>
<tr>
<td>Dr. Strangelove</td>
<td>Kubrick</td>
</tr>
<tr>
<td>8 femmes</td>
<td>Ozon</td>
</tr>
</tbody>
</table>
Relational databases

Relational data model = data logically organised into relations (“tables”).

⚠️ We assume all elements come from a fixed set of *constants* or *data values* U.
What is a query q?

A mapping that takes a database instance D returns a relation $q(D) \subseteq U^r$ of fixed arity r.

Relational databases: queries
What is a query q?

A mapping that takes a database instance D returns a relation $q(D) \subseteq U^r$ of fixed arity r.
What is a query q?

A mapping that takes a database instance D returns a relation $q(D) \subseteq U^r$ of fixed arity r.

computable!

generic! (order independent)
Relational databases: queries

What is a query q?

A mapping that takes a database instance D returns a relation $q(D) \subseteq U^r$ of fixed arity r.

- computable!
- generic! (order independent)
- Boolean query: $r=0$
 Either “yes” {} or “no” {}
Relational databases: queries

What is a query q?

A mapping that takes a database instance D returns a relation $q(D) \subseteq U^r$ of fixed arity r.

What do we care about queries?

expressive power evaluation static analysis
The fundamental questions:

How to query the relational data model?
How efficient/expressive is it?
The fundamental questions:

How to query the relational data model?

How efficient/expressive is it?
Query languages

Query Language

Syntax

Expressions for querying the db, governed by syntactic rules

“Select X from Y”

“y :- ∀x (x ≤ y)”

Semantics

Interpretation of symbols in terms of some structure

Retrieves all strings in column X of table Y

Returns the maximum element of the set.
Relational Algebra (RA) [Codd, 1970]

Syntax: \[E := R, S, \ldots \mid E \cup E \mid E \setminus E \mid E \times E \mid \pi_M(E) \mid \sigma_\Theta(E) \]

where \(M \subseteq \mathbb{N} \)
\(\Theta \subseteq \mathbb{N} \times \{=,\neq\} \times \mathbb{N} \)
Relational Algebra (RA)

Syntax: \(E := R, S, \ldots \mid E \cup E \mid E \setminus E \mid E \times E \mid \pi_M(E) \mid \sigma_\Theta(E) \)

where \(M \subseteq \mathbb{N} \)
\(\Theta \subseteq \mathbb{N} \times \{=,\neq\} \times \mathbb{N} \)

- \(R_1 \cup R_2 \): Set union
- \(R_1 \times R_2 \): Cartesian product
- \(R_1 \setminus R_2 \): Set difference
Relational Algebra (RA)

Syntax: \[E := R, S, \ldots \mid E \cup E \mid E \setminus E \mid E \times E \mid \pi_M(E) \mid \sigma_\Theta(E) \]

where \(M \subseteq \mathbb{N} \)
\(\Theta \subseteq \mathbb{N} \times \{=, \neq \} \times \mathbb{N} \)

- \(R_1 \cup R_2 \): Set union
- \(R_1 \times R_2 \): Cartesian product
- \(R_1 \setminus R_2 \): Set difference
- \(\sigma_{\{i_1=j_1, \ldots, i_n=j_n\}}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1}=x_{j_1}) \land \ldots \land (x_{i_n}=x_{j_n})\} \): Selection

[Codd, 1970]
Relational Algebra (RA)

Syntax: \[E := R, S, ... \mid E \cup E \mid E \setminus E \mid E \times E \mid \pi_M(E) \mid \sigma_\Theta(E) \]

where \(M \subseteq \mathbb{N} \)
\(\Theta \subseteq \mathbb{N} \times \{=, \neq\} \times \mathbb{N} \)

- \(R_1 \cup R_2 \): Set union
- \(R_1 \times R_2 \): Cartesian product
- \(R_1 \setminus R_2 \): Set difference

\[\sigma_{\{i_1=j_1, \ldots, i_n=j_n\}}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\} : \text{Selection} \]
Relational Algebra (RA)

Syntax: \[E := R, S, \ldots \mid E \cup E \mid E \setminus E \mid E \times E \mid \pi_M(E) \mid \sigma_\Theta(E) \]

where \(M \subseteq \mathbb{N} \)
\(\Theta \subseteq \mathbb{N} \times \{\ =, \neq \} \times \mathbb{N} \)

- **R_1 \cup R_2** : Set union
- **R_1 \times R_2** : Cartesian product
- **R_1 \setminus R_2** : Set difference
- \[\sigma_{\{i_1=j_1, \ldots, i_n=j_n\}}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\} : \text{Selection} \]
Relational Algebra (RA)

Syntax: \[E := R, S, ... \mid E \cup E \mid E \setminus E \mid E \times E \mid \pi_M(E) \mid \sigma_\Theta(E) \]

where \(M \subseteq \mathbb{N} \)
\[\Theta \subseteq \mathbb{N} \times \{=, \neq\} \times \mathbb{N} \]

- \(R_1 \cup R_2 \): Set union
- \(R_1 \times R_2 \): Cartesian product
- \(R_1 \setminus R_2 \): Set difference

\[\sigma_{\{i_1=j_1, \ldots, i_n=j_n\}}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\} : \text{Selection} \]

\[\pi_{\{i_1, \ldots, i_n\}}(R) := \{(x_{i_1}, \ldots, x_{i_n}) \mid (x_1, \ldots, x_m) \in R\} : \text{Projection} \]
Relational Algebra (RA)

Syntax: \(E := R, S, \ldots | E \cup E | E \setminus E | E \times E | \pi_M(E) | \sigma_\Theta(E) \)

where \(M \subseteq \mathbb{N} \)
\(\Theta \subseteq \mathbb{N} \times \{=, \neq\} \times \mathbb{N} \)

- **\(R_1 \cup R_2 \):** Set union
 \[\sigma_{\{1=3,1\neq2\}}(\{(1,2,1), (2,2,2)\}) = \{(1,2,1)\} \]
 \[\pi_{\{1,3\}}(\{(1,2,1),(2,2,2)\}) = \{(1,1), (2,2)\} \]

- **\(R_1 \times R_2 \):** Cartesian product

- **\(R_1 \setminus R_2 \):** Set difference

- **\(\sigma_{\{i_1=j_1,\ldots,i_n=j_n\}}(R) := \{(x_1, \ldots, x_m) \in R | (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\} : Selection \)**

- **\(\pi_{\{i_1,\ldots,i_n\}}(R) := \{(x_{i_1},\ldots,x_{i_n}) | (x_1, \ldots, x_m) \in R\} : Projection \)**
Relational Algebra (RA)

- $R_1 \cup R_2$: Set union
- $R_1 \times R_2$: Cartesian product
- $R_1 \setminus R_2$: Set difference

$\sigma_{i_1 \neq j_1, \ldots, i_n \neq j_n}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\}$: Selection

$\pi_{\{i_1, \ldots, i_n\}}(R) := \{(x_{i_1}, \ldots, x_{i_n}) \mid (x_1, \ldots, x_m) \in R\}$: Projection

Question 1: What is the RA expression for

\[
\{ (v_1, v_2) \mid \text{there are } w_1 \neq w_2 \text{ so that } (v_1, w_1) \in R_1 \text{ and } (v_2, w_2) \in R_2 \}\ ?
\]

Question 2: $\pi_2(\sigma_{1=3}(\pi_2(\sigma_{1=3}(R_1 \times R_2)) \times R_2)) = ?$

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Relational Algebra (RA)

• \(R_1 \cup R_2 \) : Set union
• \(R_1 \times R_2 \) : Cartesian product
• \(R_1 \setminus R_2 \) : Set difference
• \(\sigma_{\{i_1 \neq j_1, \ldots, i_n \neq j_n\}}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\} : \) Selection
• \(\pi_{\{i_1, \ldots, i_n\}}(R) := \{(x_{i_1}, \ldots, x_{i_n}) \mid (x_1, \ldots, x_m) \in R\} : \) Projection

Question 1: What is the RA expression for
\(\{ (v_1, v_2) \mid \) there are \(w_1 \neq w_2 \) so that \((v_1, w_1) \in R_1 \) and \((v_2, w_2) \in R_2 \} \) ?

Answer: \(\pi_{\{1, 3\}}(\sigma_{1 \neq 3}(R_1 \times R_2)) \)

Question 2: \(\pi_2(\sigma_{1=3}(\pi_2(\sigma_{1=3}(R_1 \times R_2)) \times R_2)) = \) ?
Relational Algebra (RA)

- $R_1 \cup R_2$: Set union
- $R_1 \times R_2$: Cartesian product
- $R_1 \setminus R_2$: Set difference

$\sigma_{i_1\neq j_1, \ldots, i_n\neq j_n}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\}$: Selection

$\pi_{i_1, \ldots, i_n}(R) := \{(x_{i_1}, \ldots, x_{i_n}) \mid (x_1, \ldots, x_m) \in R\}$: Projection

Question 1: What is the RA expression for

\[\{ (v_1, v_2) \mid \text{there are } w_1 \neq w_2 \text{ so that } (v_1, w_1) \in R_1 \text{ and } (v_2, w_2) \in R_2 \} \]?

Answer: $\pi_{1,3}(\sigma_{1\neq3}(R_1 \times R_2))$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Question 2: $\pi_2(\sigma_{1=3}(\pi_2(\sigma_{1=3}(R_1 \times R_2)) \times R_2)) = ?$

Answer (only one element): b
RA = Basic SQL

Select X
From R_1, \ldots, R_n
Where Z

\[\iff \pi_X(\sigma_Z(R_1 \times \cdots \times R_n)) \]

... or ...
\[\iff \text{union} \]

... not in (...
\[\iff \text{difference} \]
RA = Basic SQL

Select X
From R₁, ..., Rₙ ⇔ \(\pi_X(\sigma_Z(R_1 \times \cdots \times R_n)) \)

... or ...
... not in (…)

\(\pi_2(\sigma_{1 \neq 3}(R_1 \times R_2)) \) \(\Rightarrow \)

\begin{tabular}{|c|c|}
\hline
R₁ & R₂ \\
\hline
a & 3 \\
\hline
b & 2 \\
\hline
c & 4 \\
\hline
b & 3 \\
\hline
a & 2 \\
\hline
\end{tabular}
RA = Basic SQL

Select X
From R_1, \ldots, R_n $\iff \pi_X (\sigma_Z (R_1 \times \cdots \times R_n))$

... or ...
\iff union
... not in (...) \iff difference

\[\pi_2 (\sigma_{1 \neq 3} (R_1 \times R_2)) \sim \]
Select $R_1.2$ as foo
From R_1, R_2
Where $R_1.1 \neq R_2.1$

<table>
<thead>
<tr>
<th>R_1</th>
<th></th>
<th>R_2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>b</td>
<td>3</td>
</tr>
</tbody>
</table>
RA = Basic SQL

Select X
From R_1,\ldots, R_n \iff $\pi_X(\sigma_Z(R_1 \times \cdots \times R_n))$
Where Z

... or ...
\iff union
... not in (...) \iff difference

\[\pi_2(\sigma_1 \neq 3(R_1 \times R_2)) \sim \]
\[\pi_2(\sigma_1 = 3(\neq \times R_2)) \sim \]

Select $R_1.2$ as foo
From R_1, R_2
Where $R_1.1 \neq R_2.1$

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

no domain-specific features, aggregation, etc
RA = Basic SQL

no domain-specific features, aggregation, etc

Select X
From R_1, \ldots, R_n \iff $\pi_X(\sigma_Z(R_1 \times \cdots \times R_n))$
Where Z

... or ... \iff union
... not in (...) \iff difference

\[\pi_2(\sigma_{1\neq 3}(R_1 \times R_2)) \sim \]

Select $R_1.2$ as foo
From R_1, R_2
Where $R_1.1 \neq R_2.1$

\[\pi_2(\sigma_{1=3}(\bullet \times R_2)) \sim \]

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
</tbody>
</table>
RA = Basic SQL

no domain-specific features, aggregation, etc

Select X
From R_1, \ldots, R_n
$\iff \pi_X (\sigma_Z (R_1 \times \ldots \times R_n))$

... or ...
\iff union

... not in (...) \iff difference

$\Pi_2 (\sigma_{1 \neq 3} (R_1 \times R_2)) \leadsto \star$ Select $R_1.2$ as foo
From R_1, R_2
Where $R_1.1 \neq R_2.1$

$\Pi_2 (\sigma_{1=3} (\star \times R_2)) \leadsto$
Select foo
From \star, R_2
Where $\text{foo} = R_2.2$

\begin{array}{|c|c|}
\hline
R_1 & R_2 \\
\hline
a & 3 \\
b & 2 \\
c & 4 \\
b & 3 \\
a & 2 \\
\hline
\end{array}
Denotational languages

Algebra \sim *How* to obtain the result

Logics \sim *What* is the property of the result
Denotational languages

Algebra \sim *How* to obtain the result

Logics \sim *What* is the property of the result

Relational Algebra
operations on tables

Procedural

Declarative
Denotational languages

Algebra ~ How to obtain the result

Relational Algebra
operations on tables

Logics ~ What is the property of the result

First Order logic
properties on mathematical structures

Procedural

Declarative
Denotational languages

Algebra \sim How to obtain the result

Logics \sim What is the property of the result

Relational Algebra
operations on tables

First Order logic
properties on mathematical structures

Procedural

Declarative
FO = First-Order logic
A **structure** is:

\[A = (D, R_1, \ldots, R_n, f_1, \ldots f_n) \]

- \(D\) is a non-empty set, the domain
- \(R_i\) is an \(m\)-ary relation for some \(m\) (ie, \(R_i \subseteq D^m\))
- \(f_i\) is an \(n\)-ary function for some \(n\) (ie, \(f_i : D^n \to D\))
A structure is:

\[A = (D, R_1, \ldots, R_n, f_1, \ldots f_n) \]

- \(D \) is a non-empty set, the domain
- \(R_i \) is an \(m \)-ary relation for some \(m \) (ie, \(R_i \subseteq D^m \))
- \(f_i \) is an \(n \)-ary function for some \(n \) (ie, \(f_i : D^n \to D \))

A graph \(G = (V,E) \)
- \(V \): nodes
- \(E \subseteq V^2 \): edges (binary relation)
- (no functions)

A group, like \((\mathbb{N},+)\)
- \(\mathbb{N} \): natural numbers
- (no relations)
- \(+ : \mathbb{N}^2 \to \mathbb{N} \) addition (binary function)
First-order logic
First-order logic

Variables x, y, z, \ldots

Quantifiers: \exists, \forall

Boolean connectives: \neg, \land, \lor

A language to talk about structures

Variables range over the domain

Atomic formulas: $R(x_1, \ldots, x_m), x=y$
First-order logic

FO

variables x, y, z, \ldots

quantifiers: \exists, \forall

Boolean connectives: \neg, \land, \lor

A language to talk about structures

Variables range over the domain

Atomic formulas: $R(x_1, \ldots, x_m), x = y$

A graph $G = (V, E)$

- V: nodes
- $E \subseteq V^2$: edges (binary relation)
- (no functions)

Language to talk about graphs

Variables range over nodes

Atomic formulas: $E(x, y), x = y$
First-order logic

Variables x, y, z, \ldots
Quantifiers: \exists, \forall
Boolean connectives: \neg, \land, \lor

A language to talk about structures
Variables range over the domain
Atomic formulas: $R(x_1, \ldots, x_m), x=y$

A graph $G = (V,E)$
- V: nodes
- $E \subseteq V^2$: edges (binary relation)
- (no functions)

Language to talk about graphs
Variables range over nodes
Atomic formulas: $E(x,y), x = y$

Formulas: Atomic formulas + connectives + quantifiers
“The node x has at least two neighbours”

\[\exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z)) \]
“The node x has at least two neighbours”

$$\varphi(x) = \exists y \exists z \ (\neg(y=z) \land E(x,y) \land E(x,z))$$

x is **free** = not quantified

(a property of a **node** in the **graph**)
“The node x has at least two neighbours”

$\varphi(x) = \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z))$

“Each node has at least two neighbours”

$\forall x \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z))$

x is free = not quantified
(a property of a node in the graph)
“The node x has at least two neighbours”

$$\varphi(x) = \exists y \exists z \ (\neg (y=z) \land E(x,y) \land E(x,z))$$

The formula is a **sentence**

- no free variables

(a property of the **graph**)

“Each node has at least two neighbours”

$$\psi = \forall x \exists y \exists z \ (\neg (y=z) \land E(x,y) \land E(x,z))$$

The formula is a **sentence**

- no free variables

(a property of the **graph**)

X is **free** = not quantified

(a property of a **node** in the **graph**)

free
“The node x has at least two neighbours”
$$\varphi(x) = \exists y \exists z \ (\neg(y=z) \land E(x,y) \land E(x,z))$$

Each node has at least two neighbours”
$$\psi = \forall x \exists y \exists z \ (\neg(y=z) \land E(x,y) \land E(x,z))$$

x is free = not quantified
(a property of a node in the graph)

the formula is a sentence
= no free variables
(a property of the graph)

Question: • How to express in FO

“Every two neighbours have a common neighbour”?

• Does it have free variables? Is it a sentence?
"The node x has at least two neighbours"

$\varphi(x) = \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z))$

Each node has at least two neighbours"

$\psi = \forall x \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z))$

Question: • How to express in FO

"Every two neighbours have a common neighbour"?

• Does it have free variables? Is it a sentence?

Answer: $\forall x \forall y (\neg E(x,y) \lor \exists z ((E(x,z) \lor E(z,x)) \land (E(y,z) \lor E(z,y))))$
To evaluate a formula ϕ we need a graph $G=(V,E)$ and a binding α that maps free variables of ϕ to nodes of G.

$$G \models_\alpha \phi(x_1,\ldots,x_n) \quad \alpha : \{x_1,\ldots,x_n\} \rightarrow V \quad \text{assigns nodes to free variables}$$
To evaluate a formula ϕ we need a graph $G=(V,E)$ and a binding α that maps free variables of ϕ to nodes of G.

\[G \models_{\alpha} \phi(x_1,\ldots,x_n) \quad \alpha : \{x_1,\ldots,x_n\} \rightarrow V \quad \text{assigns nodes to free variables} \]
To evaluate a formula ϕ we need a graph $G=(V,E)$ and a binding α that maps free variables of ϕ to nodes of G.

"G,α satisfy ϕ" \implies "ϕ is satisfiable"

$G \models_\alpha \phi(x_1,\ldots,x_n)$ \quad $\alpha : \{x_1,\ldots,x_n\} \rightarrow V$ assigns nodes to free variables

"The node x has at least two neighbours"

$\phi(x) = \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z))$

$G \models_\alpha \phi$ if $\alpha = \{x \mapsto v\}$
To evaluate a formula ϕ we need a graph $G=(V,E)$ and a binding α that maps free variables of ϕ to nodes of G.

\[
\alpha \propto G \models \alpha \phi
\]

Assigns nodes to free variables

\[
G \models_\alpha \phi(x_1,\ldots,x_n) \quad \alpha : \{x_1,\ldots,x_n\} \longrightarrow V
\]

\[
\text{ assigns nodes to free variables }
\]

\[
\text{“The node } x \text{ has at least two neighbours”}
\]

\[
\phi(x) = \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z))
\]

\[
G \models_\alpha \phi \quad \text{if} \quad \alpha = \{x \mapsto v\}
\]

\[
\text{“Every node has at least two neighbours”}
\]

\[
\psi = \forall x \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z))
\]

\[
G \models_\emptyset \psi
\]
Formal Semantics of FO

\(G \vDash_{\alpha} \exists x \, \phi \) iff for some \(v \in V\) and \(\alpha' = \alpha \cup \{x \mapsto v\}\) we have \(G \vDash_{\alpha'} \phi\)

\(G \vDash_{\alpha} \forall x \, \phi \) iff for every \(v \in V\) and \(\alpha' = \alpha \cup \{x \mapsto v\}\) we have \(G \vDash_{\alpha'} \phi\)

\(G \vDash_{\alpha} \phi \land \psi \) iff \(G \vDash_{\alpha} \phi\) and \(G \vDash_{\alpha} \psi\)

\(G \vDash_{\alpha} \neg \phi \) iff it is not true that \(G \vDash_{\alpha} \phi\)

\(G \vDash_{\alpha} x = y \) iff \(\alpha(x) = \alpha(y)\)

\(G \vDash_{\alpha} E(x,y) \) iff \((\alpha(x), \alpha(y)) \in E\)
Formulas as queries

\(\phi(x_1, \ldots, x_n) \) evaluated on \(G = (V, E) \) yields all the bindings that satisfy \(\phi \):

\[
\phi(G) = \{ (\alpha(x_1), \ldots, \alpha(x_n)) \mid G \models_\alpha \phi, \ \alpha: \{x_1, \ldots, x_n\} \rightarrow V \}
\]
Formulas as queries

\(\phi(x_1, \ldots, x_n) \) evaluated on \(G=(V,E) \) yields all the bindings that satisfy \(\phi \):

\[
\phi(G) = \{ (\alpha(x_1),\ldots,\alpha(x_n)) \mid G \vDash_\alpha \phi, \alpha: \{x_1,\ldots,x_n\} \rightarrow V \}
\]

“The node \(x \) has at least two neighbours”

\(\phi(x) = \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z)) \)

\(\approx \) “Return all nodes with at least two neighbours”
Formulas as queries

\(\phi(x_1, \ldots, x_n) \) evaluated on \(G=(V,E) \) yields all the bindings that satisfy \(\phi \):

\[
\phi(G) = \{ (\alpha(x_1), \ldots, \alpha(x_n)) \mid G \models \alpha, \alpha: \{x_1, \ldots, x_n\} \to V \}
\]

“The node \(x \) has at least two neighbours”

\(\phi(x) = \exists y \exists z (\neg(y=z) \land E(x,y) \land E(x,z)) \)

\[
\phi(G) = \{v, v', v''\}
\]

\[
\phi(G') = \{v, v'\}
\]

“Return all nodes with at least two neighbours”

G

G'
Formulas as queries

\(\phi(x_1, \ldots, x_n) \) evaluated on \(G = (V, E) \) yields all the bindings that satisfy \(\phi \):

\[
\phi(G) = \{ (\alpha(x_1), \ldots, \alpha(x_n)) \mid G \vdash_{\alpha} \phi, \alpha : \{x_1, \ldots, x_n\} \rightarrow V \}
\]

“The node \(x \) has at least two neighbours”

\[
\phi(x) = \exists y \exists z \left(\neg(y = z) \land E(x, y) \land E(x, z) \right)
\]

\(\phi(G) = \{v, v', v''\} \)

\(\phi(G') = \{v, v'\} \)

“Every node has two neighbours”

\[
\psi = \forall x \exists y \exists z \left(\neg(y = z) \land E(x, y) \land E(x, z) \right)
\]

\(\psi(G) = \{()\} \sim \text{set with one element: the 0-tuple} \)

\(\psi(G') = \{\} \sim \text{empty set} \)
Question: Which bindings α verify $G \models_\alpha \phi$ for

$$\phi(x,y) = \exists z \ (E(x,z) \land E(z,y))$$

and

$$G = \begin{array}{c}
\text{v} \\
\text{v'} \\
\text{v''}
\end{array}$$
Question: Which bindings α verify $G \models_\alpha \phi$ for

$$\phi(x,y) = \exists z \ (E(x,z) \land E(z,y))$$

and $G =$

Answer:

- $\alpha = \{ x \mapsto v, y \mapsto v' \}$,
- $\alpha = \{ x \mapsto v, y \mapsto v \}$,
- $\alpha = \{ x \mapsto v', y \mapsto v' \}$,
- \ldots and all the rest

$$\phi(G) = \{v,v', v''\} \times \{v,v', v''\}$$
FO can serve as a **declarative** query language on relational databases: we express the properties of the answer

- **Tables** = **Relations**
- **Queries** = **Formulas**
- **Rows** = **Tuples**
FO can serve as a **declarative** query language on relational databases: we express the properties of the answer

Tables = Relations

Queries = Formulas

Rows = Tuples

Particular to databases:

- Use of constants
- No functions
- Finite structure
- Quantification over active domain
Formulas as queries

FO can serve as a **declarative** query language on relational databases: we express the properties of the answer

\[
\text{Tables} = \text{Relations} \\
\text{Queries} = \text{Formulas} \\
\text{Rows} = \text{Tuples}
\]

Particular to databases:

- Use of constants
- No functions
- Finite structure
- Quantification over active domain

\(\models_{\text{finite}} \) is different from \(\not\models \)
FO can serve as a **declarative** query language on relational databases: we express the properties of the answer

\[
\text{Tables = Relations} \quad \quad \text{Queries = Formulas} \quad \quad \text{Rows = Tuples}
\]

Particular to databases:
- Use of constants
- No functions
- Finite structure
- Quantification over active domain

\(\models_{\text{finite}} \) is different from \(\models \)

There are formulas \(\phi \) that are satisfiable only on infinite structures.

Like which?
Formulas as queries

FO can serve as a **declarative** query language on relational databases: we express the properties of the answer

\[
\text{Tables} = \text{Relations} \\
\text{Queries} = \text{Formulas} \\
\text{Rows} = \text{Tuples}
\]

Particular to databases:
- Use of constants
- No functions
- Finite structure
- Quantification over active domain

\[\models_{\text{finite}} \text{ is different from } \models\]

There are formulas \(\phi \) that are satisfiable only on infinite structures.

Like which?

\[\phi = "R(x,y) \text{ is an infinite linear order}"\]
Formulas as queries

FO can serve as a declarative query language on relational databases: we express the properties of the answer

Tables = Relations

Queries = Formulas

Rows = Tuples

Particular to databases:
- Use of constants
- No functions
- Finite structure
- Quantification over active domain

\(\models_{\text{finite}} \) is different from \(\models \)

There are formulas \(\phi \) that are satisfiable only on infinite structures.

Like which?

\[\phi = \text{"R(x,y) is an infinite linear order"} \]

Finite model theory
Formulas as queries

FO can serve as a **declarative** query language on relational databases: we express the properties of the answer

- **Tables** = **Relations**
- **Queries** = **Formulas**
- **Rows** = **Tuples**

\[\text{RA} = * \text{ FO} \]

\[\text{How} = \text{What} \]

RA and FO logic have roughly* the same expressive power!

[E.F. Codd 1972]

*FO without functions, with equality, on finite domains, …
Formulas as queries

$\text{RA} \subseteq \text{FO}$

- $R_1 \times R_2 \sim R_1(x_1, \ldots, x_n) \land R_2(x_{n+1}, \ldots, x_m)$
- $R_1 \cup R_2 \sim R_1(x_1, \ldots, x_n) \lor R_2(x_1, \ldots, x_n)$
- $\sigma_{i_1=j_1, \ldots, i_n=j_n}(R) \sim R(x_1, \ldots, x_m) \land (x_{i_1}=x_{j_1}) \land \cdots \land (x_{i_n}=x_{j_n})$
- $\pi_{i_1, \ldots, i_n}(R) \sim \exists(x_1, \ldots, x_m \setminus \{x_{i_1}, \ldots, x_{i_n}\}). R(x_1, \ldots, x_m)$
- $R_1 \setminus R_2 \sim R_1(x_1, \ldots, x_n) \land \neg R_2(x_1, \ldots, x_n)$
- \ldots
Formulas as queries

$\text{FO } \subseteq \text{ RA}$ does not hold in general!
Fo ⊆ RA does not hold in general!

“the complement of R” ∉ RA ∈ FO : ¬R(x)
Formulas as queries

FO \notin RA

"the complement of R" \notin RA \in FO : $\neg R(x)$
Formulas as queries

device

\[\text{FO} \not\subseteq \text{RA} \]

“the complement of R” \(\not\in \text{RA} \) \(\in \text{FO} : \neg R(x) \)

\(\implies \) We restrict variables to range over active domain
Formulas as queries

\[
\text{FO} \not\subseteq \text{RA}
\]

“the complement of R” \(\not\in \text{RA} \) \(\in \text{FO} : \neg R(x) \)

\(\leadsto \) elements in the relations

\(\leadsto \) We restrict variables to range over \textbf{active domain}

\[
\text{FO}^{\text{act}} = \text{FO restricted to active domain}
\]
Formulas as queries

FO \not\subseteq RA

“the complement of R” \notin RA \in FO: \neg R(x)

We restrict variables to range over **active domain**

FO^act

= FO restricted to active domain

\phi_1(x,y) = \neg E(x,y)
\phi_1(G) = \{(v_1,v_1),(v_3,v_1)\}

\phi_2(x) = \forall y E(y,x)
\phi_2(G) = \{v_2\}

G =
First-order logic restricted to active domain

Formal Semantics of FO^act

$G \vDash_\alpha \exists x \phi$ iff for some $v \in \text{ACT}(G)$ and $\alpha' = \alpha \cup \{x \mapsto v\}$ we have $G \vDash_{\alpha'} \phi$

$G \vDash_\alpha \forall x \phi$ iff for every $v \in \text{ACT}(G)$ and $\alpha' = \alpha \cup \{x \mapsto v\}$ we have $G \vDash_{\alpha'} \phi$

$G \vDash_\alpha \phi \land \psi$ iff $G \vDash_\alpha \phi$ and $G \vDash_\alpha \psi$

$G \vDash_\alpha \neg \phi$ iff it is not true that $G \vDash_\alpha \phi$

$G \vDash_\alpha x = y$ iff $\alpha(x) = \alpha(y)$

$G \vDash_\alpha E(x, y)$ iff $(\alpha(x), \alpha(y)) \in E$

$\text{ACT}(G) = \{v \mid \text{for some } v': (v, v') \in E \text{ or } (v', v) \in E\}$
$\text{FO}^{\text{act}} \subseteq \text{RA}$
\[\text{FO}^\text{act} \subseteq \text{RA} \]

Assume:

1. \(\phi \) has variables \(x_1, \ldots, x_n \),

2. \(\phi \) in normal form: \((\exists^* (\neg \exists^*)^* + \text{quantifier-free } \psi(x_1, \ldots, x_n) \)

\[
\exists x_1, x_2 \neg \exists x_3 \exists x_4 . \ (E(x_1, x_3) \land \neg E(x_4, x_2)) \lor (x_1 = x_3)
\]
\[\text{Assume:} \]

1. \(\phi \) has variables \(x_1, \ldots, x_n \),

2. \(\phi \) in normal form:
 \((\exists^* (\neg \exists^*)^* + \text{quantifier-free } \psi(x_1, \ldots, x_n) \)

\[\exists x_1, x_2 \neg \exists x_3 \exists x_4 \cdot (E(x_1, x_3) \land \neg E(x_4, x_2)) \lor (x_1 = x_3) \]

\textit{Adom} = RA expression for active domain = “\(\pi_1(E) \cup \pi_2(E) \)”

- \((\exists x_i \phi(x_{i_1}, \ldots, x_{i_n}))^+ \leadsto \pi\{i_1, \ldots, i_n\}\backslash\{i\}(\phi^+) \)
- \((x_i = x_j)^+ \leadsto \sigma_{\{i=j\}}(\text{Adom} \times \cdots \times \text{Adom}) \)
- \((\psi_1(x_1, \ldots, x_n) \land \psi_2(x_1, \ldots, x_n))^+ \leadsto \psi_1^+ \cap \psi_2^+ \)
- \((\neg \phi(x_{i_1}, \ldots, x_{i_n}))^+ \leadsto \text{Adom} \times \cdots \times \text{Adom} \setminus \phi^+ \)
\(\text{FO}^{\text{act}} \subseteq \text{RA} \)

Assume:

1. \(\phi \) has variables \(x_1, ..., x_n \),
2. \(\phi \) in normal form: \((\exists^* (\neg \exists)^* + \text{quantifier-free } \psi(x_1, ..., x_n) \)

\[\exists x_1, x_2 \neg \exists x_3 \exists x_4 . \left(E(x_1, x_3) \land \neg E(x_4, x_2) \right) \lor (x_1 = x_3) \]

Adom = RA expression for active domain = “\(\pi_1(E) \cup \pi_2(E) \)”

- \((\exists x_i \phi(x_{i_1}, ..., x_{i_n}))^+ \sim \pi_{\{i_1, ..., i_n\}\{i\}}(\phi^+) \)
- \((x_i = x_j)^+ \sim \sigma_{\{i=j\}}(\text{Adom} \times ... \times \text{Adom}) \)
- \((\psi_1(x_1, ..., x_n) \land \psi_2(x_1, ..., x_n))^+ \sim \psi_1^+ \land \psi_2^+ \)
- \((\neg \phi(x_{i_1}, ..., x_{i_n}))^+ \sim \text{Adom} \times ... \times \text{Adom} \setminus \phi^+ \)

A \cap B = (A \cup B) \setminus A \setminus B
Corollary

FO^{act} is equivalent to RA
Question 1: How is $\pi_2(\sigma_{1=3}(\pi_2(\sigma_{1=3}(R_1 \times R_2)) \times R_2))$ expressed in FO?

Remember: R_1, R_2 are binary

Question 2: How is $\exists y,z . (R_1(x,y) \land R_1(y,z) \land x \neq z)$ expressed in RA?

Remember: The signature is the same as before (R_1, R_2 binary)

- $R_1 \cup R_2$
- $R_1 \times R_2$
- $R_1 \setminus R_2$
- $\sigma_{\{i_1=j_1, ..., i_n=j_n\}}(R) := \{(x_1, ..., x_m) \in R | (x_{i_1} = x_{j_1}) \land ... \land (x_{i_n} = x_{j_n}) \}$
- $\pi_{\{i_1, ..., i_n\}}(R) := \{(x_{i_1}, ..., x_{i_n}) | (x_1, ..., x_m) \in R\}$
Question 1: How is $\pi_2(\sigma_{1=3}(\pi_2(\sigma_{1=3}(R_1 \times R_2)) \times R_2))$ expressed in FO?
Remember: R_1, R_2 are binary

Answer: $\exists x_2 . \left(\exists x_1, x_4 . \left(R_1(x_1, x_2) \land R_2(x_1, x_4) \right) \land R_2(x_2, x_5) \right)$

Question 2: How is $\exists y, z . \left(R_1(x, y) \land R_1(y, z) \land x \neq z \right)$ expressed in RA?
Remember: The signature is the same as before (R_1, R_2 binary)

- $R_1 \cup R_2$
- $R_1 \times R_2$
- $R_1 \setminus R_2$
- $\sigma_{\{i_1=j_1, \ldots, i_n=j_n\}}(R) := \{ (x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n}) \}$
- $\pi_{\{i_1, \ldots, i_n\}}(R) := \{ (x_{i_1}, \ldots, x_{i_n}) \mid (x_1, \ldots, x_m) \in R \}$
Question 1: How is $\pi_2(\sigma_1=3(\pi_2(\sigma_1=3(R_1 \times R_2)) \times R_2))$ expressed in FO?
Remember: R_1, R_2 are binary

Answer: $\exists x_2 . \left(\exists x_1, x_4 . \left(R_1(x_1, x_2) \land R_2(x_1, x_4) \right) \land R_2(x_2, x_5) \right)$

Question 2: How is $\exists y, z . (R_1(x, y) \land R_1(y, z) \land x \neq z)$ expressed in RA?
Remember: The signature is the same as before (R_1, R_2 binary)

- $R_1 \cup R_2$
- $R_1 \times R_2$
- $R_1 \setminus R_2$
- $\sigma_{\{i_1 = j_1, \ldots, i_n = j_n\}}(R) := \{(x_1, \ldots, x_m) \in R \mid (x_{i_1} \neq x_{j_1}) \land \cdots \land (x_{i_n} \neq x_{j_n})\}$
- $\pi_{\{i_1, \ldots, i_n\}}(R) := \{(x_{i_1}, \ldots, x_{i_n}) \mid (x_1, \ldots, x_m) \in R\}$

Answer: $\pi_1(\sigma_{\{2=3,1\neq 4\}}(R_1 \times R_1))$
Logic = Algebra = Programming language

FO = RA = SQL
Logic = Algebra = Programming language

- over active domain
- on finite domains
- very basic

FO = RA = SQL

on finite domains
over active domain
very basic
Evaluation problem: Given a query Q, a database instance db, and a tuple t, is $t \in Q(db)$?

⇒ How hard is it to retrieve data?
Evaluation problem: Given a query Q, a database instance db, and a tuple t, is $t \in Q(db)$?

\Rightarrow How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db so that $Q(db) \neq \emptyset$?

\Rightarrow Does Q make sense? Is it a contradiction? (Query optimization)
Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db, and a tuple t, is $t \in Q(db)$?

⇒ How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db so that $Q(db) \neq \emptyset$?

⇒ Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q_1, Q_2, is $Q_1(db) = Q_2(db)$ for all database instances db?

⇒ Can we safely replace a query with another? (Query optimization)
What can be *mechanized*? \leadsto decidable/undecidable

How *hard* is it to mechanise? \leadsto complexity classes
Complexity theory

What can be **mechanized**? \(\sim\) decidable/undecidable

How **hard** is it to mechanise? \(\sim\) complexity classes
Complexity theory

What can be **mechanized**? \(\sim\) **decidable/undecidable**

How **hard** is it to mechanise? \(\sim\) **complexity classes**

\(\Rightarrow\) usage of resources: • time
• memory
Complexity theory

What can be *mechanized*? \leadsto decidable/undecidable

How *hard* is it to mechanise? \leadsto complexity classes

- usage of resources:
 - time
 - memory

Algorithm Alg is *TIME*-bounded by a function $f : \mathbb{N} \rightarrow \mathbb{N}$ if $\text{Alg}(\text{input})$ uses less than $f(|\text{input}|)$ units of TIME.
Complexity theory

What can be **mechanized**? \(\sim\) decidable/undecidable

How **hard** is it to mechanise? \(\sim\) complexity classes

usage of resources:
- time
- memory

Algorithm \(\text{Alg}\) is **TIME**-bounded by a function \(f: \mathbb{N} \rightarrow \mathbb{N}\) if \(\text{Alg}(\text{input})\) uses less than \(f(|\text{input}|)\) units of **TIME**.
Complexity theory

What can be **mechanized**?

~ decidable/undecidable

How **hard** is it to mechanise?

~ complexity classes

usage of resources: • time
• memory

Algorithm \(\text{Alg} \) is \(\text{TIME} \)-bounded by a function \(f: \mathbb{N} \rightarrow \mathbb{N} \) if \(\text{Alg}(\text{input}) \) uses less than \(f(|\text{input}|) \) units of \(\text{TIME} \).

Algorithm \(\text{Alg} \) is \(\text{SPACE} \)-bounded by a function \(f: \mathbb{N} \rightarrow \mathbb{N} \) if \(\text{Alg}(\text{input}) \) uses less than \(f(|\text{input}|) \) units of \(\text{SPACE} \).
Complexity theory

What can be **mechanized**? \sim **decidable/undecidable**

How **hard** is it to mechanise? \sim **complexity classes**

usage of resources: • time
• memory

Algorithm Alg is $\text{T}IME$-bounded by a function $f : \mathbb{N} \rightarrow \mathbb{N}$ if $\text{Alg}(\text{input})$ uses less than $f(|\text{input}|)$ units of $\text{T}IME$.

$\text{LOGSPACE} \subseteq \text{PTIME} \subseteq \text{PSPACE} \subseteq \text{EXPTIME} \subseteq \cdots$
What can be **mechanized**? \sim \text{decidable/undecidable}

How hard is it to mechanise? \sim \text{complexity classes}

\begin{itemize}
\item usage of resources:
 \begin{itemize}
 \item time
 \item memory
 \end{itemize}
\end{itemize}

SPACE

Algorithm **Alg** is **TIME**-bounded by a function \(f: \mathbb{N} \to \mathbb{N} \) if \(\text{Alg}(\text{input}) \) uses less than \(f(|\text{input}|) \) units of **TIME**.

LOGSPACE \subseteq \textbf{PTIME} \subseteq \textbf{PSPACE} \subseteq \textbf{EXPTIME} \subseteq \cdots

SPACE-bounded by a polynomial

TIME-bounded by a polynomial

SPACE-bounded by \(\log(n) \)
Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α, does $G \models_\alpha \phi$?

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models_\alpha \phi$?

Equivalence problem: Given FO formulae ϕ, ψ, is $G \models_\alpha \phi \text{ iff } G \models_\alpha \psi$ for all graphs G and bindings α?
Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi(x_1, ..., x_n)$, a graph G, and a binding α, does $G \models_{\alpha} \phi$?

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models_{\alpha} \phi$?

Equivalence problem: Given FO formulae ϕ, ψ, is $G \models_{\alpha} \phi \iff G \models_{\alpha} \psi$ for all graphs G and bindings α?
Algorithmic problems for FO

Evaluation problem: Given a FO formula \(\phi(x_1, \ldots, x_n) \), a graph \(G \), and a binding \(\alpha \), does \(G \vDash_\alpha \phi \) ?

DECIDABLE \(\iff \) foundations of the database industry

Satisfiability problem: Given a FO formula \(\phi \), is there a graph \(G \) and binding \(\alpha \), such that \(G \vDash_\alpha \phi \) ?

💀 UNDECIDABLE \(\iff \) both for \(\vDash \) and \(\vDash_{\text{finite}} \)

Equivalence problem: Given FO formulae \(\phi, \psi \), is

\[
G \vDash_\alpha \phi \iff G \vDash_\alpha \psi
\]

for all graphs \(G \) and bindings \(\alpha \)?
Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi(x_1, \ldots, x_n)$, a graph G, and a binding α, does $G \models_\alpha \phi$?

DECIDABLE \iff foundations of the database industry

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models_\alpha \phi$?

💀 UNDECIDABLE \iff both for \models and \models_{finite}

Equivalence problem: Given FO formulae ϕ, ψ, is $G \models_\alpha \phi$ iff $G \models_\alpha \psi$ for all graphs G and bindings α?

💀 UNDECIDABLE \iff by reduction to the satisfiability problem
Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models_\alpha \phi$?

💀 UNDECIDABLE \iff both for \models and \models_{finite} [Trakhtenbrot ’50]
Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models \alpha \phi$?

💀 **UNDECIDABLE** \iff both for \models and \models_{finite}
[Trakhtenbrot ’50]

Proof: By reduction from the Domino (aka Tiling) problem.
Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models_\alpha \phi$?

💀 UNDECIDABLE \iff both for \models and \models_{finite}
[Trakhtenbrot ’50]

Proof: By reduction from the Domino (aka Tiling) problem.

Reduction from P to P': Algorithm that solves P using a $O(1)$ procedure $“P'(x)”$ that returns the truth value of $P'(x)$.
The (undecidable) Domino problem

Input: 4-sided dominos:
The (undecidable) Domino problem

Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)
The (undecidable) Domino problem

Input: 4-sided dominos:

Output: Is it possible to form a white-bordered rectangle? (of any size)

Rules: sides must match, you can’t rotate the dominos, but you can ‘clone’ them.
The (undecidable) Domino problem

Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:
The (undecidable) Domino problem

Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:

(Head is elsewhere, symbol is not modified)
The (undecidable) Domino problem

Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:

- (head is elsewhere, symbol is not modified)
- (head is here, symbol is rewritten, head moves right)
The (undecidable) Domino problem

Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:

- 0 1 2
 - 0 1 2 (head is elsewhere, symbol is not modified)
- 1 r r
 - q 0 2 (head is here, symbol is rewritten, head moves right)
- l 2 l
 - l 1 q 0 (head is here, symbol is rewritten, head moves left)

[Diagram of Domino tiles and Turing machine states]
The (undecidable) Domino problem

Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:

- \(s0 \) (initial configuration)
- \(0 \) (head is elsewhere, symbol is not modified)
- \(q0 \) (head is here, symbol is rewritten, head moves right)
- \(l1 \) (head is here, symbol is rewritten, head moves left)

...
The (undecidable) Domino problem

Domino - Why is it undecidable?

It can easily encode *halting* computations of Turing machines:

- **0 0 2 2** (head is elsewhere, symbol is not modified)
- **1 r 2 2** (head is here, symbol is rewritten, head moves right)
- **l2 l 1 q0** (head is here, symbol is rewritten, head moves left)
- **s0 0 0 0** (initial configuration)
- **b0 0 0 0** (halting configuration)

...
1. There is a grid: $H(,)$ and $V(,)$ are relations representing bijections such that...
1. There is a grid: $H(\), V(\)$ are relations representing bijections such that...
1. There is a grid: $H(\ , \)$ and $V(\ , \)$ are relations representing bijections such that...
1. There is a grid: $H(,)$ and $V(,)$ are relations representing bijections such that...
Domino \Leftrightarrow \text{Sat-FO} \ (\text{domino has a solution iff } \phi \text{ satisfiable})

1. There is a grid: $H(,)$ and $V(,)$ are relations representing bijections such that...

2. Assign one domino to each node: a unary relation $D(x)$ for each domino
1. There is a grid: $H(\ ,\)$ and $V(\ ,\)$ are relations representing bijections such that...

2. Assign one domino to each node: a unary relation

\[\text{for each domino } \]

3. Match the sides $\forall x,y$

if $H(x,y)$, then $D_a(x) \land D_b(y)$

for some dominos a, b that ‘match’ horizontally (Idem vertically)
1. There is a grid: $H(,)$ and $V(,)$ are relations representing bijections such that...

2. Assign one domino to each node: a unary relation

 $$D_a(x)$$

 for each domino \square

3. Match the sides $\forall x,y$ if $H(x,y)$, then $D_a(x) \land D_b(y)$ for some dominos a,b that ‘match’ horizontally (Idem vertically)

4. Borders are white.
Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi(x_1, \ldots, x_n)$, a graph G, and a binding α, does $G \models_\alpha \phi$?

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models_\alpha \phi$?

Equivalence problem: Given FO formulae ϕ, ψ, is $G \models_\alpha \phi$ iff $G \models_\alpha \psi$ for all graphs G and bindings α?

DECIDABLE \iff foundations of the database industry

UNDECIDABLE \iff both for \models and \models_{finite}

UNDECIDABLE \iff by reduction to the satisfiability problem
Equivalence problem: Given FO formulae ϕ, ψ, is $G \models_\alpha \phi$ iff $G \models_\alpha \psi$ for all graphs G and bindings α?

💀 **UNDECIDABLE** \iff by reduction to the satisfiability problem
Algorithmic problems for FO

\(\phi \) is **satisfiable** iff \(\phi \) is **not equivalent** to \(\perp \)

Satisfiability problem undecidable \(\iff \) Equivalence problem undecidable

Equivalence problem: Given FO formulae \(\phi, \psi \), is

\[G \vDash_{\alpha} \phi \iff G \vDash_{\alpha} \psi \]

for all graphs \(G \) and bindings \(\alpha \)?

💀 **UNDICIDABLE** \(\iff \) by reduction to the satisfiability problem
Algorithmic problems for FO

\[\phi \text{ is satisfiable iff } \phi \text{ is not equivalent to } \bot \]

Satisfiability problem undecidable \(\implies \) Equivalence problem undecidable

Actually, there are reductions in both senses:

\(\phi(x_1, \ldots, x_n) \) and \(\psi(y_1, \ldots, y_m) \) are equivalent iff

- \(n = m \)
- \((x_1 = y_1) \land \cdots \land (x_n = y_n) \land \phi(x_1, \ldots, x_n) \land \neg \psi(y_1, \ldots, y_n) \) is unsatisfiable
- \((x_1 = y_1) \land \cdots \land (x_n = y_n) \land \psi(x_1, \ldots, x_n) \land \neg \phi(y_1, \ldots, y_n) \) is unsatisfiable

Equivalence problem: Given FO formulae \(\phi, \psi \), is

\[G \models_\alpha \phi \iff G \models_\alpha \psi \]

for all graphs \(G \) and bindings \(\alpha \)?

💀 UNDECIDABLE \(\iff \) by reduction to the satisfiability problem
Algorithmic problems for FO

Evaluation problem: Given a FO formula $\phi(x_1, \ldots, x_n)$, a graph G, and a binding α, does $G \models_\alpha \phi$?

DECIDABLE \iff foundations of the database industry

Satisfiability problem: Given a FO formula ϕ, is there a graph G and binding α, such that $G \models_\alpha \phi$?

💀 UNDECIDABLE \iff both for \models and \models_{finite}

Equivalence problem: Given FO formulae ϕ, ψ, is $G \models_\alpha \phi$ iff $G \models_\alpha \psi$ for all graphs G and bindings α?

💀 UNDECIDABLE \iff by reduction to the satisfiability problem
Evaluation problem for FO

\[\phi(x_1, \ldots, x_n) \]

Input: \(G = (V, E) \)

\(\alpha = \{x_1, \ldots, x_n\} \rightarrow V \)

Output: \(G \models_\alpha \phi \)?
Evaluation problem for FO

\[\phi(x_1, \ldots, x_n) \]

Input: \(G = (V,E) \)

Output: \(G \Vdash_\alpha \phi ? \)

\[\alpha = \{x_1, \ldots, x_n\} \rightarrow V \]

Encoding of \(G = (V, E) \)

- each node is coded with a bit string of size \(\log(|V|) \),
- edge set is encoded by its tuples, e.g. \((100,101), (010, 010), \ldots\).

Cost of coding: \(||G|| = |E| \cdot 2 \cdot \log(|V|) \approx |V| \) (mod a polynomial)
Evaluation problem for FO

\[\phi(x_1, \ldots, x_n) \]

Input: \[G = (V, E) \]

Output: \[G \models_{\alpha} \phi ? \]

α = \{x_1, \ldots, x_n\} \rightarrow V

Encoding of \(G = (V, E) \)

- each node is coded with a bit string of size \(\log(|V|) \),
- edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

Cost of coding: \(||G|| = |E| \cdot 2 \cdot \log(|V|) \approx |V| \) (mod a polynomial)

Encoding of \(\alpha = \{x_1, \ldots, x_n\} \rightarrow V \)

- each node is coded with a bit string of size \(\log(|V|) \),

Cost of coding: \(||\alpha|| = n \cdot \log(|V|) \)
Evaluation problem for FO

Input: \(\phi(x_1, \ldots, x_n) \)
\(G = (V, E) \)
\(\alpha = \{x_1, \ldots, x_n\} \rightarrow V \)

Output: \(G \models_{\alpha} \phi \)?
Evaluation problem for FO

Input: \[\phi(x_1, \ldots, x_n)\]
\[G = (V,E)\]
\[\alpha = \{x_1, \ldots, x_n\} \rightarrow V\]

Output: \(G \models_\alpha \phi?\)

- If \(\phi(x_1, \ldots, x_n) = E(x_i, x_j)\):
 answer YES iff \((\alpha(x_i), \alpha(x_j)) \in E\)

- If \(\phi(x_1, \ldots, x_n) = \psi(x_1, \ldots, x_n) \land \psi'(x_1, \ldots, x_n)\):
 answer YES iff \(G \models_\alpha \psi\) and \(G \models_\alpha \psi'\)

- If \(\phi(x_1, \ldots, x_n) = \neg \psi(x_1, \ldots, x_n)\):
 answer NO iff \(G \models_\alpha \psi\)

- If \(\phi(x_1, \ldots, x_n) = \exists y. \psi(x_1, \ldots, x_n, y)\):
 answer YES iff for some \(v \in V\) and \(\alpha' = \alpha \cup \{y \mapsto v\}\)
 we have \(G \models_{\alpha'} \psi\).
Evaluation problem for FO

\[
\begin{align*}
\text{Input:} & \quad \begin{cases}
\phi(x_1,\ldots,x_n) \\
G = (V,E) \\
\alpha = \{x_1,\ldots,x_n\} \rightarrow V
\end{cases} \\
\text{Output:} & \quad G \vDash_{\alpha} \phi ?
\end{align*}
\]

- If \(\phi(x_1,\ldots,x_n) = E(x_i,x_j) \):
 answer YES iff \((\alpha(x_i),\alpha(x_j)) \in E \)

- If \(\phi(x_1,\ldots,x_n) = \psi(x_1,\ldots,x_n) \land \psi'(x_1,\ldots,x_n) \):
 answer YES iff \(G \vDash_{\alpha} \psi \) and \(G \vDash_{\alpha} \psi' \)

- If \(\phi(x_1,\ldots,x_n) = \neg \psi(x_1,\ldots,x_n) \):
 answer NO iff \(G \vDash_{\alpha} \psi \)

- If \(\phi(x_1,\ldots,x_n) = \exists y . \psi(x_1,\ldots,x_n,y) \):
 answer YES iff for some \(v \in V \) and \(\alpha' = \alpha \cup \{y\mapsto v\} \) we have \(G \vDash_{\alpha'} \psi \).

Question:
How much space does it take?
Evaluation problem for FO

Input: \(\phi(x_1, \ldots, x_n) \)
\[G = (V, E) \]
\[\alpha = \{x_1, \ldots, x_n\} \rightarrow V \]

Output: \(G \models_\alpha \phi \) ?

- If \(\phi(x_1, \ldots, x_n) = E(x_i, x_j) \):
 answer YES iff \((\alpha(x_i), \alpha(x_j)) \in E \)

- If \(\phi(x_1, \ldots, x_n) = \psi(x_1, \ldots, x_n) \wedge \psi'(x_1, \ldots, x_n) \):
 answer YES iff \(G \models_\alpha \psi \) and \(G \models_\alpha \psi' \)

- If \(\phi(x_1, \ldots, x_n) = \neg \psi(x_1, \ldots, x_n) \):
 answer NO iff \(G \models_\alpha \psi \)

- If \(\phi(x_1, \ldots, x_n) = \exists y . \psi(x_1, \ldots, x_n, y) \):
 answer YES iff for some \(v \in V \) and \(\alpha' = \alpha \cup \{y \mapsto v\} \)
 \(G \models_{\alpha'} \psi \).

Question:
How much space does it take?

use 4 pointers \(\Leftrightarrow \) LOGSPACE
Evaluation problem for FO

Input: \(\phi(x_1, \ldots, x_n) \)
\[G = (V, E) \]
\[\alpha = \{x_1, \ldots, x_n\} \rightarrow V \]

Output: \(G \models_\alpha \phi \) ?

- If \(\phi(x_1, \ldots, x_n) = E(x_i, x_j) \):
 answer YES iff \((\alpha(x_i), \alpha(x_j)) \in E \)

- If \(\phi(x_1, \ldots, x_n) = \psi(x_1, \ldots, x_n) \land \psi'(x_1, \ldots, x_n) \):
 answer YES iff \(G \models_\alpha \psi \) and \(G \models_\alpha \psi' \)

- If \(\phi(x_1, \ldots, x_n) = \neg \psi(x_1, \ldots, x_n) \):
 answer NO iff \(G \models_\alpha \psi \)

- If \(\phi(x_1, \ldots, x_n) = \exists y . \psi(x_1, \ldots, x_n, y) \):
 answer YES iff for some \(v \in V \) and \(\alpha' = \alpha \cup \{y \mapsto v\} \)
 we have \(G \models_{\alpha'} \psi \).

Question:
How much space does it take?
Evaluation problem for FO

Input: \(\phi(x_1,\ldots,x_n) \)
\(G = (V,E) \)
\(\alpha = \{x_1,\ldots,x_n\} \rightarrow V \)

Output: \(G \models_\alpha \phi \) ?

- If \(\phi(x_1,\ldots,x_n) = E(x_i,x_j) \):
 answer YES iff \((\alpha(x_i),\alpha(x_j)) \in E \)
 use 4 pointers \(\Rightarrow \) LOGSPACE

- If \(\phi(x_1,\ldots,x_n) = \psi(x_1,\ldots,x_n) \land \psi'(x_1,\ldots,x_n) \):
 answer YES iff \(G \models_\alpha \psi \) and \(G \models_\alpha \psi' \)
 \(\Rightarrow \) \(\text{MAX}(\text{SPACE}(G \models_\alpha \psi), \text{SPACE}(G \models_\alpha \psi')) \) \(\Rightarrow \) \(\text{SPACE}(G \models_\alpha \psi) \)

- If \(\phi(x_1,\ldots,x_n) = \neg \psi(x_1,\ldots,x_n) \):
 answer NO iff \(G \models_\alpha \psi \)

- If \(\phi(x_1,\ldots,x_n) = \exists y . \psi(x_1,\ldots,x_n,y) \):
 answer YES iff for some \(v \in V \) and \(\alpha' = \alpha \cup \{y \mapsto v\} \)
 we have \(G \models_{\alpha'} \psi \).

Question:
How much space does it take?
Evaluation problem for FO

Input:
\[\phi(x_1, \ldots, x_n) \]
\[G = (V, E) \]
\[\alpha = \{x_1, \ldots, x_n\} \rightarrow V \]

Output:
\[G \models_\alpha \phi \]

1. If \(\phi(x_1, \ldots, x_n) = E(x_i, x_j) \):
 answer YES if \((\alpha(x_i), \alpha(x_j)) \in E \)

2. If \(\phi(x_1, \ldots, x_n) = \psi(x_1, \ldots, x_n) \land \psi'(x_1, \ldots, x_n) \):
 answer YES if \(G \models_\alpha \psi \) and \(G \models_\alpha \psi' \)

3. If \(\phi(x_1, \ldots, x_n) = \neg \psi(x_1, \ldots, x_n) \):
 answer NO if \(G \models_\alpha \psi \)

4. If \(\phi(x_1, \ldots, x_n) = \exists y . \psi(x_1, \ldots, x_n, y) \):
 answer YES if for some \(v \in V \) and \(\alpha' = \alpha \cup \{y \mapsto v\} \)
 we have \(G \models_{\alpha'} \psi \).

Question: How much space does it take?
Evaluation problem for FO

Input: \[\phi(x_1, \ldots, x_n) \]
\[G = (V, E) \]
\[\alpha = \{x_1, \ldots, x_n\} \rightarrow V \]

Output: \(G \models_\alpha \phi ? \)

- If \(\phi(x_1, \ldots, x_n) = E(x_i, x_j) \):
 answer YES iff \((\alpha(x_i), \alpha(x_j)) \in E \)

- If \(\phi(x_1, \ldots, x_n) = \psi(x_1, \ldots, x_n) \land \psi'(x_1, \ldots, x_n) \):
 answer YES iff \(G \models_\alpha \psi \) and \(G \models_\alpha \psi' \)

- If \(\phi(x_1, \ldots, x_n) = \neg \psi(x_1, \ldots, x_n) \):
 answer NO iff \(G \models_\alpha \psi \)

- If \(\phi(x_1, \ldots, x_n) = \exists y . \psi(x_1, \ldots, x_n, y) \):
 answer YES iff for some \(v \in V \) and \(\alpha' = \alpha \cup \{y \mapsto v\} \) we have \(G \models_{\alpha'} \psi \).

Question: How much space does it take?

\[2 \cdot \log(|G|) + \cdots + 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|) \text{ space} \]
\[\leq |\phi| \text{ times} \]
Evaluation problem for FO in PSPACE

Input: \(\phi(x_1,\ldots,x_n) \)

\(G = (V,E) \)

\(\alpha = \{x_1,\ldots,x_n\} \rightarrow V \)

Output: \(G \vDash_\alpha \phi ? \)

- If \(\phi(x_1,\ldots,x_n) = E(x_i,x_j) \):
 answer YES iff \((\alpha(x_i),\alpha(x_j)) \in E \)

- If \(\phi(x_1,\ldots,x_n) = \psi(x_1,\ldots,x_n) \land \psi'(x_1,\ldots,x_n) \):
 answer YES iff \(G \vDash_\alpha \psi \) and \(G \vDash_\alpha \psi' \)

- If \(\phi(x_1,\ldots,x_n) = \neg \psi(x_1,\ldots,x_n) \):
 answer NO iff \(G \vDash_\alpha \psi \)

- If \(\phi(x_1,\ldots,x_n) = \exists y . \psi(x_1,\ldots,x_n,y) \):
 answer YES iff for some \(v \in V \) and \(\alpha' = \alpha \cup \{y \mapsto v\} \) we have \(G \vDash_{\alpha'} \psi \).

Question:
How much space does it take?

\[2 \cdot \log(|G|) + \ldots + 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|) \text{ space} \leq |\phi| \text{ times} \]
Problem: Usual scenario in database

A database of size 10^6
A query of size 100
Problem: Usual scenario in database

A **database** of size 10^6

A **query** of size 100

Input: database + query
Problem: Usual scenario in database

A database of size 10^6

A query of size 100

Input: database

+ query

But we don’t distinguish this in the analysis:

\[
\text{TIME}(2|\text{query}| + |\text{data}|) = \text{TIME}(|\text{query}| + 2|\text{data}|)
\]
Separation of concerns: How the resources grow with respect to

• the size of the data
• the query size

Query and data play very different roles.

[Vardi, 1982]
Combined complexity: input size is $|\text{query}| + |\text{data}|$

Query complexity ($|\text{data}|$ fixed): input size is $|\text{query}|$

Data complexity ($|\text{query}|$ fixed): input size is $|\text{data}|$
Combined complexity: input size is $|\text{query}| + |\text{data}|$

Query complexity ($|\text{data}|$ fixed): input size is $|\text{query}|$

Data complexity ($|\text{query}|$ fixed): input size is $|\text{data}|$

\[
\begin{align*}
O(2^{|\text{query}|} + |\text{data}|) & \text{ is exponential in combined complexity} \\
& \text{exponential in query complexity} \\
& \text{linear in data complexity} \\
O(|\text{query}| + 2^{|\text{data}|}) & \text{ is exponential in combined complexity} \\
& \text{linear in query complexity} \\
& \text{exponential in data complexity}
\end{align*}
\]
Question

What is the data, query and combined complexity for the evaluation problem for FO?

Remember:
- **data** complexity, input size: $|\text{data}|$
- **query** complexity, input size: $|\text{query}|$
- **combined** complexity, input size: $|\text{data}| + |\text{query}|$

$|\phi| \cdot 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|)$ space
Question

What is the data, query and combined complexity for the evaluation problem for FO?

Remember:
- **data** complexity, input size: $|\text{data}|$
- **query** complexity, input size: $|\text{query}|$
- **combined** complexity, input size: $|\text{data}| + |\text{query}|$

$$|\phi| \cdot 2 \cdot \log(|G|) + k \cdot \log(|\alpha| + |G|) \text{ space}$$

$O(\log(|\text{data}|) \cdot |\text{query}|) \text{ space}$

PSPACE combined and query complexity

LOGSPACE data complexity
Evaluation pb for FO is PSPACE-complete (combined complexity)

PSPACE-complete problem: **QBF**

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)
PSPACE-complete problem: **QBF**

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

\[\exists p \ \forall q . (p \lor \neg q) \text{ where } p,q \text{ range over } \{T,F\} \]
PSPACE-complete problem: \textbf{QBF}
\textit{(satisfaction of Quantified Boolean Formulas)}

QBF = a boolean formula with quantification over the truth values (T,F)

\[\exists p \ \forall q . \ (p \lor \neg q) \quad \text{where } p,q \text{ range over } \{T,F\} \]

Theorem: Evaluation for FO is PSPACE-complete (combined c.)
Evaluation pb for FO is PSPACE-complete (combined complexity)

PSPACE-complete problem: **QBF**

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

\[\exists p \forall q . (p \lor \neg q) \] where p,q range over \{T,F\}

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

Polynomial reduction \textbf{QBF} \sim FO:

1. Given \(\psi \in \text{QBF} \),
 let \(\psi'(x) \) be the replacement of each ‘p’ with ‘p=x’ in \(\psi \).

2. Note: \(\exists x \psi' \) holds in a 2-element graph iff \(\psi \) is QBF-satisfiable

3. Test if \(G \vDash \psi' \) for \(G=(\{v,v\}',\{\}) \)
Evaluation pb for FO is PSPACE-complete (combined complexity)

PSPACE-complete problem: **QBF**

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (T,F)

\[\exists p \forall q . (p \lor \neg q) \] where p,q range over \{T,F\}

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

Polynomial reduction **QBF ~ FO** :

\[\psi'(x) = \exists p \forall q . ((p=x) \lor \neg (q=x)) \]

1. Given \(\psi \in \text{QBF} \), let \(\psi'(x) \) be the replacement of each ‘p’ with ‘p=x’ in \(\psi \).

2. Note: \(\exists x \psi' \) holds in a 2-element graph iff \(\psi \) is QBF-satisfiable

3. Test if \(G \models \psi' \) for \(G = (\{v,v'\},\{\}) \)
Evaluation pb for FO is PSPACE-complete

PSPACE-complete problem: \(\text{QBF} \)

(satisfaction of Quantified Boolean Formulas)

\(\text{QBF} = \) a boolean formula with quantification over the truth values (T,F)

\[\exists p \forall q \cdot (p \lor \neg q) \quad \text{where} \quad p, q \text{ range over } \{T,F\} \]

Theorem: Evaluation for FO is PSPACE-complete (combined c.)

Polynomial reduction \(\text{QBF} \sim \text{FO} : \)

1. Given \(\psi \in \text{QBF} \),
 let \(\psi'(x) \) be the replacement of each ‘p’ with ‘p=x’ in \(\psi \).

2. Note: \(\exists x \psi' \) holds in a 2-element graph iff \(\psi \) is QBF-satisfiable

3. Test if \(G \models \psi' \) for \(G=\{v,v'\},\{\}\)

(freely available at http://webdam.inria.fr/Alice/)

Chapters 1, 2, 3