THE COST OF REPAIRS

Gabriele Puppis

LaBRI / CNRS

based on joint works with

Michael Benedikt, Pierre Bourhis, Cristian Riveros, Slawek Staworko What do you do when a computational object fails a specification?

What do you do when a computational object fails a specification?

Worst-case cost of repairing source into target:

$$\max_{s \in S} \min_{t \in T} \mathsf{dist}(s, t)$$

What do you do when a computational object fails a specification?

Worst-case cost of repairing source into target:

$$\max_{s \in S} \min_{t \in T} \mathsf{dist}(s,t)$$

Can be **finite** or **infinite**, depending on source and target ...can we decide this?

Plan

A. Bounded repairability of regular word languages

- 1) characterization
- streaming setting
- 3) complexity

B. Bounded repairability of regular tree languages

- 1) curry encodings, stepwise automata, contexts
- 2) characterization
- complexity

Part A. Problem setting:

- Given two languages $S \subseteq \Sigma^*$ and $T \subseteq \Delta^*$ (represented by finite state automata)

Part A. Problem setting:

- Given two languages $S \subseteq \Sigma^*$ and $T \subseteq \Delta^*$ (represented by finite state automata)
- Decide whether $\max_{s \in S} \min_{t \in T} \operatorname{dist}(s, t)$ is finite.

Examples

- 10^* is bounded repairable into 10^*50
- 10^* is <u>not</u> bounded repairable into $(10)^*$
- $(1+0)^*$ is <u>not</u> bounded repairable into $(1+0^*5)^*$

Rule of thumb: 66 If you need to edit,
you'd better do it outside a loop! 99

Rule of thumb: 66 If you need to edit,
you'd better do it outside a loop! 99

Rule of thumb: 66 If you need to edit,

you'd better do it outside a loop! 99

For any strategy that repairs traces of X into traces of Y:

- 1. either $traces(X) \subseteq traces(Y)$
- 2. or the strategy has unbounded cost.

Characterization of bounded repairability of word languages

S is repairable into T with uniformly bounded cost

Given some (trimmed) automata for S and T and the DAGs of strongly connected components...

Characterization of bounded repairability of word languages

S is repairable into T with uniformly bounded cost

Given some (trimmed) automata for S and T and the DAGs of strongly connected components...

...every chain of components in the source is **covered** by a chain of components in the target.

Characterization of bounded repairability of word languages

S is repairable into T with uniformly bounded cost

Given some (trimmed) automata for S and T and the DAGs of strongly connected components...

...every chain of components in the source is **covered** by a chain of components in the target.

All chains of source DAG are covered by chains of target DAG \Rightarrow S is repairable into T with uniformly bounded cost.

All chains of source DAG are covered by chains of target DAG \Rightarrow S is repairable into T with uniformly bounded cost.

All chains of source DAG are covered by chains of target DAG \Rightarrow S is repairable into T with uniformly bounded cost.

All chains of source DAG are covered by chains of target DAG \Rightarrow *S* is repairable into *T* with uniformly bounded cost.

There is no covering relation compatible with prefixes

the repair strategy is not **streaming**(i.e. implementable by a sequential transfer.)

(i.e. implementable by a sequential transducer)

All chains of source DAG are covered by chains of target DAG \Rightarrow *S* is repairable into *T* with uniformly bounded cost.

There is no covering relation compatible with prefixes

⇒ the repair strategy is not **streaming**

(i.e. implementable by a sequential transducer)

Complexity of **non-streaming** bounded repairability problem:

	fixed	DFA	NFA
fixed	CONST	Р	PSPACE
DFA	Р	coNP	PSPACE
NFA	PTIME	coNP	PSPACE

Complexity of **non-streaming** bounded repairability problem:

	fixed	DFA	NFA
fixed	CONST	Р	PSPACE
DFA	Р	coNP	PSPACE
NFA	PTIME	coNP	PSPACE

Complexity of **streaming** bounded repairability problem:

	fixed	DFA	NFA
fixed	CONST	Р	PSPACE
DFA	Р	Р	PSPACE
NFA	≤ PSPACE ≥ P	≤ PSPACE ≥ P	≤ EXP ≥ PSPACE

Part B. New tools for a more general setting...

Languages of words:	Languages of unranked trees:
■ insersions / deletions	■ insertions / deletions
■ finite state automata	■ stepwise tree automata
■ components & traces	■ components & contexts
■ coverability of chains	■ coverability of synopsis trees

Edit operations on unranked trees: deletions

Edit operations on unranked trees: deletions

Edit operations on unranked trees: insertions

Edit operations on unranked trees: insertions

Bottom-up automata on ranked (binary) trees:

How to parse unranked trees?

Bottom-up automata on ranked (binary) trees:

How to parse unranked trees?

Encode them using binary trees!

Stepwise automata = bottom-up on curry encodings

$$\begin{array}{cccc}
r & \mapsto & q_r \\
a & \mapsto & q_a \\
b & \mapsto & q_b \\
c & \mapsto & q_c
\end{array}$$

$$\begin{array}{cccc} q_r @ q_a & \mapsto & q_r \\ q_b @ q_c & \mapsto & q_c \\ q_r @ q_c & \mapsto & q_{\mathsf{final}} \end{array}$$

$$\begin{array}{cccc}
r & \mapsto & q_r \\
a & \mapsto & q_a \\
b & \mapsto & q_b \\
c & \mapsto & q_c
\end{array}$$

$$\begin{array}{cccc} q_r @ q_a & \mapsto & q_r \\ q_b @ q_c & \mapsto & q_c \\ q_r @ q_c & \mapsto & q_{\mathsf{final}} \end{array}$$

$$\begin{array}{cccc}
r & \mapsto & q_r \\
a & \mapsto & q_a \\
b & \mapsto & q_b \\
c & \mapsto & q_c
\end{array}$$

$$\begin{array}{ccccc} q_r @ q_a & \mapsto & q_r \\ q_b @ q_c & \mapsto & q_c \\ q_r @ q_c & \mapsto & q_{\mathsf{final}} \end{array}$$

$$\begin{array}{cccc}
r & \mapsto & q_r \\
a & \mapsto & q_a \\
b & \mapsto & q_b \\
c & \mapsto & q_c
\end{array}$$

$$\begin{array}{ccccc} q_r @ q_a & \mapsto & q_r \\ q_b @ q_c & \mapsto & q_c \\ q_r @ q_c & \mapsto & q_{\mathsf{final}} \end{array}$$

Contexts = trees with holes

Contexts = trees with holes

Contexts = trees with holes

Recall: a run of a finite state automaton induces a **chain of components**...

Likewise, a run of a stepwise automaton induces a tree of components, called **synopsis tree**.

Recall: a run of a finite state automaton induces a **chain of components**...

Likewise, a run of a stepwise automaton induces a tree of components, called **synopsis tree**.

Characterization of bounded repairability of tree languages

S is repairable into T with uniformly bounded cost

Given some (trimmed) stepwise automata for S and T, all synopsis trees of S are covered by synopsis trees of T

i.e. ...

Characterization of bounded repairability of tree languages

S is repairable into T with uniformly bounded cost

Given some (trimmed) stepwise automata for S and T, all synopsis trees of S are covered by synopsis trees of T

i.e. $\exists \lambda$: cyclic components \longrightarrow cyclic components

Given some (trimmed) stepwise automata for S and T, all synopsis trees of S are covered by synopsis trees of T

- i.e. $\exists \lambda$: cyclic components \longrightarrow cyclic components
 - 1. λ preserves contexts: $contexts(X) \subseteq contexts(\lambda(X))$

Given some (trimmed) stepwise automata for S and T, all synopsis trees of S are covered by synopsis trees of T

- i.e. $\exists \lambda$: cyclic components \longrightarrow cyclic components
 - 1. λ preserves contexts: contexts $(X) \subseteq \text{contexts}(\lambda(X))$
 - 2. λ respects post-order of components: $X \leq_{\mathsf{postorder}} Y \leftrightarrow \lambda(X) \leq_{\mathsf{postorder}} \lambda(Y)$

- i.e. $\exists \lambda$: cyclic components \longrightarrow cyclic components
 - 1. λ preserves contexts: contexts $(X) \subseteq \text{contexts}(\lambda(X))$
 - 2. λ respects post-order of components: $X \leq_{\mathsf{postorder}} Y \leftrightarrow \lambda(X) \leq_{\mathsf{postorder}} \lambda(Y)$
 - 3. λ preserves ancestorship of vertical components: $X \leq_{\mathsf{ancestor}} Y \leftrightarrow \lambda(X) \leq_{\mathsf{ancestor}} \lambda(Y)$ whenever $\mathsf{vertical-contexts}(X) \neq \varnothing$

Complexity of **non-streaming** bounded repairability problem:

	det. DTD	DTD	stepwise
universal	Р	PSPACE	EXP
fixed alphabet det. DTD	coNP	PSPACE	PSPACE
non recursive det. DTD	coNEXP	coNEXP	coNEXP
stepwise	coNEXP	coNEXP	coNEXP

Complexity of **non-streaming** bounded repairability problem:

	det. DTD	DTD	stepwise
universal	Р	PSPACE	EXP
fixed alphabet det. DTD	coNP	PSPACE	PSPACE
non recursive det. DTD	coNEXP	coNEXP	coNEXP
stepwise	coNEXP	coNEXP	coNEXP

Complexity of **streaming** bounded repairability problem:

	det. DTD	DTD
universal	Р	PSPACE
DTD	EXP	EXP

Some references...

- Regular Repair of Specifications Benedikt, Riveros, P. – LICS 2011
- The cost of traveling between languages
 Benedikt, Riveros, P. ICALP 2011
- Bounded repairability for regular tree languages
 Riveros, Staworko, P. ICDT 2012
- Which DTDs are streaming bounded repairable? Bourhis, Riveros, Staworko, P. – ICDT 2013

...and other related topics

- lacksquare normalized edit cost $\sup_{s \in S} \min_{t \in T} rac{\operatorname{dist}(s,t)}{|s|}$
- distance automata and limitedness problem
- energy games with perfect/imperfect information

Some references...

- Regular Repair of Specifications Benedikt, Riveros, P. – LICS 2011
- The cost of traveling between languages Benedikt, Riveros, P. – ICALP 2011
- Bounded repairability for regular tree languages Riveros, Staworko, P. – ICDT 2012
- Which DTDs are streaming bounded repairable? Bourhis, Riveros, Staworko, P. – ICDT 2013

...and other related topics

- lacktriangleright normalized edit cost $\sup_{s \in S} \min_{t \in T} \frac{\operatorname{dist}(s,t)}{|s|}$
- distance automata and limitedness problem
- energy games with perfect/imperfect information