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First and foremost...

interrupt!

ask! (in any language)



Organization
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Databases

a collection of data,

database = | 4 away .of defining, .qufarying,
structured in some way updating the data inside

X X X
N1 humans, processe

DBMS mediate between &

TN data

. Data model
* how the data is logically organized
 mathematical abstraction for representing data :
e independent from physical organisation '

DBMS also implement: transactions, concurrency, access control, resiliency...

* [Abitebou, Hull, Vianu “Foundations of databases”]
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Relational databases

Relational data model = data logically organised into relations (“tables”).

, . e a (finite) subset of the cartesian product of sets
What's a relation?

e 2 “table” with rows and columns

A : names of tables and attributes

Films (Title:string, Director:string, Actor:string)

DB

Schedule (Theatre:string, Title:string)

Schedule
Title Director Actor
81/2 Fellini =~ Mastroianni Utopia  Dr. Strangelove
Shining Kubrick  Nicholson Utopia 81/2
Dr. Strangelove  Kubrick Sellers UGC  Dr. Strangelove
8 femmes Ozon Ardant UGC 8 femmes




Relational databases

Relational data model = data logically organised into relations (“tables”).

We assume all elements come from
a fixed set of constants or data values U.
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Relational databases: queries

computable!

What is a query g 2+, E

A maooine that takes a database instance D :
pping returns a relation g(D) € Ur of fixed arity r :

generic!

Boolean query: r=0

(order independent) .
Either “yes” { () } or “no” {}




Relational databases: queries

;"What S @ QUELY g 2 oo E

A manoine that takes a database instance D :
pping returns a relation g(D) € Ur of fixed arity r :

expressive power evaluation
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The fundamental questions:

How to query the relational data model:

How efficient/expressive is it?

expressiveness efficiency




Query languages

Query Language

—

Syntax

Expressions for querying the db,
governed by syntactic rules

“Select X from Y”

yi-Vx(x <vy)”

_I_

\

Semantics

Interpretation of symbols
in terms of some structure

Retrieves all strings
in column X of table Y

Returns the maximum element
of the set.

10
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Relational Algebra (RA) [Codd, 1970]

e R; U Ry : Set union

* Ri x Ry : Cartesian product

e R;\ Ry : Set difference

+ + .
e O-{iltjl,...,inijn}(R) ={(x1, ..., Xm) € R| (X-1=Xj1)/\ e A (Xinzxjn)} . Selection

e T i (R) = {(x50 %) | (x1, ..., xm) € R} : Projection

12



Relational Algebra (RA) [Codd, 1970]

o : Set union

. : Cartesian product

. : Set difference

o ={(X1, ..., Xm) € R| (=X A - A (35, =5 )} - Selection
o = {(X .. X, ) | x1, ..., xm) € R} : Projection

Question 1: What is the RA expression for
: { (V1,V2) | there are w1 # w3 so that (V1,W1) € R; and (Vz,Wz) S RZ} 2

: a b
Answer: 7T{1,3}(O'1¢3(R1 X Rz)) o a R1 Rz
] C d

a 3 a 4
| c_ b b 2 b 1
- Question 2: m(o1=3(m2 (01=3(R1 X R2)) X Ry))="2 c | 4 o 0
: b 3 1
- Answer (only one element): | b . | 5 Z 3

12



RA = Basic SQL

no domain-specific features,
aggregation, etc

Select X

From Ri,..,Rhn < TI'X(O-Z(RIX”’X n))
Where Z

.. Or .. & union
. not in (..) & (difference

13
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RA = Basic SQL

no domain-specific features, Select X

aggregation, etc From Ri,.,Rn & TIx (Oz( Ry x---x Ry))
e —— Where Z

.. Or .. & union
. not in (..) & (difference

| Select R:.2 as foo R, R»
- T2 (01+3(R1 x Rp)) ~ From Ri, R> *
D —~— — Where Ri1.1 # R>.1

e

© OO0 T o
N W RN W
oo O O o
W = NN = A

Select foo

1-[2(01:3(3% )(Rz)) ~> From *, R>
Where foo = Rj.2
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FO = First-Order logic

"




Denotational languages

A structure i1s:

A: (D, R], ¢ oo Rn,ﬁ) ﬁ’l)

D is a non-empty set, the domain

R; is an m-ary relation for some m (ie, R;C D™)
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Denotational languages

A structure i1s:

A: (D, R], ¢ oo Rn,ﬁ) ﬁ’l)

D is a non-empty set, the domain

R; is an m-ary relation for some m (ie, R;C D™)

fi is an z-ary function for some n  (ie, fi: D"— D)

A graph G = (V,E)
e V: nodes |
o E C V2: edges (binary relation)

e (no functions)

A group, like (N,+)

- o N: natural numbers

e (no relations)

o +: N2— N addition (binary function)

16
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First-order logic

variables x, ), z, ...
quantifiers: 3,V

Boolean connectives: -, N, V

A language to talk about structures
Variables range over the domain

Atomic formulas: R(xy, ..., xm), x=y
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First-order logic

variables x, ), z, ...
quantifiers: 3,V

Boolean connectives: -, N, V

A language to talk about structures
Variables range over the domain

Atomic formulas: R(xy, ..., xm), x=y

A graph G = (V,E)

* V: nodes |
* £ C V2 edges (binary relation)é

* (no functions)

Language to talk about graphs
Variables range over nodes

Atomic formulas: E(x,y), x =y

Formulas: Atomic formulas + connectives + quantifiers
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Jy 3z (~(y=2z) A E(x,y) A E(x,2))
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X 1S = not quantified

(a property of a node in the graph)

the formula is a
. = no free variables

vx 3y 3z (~(y=2) A E(xy) A E(x,2)) (a property of the graph)
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“The node x has at least two neighbours” | x is free = not quantified
Jy 3z (=(y=2) A E(x,y) A E(x,2)) (a property of a node in the graph)

« : » the formula is a
Each node has at least two neighbours

vx Iy 3z (=(y=2) A E(x,y) A E(x,2))

= no free variables

(a property of the graph)
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“The node x has at least two neighbours” | x is free = not quantified
Jy 3z (=(y=2) A E(x,y) A E(x,2)) (a property of a node in the graph)

« : » the formula is a
Each node has at least two neighbours

vx Iy 3z (=(y=2) A E(x,y) A E(x,2))

= no free variables

(a property of the graph)
Question: * How to express in FO
“Every two neighbours have a common neighbour” ?

e Does it have free variables? Is it a sentence?

Answer: VxVy (—IE(X, )V 3z ( (E(Xaz) \% E(Z,X)) A (E(Y,Z) v E(Z>Y)) ) )

18



Binding

To evaluate a formula ¢ we need a graph G=(V,E) and a binding «
that maps free variables of ¢ to nodes of G.

G Ey &(X1,0005Xn) o : {x1,....xn} — V  assigns nodes to free variables
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Binding

To evaluate a formula ¢ we need a graph G=(V,E) and a binding «
that maps free variables of ¢ to nodes of G.

> “G,asatisty ¢” .- » “¢ is satisfiable”
G Ey (X1,000Xn) o : {x1,....xn} — V  assigns nodes to free variables

“The node x has at least two neighbours”
¢(x) = 3y 3z (=(y=2) A E(xy) A E(x,2))

Gk, ¢ if a={x—v}

“Every node has at least two neighbours”
V= Vx Ay 3z (- (y=z) A E(xy) A E(x,2))

G oV

19



First-order logic

Formal Semantics of FO

Gk, 3x¢ iff forsomeveVanda =au{x~ v} wehave Gky ¢

GF,Vx¢ iff foreveryveVanda' =aU{x~ v} wehave Gk, ¢

GE, oAV it Gk, dand GE,V
GF,n¢  iff itis not true that G, ¢
Gk x=y it a(x)=a(y)

Gk E(xy) iff (a(x),a(y))€E

20



Formulas as queries

&(x1, .., Xn) evaluated on G=(V,E) yields all the bindings that satisfy ¢:
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Formulas as queries

&(x1, .., Xn) evaluated on G=(V,E) yields all the bindings that satisfy ¢:

- “The node x has at least two neighbours” “Return all nodes with

d(x) = Iy 3z (~(y=z) A E(xy) A E(x,2)) 7 at least two neighbours”

Q) -ty —~3 —5
G)=i{v,Vv i
¢ O ofies

“Every node has two neighbours” Q‘ @
V= vx3y 3z (~(y=z) A E(xy) A E(x2)) G G

V(G) ={()} ~ set with one element: the 0-tuple

V(G') =1} ~ empty set



Question:

Which bindings « verity Gk, ¢ for
d(xy) = 3z (E(x,2) A E(zy))

(v
and G = @

22



Question:  Which bindings a verify G k, ¢ for
d(xy) = 3z (E(x,z) A E(zy))

Answer: ea={xXPV,y~V |,

e ={XPV,yrV | (G) = {vv, v'"} X {vv, v"
® (O = {XI_)V') yHV, })

o ... and all the rest

22
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Tables = Relations

Queries = Formulas

Rows = Tuples
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Formulas as queries

FO can serve as a declarative query language on relational databases :
we express the properties of the answer

Tables = Relations

Queries = Formulas

Rows = Tuples

+ Fanice 1S different from E

Particular to databases:

* Use of constants There are formulas ¢ that are satisfiable

e No functions only on infinite structures.

e Finite structure

e Quantification over S S
N o« . . . . ’
active domain . & =“R(xy) is an infinite linear order

Finite model theory
23



Formulas as queries

FO can serve as a declarative query language on relational databases :

we express the properties of the answer

Tables

Queries
Rows

Relations RA = FO

Formulas

Tuples How = What

'RA and FO logic have roughly* the same expressive power! N

.

[E.E. Codd 1972]

J

*FO without functions, with equality, on finite domains, ...

24



Formulas as queries

RACFO|
e R; X Ry ~ Ri(X1, ..o, Xn) A Ro(Xnt1, ooy Xm)
e RiUR> ~ R1(X1, ooy Xn) V Rz(Xl, ooy Xn)
o G{ilzjl,---,in:jn}(R) ~ R(x1, oo, Xm) A (Xilzle)/\ A (Xin:Xjn>

o W{il,...,in}(R) ~  A({xLeeoXmf VX peoX ). R(X1, oy Xm)

e Ri\R» ~ R1(X1, oo Xn) A ﬁRz(Xl, ooy Xn)

25



Formulas as queries

[ FO C RAJ does not hold in general!
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Formulas as queries

FO¢ RA|

ccthe Complemeﬂt Of R” z ]I;é . _lR(X)

..--> elements in the relations

~» We restrict variables to range over active domain

FOact
- 1(GQ) =1(vivi),(vavi
FO restricted Q) =) (vav)] G = @.Q

to active domain $a(x)



First-order logic restricted to active domain

Formal Semantics of FOa<t

Gk, 3x¢ iff forsomeveACT(G)and &’ =a U {x~ v} we have Gk, ¢

GE,Vx¢ iff foreveryve ACT(G)and o’ =au{x~ v} wehave Gky ¢

Gk, oAV iff GE,dand GE, V¥
GF,n¢  iff itisnottrue that Gk, ¢
Gk, x=y iff a(x)=a(y)

Gk E(xyy) it (a(x),a(y)) € E

ACT(G) ={v | for some v'": (v,v') € E or (viv) € E}

27



[Fow C RA]
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[Fow C RA]

Assume:
1. ¢ hasvariables xi,...,xn,

2. ¢ innormal form: (3* (03)*)* + quantifier-free V(x1,...,Xn)
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[FOact C RA]

Assume:
1. ¢ hasvariables xi,...,xn,

2. ¢ innormal form: (3* (03)*)* + quantifier-free V(x1,...,Xn)

Adom = RA expression for active domain = “m;(E) u m2(E)”

o ( 3X; ¢(Xi1,...,Xin) )+ ~ T, in}\{i}( o )

,,,,,

o (xi=x)* ™ ofj—}( Adom x ... x Adom ) AnB = (AUB) \A\B

o (\[/1(X1,...,Xn) A \[/2(X1,...,Xn))+ ~> 1t Nt
o (10(Xj5.Xj ) > Adom x ... X Adom \ ¢+
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Corollary

/ [FOE‘Ct is equivalent to RA]
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Question 1: How is m2(o1=3(m2(01=3(R1 X R2)) X Rz)) expressed in FO?

Remember: Ri,R; are binary

Question 2: How is 3y,z . (Ri(x,y) A Ri(ysz) A x#z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

0R1UR2
0R1><R2
e Ri\ R

30



Question 1: How is m2(o1=3(m2(01=3(R1 X R2)) X Rz)) expressed in FO?

Remember: Ri,R; are binary

Answer: 3x; . ( 3X1,X4 . (R1 (x1,X2) A Rz(Xl,X4>) A Ra(x2,x5) )

Question 2: How is 3y,z . (Ri(x,y) A Ri(ysz) A x#z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

0R1UR2
0R1><R2
e Ri\ R
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: How is m2(a1=3(m2(01=3(R1 X R2)) x Ry)) expressed in FO?

Remember: Ri,R; are binary

Answer: 3x; . ( 3X1,X4 . (R1 (x1,X2) A Rz(Xl,X4>) A Ra(x2,x5) )

: How is Ay,z . (Ri(x,y) A Ri(y,z) A x¥#2z ) expressed in RA?
Remember: The signature is the same as before (R1,R2 binary)

° R1 U Rz
o R1 X Rz
e Ri\R»
=
- G{ilijl,...,inijn}( ) ‘:{(Xl ooy Xm) S R| (Xl :Xn)/\ A\ <X1n:X]n)}
° T in}(R) = {(X11 ..... Xln) (X1, ..., Xm) € R}

Answer: mi(0f2=31-4(R1 X R1))

30



Logic

Algebra

Programming

language
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over

active domain

Logic

on finite

X domains

Algebra

very basic

Programming

language
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Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db,

and a tuple t, is t € Q(db) ?

w How hard is it to retrieve data?
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Algorithmic problems for query languages

Evaluation problem: Given a query Q, a database instance db,

and a tuple t, is t € Q(db) ?

w How hard is it to retrieve data?

Emptiness problem: Given a query Q, is there a database instance db

so that Q(db) + @ ?

~» Does Q make sense? Is it a contradiction? (Query optimization)

Equivalence problem: Given queries Q1, Qa, is

Q1(db) = Q2(db)

for all database instances db?

~» Can we safely replace a query with another? (Query optimization)

32



Complexity theory

What can be mechanized? ~ decidable/undecidable

How hard is it to mechanise? ~ complexity classes
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Complexity theory H’s 10th pep

Domino
K
What can be mechanized? ~ decidable/undecidable :

How hard is it to mechanise? ~ complexity classes

--------------- » usage of resources: ® time
® memory

Algorithm Alg is TIME-bounded
by a function f: N — N if
- Alg(input) uses less than f(|input]) units of TIME.
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Complexity theory H’s 10th pep

Domino
K
What can be mechanized? ~ decidable/undecidable :
How hard is it to mechanise? ~ complexity classes
e > usage Of resources: ®© time
* memory

o . ‘ f
5 Algorithm Alg is TIME-bounded i} 5
by a function f: N — N if £ Alg

Alg(input) uses less than f(|input|) units of TIME. g

Input size
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Complexity theory H’s 10th pep

Domino
K
What can be mechanized? ~ decidable/undecidable '
How hard is it to mechanise? ~ complexity classes
e, > U.Sﬂge Of resources: © time
* memory
SPACE \ Fo
- Algorithm Alg is =T -bounded i}
by a function f: N — N if SPACE. £ Alg
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: lnput S1Z€
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Complexity theory H’s 10th pep

Domino
K
What can be mechanized? ~ decidable/undecidable '
How hard is it to mechanise? ~ complexity classes
e, > U.Sﬂge Of resources: © time
* memory
SPACE \ Fo
- Algorithm Alg is =T -bounded i}
by a function f: N — N if SPACE. £ Alg
- Alg(input) uses less than f(|input|) units of TME. . . .
: lnput S1Z€

r—> TIME-bounded by a polynomial

LOGSPACE ¢ PTIME < PSPACE ¢ EXPTIME ¢ . ..

\ N~ - SPACE-bounded by a polynomial
SPACE-bounded by log(n)

33



Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(x1, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

Equivalence problem: Given FO formulae ¢,V is
Gk it GE
for all graphs G and bindings «?
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Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(x1, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

DECIDABLE «» foundations of the database industry

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

&3 UNDECIDABLE w both for F and Egic

Equivalence problem: Given FO formulae ¢,V is
Gk it GE
for all graphs G and bindings «?

&3 UNDECIDABLE « by reduction to the satisfiability problem
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Algorithmic problems for FO

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

@ UNDECIDABLE ~» both for E and Egnje [ Trakhtenbrot ’50]
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Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?
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Proof: By reduction from the Domino (aka Tiling) problem.
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Algorithmic problems for FO

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

@ UNDECIDABLE ~» both for E and Egnje [ Trakhtenbrot ’50]

Proof: By reduction from the Domino (aka Tiling) problem.

Reduction from P to P": Algorithm that solves P usinga O(1) procedure
E (4 ¢ P’(X) »
that returns the truth value of P'(x).



The (undecidable) Domino problem
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The (undecidable) Domino problem

Domino

Input: 4-sided dominos:

Output: s it possible to form a white-bordered rectangle? (of any size)

Rules: sides must match,
you can't rotate the dominos, but you can ‘clone’ them.



The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:
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The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:
NV v (head is elsewhere,

/0N AN symbol is not modified)
N7 (head is here, symbol is
rewritten, head moves right)
v v (head is here, symbol is
A A rewritten, head moves left)
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D
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X
X
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7 0N/ 0N
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The (undecidable) Domino problem
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[t can easily encode halting computations of Turing machines:
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The (undecidable) Domino problem

Domino - Why is it undecidable?

[t can easily encode halting computations of Turing machines:

o 20

PP

s
SO

%
e

DX A P B BX
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1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...
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a unary relation

D(x

X
for each domino
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Domino « Sat-FO (domino has a solution iff ¢ satisfiable)

1. There is a grid: H(, ) and V/(, ) are relations representing bijections such that...

2. Assign one domino to each node:

a unary relation

D(x

X
for each domino

52525 =5

3. Match the sides VX,y
if H(x,y), then D,(x) A Du(y)

for some dominos a,b that ‘match’

horizontally  (Idem vertically)
4. Borders are white.



Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(x1, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

DECIDABLE «» foundations of the database industry
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Algorithmic problems for FO

¢ is satisfiable ift ¢ is not equivalent to L

Satisfiability problem undecidable ~» Equivalence problem undecidable

Actually, there are reductions in both senses:

&(x1,....Xn) and V(y1s...,ym) are equivalent iff
e N=m
o (x1=y1) A (xn=yn) A &(X1,-.0.Xn) A 7V (Y1,...,yn) is unsatisfiable
o (x1=y1) A (xn=yn) A V(X15..0sXn) A 1O(Y1,...,yn) is unsatisfiable

Equlvalence problem: Given FO formulae ¢,V is
GE.d it GEY
for all graphs G and bindings «?

& UNDECIDABLE «» by reduction to the satisfiability problem

40



Algorithmic problems for FO

Evaluation problem:  Given a FO formula ¢(xi, ..., xn),

a graph G, and a binding &, does G F, ¢ ?

;, DECIDABLE «» foundations of the database industry

Satisfiability problem: Given a FO formula ¢, is there a graph G
and binding «, such that G k. ?

&3 UNDECIDABLE w both for F and Egic

Equivalence problem: Given FO formulae ¢,V is
Gk it GE
for all graphs G and bindings a?

&3 UNDECIDABLE « by reduction to the satisfiability problem
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Evaluation problem for FO

&(X1,0+05Xn)
Input: ( G =(VE)

Output: GE, ¢ ?
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Evaluation problem for FO

&(X1,0+05Xn)
Input: G= (V,E) Output: Gk, ¢?

= {X1,0,Xn} — V

Encoding of G = (V, E)

),
e edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

« each node is coded with a bit string of size log(|V

Cost of coding: ||G|| = |[E|-2-log(|V]) = |V| (mod a polynomial)
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Evaluation problem for FO

&(X1,0+05Xn)
Input: G = (V.E) Output: GE, ¢ ?

= {X1,0,Xn} — V

Encoding of G = (V, E)

),
e edge set is encoded by its tuples, e.g. (100,101), (010, 010), ...

« each node is coded with a bit string of size log(|V

Cost of coding: ||G|| = |[E|-2-log(|V]) = |V| (mod a polynomial)

Encoding of o = {x1,....xa} — V

)

« each node is coded with a bit string of size log(|V

Cost of coding: ||a|| = n-log(|V])

42



Evaluation problem for FO

&(X1,0+05Xn)
Input: ( G = (V.E)

Output:

G2
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Evaluation problem for FO

&(X1,0+05Xn)
Input: G = (V.E) Output: Gk, 2
= {X1,0,Xn} — V
o Ifd(x1,....xn) = E(x3,%)):
answer YES iff (a(x;),a(x;) € E

o IfP(x1,0sXn) = V(X1,000Xn) A V' (X1,000sXn):
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o Ifd(x1,..0sXn) = V(X100 Xn):
answer NO ift G,V

o Ifd(x1,e0xn) = Ay . V(X100 Xn,y):

answer YES iff for somev e Vand a'=a U {y-v}
we have G kg .
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Combined, Query, and Data complexities [Vardi, 1982]

A database of size 10°

Problem: Usual scenario in database .
A query of size 100
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Combined, Query, and Data complexities [Vardi, 1982]

A database of size 10°

Problem: Usual scenario in database .
A query of size 100

Input: database + @ query

TIME(2laveryl 4 |datal)
But we don’t distinguish this in the analysis: =

TIME(|query| + 2ldatl)
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Combined, Query, and Data complexities [Vardi, 1982]

Separation of concerns:

Query and data play very different roles.

How the resources grow with respect to
e the size of the data
* the query size
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Combined, Query, and Data complexities

Combined complexity: input size is |query| + |data]
Query complexity (|data| fixed): input size is |query]|

Data complexity (|query| fixed): input size is |data|

46



Combined, Query, and Data complexities

Combined complexity: input size is |query| + |data]
Query complexity (|data| fixed): input size is |query]|

Data complexity (|query| fixed): input size is |data|

exponential in combined complexity

O(2lawenyl 4 |datal) is exponential in query complexity
linear in data complexity

exponential in combined complexity
O(|query| + 2/42@l) is  linear in query complexity
exponential in data complexity

46



Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data

query complexity, input size: |query]|

combined complexity, input size: |data| + |query|

] - 2 - log(|G|) + k-log(|e|+|G|) space



Question

What is the data, query and combined complexity
for the evaluation problem for FO?

Remember: data complexity, input size: |data

query complexity, input size: |query]|

combined complexity, input size: |data| + |query|

.2 - log(|G|) + k-log(|et|+|G|) space
¢ - g g( p

query ‘J \/, data

PSPACE combined and query complexity

O(log(|data|)-|query]|) space
LOGSPACE data complexity



Evaluation pb for FO is PSPACE-complete (zgzﬁll?;fy)

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (‘T,F)

48



Evaluation pb for FO is PSPACE-complete (zgzﬁll?;fy)

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (‘T,F)

48



Evaluation pb for FO is PSPACE-complete (zgzﬁll?;fy)
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(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (‘T,F)

[Theorem: Evaluation for FO is PSPACE-complete (combined c)]
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Evaluation pb for FO is PSPACE-complete (zgzﬁll?;fy)

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (‘T,F)

[Theorem: Evaluation for FO is PSPACE-complete (combined c)]

Polynomial reduction QBF ~ FO : 1. Given v € QBFE,

let V'(x) be the replacement
of each p’ with ‘p=x"in V.

2. Note: Ix ' holds in a 2-element
graph ift V is QBF-satisfiable

3. Testif GEgV' for G=({vv'},{})
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Evaluation pb for FO is PSPACE-complete (zgzﬁll?;fy)

PSPACE-complete problem: QBF

(satisfaction of Quantified Boolean Formulas)

QBF = a boolean formula with quantification over the truth values (‘T,F)

[Theorem: Evaluation for FO is PSPACE-complete (combined c)]

Polynomial reduction QBF ~ FO : 1. Given v € QBFE,

let V'(x) be the replacement
V'(x)=3p vq. ((p=x) V =(q=x) ) of each ‘p’ with ‘p=x"in V.
OSSOSO | 2. Note: Ix ' holds in a 2-element

dx dp Vq. ( (p:X) Vv _l(q:X) ) graph ift V is QBF-satisfiable

3. Testif GEgV' for G=({vv'},{})
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Eval-FO
(data)

LOGSPACE
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