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Abstract

Most approaches to time granularity proposed in the literature are based on al-
gebraic and logical formalisms [11]. Here we follow an alternative automaton-based
approach, originally outlined in [7], which makes it possible to deal with infinite
time granularities in an effective and efficient way. Such an approach provides a
neat solution to fundamental algorithmic problems, such as the granularity equiv-
alence and granule conversion problems, which have been often neglected in the
literature. In this paper, we focus our attention on two basic optimization problems
for the automaton-based representation of time granularities, namely, the problem
of computing the smallest representation of a time granularity and that of com-
puting the most tractable representation of it, that is, the one on which crucial
algorithms, such as granule conversion algorithms, run fastest.

1 Introduction

The notion of time granularity comes into play in a variety of computer sci-
ence problems, including time representation and management in database
applications, specification and verification of temporal properties of reactive
systems, and temporal representation and reasoning in artificial intelligence.
To give a few examples, time granularity is involved in temporal database
design, temporal database inter-operability, temporal data conversion, data
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mining, reactive system satisfiability and model checking, synthesis, execu-
tion, and monitoring of timed workflow systems, temporal constraint repre-
sentation and reasoning, and temporal abstraction. Different approaches to
time granularity have been proposed in the literature [11], based on algebraic
[2, 3, 19], logical [5, 13, 14, 17], and string-based [22] formalisms. We focus
our attention on the latter.

The string-based formalism eases access to and manipulation of data associ-
ated with different granularities, allowing one to solve some basic problems
about time granularities, such as the equivalence and conversion problems,
which have been neglected by many existing formalisms [16, 18, 19]. String-
based algorithms, however, may potentially process every element (symbol) of
representations, independently from their redundancy, thus requiring a large
amount of computational time. This efficiency problem can be dealt with by
the automaton-based approach to time granularity [7], which revises and ex-
tends the string-based one. According to such an approach, granularities are
viewed as strings generated by a specific class of automata, called Single-String
Automata (SSA for short), thus making it possible to (re)use well-known re-
sults from automata theory. SSA were originally proposed by Dal Lago and
Montanari to model infinite periodical granularities [7]. Furthermore, they
showed that regularities of modeled granularities can be naturally expressed
by extending SSA with counters (let us call Extended SSA the resulting class
of automata). This extension makes the structure of the automata more com-
pact, and it allows one to efficiently deal with those granularities which have
a quasi-periodic structure. In [8], we showed that Extended SSA can be ex-
ploited to solve the equivalence and the granule conversion problems. The
equivalence problem consists in establishing whether two different representa-
tions define the same granularity, while the granule conversion problem is the
problem of determining a set of granules of a granularity H which are in some
specific relation with a set of granules of a coarser/finer granularity G [11]. As
a matter a fact, there are as many granule conversion problems as the specific
(meaningful) granularity relations are. To solve these problems, we introduced
a suitable variant of Extended SSA, called Restricted Labeled Single-String
Automata (RLA for short), and we demonstrated that these automata are
at least as expressive as the string-based formalism, better suited for direct
algorithmic manipulation. As an example, we showed that, in many relevant
cases (i.e., those in which there are no gaps within and between granules), the
granule conversion problem can be solved in polynomial time with respect to
the size of the involved RLA.

The algorithmic nature of automaton-based representations of time granular-
ity suggests an alternative point of view on their role: RLA, as well as SSA and
Extended SSA, can be used not only as a formalism for the direct specifica-
tion of time granularities, but also (and mainly) as a low-level formalism into
which high-level time granularity specifications can be mapped. We fully ex-
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plored such a possibility in the case of Calendar Algebra [2, 19]. The Calendar
Algebra is a high-level formalism for modeling time granularities, which sub-
sumes a number of previous proposals including the formalism of Collection
Expressions proposed by Leban et al. [16] and the formalism of Slice Expres-
sions developed by Niezette and Stevenne [18]. In [8], we defined a suitable
set of algorithms mapping expressions of Calendar Algebra into equivalent
RLA-based representations. In view of this operational flavor of RLA (resp.
SSA, Extended SSA), the problem of reducing as much as possible the com-
plexity of basic algorithms operating on automaton-based representations of
time granularities becomes even more crucial.

In this paper, we focus our attention on optimization problems for RLA. There
exist at least two possible notions of RLA-optimization. According to the first
one, optimizing means computing the smallest representation of a given time
granularity; according to the second one, optimizing means computing the
most tractable representation of a given granularity, that is, the one on which
crucial algorithms run fastest. We call an automaton-based representation of
the first (resp. second) type a size-optimal (resp. complexity-optimal) repre-
sentation. The two optimization criteria are not equivalent, since the smallest
representation is not necessarily the most tractable one, and vice versa. Fur-
thermore, both problems yield non-unique solutions. In the following, we tackle
them by taking advantage of dynamic programming techniques: we first state
some closure properties of RLA with respect to concatenation and repetition
of words, and then we show how to compute size- and complexity-optimal
automata from smaller (optimal) ones in a bottom-up fashion. The resulting
algorithms run in polynomial time with respect to the size of the string-based
description of the involved granularity.

The rest of the paper is organized as follows. In Section 2, we formalize the
notion of time granularity and we briefly describe the main features of Wi-
jsen’s string-based formalism, which represents regular granularities by means
of (encodings of) ultimately periodic words. In Section 3 we give some prelim-
inary definitions and results about repeating patterns of strings. In particular,
we provide an efficient algorithm to compute the minimum periods of all the
substrings of a given word. In Section 4 we introduce the automaton-based
approach to time granularity. We formally define RLA and we state some basic
properties of them. In Section 5 we describe some basic algorithms that can be
used to efficiently solve granule conversion problems for RLA-based represen-
tations of time granularities. In Section 6 we introduce the size-optimization
and complexity-optimization problems and we point out important aspects
about their solutions. In Sections 7 and 8 we provide polynomial-time solu-
tions to the complexity-optimization and size-optimization problems, respec-
tively. As a matter of fact, the size-optimization problem turns out to be more
difficult than the complexity-optimization one. For this reason, we first deal
with the latter problem and we then adapt the achieved results to the case
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of size-optimal automata, devising an algorithm that computes size-optimal
automata for a restricted class of automata. In Section 9 we briefly summarize
the outcomes of the work, and we outline future research directions, with a
special emphasis on possible improvements on the proposed algorithms.

2 The string-based model of time granularity

Temporal information is often associated with different temporal domains at
different granularities. As an example, in many information systems different
time granularities can be used to specify the validity intervals of different facts
[2] and thus their database component need the ability of properly relating
temporal elements belonging to different time granularities. Such an ability
rests on a suitable formalization of a notion of granularity. In this section,
we give a formal definition of time granularity, which captures a large class
of temporal structures; then, we specialize it in order to allow a finite repre-
sentation and an efficient manipulation of a meaningful subclass of temporal
structures. We assume the temporal domain to be isomorphic to the set N+

of positive natural numbers (as a matter of fact, most applications view time
as a discrete left-bounded linear structure).

Definition 1 A time granularity is a partition G of a subset T of N+ such
that, for every pair of sets g, g′ (called granules) in G, either ∀ t ∈ g ∀ t′ ∈ g′

(t < t′) or ∀ t ∈ g ∀ t′ ∈ g′ (t′ < t).

Definition 1 captures both time granularities that cover the entire temporal
domain, such as Day, Week, and Month, and time granularities with gaps within
and between granules (gaps exactly consist of those elements that belong to
N+ \T ), like, for instance, BusinessDay, BusinessWeek, and BusinessMonth.
Figure 1 depicts some of these granularities.

Day ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

BusinessDay ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BusinessWeek ...

1 2 3 4

BusinessMonth ...

1

Figure 1. Some examples of time granularities.

The ordering on N+ induces an ordering on G. Given g, g′ ∈ G, if for every
t ∈ g, t′ ∈ g′, t < t′, then we can write g < g′. Such an ordering naturally
yields a labeling of granules: we say that x ∈ N+ is the label of a granule g ∈ G,
and we write G(x) = g, if g is the x-th element of G, according to the induced
order <. The proposed definition of granularity is equivalent to that provided
by Wijsen in [22] and (up to a shift of labels) to the notion of full labeled
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granularity (also called simple granularity) given by Wang et al. in [1, 2, 19]. In
[2] a more general notion of granularity is introduced, which allows labels to be
non-contiguous. On the basis of such a notion, granularities are symbolically
represented as suitable terms of a Calendar Algebra [2]. However, it is not
difficult to show that the automaton-based approach to time granularity [7, 8],
including the results reported in the present paper, can be extended to capture
this general notion of granularity.

Consider now the set of time granularities of Definition 1. Since the underlying
temporal domain is isomorphic to N+, the set of all partitions that satisfy
Definition 1 is uncountable and thus it is not possible to deal with all of
them by means of a finitary formalism. However, the problem of dealing with
temporal structures for time granularity in an effective way can be tackled
by restricting to (infinite) periodic granularities. In [22], Wijsen shows that
such granularities can be naturally expressed in terms of ultimately periodic
strings over an alphabet of three symbols, namely, � (filler), � (gap), and
o (separator), which are respectively used to denote time points covered by
some granule, to denote time points not covered by any granule, and to delimit
granules. In order to guarantee a one-to-one correspondence between infinite
strings and granularities, as well as to ease the treatment of the problems of
granularity equivalence and granule conversion, Wijsen introduces an aligned
form for string-based specifications of granularities. Such a form forces any
separator o to occur immediately after an occurrence of �. As pointed out by
Dal Lago and Montanari [7], if we encode each occurrence of the substring �o
by a single symbol J, we align the symbols of the string-based representation
and the elements of the temporal domain, that is, we establish a one-to-one
correspondence between strings and granularities. In the following, we shall
adopt this simplified setting to represent granularities.

We assume the reader to be familiar with basic terminology and notation on
finite and infinite strings (if this is not the case, we refer the reader to [21]).
In particular, we shall write a generic string u as u[1]u[2]u[3] . . ., where u[i]
denotes the i-th symbol of the string, and we shall use the notation u[i, j] to
denote the substring u[i]u[i + 1] . . . u[j] of u. Furthermore, given a finite set
S, we shall denote by S∞ the set Sω ∪ S∗, where Sω (respectively, S∗) stands
for the set of all infinite (respectively, finite) strings over S. The operation of
concatenation · in S∗ can be extended to S∞ by letting u · v = u whenever
u ∈ Sω. Similarly, we denote by |w| the length of the string w ∈ S∗ and, for
all w ∈ Sω, we assume |w| to be equal to ω.

Definition 2 Given a string w ∈ {�, �, J}ω, we say that w represents a
granularity G if, for every t, x ∈ N+, we have t ∈ G(x) iff w[t] 6= � and
w[1, t− 1] contains exactly x− 1 occurrences of J.
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In order to finitely model (infinite) periodic time granularities, Wijsen intro-
duces the notion of granspec. A granspec is an ordered pair (u, v) of finite
strings over the alphabet {�, �, J} such that v is not the empty string ε.
It can be viewed as a finite representation of the infinite string u · vω. As an
example, the granularity BusinessWeek can be expressed, in terms of days, by
the ultimately periodic string ����J������J�� . . ., itself represented
by the granspec (ε, ����J��). In general, a granspec (u, v) represents the
same granularity uvω represents (see Definition 2).

A major limitation of Wijsen’s granspec formalism is that, whenever the gran-
ularity to be represented has a long prefix and/or a long period, it produces
lengthy representations. In such a case, computations on time granularities
represented by granspecs turn out to be rather expensive because their worst-
case time complexity is linear in |u| and |v|. As an example [7], if (u, v) is
a granspec representing months of the Gregorian Calendar in terms of days,
we have that |u| + |v| ≥ 105. Indeed, the Gregorial Calendar has a very long
periodicity (400 years) and a year includes at least 365 days.

In the following, we shall introduce the automaton-based approach, which
yields more succinct representations of time granularities by using counters to
encode repetitions in strings. As a preliminary step, we provide a characteri-
zation of repeating patterns of strings.

3 On repeating patterns of strings

In this section we establish some fundamental properties of repeating patterns
of strings. In particular, we show how to compute the minimum periods of all
substrings of a given string in quadratic time. These results will be exten-
sively used in the following sections to cope with the size- and complexity-
optimization problems. To start with, we introduce the notions of period,
partial period, and border.

Definition 3 A finite (resp. infinite) string u has a period p if, for some
k > 0 (resp. for k = ω), we have u = u[1, p]k. The period of u is its minimum
period. An ultimately periodic string is any infinite string of the form w = uvω,
where u is a finite string and v is a non-empty finite string. The strings u and
v are respectively called a prefix and a repeating pattern of w. If u and v are
the shortest strings such that w = uvω, then |u| and |v| are said to be the
prefix length and the period of w, respectively. By analogy, we say that p is a
partial period of a finite string u if u is a prefix of u[1, p]ω. Finally, a border
of a finite string u is a string u′, different from u, such that u′ is both a prefix
and a suffix of u.
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The following lemma relates distinct (partial) periods of strings. It is a straight-
forward generalization of the well-known Fine-Wilf’s Lemma [12].

Lemma 1 For any finite non-empty string u, if p and q are partial periods of
u and |u| ≥ p + q, then gcd(p, q) is a partial period of u.

Proof. We prove the claim by induction on p + q. Assume that p < q and
denote by r the value q − p. Since p and q are both partial periods of u, for
every i ∈ [1, |u| − q], we have u[i] = u[i+ q] = u[i+ q− p] = u[i+ r]. Similarly,
for every i ∈ [|u| − q + 1, |u| − r], u[i] = u[i − p] (since |u| ≥ p + q) and
u[i − p] = u[i + q − p] = u[i + r] hold. Thus r is partial period of u as well.
Since p + r < p + q and gcd(p, q) = gcd(p, r) hold, we conclude by induction
that gcd(p, q) is a partial period of u. 2

We now show that, for every finite string u (or any finite prefix u of an ul-
timately periodic string), the periods of all substrings of u can be efficiently
computed in time Θ(|u|2). The algorithm rests on noticeable properties of par-
tial periods and borders, and it is closely related to the way Knuth, Morris, and
Pratt define the prefix function of a string in the context of string-matching
problems [15]. From now on, we shall use the abbreviations v a u and v aa u
to respectively say that “v is a border of u” and “v is the maximum border
of u”. We begin by proving some distinctive properties of (partial) periods
and borders. The following proposition establishes a correspondence between
(maximum) borders and (minimum) partial periods.

Proposition 1 Given a finite string u, u[1, q] is a (maximum) border of u if
and only if |u| − q is a (minimum) partial period of u.

u[1, p]

u[p + 1, 2p]

u[p + 1, 2p]

u[2p + 1, 3p]

u[2p + 1, 4p]

u[3p + 1, 5p]

...

...

...

...

u[1,q]z }| { u[n−p+1,n]z }| {

| {z }
u[1,p]

| {z }
u[p+1,n]=u[1,q]

Figure 2. Relationship between partial periods and borders.

Proof. Let u be a finite string of length n and q be a natural number such
that u[1, q] = u[n−q+1, n]. We define p = n−q and we show, by induction on
k, that for every i ∈ [1, p], kp+i ≤ n implies u[i] = u[kp+i] (see Figure 2). For
k = 0, the property trivially holds. For k > 0 and i ≤ n−kp, by the inductive
hypothesis, we have that u[i] = u[(k− 1)p + i] and, since (i) u[1, q] is a border
of u, (ii) kp + i ≥ n − q + 1, and (iii) (k − 1)p + i ≤ (k − 1)p + n − kp = q,
u[i] = u[(k − 1)p + i] = u[(k − 1)p + i + (n − q)] = u[kp + i] holds. Hence,
u has a partial period p = n − q. For the converse, let u be a finite string of
length n and p be a partial period of u. We have that, for every i ∈ [1, p],
kp + i ≤ n implies u[i] = u[kp + i]. Now, let q = n − p. We have that
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u[1, q] = u[p + 1, p + q] = u[n − q + 1, n]. Therefore, u[1, q] is a border of
u. Finally, the maximum border is the border of maximum length q, hence
p = n− q is the minimum partial period of u, and vice versa. 2

Let us now focus our attention on the computation of the maximum border
of each prefix of a given string u. We preliminarily establish some interesting
properties of the relations “border of” and “maximum border of”. They will
allow us to devise an algorithm that computes the partial periods of all the
prefixes of a given finite string u in linear time with respect to |u|. Taking
advantage of such an algorithm, we shall be able to compute the partial peri-
ods of all substrings of u in Θ(|u|2) time by simply iterating the computation

on each suffix of u. Since u contains exactly |u|(|u|+1)
2

substrings, the resulting
algorithm turns out to be asymptotically optimal. The following lemma de-
termines the relation between the borders of a given string u and the borders
of the extended string ua, by showing that va is a border of ua only if v is a
border of u.

Lemma 2 The relation a respects the extension of strings to the right, that
is, (v · a) a (u · a) holds if and only if both v a u and u[|v| + 1] = a hold (see
Figure 3).

v ?

u[1, |u| − |v|] v a

uz }| {

| {z }
u·a

Figure 3. Right extensions of borders.

From Lemma 2, we can easily devise a dynamic-programming-oriented algo-
rithm that computes all borders of all prefixes of a given string u: for each
border u[1, q] of some prefix u[1, j], check whether u[q + 1] = u[j + 1] (this
suffices to establish whether u[1, q + 1] is a border of u[1, j + 1]). From the
lemma it follows that, given the borders of u[1, j], one can easily compute the
maximum border of u[1, j + 1]. In fact, it is not necessary to store all borders
of all prefixes in order to compute the maximum borders of all prefixes, as the
following lemma shows (cf. Figure 4, where we depict the transitive reduction
of a simple instance of the relation “border of”).

ε a

aa

aba

aaa

aabaa

ababa

abacdaba

Figure 4. Left linearity of the relation “border of”.
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Lemma 3 The relation a is linear to the left, that is, whenever both v a u
and w a u hold, then we have v = w or v a w or w a v.

From Lemma 3 it follows that, whenever v is a border of u[1, j], then v is either
the maximum border of u[1, j] or a border of the maximum border of u[1, j].
This property can be exploited to prove the following corollary (it basically
coincides with the Prefix-Function Iteration Lemma in [6]).

Corollary 1 Let u be a finite string and let u1, . . . , un be the (unique) se-
quence of finite strings such that ε = u1 aa . . . aa un aa u. If v a u, then there
is 1 ≤ k ≤ n such that v = uk.

The upshot of Lemma 2 and Corollary 1 is that, in order to compute the
maximum border of u[1, j + 1], it is sufficient to recursively determine the
maximum border of each proper prefix of u[1, j + 1] and then descend the
chain of relationships aa, searching for the longest (i.e., the first) border whose
extension matches with u[j + 1]. As an example, consider the sequence ε a
a a aa aba aa abacdaba. The maximum border of the string abacdaba · b is
a · b, which is precisely the string obtained by extending with b the rightmost
string v in the sequence ε, a, aba such that u[|v| + 1] = b (if any). The above
argument is formally stated by the next theorem. Subsequently, we shall show
that, even if some steps of the computation of a maximum border may take
linear time, the total time needed to compute the maximum borders of all
prefixes of u is still linear in |u|.

Theorem 1 Let u be a finite string and let u1, . . . , un be the (unique) sequence
of finite strings such that ε = u1 aa . . . aa un aa u. For any given v, the
following two conditions are equivalent:
1. (v · a) aa (u · a),
2. there is a 1 ≤ k ≤ n such that uk = v, u[|uk|+ 1] = a, and u[|uh|+ 1] 6= a

for all h > k.

Let us provide now an algorithm that computes the minimum partial period
of each prefix u[1, j] of a given finite string u. By denoting with p(j) (resp.
q(j)) the minimum partial period (resp. the length of the maximum border)
of u[1, j], the recurrence equations

q(1) = 0, (1)

q(j + 1) = max
{
0, r + 1 : u[r + 1] = u[j + 1] ∧ ∃ i > 0 (r = qi(j))

}
, (2)

follow directly from Theorem 1.

The algorithm PartialPeriodsOfAllPrefixes uses the above equations to com-
pute q(j) and p(j), for every 1 ≤ j ≤ |u| (as a matter of fact, up to line 13 it
is the algorithm ComputePrefixFunction in [6]).
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PartialPeriodsOfAllPrefixes(u)

1: n← |u|
2: q(1)← 0
3: for all j ∈ [2, n] do
4: r ← q(j − 1)
5: while u[r + 1] 6= u[j] and r > 0 do
6: r ← q(r)
7: end while
8: if u[r + 1] = u[j] then
9: q(j)← r + 1

10: else
11: q(j)← 0
12: end if
13: end for
14: for all j ∈ [1, n] do
15: p(j)← j − q(j)
16: end for
17: return (p(j))j∈[1,n]

It remains to show that the execution of PartialPeriodsOfAllPrefixes(u) takes
time linear in n = |u|. This can be done by using amortized analysis as in
[6]. First, note that r = q(j − 1) just before entering the “while” loop at lines
5–7. Furthermore, at lines 8–12, either r + 1 or 0 is assigned to q(j). Since
the variable r decreases at least by 1 at each iteration of the inner loop, for
each j the number of iterations is bounded by q(j − 1) − (q(j) − 1). Hence,
the computation of the length q(j) of the maximum border of u[1, j], with
j ∈ [2, n], takes time proportional to q(j − 1) − (q(j) − 1). Therefore, the
total time required to execute PartialPeriodsOfAllPrefixes(u) is proportional
to

∑
j∈[2,n] (q(j − 1)− (q(j)− 1)) = Θ(n). Since there is a linear lower bound

to the complexity of PartialPeriodsOfAllPrefixes(u), the proposed algorithm
is asymptotically optimal.

Finally, we provide an asymptotically optimal algorithm for computing the
periods of all the substrings of u. The algorithm rests on the following propo-
sition, which connects periods to partial periods.

Proposition 2 For every finite non-empty string u and for every positive
natural number p < |u|, p is the minimum period of u if and only if p divides
|u| and it is the minimum partial period of u.

Proof. The right-to-left implication is trivial. Conversely, if p is a period of u,
then p is a partial period of u as well. Suppose that p (< |u|) is the minimum
period of u. We have that p is a partial period of u. Now, if u had a partial
period q < p, then p+ q < 2p ≤ |u| and then, by Lemma 1, gcd(p, q) would be
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another partial period of u. Since p divides |u| and gcd(p, q) divides p, gcd(p, q)
would be a period of |u|, and hence p would not be the minimum period of u.
This is a contradiction and thus p must be the minimum partial period of u.
2

The following algorithm computes the periods of all substrings of a string u
(we use p(i, j) and P (i, j) to respectively denote the minimum partial period
and the minimum period of a substring u[i, j]).

PeriodsOfAllSubstrings(u)

1: n← |u|
2: for all i ∈ [1, n] do
3: (p(i, j))j∈[i,n] ← PartialPeriodsOfAllPrefixes(u[i, n])
4: end for
5: for all i ∈ [1, n] do
6: for all j ∈ [i, n] do
7: if p(i, j) divides (j − i + 1) then
8: P (i, j)← p(i, j)
9: else

10: P (i, j)← j − i + 1
11: end if
12: end for
13: end for
14: return (P (i, j))i∈[1,n],j∈[i,n]

4 From strings to automata

The idea of viewing granularities as ultimately periodic strings (words) natu-
rally connects time granularity to the fields of formal languages and automata,
because any ω-regular language is uniquely determined by its ultimately pe-
riodic words [4]. An automaton-based approach to time granularity, that gen-
eralizes the string-based one in several respects, was originally proposed in
[7], and systematically explored in [8]. It allows one to take advantage of some
well-known results coming from automata theory, such as, for instance, closure
properties of automata with respect to Boolean operations and concatenation.
The basic idea underlying the automaton-based approach to time granularity
is simple: we take an automaton M recognizing a single word u ∈ {�, �, J}ω
and we say that M represents granularity G if and only if u represents G. In
the following, we introduce Restricted Labeled Single-String Automata (RLA
for short), which, unlike finite automata and Büchi automata, only accept
single words. As a matter of fact, RLA can also be viewed as a variant of
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SSA [7], where counters over discrete domains are exploited to obtain succinct
representations of time granularities.

Before formalizing the notion of RLA, we give an intuitive description of their
structure and behavior. In order to simplify the notation and the formaliza-
tion of useful properties, RLA label states instead of transitions. The set of
control states is partitioned into two groups, respectively denoted by SΣ and
Sε. SΣ is the set of states where the labeling function is defined, while Sε is
the set of states where it is not defined. Furthermore, to succinctly represent
repetitions, we introduce two kinds of transitions, respectively called primary
and secondary transitions. We have that at most one primary transition can
be defined in any given state and at most one secondary transition can be
defined in any given non-labeled state (no secondary transitions can be as-
sociated with labeled states). At any point of the computation, at most one
(primary or secondary) transition is taken according to an appropriate rule
depending on the state at which the automaton lies and the value of a counter.
Moreover, a primary transition can be taken in a non-labeled state s ∈ Sε only
once the secondary transition associated with s has been consecutively taken
C0(s) times, where C0(s) is the initial valuation for the counter associated
with s.

Figure 5 depicts an RLA recognizing the word (J�6)ω, which represents Mon-
days in terms of days. States in SΣ are represented by Σ-labeled circles, while
states in Sε are represented by triangles. Primary and secondary transitions
are represented by continuous and dashed arrows, respectively. The initial
state is identified by a little triangular tip. The (initial values of) counters
are associated with states in Sε (for the sake of readability, we depict them
as labels of the secondary transitions exiting states in Sε). This simple ex-
ample gives an intuitive account of how RLA allow one to compactly encode
repeating patterns in granularities by means of counters and transitions.

J

�

ω

6

Figure 5. An RLA that represents Mondays in terms of days.

In the sequel, we deal with counters ranging over the discrete domain N∪{ω}.
Counters can be either set to their initial value or decremented (remember
that ω − 1 = ω). We now proceed with the formal definitions.

Definition 4 A Restricted Labeled (Single-String) Automaton (RLA for
short) is an 8-tuple M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0), where
• SΣ and Sε are disjoint finite sets of control states (in the following, we

shall denote SΣ ∪ Sε by S);
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• Σ is a finite alphabet;
• Ω : SΣ → Σ is the (total) labeling function;
• δ : S ⇀ S is the (partial) primary transition function whose transitive

closure δ+ is irreflexive (namely, it never happens that (s, s) ∈ δ+);
• γ : Sε → S is the (total) secondary transition function such that for every

s ∈ Sε, (γ(s), s) ∈ δ+;
• s0 ∈ S is the initial state;
• C0 : Sε → N+ ∪ {ω} is the initial valuation.

The restrictions on the transition functions can be motivated as follows. Con-
straining the transitive closure of the primary transition function to be ir-
reflexive guarantees that any cycle involves at least one secondary transition.
Moreover, the source state of every secondary transition can always be reached
from the target state via a sequence of primary transitions.

The definition of RLA run is based on the notion of configuration. Let us
denote by V the set of all the valuations of the form C : Sε → (N ∪ {ω})
for the counters of an RLA M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0). A configuration is
a state-valuation pair (s, C), with s ∈ S and C ∈ V . The transitions of M are
taken according to a (partial) function ∆M : S × V ⇀ S × V satisfying:
i) whenever s ∈ SΣ and δ(s) is defined, ∆M((s, C)) = (δ(s), C) (namely,

whenever the automaton lies in a labeled state and there exists an exiting
primary transition, then it takes the primary transition, which does not
change the valuation);

ii) whenever s ∈ Sε, C(s) = 0, and δ(s) is defined, ∆M((s, C)) = (δ(s), D),
where D(s) = C0(s) and, for every non-labeled state r 6= s, D(r) = C(r)
(namely, whenever the automaton lies in a non-labeled state, whose counter
has value 0, and there exists an exiting primary transition, then it takes
the primary transition and it re-initializes the counter);

iii) whenever s ∈ Sε and C(s) > 0, ∆M((s, C)) = (γ(s), D), where D(s) =
C(s) − 1 and, for every non-labeled state r 6= s, D(r) = C(r) (namely,
whenever the automaton lies in a non-labeled state whose counter has a
positive value, then it takes the secondary transition and it decrements the
counter by 1).

The run of an RLA M is defined as a pair (s,C) ∈ S∞ × V∞ of maximum
(possibly infinite) sequences of states and valuations such that
• s[1] = s0,
• C[1] = C0,
• for all 0 < i < |s|(= |C|), ∆M((s[i],C[i])) = (s[i + 1],C[i + 1]) .

As can be easily shown, for any RLA M , there is exactly one run of M . Given
the RLA M and its run (s,C), one can extract a (finite or infinite) sequence of
labeled states sΣ ∈ S∞

Σ by discarding the valuations and the non-labeled states.
We shall say that M recognizes the word u if and only if u = Ω(sΣ) (where
Ω(sΣ) is the obvious shorthand). Notice that Definition 4 allows situations
where states and transitions of an RLA form an unconnected (directed) graph.
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We can overcome these clumsy situations by discarding useless states and
transitions of RLA. It is easy to prove that RLA recognize either finite or
ultimately periodic words.

We conclude the section by providing a formal characterization of the words
recognized by RLA. It is based on the notions of δ-degree and γ-degree of
states. The δ-degree of a state s ∈ S is the unique natural number n such that
δn(s) is defined, but δn+1(s) is not (such an n exists since δ+ is irreflexive).
For each non-labeled state s ∈ Sε, the γ-degree of s is the least n ∈ N such
that (γ(s), s) ∈ δn (this is well-defined as well, given the constraints on the
secondary transition function). We then define a binary relation ΓM over the
set Sε as follows: (s, r) ∈ ΓM if and only if s = δi(γ(r)), with i less than the
γ-degree of r. Notice that the reflexive and transitive closure Γ∗

M is antisym-
metric, from which it follows that Γ∗

M is a well-founded partial order over the
set of non-labeled states. Thus, we can take advantage of induction on such
a partial order (we call it γ-induction) in both formal definitions and proofs.
As an example, if we denote by s0 the initial state of the RLA of Figure 5, by
s1 its successor, by s2 the top-most state, and by s3 the right-most state, we
have that
• the δ-degree of s0 (respectively, s1, s2, s3) is 2 (respectively, 1, 2, 0),
• the γ-degree of s1 is 1 and the γ-degree of s3 is 2,
• ΓM = {(s1, s3)} and Γ∗

M consists the pair in ΓM plus the pairs (s1, s1) and
(s3, s3).

As already pointed out, the distinctive feature of RLA is the way they encode
repeating patterns of words. In order to provide a characterization of the words
recognized by RLA in terms of repetitions of smaller substrings, we need some
preliminary definitions.

Suppose that (s,C) ∈ Sn × Vn is a finite sequence of states and valuations
satisfying ∆M((s[i],C[i])) = (s[i + 1],C[i + 1]) for every i ∈ {1, . . . , n− 1}.
Then we shall write (s[1],C[1]) →w (s[n],C[n]), where w = Ω(sΣ). Analo-
gously, if (s,C) ∈ Sω × Vω is an infinite sequence of states and valuations
satisfying ∆M((s[i],C[i])) = (s[i + 1],C[i + 1]) for every i ≥ 1, then we shall
write (s[1],C[1]) →w, where w = Ω(sΣ). In the following, we denote by σM

s

the sequence of symbols inductively defined as follows 1 :
• Ω(s), if s ∈ SΣ,
• (σM

γ(s) · σM
δ(γ(s)) · . . . · σM

δm−1(γ(s)))
C0(s), if s ∈ Sε and m is the γ-degree of s.

Hereafter, for any s ∈ Sε, we denote by ρM
s the word σM

γ(s) · σM
δ(γ(s)) · . . . ·

σM
δm−1(γ(s)).

Lemma 4 Let M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0) be an RLA, s a non-labeled
state, and C a valuation such that C(r) = C0(r) whenever (r, s) ∈ Γ+

M . Then

1 Note that the well-definedness of σM
s directly follows from the principle of γ-

induction.
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exactly one of the following conditions holds:
1. C(s) = 0,
2. (s, C)→w (s, D), where w = ρM

s ∈ Σ∗, D(s) = C(s)− 1, and D(r) = C(r)
for every non-labeled state r 6= s; moreover, if w = u · v, with u, v 6= ε, and
(s, C) →u (t, E) →v (s, D), with t being a non-labeled state, then we have
(t, s) ∈ Γ+

M ,
3. (s, C)→w, where w = ρM

s ∈ Σω; moreover, if (s, C)→u (t,D) holds, with
t being a non-labeled state, then we have (t, s) ∈ Γ+

M .

Proof. We prove the lemma by γ-induction on s. Let m be the γ-degree of s,
let ri = δi(γ(s)), where i ranges over {0, . . . ,m}, and let C(s) > 0 (otherwise
Condition 1. trivially holds). Observe that, by definition of γ-degree, rm must
be s. If s is a minimal non-labeled state with respect to the ordering given by
Γ∗

M , then we know that every state ri, with 0 ≤ i < m, is a labeled state and
hence Condition 2. follows almost trivially. Otherwise, if s is not a minimal
element with respect to Γ∗

M , by the inductive hypothesis, we can distinguish
between two cases: either
i) every non-labeled state ri, with 0 ≤ i < m, satisfies Condition 1. or Con-

dition 2.,
ii) or there is a non-labeled state ri, with 0 ≤ i < m, satisfying Condition 3..
Let first consider case i). We further distinguish between two sub-cases.
• If, for every i ∈ {0, . . . ,m− 1}, C(ri) 6= ω, then we let D be the valuation

such that D(s) = C(s)− 1 and D(r) = C(r) for all r 6= s. We verify that

(s, C)→ε (r0, D)→w0 (r1, D)→w1 . . .→wm−2 (rm−1, D)→wm−1 (s, D)

holds, where wi = σM
ri

. Indeed, ri ∈ SΣ implies (ri, D)→Ω(ri) (ri+1, D), by
definition. Otherwise, if ri ∈ Sε, by the inductive hypothesis, we have

(ri, D)→vi (ri, E1)→vi (ri, E2)→vi . . .→vi (ri, Eni
)→ε (ri+1, D)

where vi = ρM
ri

, ni = D(ri), and, for all j ∈ {1, . . . , ni}, Ej(ri) = D(ri)− j
and Ej(r) = D(r), for all r 6= rj. Now, suppose that (s, C) →u (t, E) →v

(s, D) holds, with w = u · v, u, v 6= ε, and t being a non-labeled state.
Clearly, there is j ∈ {0, . . . ,m− 1} satisfying either t = rj or, by the
inductive hypothesis, (rj, t) ∈ Γ+

M . In both cases, (t, s) ∈ Γ+
M follows and s

satisfies Condition 2..
• If there is an index k ∈ {0, . . . ,m− 1} such that C(rk) = ω, then we can

assume, without loss of generality, that k is the least of such indices. Now,
since every non-labeled state ri, with 0 ≤ i < k, satisfies C(ri) 6= ω and
either Condition 1. or Condition 2., we can exploit an argument similar to
that for the preceding sub-case to show that

(s, C)→ε (r0, D)→w0 (r1, D)→w1 . . .→wk−1 (rk, D)

where wi = σM
ri
∈ Σ+, D(s) = C(s) − 1, and D(r) = C(r) for all r 6= s.

Again, by the inductive hypothesis, since D(rk) = C(rk) = ω, we know
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that (rk, D)→vk (rk, D), where vk = ρM
rk

. Thus, by letting wk = σM
rk
∈ Σω,

(rk, D)→wk follows and hence (s, C)→w, for w = w0 · w1 · . . . · wk = σM
s .

Now, let (s, C)→u (t,D). Clearly, there is j ∈ {0, . . . , k} satisfying either
t = rj or (t, rj) ∈ Γ+

M and in both cases (t, s) ∈ Γ+
M follows and s satisfies

Condition 3..
Let now consider case ii), namely, let i be the least index from {0, . . . ,m− 1}
such that ri is a non-labeled state satisfying Condition 3.. Clearly, for every
j ∈ {0, . . . , i− 1}, rj satisfies either Condition 1. or Condition 2.. Thus, we can
proceed, exactly as in the previous case, by distinguishing between two sub-
cases depending on whether there is k ∈ {0, . . . , i− 1} such that C(rk) = ω
or not. It is easy to verify that in both sub-cases s satisfies Condition 3.. 2

Now, we can state and prove the following proposition.

Proposition 3 The word recognized by an RLA M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0)
is of the form σM

s0
· σM

δ(s0) · . . . · σM
δn(s0). where n is the δ-degree of s0.

Proof. This is a direct consequence of Lemma 4. 2

As an example, consider the case of the RLA of Figure 5. According to Propo-
sition 3, the recognized word is u1

0 · u6
1 · uω

2 , where u0 = J, u1 = �, and
u2 = J · �6. The words u0, u1, and u2 are recognized by the RLA M0, M1,
and M2 of Figure 6, respectively.

J � J

�

6

M0 M1 M2

Figure 6. The resulting decomposition of the RLA of Figure 5.

5 Granule conversion problems

RLA can be used to effectively solve the fundamental problems of granularity
equivalence and granule conversion. The problem of granularity equivalence
is the problem of establishing whether two different representations define
the same granularity. Solving this problem gives the possibility of effectively
testing the semantic equivalence of two descriptions, making it possible to use
smaller, or more tractable, representations in place of bigger, or less tractable,
ones. The problem of granule conversion is the problem of relating granules of a
given granularity to those of another one. The importance of this problem, that
comes into play in a large set of granularity comparison problems [8], has been
highlighted by several authors, e.g., Bettini et al. in [2]. Nevertheless, in many
approaches it has been only partially worked out in a rather intricate way.
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In this paper, we restrict our attention to the latter problem (we extensively
deal with the former one in [8], where we show that it is in co-NP). In this
section, we present some algorithms to solve the granule conversion problem
for RLA-based representations of time granularities; in the next sections, we
shall describe in detail some optimization techniques that make it possible to
considerably improve the proposed algorithms for granule conversion.

For the sake of simplicity, given an RLA M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0), a state
s ∈ Sε, and a symbol a ∈ Σ, we shall denote by |ρM

s | and by |ρM
s |a respectively

the length of ρM
s and the number of occurrences of a in ρM

s . Furthermore, we
denote by |M | the number of states of M (denoting the number of states of
M by |M |, instead of by |S|, we can avoid to make the components of M
explicit whenever it is not really necessary). The whole set of values |ρM

s | and
|ρM

s |a can be pre-computed in quadratic time with respect to |M |. Hereafter,
we assume that these values are stored into appropriate data structures for
M .

5.1 Searching for symbol occurrences

To explain our solution to the granule conversion problem, we first address a
simpler problem, which arises very often when dealing with time granularities
as well as with infinite words in general, namely, the problem of finding the n-th
occurrence of a given symbol in a word. Such a problem can be easily solved in
linear time with respect to the number of transitions needed to reach the n-th
occurrence of the symbol: it suffices to follow the transitions of the automaton
until the n-th occurrence of the symbol is recognized. Nevertheless, we can
improve this straightforward solution by taking advantage of the structure of
RLA. For instance, if we are searching for an occurrence of a symbol a ∈ Σ in
a word u recognized by an RLA M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0) and we have
that s0 ∈ Sε and ρM

s0
contains no occurrences of the symbol a, then we can

avoid processing the first C0(s0) · |ρM
s0
| symbols in u. Similarly, if s0 ∈ Sε,

γ(s0) ∈ Sε, and ρM
s0

contains at least one occurrence of a, but ρM
γ(s0) does not,

then we can start searching for an occurrence of a in u from the position
C0(γ(s0)) · |ρM

γ(s0)|. By applying the same argument to any state of M , we can
define an algorithm, called SeekAtOccurrence, which returns the configuration
reached by simulating transitions of M from a given configuration (s, C) until
the n-th occurrence of a symbol belonging to a distinguished set A ⊆ Σ has
been read. As a side effect, SeekAtOccurrence(M, s, C, A, n, counter) returns
in counter [a] the number of processed occurrences of every symbol a ∈ Σ.

SeekAtOccurrence(M, s, C, A, n, counter)

1: let M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0)
2: for all a ∈ Σ do

17



3: counter [a]← 0
4: end for
5: i← 0
6: while i < n do
7: if s = ⊥ then
8: fail
9: end if

10: if s ∈ SΣ then
11: if Ω(s) ∈ A then
12: i← i + 1
13: end if
14: counter [Ω(s)]← counter [Ω(s)] + 1
15: s← δ(s)
16: else
17: q ← ∑

a∈A |ρM
s |a

18: r ← s
19: if i + q ∗ C(s) ≤ n then
20: if |ρM

s | ∗ C(s) = ω then
21: fail
22: else
23: l← C(s)
24: C(s)← C0(s)
25: s← δ(s)
26: end if
27: else
28: l← (n− i) div q
29: C(s)← C(s)− l
30: s← γ(s)
31: end if
32: i← i + l ∗ q
33: for all a ∈ Σ do
34: counter [a]← counter [a] + |ρM

r |a ∗ l
35: end for
36: end if
37: end while
38: return (s, C)

In spite of the simplicity of the idea, the analysis of the complexity of the
above algorithm is rather involved. To make it precise, we introduce a com-
plexity measure ‖M‖, which depends on the nesting structure of the transition
functions of M , defined as follows. For every state s of M and any integer n,
let CM

s,n be defined as follows 2 :

2 Here we use double induction on s and n, where the ordering for the first, domi-
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• 0, if n < 0;
• 1, if n ≥ 0, s ∈ SΣ, and δ(s) is undefined;
• 1 + CM

δ(s),n−1, if n ≥ 0, s ∈ SΣ, and δ(s) is defined;

• 1 + CM
γ(s),m−1, where m is the γ-degree of s, if n ≥ 0, s ∈ Sε, and δ(s) is

undefined;
• 1+max{CM

δ(s),n−1,C
M
γ(s),m−1}, where m is the γ-degree of s, if n ≥ 0, s ∈ Sε,

and δ(s) is defined.
The complexity ‖M‖ is defined as

‖M‖ = CM
s0,n,

where s0 is the initial state of M and n is the δ-degree of s0.

As an example, the complexity ‖M‖ of the RLA M of Figure 5 is 6. It is possi-
ble to show that the worst-case time complexity of SeekAtOccurrence(M, s, C,
A, n, counter) is Θ(‖M‖).

As for the relationships between the complexities of the algorithms operating
on automaton-based representations and string-based ones (which are linear
in the size of granspecs), it is immediate to see that, for every granspec, there
exists an RLA, that represents the same granularity, whose complexity does
not exceed the size of the granspec. Moreover, there exist several meaningful
cases in which such a complexity turns out to be much lower, thus accounting
for the tractability of RLA with respect to granspecs. As an example, it is
not difficult to provide an RLA representing the granularity Month in terms
of days and having complexity 520, which is significantly less than the size of
any equivalent granspec (see Section 2).

It turns out that the running time of many other algorithms working on RLA
can be expressed in terms of the complexities of the involved automata. In
particular, we can write simple algorithms that look for occurrences of symbols
in the word recognized by a given RLA, which use SeekAtOccurrence as a
subroutine. As an example, let u be the word recognized by a given RLA M .
The following algorithm computes the position of the last occurrence of the
symbol a in u which precedes the first occurrence of the symbol b:

OccurrenceLastBeforeFirst(M, a, b)

1: let M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0)
2: (s, C)← (s0, C0)
3: SeekAtOccurrence(M, s, C, {b}, 1, counter 1)
4: (s, C)← (s0, C0)
5: SeekAtOccurrence(M, s, C, {a}, counter 1[a], counter 2)
6: return

∑
c∈Σ counter 2[c]

nant, argument is given by the relation Γ∗M .
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Table 1 reports the heading and a short description of the behavior of other
basic algorithms, that will be exploited in the next sections to manipulate
RLA representing time granularities (their structure is quite similar to that
of the OccurrenceLastBeforeFirst algorithm, and thus omitted). It is worth
pointing out that, in general, the complexity of such algorithms is sub-linear
with respect to the number of transitions needed to reach the addressed symbol
occurrence.

Table 1
Some basic algorithms running in time O(‖M‖).

Algorithm Behavior

Occurrence(M, i,A)
Returns the position of the i-th occurrence
of a symbol in A ⊆ Σ in the word u recog-
nized by M .

OccurrenceFirstAfter(M, i,A,B)

Returns the position of the first occurrence
of a symbol in A ⊆ Σ after the i-th occur-
rence of a symbol in B ⊆ Σ in the word u
recognized by M .

OccurrenceLastBefore(M, i,A,B)

Returns the position of the last occurrence
of a symbol in A ⊆ Σ before the i-th oc-
currence of a symbol in B ⊆ Σ in the word
u recognized by M .

OccurrencesBetween(M, i, j, A)
Returns the number of occurrences of sym-
bols in A ⊆ Σ in the subword u[i, j − 1] of
the word u recognized by M .

5.2 Solving the conversion problem

In its most common formulation, the problem of granule conversion is viewed
as the problem of determining a set of granules of a granularity H which are in
some specific relation with a set of granules of a coarser/finer granularity G (see
Section 1). According to such a definition, the granule conversion problem is
actually a family of problems, whose different concrete instances are obtained
by specifying the relation that must hold between the granules of the source
granularity G and the destination granularity H. Here we consider the cases of
the relations cover, covered-by, and intersect (the other relations can be dealt
with in a similar way). The relation cover holds between a set R of granules
of G and a set S of granules of H if S is the largest set such that

⋃
g∈R g ⊇⋃

g∈S g. The relation covered-by is the converse of the relation cover and it holds
between a set R of granules of G and a set S of granules of H if S is the smallest
set such that

⋃
g∈R g ⊆ ⋃

g∈S g. Note that the relation cover defines a total
function mapping a set of granules of G into a possibly empty set of granules
of H, while the relation covered-by only defines a partial function, since it may
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happen that some sets of granules of G are not covered by any set of granules
of H. Finally, the relation intersect holds between a set R of granules of G and
a set S of granules of H if S = {h ∈ H : ∃ g ∈ R (g ∩ h 6= ∅)} Notice that, if
R ⊆ G, S, T ⊆ H, (R,S) is an instance of the relation covered-by and (R, T )
is an instance of the relation intersect, then S = T . In some cases, however,
given R ⊆ G, there may not exist any set S such that (R,S) is an instance of
the relation covered-by, while there always exists a set T such that (R, T ) is
an instance of the relation intersect.

For any possible instance of the granule conversion problem, we distinguish
two distinct variants of increasing complexity. In the simplest case (case 1),
the granularities involved have no gaps within or between granules; in the
second case (case 2), gaps may occur both within and between the granules
of the granularities involved. Efficient automaton-based solutions for most
common relations can be obtained in the first case, provided that we work
with intervals. In such a case, the set of granules of the destination granularity
H that correspond to an interval of granules of G, is an interval that can be
dealt with as a whole. On the contrary, in case 2 we cannot guarantee that the
resulting set of granules is an interval and thus we must consider one granule
at a time.

The solutions to the conversion problems take advantage of some auxiliary
functions, called downward conversions and upward conversions, which are
quite similar to the conversion operators introduced by Snodgrass et al. in
[10, 20]. Downward conversion receives a granularity G and a set (an interval,
if we restrict to case 1) R of granules of G as input and it returns as output the
set (respectively the interval) T =

⋃
g∈R g of time points. Upward conversion

is the dual operation and it comes in three different variants:
• the cover upward conversion of a granularity G and a set/interval T of time

points is the smallest set/interval S of granules of G such that T ⊆ ⋃
g∈S g,

• the covered-by upward conversion of a granularity G and a set/interval
T of time points is the largest set/interval S of granules of G such that
T ⊇ ⋃

g∈S g,
• the intersect upward conversion of a granularity G and a set/interval T of

time points is the set/interval S of all granules g of G such that g∩T 6= ∅.
We now provide the algorithms that compute downward and upward conver-
sions for case 1 (no gaps allowed) and case 2 (gaps allowed). In case 1, since
the input set R is assumed to be an interval of granules, we use min(R) and
max (R) to denote the least and the greatest element of R (max (R) = ω if R is
not bounded). As previously mentioned, since intervals can be dealt with as a
whole, downward and upward conversions in case 1 can be implemented using
only a finite number of calls to SeekAtOccurrence and thus their worst-case
running time is linear with respect to ‖M‖, where M is the RLA representing
the involved granularity.
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Here are the algorithms for downward conversion in case 1 and 2; those for
upward conversion will be given later.

DownwardConversion1 (M, R)

1: i← OccurrenceFirstAfter(M,min(R)− 1, {�, J}, {J})
2: j ← Occurrence(M,max (R), {J})
3: return {k : i ≤ k ≤ j}

The downward conversion for case 2 is performed by DownwardConversion2 ,
which processes one granule of the input set R at a time. In particular, for
each such granule, DownwardConversion2 first computes the smallest interval
[i, j] of time points covering that granule and then collects the time points
k ∈ [i, j] that belongs to the granule. The union T of all such time points
gives the output of the algorithm.

It is worth noticing that termination is not guaranteed if the input set R is
finite, but its last granule is infinite. In such a case, the smallest interval cov-
ering the set R of granules is infinite (procedure Occurrence(M, x{J}) at line
4 assigns ω to j) and the algorithm cycles at lines 5–9. In order to guarantee
termination, one can exploit the fact that M recognizes an ultimately peri-
odic word w = u · vω and then reason on the prefix and the repeating pattern
of w. This allows one to detect a non-terminating loop and, accordingly, to
return the (possibly infinite) set T of converted time points, which can be rep-
resented as an arithmetic progression of the form A∪{i + jq : i ∈ B, j ∈ N},
where A and B are finite disjoint sets of indices and q is a positive natural
number. A similar argument can be applied in the case R is an infinite set of
granules, represented as an arithmetic progression. From now on, we shall not
consider cases where infinite sets of granules or infinite sets of time points are
involved (however, by reasoning on prefixes and repeating patterns of RLA-
recognizable words, it is always possible to manage such cases in an effective
way).

DownwardConversion2 (M, R)

1: T ← ∅
2: for all x ∈ R do
3: i← OccurrenceFirstAfter(M, x− 1, {�, J}, {J})
4: j ← Occurrence(M, x, {J})
5: for all k ∈ [i, j] do
6: if OccurrencesBetween(M, k, k + 1, {�, J}) = 1 then
7: T ← T ∪ {k}
8: end if
9: end for

10: end for
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11: return T

In succession, we provide the algorithms for cover, covered-by, and intersect
upward conversions, for both case 1 and case 2. Note that all algorithms for
case 1 work in worst-case linear time with respect to ‖M‖, where M is the
RLA representing the involved granularity. The algorithms for case 2 are more
general but less efficient, since we need to process one element of the input set
T at a time.

The correctness of the first algorithm, CoverUpwardConversion1 , stems from
the following observation: if a granularity G is represented by the RLA M and
t is a time point, then OccurrencesBetween(M, 1, t, {J})+1 is the label of the
granule of G including t.

CoverUpwardConversion1 (M, T )

1: x← OccurrencesBetween(M, 1,min(T ), {J}) + 1
2: y ← OccurrencesBetween(M, 1,max (T ), {J}) + 1
3: return {z : x ≤ z ≤ y}

CoverUpwardConversion2 (M, T )

1: S ← ∅
2: for all i ∈ T do
3: if OccurrencesBetween(M, i, i + 1, {�, J}) = 1 then
4: S ← S ∪ {OccurrencesBetween(M, 1, i, {J}) + 1}
5: else
6: fail
7: end if
8: end for
9: return S

Covered-by upward conversions are computed by the following algorithms.
Note that, in case 2, the covered-by upward conversion is computed by first
collecting all granules of G (i.e. the granularity represented by the RLA M)
that intersect the time points in T (lines 2-6), and then discarding those
granules which are not entirely covered by T (lines 7-15).

CoveredByUpwardConversion1 (M, T )

1: if min(T ) = 1 then
2: x← 1
3: else
4: x← OccurrencesBetween(M, 1,min(T )− 1, {J}) + 2
5: end if
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6: y ← OccurrencesBetween(M, 1,max (T ) + 1, {J})
7: return {z : x ≤ z ≤ y}

CoveredByUpwardConversion2 (M, T )

1: S ← ∅
2: for all i ∈ T do
3: if OccurrencesBetween(M, i, i + 1, {�, J}) = 1 then
4: S ← S ∪ {OccurrencesBetween(M, 1, i, {J}) + 1}
5: end if
6: end for
7: for all x ∈ S do
8: i← OccurrenceFirstAfter(M, x− 1, {�, J}, {J})
9: j ← Occurrence(M, x, {J})

10: for all k ∈ [i, j] do
11: if OccurrencesBetween(M, k, k + 1, {�, J}) = 1 and k 6∈ T then
12: S ← S \ {x}
13: end if
14: end for
15: end for
16: return S

Finally, intersect upward conversions are simplified versions of cover upward
conversions (here we do not need to check for failure).

IntersectUpwardConversion1 (M, T )

1: x← OccurrencesBetween(M, 1,min(T ), {J}) + 1
2: y ← OccurrencesBetween(M, 1,max (T ), {J}) + 1
3: return {z : x ≤ x ≤ y}

IntersectUpwardConversion2 (M, T )

1: S ← ∅
2: for all i ∈ T do
3: if OccurrencesBetween(M, i, i + 1, {�, J}) = 1 then
4: S ← S ∪ {OccurrencesBetween(M, 1, i, {J}) + 1}
5: end if
6: end for
7: return S

The above-defined conversion operations are strictly connected to the relations
introduced at the beginning of the section: each of them can be computed
by performing a downward conversion followed by the corresponding upward
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conversion. As an example, the relation cover can be computed as follows.

Cover(M, N, R)

1: return CoverUpwardConversion(N,DownwardConversion(M, R))

Depending on the type of granularities involved, we use different implementa-
tions of the conversion algorithms. In particular, if we restrict to granularities
without gaps and to intervals (case 1), we can use more efficient implementa-
tions, that run in worst-case linear time with respect to ‖M‖ and ‖N‖, where
M and N are the two RLA representing the involved granularities.

6 Optimality of automaton-based representations

In Section 5 we have outlined some basic algorithms which compute gran-
ule conversions in worst-case linear time with respect to the complexities
of the involved RLA. It immediately follows that, given an RLA M , it is
worth minimizing its complexity ‖M‖. Furthermore, there exists a widespread
recognition of the fact that state minimization is an important problem in
classical automata theory as well as in the theory of reactive systems, and
thus another goal of practical interest is the minimization of |M |. The for-
mer problem is called complexity-optimization problem, while the latter is
called size-optimization problem. Even though the size and complexity mea-
sures associated with an RLA are clearly related one to the other, they are
not equivalent, and the same holds for the corresponding minimization prob-
lems. In particular, the size-optimization problem seems to be harder than
the complexity-optimization, and only a partial solution to it will be given
here. It is also worth remarking that optimal automata are not guaranteed to
be unique (up to isomorphism) as it happens, for instance, for deterministic
finite automata. As an example, the three automata M , N , and O of Figure 7
recognize the same finite word ���������. M and N are size-optimal au-
tomata (|M | = |N | = 4, while |O| = 6), and M and O are complexity-optimal
automata (‖M‖ = ‖O‖ = 5, while ‖N‖ = 7).

� �

2 3

M

�

�1

2

N

� � �

2 3
2

O

Figure 7. Size-optimal and complexity-optimal automata.

Automata optimization problems can be addressed in many different ways,
e.g., by partitioning the state space or by exploiting noticeable relations be-
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tween automata and expressions encoding recognized words. In the following,
we tackle both the complexity-optimization problem and the size-optimization
problem by using dynamic programming, namely, by computing an optimal
automaton starting from smaller (optimal) ones in a bottom-up fashion. The
key point of such a solution is the proof that the optimization problem enjoys
an optimal-substructure property. In the following, we describe three opera-
tions on RLA and we prove closure properties for them; then, we compare
the complexity and the size of compound automata with that of their compo-
nents. In Section 7 and Section 8 we take advantage of these results to provide
optimal substructure properties for the two optimization problems for RLA.

6.1 Closure properties

The class of RLA is closed with respect to the operations of concatenation
and repetition. Given two RLA M and N , that recognize a finite or infinite
word u and a finite word v, respectively, let AppendChar(a, M), where a is a
symbol, and AppendRepeat(N, k,M) be, respectively, the concatenation of a
to M , which recognizes the word a ·u, and the concatenation of a k-repetition
of N to M , which recognizes the word vk ·u (with k ∈ N+∪{ω}). The resulting
automata can be computed as follows:
• the automaton AppendChar(a, M) can be obtained from M by (i) adding

a new a-labeled state s0, (ii) linking it to the initial state of M , and (iii)
giving it the status of initial state of the resulting automaton (see Figure
8);
• the automaton AppendRepeat(N, k,M) can be obtained from N and M

by (i) adding a new non-labeled state sloop (the triangular state of Figure
9), (ii) introducing a secondary transition from sloop to the initial state of
N , a primary transition from the final state of N to sloop , and a primary
transition from sloop to the initial state of M , and (iii) giving sloop the
status of initial state of the resulting automaton (see Figure 9).

We can actually give AppendChar and AppendRepeat the status of algorithms
running in linear time. If the argument M in the above definitions is missing,

s1 · · · t1

M

s0 s1 · · · t1

AppendChar(a,M)

a

Figure 8. The concatenation of a to M .

we have
• the automaton AppendChar(a), which recognizes a single character a;
• the automaton AppendRepeat(N, k), which recognizes vk.

Moreover, the size (resp. the complexity) of the resulting automata can be
specified in terms of the size (resp. the complexity) of the component automata
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s2 · · · t2

N

s1 · · · t1

M

s2 · · · t2

k

s1 · · · t1

AppendRepeat(N, k,M)

Figure 9. The concatenation of a k-repetition of N to M .

as follows:
• AppendChar(a, M) has size 1 + |M | and complexity 1 + ‖M‖;
• AppendRepeat(N, k,M) has size 1+|N |+|M | and complexity 1+max{‖N‖,
‖M‖}.

Now, let Σ be a finite alphabet and let CΣ be the class of all RLA obtained
from symbols in Σ by applying the operators AppendChar and AppendRepeat .
Clearly, CΣ is properly included in the class of all RLA, that is, there exist some
RLA, including size-optimal and complexity-optimal ones (e.g., the automaton
M in Figure 7), that cannot be generated via AppendChar and AppendRepeat .
Nevertheless, it turns out that, for every RLA M , CΣ always contains at least
one RLA which is equivalent to M and has the same complexity. The above
mentioned property can be exploited to prove that a complexity-optimal au-
tomaton for a given string can be generated by composing smaller (complexity-
optimal) automata using the above mentioned operators. Unfortunately, sim-
ilar properties do not hold for size-optimal RLA.

Lemma 5 For every RLA M = (SΣ, Sε, Σ, Ω, δ, γ, s0, C0), every state s ∈ S,
and every n ∈ N not exceeding the δ-degree of s, there is an RLA Ns,n ∈ CΣ
such that Ns,n recognizes us,n = σM

s · σM
δ(s) · . . . · σM

δn(s) and ‖Ns,n‖ ≤ CM
s,n.

Proof. The proof is by induction on CM
s,n ∈ N. We distinguish some cases

depending on s being an element of SΣ or Sε and on n being 0 or a positive
integer.
• If s ∈ SΣ and n = 0, then we have CM

s,n = 1 and us,n = Ω(s). Hence, the
thesis easily follows, since ‖AppendChar(Ω(s))‖ = 1.
• If s ∈ SΣ and n > 0, then we have CM

s,n = 1 + CM
δ(s),n−1 and us,n =

Ω(s) · uδ(s),n−1. Hence, we can apply the inductive hypothesis to δ(s) and
n − 1, so that the thesis follows, since ‖AppendChar(Ω(s), Nδ(s),n−1)‖ =
1 + ‖Nδ(s),n−1‖.
• If s ∈ Sε and n = 0, then we have CM

s,n = 1+CM
γ(s),m−1 and us,n = u

C0(s)
γ(s),m−1,

with m being the γ-degree of s, under the assumption that m > 0 (the
case m = 0 can be easily handled). By applying the inductive hypothesis
to γ(s) and m − 1, we can obtain an automaton Nγ(s),m−1 so that Ns,n =
AppendRepeat(Nγ(s),m−1, C0(s)) is the desired automaton.
• If s ∈ Sε and n > 0, then we have CM

s,n = 1 + max{CM
γ(s),m−1,C

M
δ(s),n−1}

and us,n = u
C0(s)
γ(s),m−1 · uδ(s),n−1, with m being the γ-degree of s, under the
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assumption that m > 0 (the case m = 0 can be easily handled). From
the inductive hypothesis, we can obtain two RLA Nγ(s),m−1 and Nδ(s),n−1

such that Ns,n = AppendRepeat(Nγ(s),m−1, C0(s), Nδ(s),n−1) is the desired
automaton. 2

Proposition 4 For every RLA M , there is an equivalent RLA N ∈ CΣ such
that ‖N‖ ≤ ‖M‖.

Proof. This is trivial in view of Lemma 5. Let s0 be the initial state of M
and n its δ-degree. Consider the RLA Ns0,n obtained from Lemma 5. Clearly,
‖Ns0,n‖ ≤ ‖M‖ and N recognizes the same string as M . 2

As an example, consider the automata M and O of Figure 7. They have the
same complexity (‖M‖ = ‖O‖ = 5), but O ∈ CΣ, while M 6∈ CΣ. It is easy to
show that O can be obtained from M by applying the transformations given
in Lemma 5.

7 Computing complexity-optimal automata

In this section, we exploit the closure properties of RLA to devise a polynomial-
time solution for the complexity-optimization problem. In virtue of Proposi-
tion 4, we have that for any (finite or ultimately periodic) word u ∈ Σ∞, there
exists a complexity-optimal automaton M that recognizes u and belongs to
CΣ. As a matter of fact, we can prove that, for any word u, there exists one such
M that is decomposable into complexity-optimal automata. As a preliminary
result, we establish the following technical lemma.

Lemma 6 (Prefix Property) Given an RLA M recognizing a (finite or in-
finite) word u and a natural number 1 ≤ n ≤ |u|, there is an RLA in CΣ, de-
noted Prefix (M, n), recognizing the prefix u[1, n] and satisfying ‖Prefix (M, n)‖
≤ ‖M‖.

Proof. By Proposition 4, we have that there exists N ∈ CΣ (equivalent to M)
such that ‖N‖ ≤ ‖M‖. We prove the thesis by induction on the structure of
N ∈ CΣ. We only consider the non-trivial cases.
• Suppose N = AppendChar(a, L). We further distinguish the following sub-

cases:
i) if n = 0, then the required automaton is AppendRepeat(L, 0);
ii) if n = 1, then the required automaton is AppendChar(a);
iii) if n > 1, then the required automaton is AppendChar(a, O), where O

is the automaton obtained by applying the inductive hypothesis to L
and n− 1.

• Suppose N = AppendRepeat(L, k,O), where k is a natural number. Let v
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(respectively, t) be the word recognized by L (respectively, O). We distin-
guish the following subcases:
i) if n ≤ |v|, then the required automaton is simply obtained by applying

the inductive hypothesis on L and n;
ii) if |v| < n ≤ k|v|, let m and l be natural numbers such that n =

m|v|+ l, with l < |v|, and let P be the automaton obtained by applying
the inductive hypothesis on L and l. Then, the required automaton is
AppendRepeat(L, m, P );

iii) if n > k|v|, then, by applying the inductive hypothesis to O and n−k|v|,
we obtain P . The required automaton is AppendRepeat(L, k, P ). 2

The following two theorems are the basic ingredients of the solution to the
complexity-minimization problem. They state optimal substructure properties
for finite and ultimately periodic words, respectively.

Theorem 2 Given a finite word u, at least one of the following conditions
holds:
1. |u| = 1 and AppendChar(a) is complexity optimal for u;
2. |u| > 1 and AppendChar(a, M) is complexity-optimal for u whenever M is

complexity-optimal for u[2, |u|];
3. |u| > 1 and AppendRepeat(M, |u|/p) is complexity-optimal for u whenever

M is complexity-optimal for u[1, p], with p being the period of u;
4. |u| > 1 and there exists r < |u| such that AppendRepeat(M, r/p,O) is

complexity-optimal for u whenever M is complexity-optimal for u[1, p],
where p is the period of u[1, r], and O is complexity-optimal for u[r+1, |u|].

Proof. By Proposition 4, we have that there exists a complexity-optimal au-
tomaton N ∈ CΣ recognizing u. We prove the thesis by induction on the
structure of N . We only consider the non-trivial cases.
• Suppose N = AppendChar(a, L) and let M be a complexity-optimal au-

tomaton recognizing u[2, |u|]. Then we have:

‖AppendChar(a, M)‖= 1 + ‖M‖ ≤
≤ 1 + ‖L‖ = ‖AppendChar(a, L)‖ = ‖N‖

This implies that AppendChar(a, M) is complexity-optimal.
• Suppose N = AppendRepeat(L, k, P ), where k is a natural number. Clearly,

k > 0, because otherwise N would not be complexity-optimal. Let v be
the finite word recognized by L, let r = k|v|, and let p be the minimum
period of u[1, r] (and thus we have that p ≤ |v|). Moreover, let M be a
complexity-optimal automaton for u[1, p] and O be a complexity-optimal
automaton for u[r + 1, |u|]. By Lemma 6, we have that ‖M‖ ≤ ‖L‖ and
thus

‖AppendRepeat(M, r/p, O)‖= 1 + max{‖M‖, ‖O‖} ≤
≤ 1 + max{‖L‖, ‖P‖} = ‖N‖,
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which implies that AppendRepeat(M, r/p, O) is complexity-optimal. 2

The case of ultimately periodic (infinite) words is more problematic, because
it may happen that a complexity-optimal automaton operates on a non-
minimum prefix. Consider, for instance, the word (abc)2ab(ce)ω. Its minimum
prefix length is 8 and its minimum period is 2. However, the complexity-
optimal automata for it recognize the prefix (abc)3 (of length 9) and the re-
peating pattern ec of length 2.

Theorem 3 Given an ultimately periodic word u with minimum prefix length
l and minimum period q, at least one of the following conditions holds:
1. AppendChar(a, M) is complexity-optimal for u whenever M is complexity-

optimal for u[2, ω];
2. AppendRepeat(M, ω) is complexity-optimal for u whenever M is complexity-

optimal for u[1, q];
3. There exists r ≤ 2l +2q such that AppendRepeat(M, r/p,O) is complexity-

optimal for u whenever M is complexity-optimal for u[1, p], where p is the
period of u[1, r], and O is complexity-optimal for u[r + 1, ω].

Proof. We proceed in the usual way. By Proposition 4, we have that there
is a complexity-optimal N ∈ CΣ recognizing u and we prove the thesis by
induction on the structure of N . We only consider the most complex case, that
is, the case in which N = AppendRepeat(L, k, P ), where k is a positive natural
number. We distinguish two cases: k = 1 and k > 1. Let k = 1 and let v be
the finite word recognized by L. We define r = min(|v|, ((|v| − l) mod q) + l).
Note that r is always less than or equal to |v| and it is strictly less than
l + q. For every complexity-optimal automaton M that recognizes u[1, r] and
every complexity-optimal automaton O that recognizes u[r + 1, ω](= u[|v| +
1, ω]), we have that ‖M‖ ≤ ‖L‖ (by Lemma 6) and ‖O‖ ≤ ‖P‖. Hence,
AppendRepeat(M, 1, O) is a complexity-optimal automaton that recognizes u.
Let k > 1. By proceeding as in the proof of Theorem 2, we can replace the
automata L and P by equivalent complexity-optimal automata M and O,
respectively. Let v be the finite word recognized by M , let r = k|v|, and let p
be the minimum period of u[1, r] (and thus we have that p ≤ |v|). To complete
the proof, we need to show that r ≤ 2l + 2q. Suppose, by contradiction, that
r > 2l + 2q and consider the substring t = u[l + 1, r] of u, which has partial
periods q and |v|. We have that r ≥ max (2l +2q, 2|v|) and thus r ≥ l + q + |v|
which is equivalent to |t| ≥ q + |v|. By Lemma 1, this means that t has partial
period m = gcd(q, |v|). Consider now the substring u[2l+1, 2l+2q] of t. It has
period q (since 2l + 1 is greater than l) and partial period m. Since m divides
q, m is in fact a period. From the fact that q is the minimum period, we have
that q = m. It immediately follows that |v| is a multiple of q (= m), and thus
v has period q. Moreover, from the minimality of l, it follows that l = 0 (if
l > 0, then u[l] 6= u[l + q], but, from r > l + q, we have that u[l] = u[l + q]).
Hence, the repeating pattern of v of length q is equal to u[r + 1, r + q] and we
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have

u = u[1, r]u[r + 1, ω] = vku[r + 1, r + q]ω =

= u[1, q]hu[r + 1, r + q]ω = u[r + 1, r + q]ω = u[r + 1, ω],

which contradicts the hypothesis that N is complexity-optimal (O recognizes
u[r + 1, ω] = u). 2

According to Theorem 2 and Theorem 3 there exists only a finite number of
ways of building a complexity-optimal automaton for a word u, given some
(optimal) automata for the substrings of u. However, if u is an infinite word, we
must show that there is an upper bound on the number of possible applications
of case 3. of Theorem 3.

For every n ∈ N, we denote by FΣ(n) the restriction of CΣ to automata recog-
nizing finite words of length at most n. Moreover, for every n, r, m, we define,
by induction on n, the subclass TΣ(n, r, m) of CΣ, which contains automata
recognizing infinite words with period less than or equal to m.

TΣ(0, r,m) = {AppendRepeat(M, ω) : M ∈ FΣ(m)}
TΣ(n + 1, r,m) = TΣ(n, r, m) ∪ {AppendChar(a, M) : M ∈ TΣ(n, r, m)}

∪ {AppendRepeat(M, k,O) : kp ≤ r,

M ∈ FΣ(p), O ∈ TΣ(n, r, m)}.

Proposition 5 For every ultimately periodic word u, with minimum prefix
length l and minimum period q, there is N ∈ TΣ(l + q, 2l + 2q, q) that is
complexity-optimal for u.

Proof. We can recursively apply Theorem 3 and end up with a complexity-
optimal automaton N for u such that N = Nn, where

N0 =AppendRepeat(M0, ω), and

∀ 1 ≤ i ≤ n (Ni =AppendRepeat(Mi, ki, Ni−1) or

Ni =AppendChar(a, Ni−1)),

for suitable natural numbers ki and complexity-optimal automata Mi, with
0 ≤ i ≤ n.

It is easy to see that n ≤ l + q. By contradiction, if n > l + q, then ‖N‖ ≥
l+ q +2, which implies that N is not complexity-optimal. Moreover, Theorem
3 implies that, for every 1 ≤ i ≤ n, ki|vi| ≤ 2l + 2q, where vi is the string
recognized by Mi. From the same theorem we also have that M0 ∈ FΣ(q).
Therefore, N ∈ TΣ(l + q, q, 2l + 2q). 2
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On the basis of the above results, we can devise a simple polynomial-time
algorithm that solves the complexity-optimization problem for ultimately pe-
riodic words (the algorithm for finite words is just a special case). Such an
algorithm receives a pair (v, w) of finite strings, where v and w are assumed
to be of minimum length, and it returns as output a complexity-optimal RLA
that recognizes u = vwω. The algorithm uses the following data structures
and procedures:
• a matrix Mfin(i, j), where entry (i, j) stores the generated complexity-

optimal automata that recognize the substrings u[i, j] of u, for 1 ≤ i ≤
j ≤ 3l + 3q;
• an array Minf (i), where entry i stores the generated complexity-optimal

automata that recognize the suffixes u[i, ω] of u, for 1 ≤ i ≤ l + q (we
assume the array to be initialized with sentinel automata of complexity
infinity);
• a matrix P (i, j), whose values are the periods of the substrings u[i, j],

for 1 ≤ i ≤ j ≤ 3l + 3q (such periods are computed by the procedure
PeriodsOfAllSubstrings);
• an auxiliary procedure BestComplexity , which receives a finite set of RLA

as input and returns an RLA of minimum complexity as output;
• an auxiliary procedure PrefixOfUltimatelyPeriodic(v, w, n), which returns

the string (vwω)[1, n];
• a routine Normalize(i, l, q), which returns i if i ≤ l, and l + ((i − l −

1) mod q) + 1 otherwise (notice that, if u is an ultimately periodic word
with prefix length l and period q, then, for every i, u[Normalize(i, l, q), ω] =
u[i, ω]).

ComplexityOptimalAutomaton(v, w)

1: l← |v|
2: q ← |w|
3: u← PrefixOfUltimatelyPeriodic(v, w, 3l + 3q)
4: (P (i, j))i∈[1,3l+3q],j∈[i,3l+3q] ← PeriodsOfAllSubstrings(u)
5: for all i ∈ [1, 3l + 3q] do
6: Mfin(i, i)← AppendChar(u[i])
7: end for
8: for all n ∈ [2, 3l + 3q] in increasing order do
9: for all i ∈ [1, 3l + 3q − n− 1] in increasing order do

10: N ← AppendChar(u[i], Mfin(i + 1, i + n− 1))
11: p← P (i, i + n− 1)
12: if p 6= n then
13: N ← BestComplexity(N,AppendRepeat(Mfin(i, i + p− 1), n/p))
14: end if
15: for all r ∈ [1, n− 1] in increasing order do
16: p← P (i, i + r − 1)
17: N ← BestComplexity(N,AppendRepeat(Mfin(i, i + p− 1), r/p,
18: Mfin(i + r, i + n− 1)))
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19: end for
20: Mfin(i, i + n− 1)← N
21: end for
22: end for
23: for all i ∈ [l + 1, l + q] in increasing order do
24: Minf (i)← AppendRepeat(Mfin(i, i + q − 1), ω)
25: end for
26: for all n ∈ [1, l + q] in increasing order do
27: for all i ∈ [1, l + q] in increasing order do
28: N ← BestComplexity(Minf (i),
29: AppendChar(u[i], Minf (Normalize(i + 1, l, q))))
30: for all r ∈ [1, 2l + 2q] in increasing order do
31: p← P (i, r)
32: N ← BestComplexity(N,
33: AppendRepeat(Mfin(i, i + p− 1), r/p,
34: Minf (Normalize(i + r, l, q))))
35: end for
36: Minf (i)← N
37: end for
38: end for
39: return Minf (1)

Lines 5–22 (resp. 23–38) initialize the matrix Mfin (resp. Minf ). In particular,
the cycle at lines 23–25 sets Minf with complexity-optimal automata from
TΣ(0, q, 2l + 2q), while the n-th iteration of the loop at lines 26–38 sets Minf

with complexity-optimal automata from TΣ(n, q, 2l + 2q).

A straightforward implementation of the above algorithm would require time
linear in the length of v and w to compute each automaton in Mfin and in Minf .
Pairing such a complexity with the threefold nesting of the loops, we have that
O((|v|+|w|)4) is an upper bound to the complexity of the problem. As a matter
of fact, it is possible to compare the complexities of the generated automata
without really building them. By exploiting definitions from Section 6 and by
using suitable data structures, the complexity of each automaton can indeed
be calculated in constant time, and thus we only need to explicitly generate
the final complexity-optimal automaton for each substring u[i, j]. This allows
us to conclude that a wiser implementation of the above algorithm would
require time Θ((|v|+ |w|)3).
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8 Computing size-optimal automata

In this section, we adapt the results we obtained for complexity-optimal au-
tomata to size-optimal ones. Unfortunately, we do not have an analogous
of Proposition 4 for size-optimal automata. However, we can still find size-
optimal automata with respect to the subclass CΣ. To do that we restrict the
search space to CΣ and we proceed exactly as in Section 7. Hereafter, we de-
fine a size-optimal automaton for u as an automaton in CΣ, with the minimum
number of states (with respect to automata in CΣ), that recognizes u.

Theorem 4 Given a finite word u, at least one of the following conditions
holds:
1. |u| = 1 and AppendChar(a) is size-optimal for u;
2. |u| > 1 and AppendChar(a, M) is size-optimal for u whenever M is size-

optimal for u[2, |u|];
3. |u| > 1 and AppendRepeat(M, |u|/p) is size-optimal for u whenever M is

size-optimal for u[1, p], with p being a period of u;
4. |u| > 1 and there exists r < |u| such that AppendRepeat(M, r/p, O) is size-

optimal for u whenever M is size-optimal for u[1, p], where p is a period
of u[1, r], and O is size-optimal for u[r + 1, |u|].

Proof. Suppose that N ∈ CΣ is a size-optimal automaton. We proceed by
induction on the structure of N . We only consider the non-trivial cases (the
remaining cases can be handled similarly).
• Suppose N = AppendChar(a, L) and let M be a size-optimal automaton

recognizing u[2, |u|]. Then we have:

|AppendChar(a, M)| = 1 + |M | ≤ 1 + |L| = |AppendChar(a, L)| = |N |

This implies that AppendChar(a, M) is size-optimal.
• Suppose N = AppendRepeat(L, k, P ), where k is a natural number. Let v

be the finite word recognized by L, M be a size-optimal automaton for v,
and O be a size-optimal automaton for u[|v|n, |u|]. We have:

|AppendRepeat(M, k,O)| = 1 + |M |+ |O| ≤ 1 + |L|+ |P | = |N |

and hence AppendRepeat(M, k, O) is size-optimal. 2

Theorem 5 Given an ultimately periodic word u with minimum prefix length
l and minimum period q, at least one of the following conditions holds:
1. AppendChar(a, M) is size-optimal for u whenever M is size-optimal for

u[2, ω];
2. there is a multiple r of q such that AppendRepeat(M, ω) is size-optimal for

u whenever M is size-optimal for u[1, r];
3. there exists r ≤ 2l + 2q such that AppendRepeat(M, r/p,O) is size-optimal
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for u whenever M is size-optimal for u[1, p], where p is a period of u[1, r],
and O is size-optimal for u[r + 1, ω].

Proof. Suppose that N ∈ CΣ is a size-optimal automaton that recognizes u.
We prove the thesis by induction on the structure of N . We only consider
the most difficult case, that is, N = AppendRepeat(L, k, P ), with k > 1 (it is
immediate to show that k cannot be equal to 1 in a size-optimal automaton).
First of all, we can replace the automata L and P by equivalent size-optimal
automata M and O, respectively. Let v be the finite word recognized by M
and let r = k|v|. We have to show that r ≤ 2l + 2q. This can be proved
by contradiction assuming that r > 2l + 2q and considering the substring
t = u[l + 1, r] of u, which has partial periods q and |v|. The rest of the proof
goes on as the proof of Theorem 3, and thus we omit its description. 2

For every n ∈ N and for every r, m, s ∈ N+, we can define two classes of au-
tomata SΣ(m, s),RΣ(n, r, m, s) ⊆ CΣ. This will help to make the search space
finite when building size-optimal automata for infinite words. The definitions
of SΣ(m, s) andRΣ(n, r, m, s) are given by induction on m and n, respectively:

SΣ(1, s) = {AppendChar(a)}
∪ {AppendRepeat(M, k) : kp ≤ s, M ∈ FΣ(p)}

SΣ(m + 1, s) =SΣ(m, s) ∪ {AppendChar(a, M) : M ∈ SΣ(m, s)}
∪ {AppendRepeat(M, k,O) : kp ≤ s,

M ∈ FΣ(p), O ∈ SΣ(m, s)}

RΣ(0, r,m, s) = {AppendRepeat(M, ω) : M ∈ SΣ(m, s)}
RΣ(n + 1, r,m, s) =RΣ(n, r, m, s)

∪ {AppendChar(a, M) : M ∈ RΣ(n, r, m, s)}
∪ {AppendRepeat(M, k,O) : kp ≤ r,

M ∈ FΣ(p), O ∈ RΣ(n, r, m, s)}

As proved by the following proposition, we can assume the parameters n, r, m, s
to be bounded by suitable functions linear in the prefix length and in the pe-
riod of the given ultimately periodic word.

Proposition 6 For every ultimately periodic word u with minimum prefix
length l and minimum period q, there is M ∈ RΣ(l + q, 2l + 2q, q, 2q) which is
size-optimal for u.

Proof. We can recursively apply Theorem 5 and end up with a size-optimal
automaton N for u such that N = Nn, where
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N0 =AppendRepeat(M0, ω), and

∀ 1 ≤ i ≤ n (Ni =AppendRepeat(Mi, ki, Ni−1) or

Ni =AppendChar(a, Ni−1)),

for suitable natural numbers ki and size-optimal automata Mi, with 0 ≤ i ≤ n.

It is easy to see that n ≤ l+q. By contradiction, if n > l+q, then |N | ≥ l+q+2,
which implies that N is not size-optimal. Moreover, Theorem 5 implies that,
for every 1 ≤ i ≤ n, ki|vi| ≤ 2l + 2q, where vi is the string recognized by
Mi. As for the automaton M0, by Theorem 4, we can assume that M0 = Qm,
where

Q1 =AppendRepeat(R1, h1) or Q1 = AppendChar(a), and

∀ 2 ≤ i ≤ m (Qi =AppendRepeat(Ri, hi, Qi−1) or

Qi =AppendChar(a, Qi−1)).

Using an argument similar to the one we used to establish the bound n ≤ l+q,
one can easily show that m ≤ q. It remains to show that for every 1 ≤ i ≤ m,
hi|wi| ≤ 2q, where wi is the string recognized by Ri. Suppose, by contradiction,
that hi|wi| > 2q. First, note that both q and |wi| are periods of whi

i . Then, since
hi ≥ 2, we have that |whi

i | ≥ max (2q, 2wi) ≥ q + |wi|. Since q is the minimum
period of u, Lemma 1 implies that |wi| is a multiple of q. Hence, the hi-
repetition of wi is useless and whi

i can be replaced by wi, which contradicts the
hypothesis that N is size-optimal. This proves that N ∈ RΣ(l+q, 2l+2q, q, 2q).
2

Putting all the above results together, we can solve the size-optimization
problem as we solved the complexity-optimization one, provided that we re-
strict the search space to CΣ. We shall use an additional auxiliary procedure
BestRepeat(Mfin , P, i, j), which receives as input a matrix Mfin , that contains
size-optimal automata recognizing substrings of a given word u, a matrix P ,
that contains the periods of the substrings of u, and two indices i, j, and it
returns a pair (N, k), where N is a size-optimal automaton that recognizes
a repeating pattern (not necessarily the minimum one) of u[i, j] and h is the
number of repetitions of that pattern in u[i, j].

BestRepeat(Mfin , P, i, j)

1: p← P (i, j)
2: N ←Mfin(i, i + p− 1)
3: k ← (j − i + 1)/p
4: for all h ∈ [2, (j − i + 1)/p] do
5: if (j − i + 1) mod hp = 0 and |N | > |Mfin(i, i + hp− 1)| then
6: N ←Mfin(i, i + hp− 1)
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7: k ← (j − i + 1)/(hp)
8: end if
9: end for

10: return (N, k)

Below we report the algorithm SizeOptimalAutomaton, which has almost the
same structure as ComplexityOptimalAutomaton. The matrix Mrep(m, i, j),
where m, i, j range over the interval [1, q], is used to store size-optimal au-
tomata from SΣ(m, 2q) which recognize substrings of repeating patterns of u,
namely, strings of the form u[l + i, l + hq + j], with h ∈ N. Furthermore, we
assume Mrep to be initialized with dummy automata of very large size.

SizeOptimalAutomaton(v, w)

1: l← |v|
2: q ← |w|
3: u← PrefixOfUltimatelyPeriodic(v, w, 3l + 3q)
4: (P (i, j))i,j ← PeriodsOfAllSubstrings(u)
5: for all i ∈ [1, 3l + 3q] do
6: Mfin(i, i)← AppendChar(u[i])
7: end for
8: for all n ∈ [2, 3l + 3q] in increasing order do
9: for all i ∈ [1, 3l + 3q − n− 1] in increasing order do

10: N ← BestSize(AppendChar(u[i], Mfin(i + 1, i + n− 1)),
11: AppendRepeat(BestRepeat(Mfin , P, i, i + n− 1)))
12: for all r ∈ [1, n− 1] in increasing order do
13: N ← BestSize(N,AppendRepeat(BestRepeat(Mfin , P, i, i + r − 1),
14: Mfin(i + r, i + n− 1)))
15: end for
16: Mfin(i, i + n− 1)← N
17: end for
18: end for
19: for all i ∈ [1, q] in increasing order do
20: Mrep(1, i, i)← AppendChar(u[i])
21: for all s ∈ [1, 2q] in increasing order do
22: j ← Normalize(i + s, 0, q)
23: Mrep(1, i, j)← BestSize(Mrep(1, i, j),
24: AppendRepeat(BestRepeat(Mfin , P, i, i + s)))
25: end for
26: end for
27: for all m ∈ [2, q] in increasing order do
28: for all i ∈ [1, q] in increasing order do
29: for all j ∈ [1, q] in increasing order do
30: h← Normalize(i + 1, 0, q)
31: Mrep(m, i, j)← BestSize(Mrep(m− 1, i, j),
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32: AppendChar(u[i], Mrep(m− 1, h, j)))
33: end for
34: for all s ∈ [1, 2q] in increasing order do
35: Cnew ← BestRepeat(Mfin , P, i, i + s)
36: k ← Normalize(i + s + 1, 0, q)
37: for all h ∈ [1, q] in increasing order do
38: j ← Normalize(i + s + h, 0, q)
39: Mrep(m, i, j)← BestSize(Mrep(m, i, j),
40: AppendRepeat(Cnew , Mrep(m−1, k, j)))
41: end for
42: end for
43: end for
44: end for
45: for all i ∈ [1, q] in increasing order do
46: Minf (l + i)← AppendRepeat(Mrep(q, i,Normalize(i + q − 1)), ω)
47: end for
48: for all n ∈ [1, l + q] in increasing order do
49: for all i ∈ [1, l + q] in increasing order do
50: N ← BestSize(Minf (i),AppendChar(u[i], Minf (Normalize(i+1, l, q))))
51: for all r ∈ [i, i + 2l + 2q − 1] in increasing order do
52: N ← BestSize(Minf ,AppendRepeat(BestRepeat(Mfin , P, i, i + r),
53: Minf (Normalize(r + 1, l, q))))
54: end for
55: Minf (i)← N
56: end for
57: end for
58: return Minf (1)

Lines 19–44 are used to fill the matrix Mrep with appropriate automata. This
is done in an inductive way, by first computing Mrep(1, i, j) (lines 19–26) and
then computing Mrep(m, i, j), given Mrep(m−1, i, j), (lines 27–44). The overall
complexity is Θ((|v|+ |w|)4).

9 Conclusions and further work

In this paper, we dealt with optimization problems for automaton-based rep-
resentations of time granularities in a systematic way. Such problems, which
are extremely relevant from a computational point of view, have often been
overlooked in the literature. We started by establishing some basic proper-
ties of repeating patterns of strings. Then, we showed how finite and ulti-
mately periodic strings can be naturally encoded in terms of Restricted La-
beled Single-String Automata (RLA) and we provided efficient algorithms for
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their manipulation. In particular, we devised a suitable measure of automata
complexity, that takes the nesting of secondary transitions into account, and
we developed algorithms for granule conversions that operate in worst-case
linear time with respect to such a measure. Next, we focussed on the prob-
lem of minimizing automaton-based representations with respect to either this
complexity measure or the traditional measure that only considers the num-
ber of states (size) of the automaton. By exploiting dynamic programming,
we gave polynomial-time algorithms that respectively compute complexity-
optimal and size-optimal automata from a string-based specification of a time
granularity. While the former computes automata which are complexity opti-
mal with respect to the whole class of RLA, the latter confines itself to the
restricted class of RLA in CΣ.

We believe it possible to further improve such algorithms by exploiting subtle
relationships between repeating patterns of strings and secondary transitions
of optimal RLA. As a matter of fact, we conjecture that the loops determined
by the secondary transitions of a complexity-optimal RLA can be related
to maximal repetitions in the recognized word (a maximal repetition of u
is a periodical substring u[i, j] whose minimum period increases as soon as
u[i, j] is prolonged to the right, e.g., u[i, j + 1], or to the left, e.g., u[i− 1, j]).
Moreover, we are exploring the possibility of generalizing the size-optimization
algorithm in order to produce optimal automata with respect to the whole class
of RLA (instead of the subclass CΣ only). We believe that such a task could be
accomplished by introducing a suitable operator, in addition to AppendChar
and AppendRepeat , which collapses non-distinguishable states of RLA (at the
moment, the major stumbling block is the problem of finding an appropriate
definition of RLA distinguishable states).
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Appendix

Lemma 2 The relation a respects the extension of strings to the right, that
is, (v · a) a (u · a) holds if and only if both v a u and u[|v|+ 1] = a hold (see
Figure 3).

Proof. The proof is trivial. If v ·a is a border of u ·a, then both v = u[1, |v|] =
u[|u| − |v| + 1, |u|] and u[|v| + 1] = a hold. For the converse, if v is a border
of u and u[|v|+ 1] = a holds, then v · a = u[1, |v|+ 1] = u[|u| − |v|+ 1, |u|] · a
and hence v · a is a border of u · a. 2

Lemma 3 The relation a is linear to the left, that is, whenever both v a u
and w a u hold, then we have v = w or v a w or w a v.

Proof. Let u, v, and w be three finite strings of length n, m, and r, respec-
tively. By definition, from v a u, it follows that v = u[1, m] = u[n−m + 1, n],
and, from w a u, it follows that w = u[1, r] = u[n− r + 1, n]. If r is less than
m, then we have w = u[1, r] = u[1, m][1, r] = v[1, r] and w = u[n− r + 1, n] =
u[n−m + 1, n][m− r + 1, m] = v[m− r + 1, m]. Hence w is a border of v. The
other cases can be proved in a similar way. 2
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Corollary 1 Let u be a finite string and let u1, . . . , un be the (unique)
sequence of finite strings such that ε = u1 aa . . . aa un aa u. If v a u, then
there is 1 ≤ k ≤ n such that v = uk.

Proof. The proof is by induction on n. The case n = 1 is trivial, since v a u
implies v = ε = u1. For n > 1, we distinguish two cases: either v is a maximum
border of u, or v is a non-maximum border of u. In the former case, we simply
let k = n. In the latter case, we let w = un aa u and, by Lemma 3, we know that
v a w.By applying the inductive hypothesis, we immediately obtain v = uk,
for some 1 ≤ k < n. 2

Theorem 1 Let u be a finite string and let u1, . . . , un be the (unique) se-
quence of finite strings such that ε = u1 aa . . . aa un aa u. For any given v, the
following two conditions are equivalent:
1. (v · a) aa (u · a),
2. there is a 1 ≤ k ≤ n such that uk = v, u[|uk|+ 1] = a, and u[|uh|+ 1] 6= a

for all h > k.

Proof. As for the implication from 1 to 2, if v · a is the maximum border
of u · a, then, by Lemma 2, v is a border of u. From Corollary 1, we know
that v = uk for a suitable k > 0, and, again by Lemma 2, u[|uk| + 1] = a.
Furthermore, for every h > k, uh is longer than uk and hence uh · a cannot be
a border of u · a. Since uh is a border of u and uk · a is the maximum border
of u · a, this implies that u[|uh|+ 1] 6= a. Conversely, let k be the largest index
such that u[|uk| + 1] = a. Clearly uk · a is a border of u · a. If there would
be a border v · a of u · a with |v · a| > |uk · a|, then, by Lemma 2, v would
be a border of u and, by Corollary 1, there would be an integer h such that
uh = v. Moreover, from Lemma 3 we know that uk is a border of v, and hence
h should be greater that k. This implies that u[|uh|+ 1] = a, which is against
the hypothesis of k being the largest index such that u[|uk|+ 1] = a. 2
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