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Abstract. The classification of the fragments of Halpern and Shoham’s
logic with respect to decidability/undecidability of the satisfiability prob-
lem is now very close to the end. We settle one of the few remaining
questions concerning the fragment AĀBB̄, which comprises Allen’s in-
terval relations “meets” and “begins” and their symmetric versions. We
already proved that AĀBB̄ is decidable over the class of all finite linear
orders and undecidable over ordered domains isomorphic to N. In this
paper, we first show that AĀBB̄ is undecidable over R and over the class
of all Dedekind-complete linear orders. We then prove that the logic is
decidable over Q and over the class of all linear orders.

1 Introduction

Even though it has been authoritatively and repeatedly claimed that interval-
based formalisms are the most appropriate ones for a variety of application
domains, e.g., [6], until very recently interval temporal logics were a largely un-
explored land. There are at least two explanations for such a situation: compu-
tational complexity and technical difficulty. On the one hand, the seminal work
by Halpern and Shoham on the interval logic of Allen’s interval relations (HS for
short) showed that such a logic is highly undecidable over all meaningful classes
of linear orders [5], and ten years later Lodaya proved that a restricted fragment
of it, denoted BE, featuring only two modalities (those for Allen’s relations begins
and ends), suffices for undecidability [7]. On the other hand, formulas of interval
temporal logics express properties of pairs of time points rather than of single
time points, and are evaluated as sets of such pairs, that is, binary relations.
As a consequence, there is no reduction of the satisfiability/validity in interval
logics to monadic second-order logic, and thus Rabin’s theorem (the standard
proof machinery) is not applicable here.

In the last decade, a systematic investigation of HS fragments has been car-
ried out. Their classification with respect to the decidability/undecidability of
their satisfiability problem is now very close to the end. The outcome of the
analysis is that undecidability rules over HS fragments [1, 8], but some mean-
ingful exceptions exist [2, 3, 4, 10, 11]. While setting the status of most and
least expressive interval logics is relatively straightforward, e.g., undecidability
of full HS can be shown by a reduction from the non-halting problem for Turing
machines, decidability of the logic of Allen’s relations begins and begun by BB̄
can be proved by a reduction to the (point-based) linear temporal logic of future



and past, dealing with those fragments that lie on the marginal land between
decidability and undecidability is much more difficult. (Un)decidability of HS
fragments depends on two factors: their set of interval modalities and the class
of linear orders over which they are interpreted. While the first one is fairly
obvious, the second one is definitively less immediate. Some HS fragments be-
have the same over all classes of linear orders. This is the case with the logic
of temporal neighbourhood AĀ, which is NEXPTIME-complete over all relevant
classes of linear orders [3]. A real character is, on the contrary, the temporal logic
of sub-intervals D: its satisfiability problem is PSPACE-complete over the class
of dense linear orders [2] and undecidable over the classes of finite and discrete
linear orders [8] (it is still unknown over the class of all linear orders).

In this paper, we focus our attention on the satisfiability problem for the
logic AĀBB̄, which pairs the decidable fragments AĀ and BB̄. In [11], we proved
that the problem is decidable, but not primitive recursive, over finite linear
orders, and undecidable over the natural numbers. Here, we first show that
undecidability can be lifted to the temporal domain R, as well as to the class of
all Dedekind-complete linear orders. Then, we consider the order Q. We devise
two semi-decision procedures: the first one terminates if and only if the input
formula is unsatisfiable over Q, while the second one terminates if and only if
the input formula is satisfiable over Q. Running the two procedures in parallel
gives a decision algorithm for AĀBB̄ over Q. We conclude the paper by showing
that decidability over the class of all linear orders follows from that over Q.

2 The logic

We begin by introducing the logic AĀBB̄. Let Σ be a set of proposition
letters. The logic AĀBB̄ consists of formulas built up from letters in Σ using the
Boolean connectives ¬ and ∨ and the unary modalities ⟨A⟩, ⟨Ā⟩, ⟨B⟩, and ⟨B̄⟩. We
will often make use of shorthands like ϕ1 ∧ϕ2 = ¬(¬ϕ1 ∨¬ϕ2), [A]ϕ = ¬⟨A⟩¬ϕ,
[B]ϕ = ¬⟨B⟩¬ϕ, true = a ∨ ¬a, and false = a ∧ ¬a, for a ∈ Σ.

To define the semantics of AĀBB̄ formulas, we consider a linear order D =
(D,<), called temporal domain, and we denote by ID the set of all closed intervals
[x, y] over D, with x ≤ y. We call interval structure any Kripke structure of the
form I = (ID, σ,A, Ā,B, B̄), where σ ∶ ID →P(Σ) is a function mapping intervals
to sets of proposition letters and A, Ā, B, and B̄ are the Allen’s relations “meet”,
“met by”, “begun by”, and “begins”, which are defined as follows: [x, y] A
[x′, y′] iff y = x′, [x, y] Ā [x′, y′] iff x = y′, [x, y] B [x′, y′] iff x = x′ ∧ y′ < y, and
[x, y] B̄ [x′, y′] iff x = x′ ∧ y < y′. Formulas are interpreted over a given interval
structure I = (ID, σ,A, Ā,B, B̄) and a given initial interval I ∈ ID in the natural
way, as follows: I, I ⊧ a iff a ∈ σ(I), I, I ⊧ ¬ϕ iff I, I /⊧ ϕ, I, I ⊧ ϕ1 ∨ ϕ2 iff
I, I ⊧ ϕ1 or I, I ⊧ ϕ2, and, most importantly, for all relations R ∈ {A, Ā,B, B̄},

I, I ⊧ ⟨R⟩ϕ iff there is J ∈ ID such that I R J and I, J ⊧ ϕ.

We say that a formula ϕ is satisfiable over a class C of interval structures if
I, I ⊧ ϕ for some I = (ID, σ,A, Ā,B, B̄) in C and some interval I ∈ ID.

For example, the formula [B]false (hereafter abbreviated π) hold over all and
only the singleton intervals [x,x]. Similarly, the formula [B][B]false (abbreviated
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unit) holds over the unit-length intervals of a discrete order, e.g. over the intervals
of Z of the form [x,x + 1]. The formula [Ā][Ā][A][A]ϕ ([G]ϕ for short) forces
ϕ to hold universally, that is, over all intervals. The formula [G] (¬π → ⟨B⟩¬π )
(ϕdense for short) holds over all and only the interval structures with a dense
domain, e.g., the order Q of the rationals.

Logical types. We now introduce basic terminology and notation that are
common in the temporal logic setting. The closure of a formula ϕ is defined as
the set closure(ϕ) of all sub-formulas of ϕ and all their negations (we identify
¬¬ψ with ψ, ¬⟨A⟩ψ with [A]¬ψ, etc.). For a technical reason that will be clear
soon, we also introduce the extended closure of ϕ, denoted closure+(ϕ), that
extends closure(ϕ) by adding all formulas of the form ⟨R⟩ψ and [R]ψ, with
R ∈ {A, Ā,B, B̄} and ψ ∈ closure(ϕ).

Let I = (ID, σ,A, Ā,B, B̄) be an interval structure. We associate with each in-
terval I ∈ ID its ϕ-type typeϕ

I
(I), defined as the set of all formulas ψ ∈ closure+(ϕ)

such that I, I ⊧ ψ (when no confusion arises, we omit the parameters I and ϕ).
A particular role will be played by those types F that contain the subformula
[B]false, which are necessarily associated with singleton intervals. When no in-
terval structure is given, we can still try to capture the concept of type by means
of a maximal “locally consistent” subset of closure+(ϕ). Formally, we call ϕ-atom
any set F ⊆ closure+(ϕ) such that (i) ψ ∈ F iff ¬ψ /∈ F , for all ψ ∈ closure+(ϕ), (ii)
ψ ∈ F iff ψ1 ∈ F or ψ2 ∈ F , for all ψ = ψ1 ∨ ψ2 ∈ closure+(ϕ), (iii) if [B]false ∈ F
and ψ ∈ F , then ⟨A⟩ψ ∈ F and ⟨Ā⟩ψ ∈ F , for all ψ ∈ closure(ϕ), (iv) if [B]false ∈ F
and ⟨A⟩ψ ∈ F , then ψ ∈ F or ⟨B̄⟩ψ ∈ F , for all ψ ∈ closure(ϕ). We call π-atoms
those atoms that contain the formula [B]false, which are thus candidate types
of singleton intervals. We denote by atoms(ϕ) the set of all ϕ-atoms.

Given an atom F and a relation R ∈ {A, Ā,B, B̄}, we let reqR(F ) be the set
of requests of F along direction R, namely, the formulas ψ ∈ closure(ϕ) such that
⟨R⟩ψ ∈ F . Similarly, we let obs(F ) be the set of observables of F , namely, the
formulas ψ ∈ F ∩closure(ϕ) – intuitively, the observables of F are those formulas
ψ ∈ F that fulfil requests of the form ⟨R⟩ψ from other atoms. Note that, for all
π-atoms F , we have reqA(F ) = obs(F ) ∪ reqB̄(F ) and reqĀ(F ) ⊇ obs(F ).
Compass structures. Formulas of interval temporal logics can be equivalently
interpreted over the so-called compass structures [14]. These structures can be
seen as two-dimensional spaces in which points are labelled with complete logical
types (atoms). Such an alternative interpretation exploits the existence of a
natural bijection between the intervals I = [x, y] over a temporal domain D and
the points p = (x, y) in the D×D grid such that x ≤ y. It is convenient to introduce
a dummy atom ∅, distinct from all other atoms, and assume that it labels all
and only the points (x, y) such that x > y, which do not correspond to intervals.
We fix the convention that obs(∅) = ∅ and reqR(∅) = ∅ for all R ∈ {A, Ā,B, B̄}.

Formally, a compass ϕ-structure over a linear order D is a labelled grid G =
(D×D, τ), where the function τ ∶ D×D→ atoms(ϕ)⊎ {∅} maps any point (x, y)
to either a ϕ-atom (if x ≤ y) or the dummy atom ∅ (if x > y).

We observe that Allen’s relations over intervals have analogue relations over
points. Figure 1 gives a geometric interpretation of relations A, Ā,B, B̄ (by a
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Ā

Fig. 1. Geometric interpre-
tation of Allen’s relations.

slight abuse of notation, we use the same letters
for the corresponding relations over the points of
a compass structure). Thanks to such an interpre-
tation, any interval structure I can be converted
to a compass one G = (D × D, τ) by simply letting
τ(x, y) = type([x, y]) for all x ≤ y ∈ D. The con-
verse, however, is not true in general, as the atoms
associated with points in a compass structure may
be inconsistent with respect to the underlying geo-
metrical interpretation of Allen’s relations. To ease a
correspondence between interval and compass struc-
tures, we enforce suitable consistency conditions on
compass structures. For this, we introduce two relations over atoms F,G:

F ↑ G iff F

↰

G iff

⎧⎪⎪⎪⎨⎪⎪⎪⎩

reqB̄(F ) ⊇ obs(G) ∪ reqB̄(G)
reqB(G) ⊇ obs(F ) ∪ reqB(F )
reqĀ(F ) = reqĀ(G)

{ reqA(F ) = obs(G) ∪ reqB(G) ∪ reqB̄(G)
reqĀ(G) ⊇ obs(F ).

Note that the relation ↑ is transitive, while

↰

only satisfies

↰ ○ ↑ ⊆ ↰

. Observe
also that, for all interval structures I and all intervals I, J in it, if I B̄ J (resp.,
I A J), then type

I
(I) ↑ type

I
(J) (resp., type

I
(I) ↰

type
I
(J)). Hereafter, we

tacitly assume that every compass structure G = (D × D, τ) satisfies analogous
consistency properties with respect to its atoms, namely, for all points p = (x, y)
and q = (x′, y′) in D × D, with x ≤ y and x′ ≤ y′, if p B̄ q (resp., p A q), then
τ(p) ↑ τ(q) (resp., τ(p) ↰ τ(q)). In addition, we say that a request ψ ∈ reqR(τ(p))
of a point p in a compass structure G = (D ×D, τ) is fulfilled if there is another
point q such that p R q and ψ ∈ obs(τ(q)) – in this case, we say that q is a
witness of fulfilment of ψ from p. The compass structure G is said to be globally
fulfilling if all requests of all its points are fulfilled.

We can now recall the standard correspondence between interval and compass
structures (the proof is based on a simple induction on sub-formulas):

Proposition 1 ([11]). Let ϕ be an AĀBB̄ formula. For every globally fulfilling
compass structure G = (D×D, τ), there is an interval structure I = (ID, σ,A, Ā,B,
B̄) such that, for all x ≤ y ∈ D and all ψ ∈ closure+(ϕ), I, [x, y] ⊧ ψ iff ψ ∈ τ(x, y).

In view of Proposition 1, the satisfiability problem for a given AĀBB̄ formula
ϕ reduces to the problem of deciding the existence of a globally fulfilling compass
ϕ̃-structure G = (D×D, τ), with ϕ̃ = ⟨G⟩ϕ (⟨G⟩ϕ is a shorthand for ¬[G]¬ϕ), that
features the observable ϕ̃ in every point, that is, ϕ̃ ∈ obs(τ(x, y)) for all x ≤ y ∈ D.

3 Satisfiability over finite and Dedekind-complete orders

The satisfiability problem for AĀBB̄ was originally addressed in [11]. We first
proved that AĀBB̄ is decidable if interpreted over finite linear orders, but not
primitive recursive. The decidability result rests on a contraction method that,
given a formula ϕ and a finite compass structure satisfying ϕ, shows that, under
suitable conditions, the compass structure can be reduced in size while pre-
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serving consistency and fulfilment properties. This leads to a non-deterministic
procedure that decides whether ϕ is satisfiable by exhaustively searching all
contraction-free compass structures. The proof of termination relies on Dick-
son’s lemma, while non-primitive recursiveness is proved via a reduction from
the reachability problem for lossy counter machines [13]. Then, we showed that
the problem becomes undecidable if we interpret AĀBB̄ over a temporal do-
main isomorphic to N (in fact, this is already the case with the proper fragment
AĀB). The proof is based on a reduction from an undecidable variant of the
reachability problem for lossy counter machines, called structural termination
[9], which consists of deciding whether a given lossy counter machine admits a
halting computation starting from a given location and some arbitrary initial
assignment for the counters. Due to an oversight, in [11] we claimed that such
an undecidability result can be transferred to any class of linear orders in which
N can be embedded. As a matter of fact, Dedekind completeness is a necessary
condition. The following theorem properly states undecidability results for AĀB.

Theorem 1. The satisfiability problem for AĀB interpreted over N, R, and the
class of all Dedekind-complete linear orders is undecidable.

In view of the above theorem and the decidability results in [11], the satisfia-
bility problem for AĀBB̄ over Q, as well as over the class of all interval structures,
remains open. In the next section, we will show that, quite surprisingly, both
problems are decidable with non-primitive recursive complexity.

4 Satisfiability over the rationals and all linear orders

We begin by describing a fairly simple semi-decision procedure for the un-
satisfiability of AĀBB̄ formulas over interval structures with a dense temporal
domain. The crucial observation is that, whenever a formula ϕ is unsatisfiable
over Q, this can be witnessed by a finite set of intervals with inconsistent requests.
Based on this observation, one can enumerate all finite compass structures that
witness ϕ and are distinct up to isomorphism, following the partial order induced
by the embedding relation (this relation is defined as an isomorphism between
the smaller structure and the restriction of the larger structure to a suitable
subset of its temporal domain). The only way the enumeration procedure can
terminate is when no refinement is applicable: in this case, one proves that the
input formula ϕ is not satisfiable. Conversely, if the enumeration procedure does
not terminate, then the formula ϕ is satisfied by some compass structure that
is obtained from the limit of an infinite series of refinements (suitable fairness
conditions for the generated refinements guarantee that the temporal domain of
the limit compass structure is isomorphic to Q). We refer the reader to [12] for
the details of the above enumeration procedure of unsatisfiable formulas over Q.

The rest of the section is devoted to finding a semi-decision procedure that
receives an input formula ϕ and terminates (successfully) iff ϕ is satisfiable
over an interval structure with a dense temporal domain. Differently from the
previous procedure, this one is based on enumerating suitable finite abstractions
of compass structures, which is far from being an easy task.
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Fig. 2. Decomposition of a compass structure.

A first step consists of simpli-
fying the consistency and fulfil-
ment conditions. More precisely,
we show how to turn them into
more “local” constraints, so as to
ease, later, the abstraction task.
To this end, recall that the ratio-
nal line is isomorphic to any countable dense ordering with neither a minimal
element nor a maximal one. This means that, for the purpose of studying satis-
fiability over Q, it does not matter if we consider interval structures over Q or
over any subset of it that is dense and contains no extremal elements. Similarly,
the complexity of the satisfiability problem does not change if we add mini-
mal and maximal elements to the underlying temporal domain – for the sake of
brevity, we call the resulting order a dense order with endpoints. Now, to turn the
consistency and fulfilment conditions into local constraints, we decompose any
dense order with endpoints D into some infinite, finitely-branching tree T whose
nodes represent pairs of elements of D of the form s = (y1, y2), with y1 < y2,
and whose edges connect nodes (y1, y2) ∈ T to tuples of nodes s1 = (z1, z2), ...,
sn = (zn, zn+1), with n ≥ 2 and y1 = z1 < z2 < ... < zn < zn+1 = y2 (see Figure 2).
Note that the domain D is not necessarily entirely covered by the time points
that appear in the nodes of a decomposition T . Moreover, since all dense orders
with endpoints are isomorphic, we will not be concerned with the coordinates of
the nodes of T and we will often overlook them in the constructions that follow.

Using decompositions of temporal domains we can extract “horizontal slices”
of a compass structure. More precisely, given a compass structure G = (D×D, τ)
and a node s = (y1, y2) of a decomposition T of D, we define the slice of G in
s as the induced sub-structure Gs = (D × {y1, y2}, τ). Intuitively, the slice Gs
is obtained from G by selecting the rows with coordinates y1 and y2 and by
restricting the labelling function τ to them (to reduce the notational overload,
we denote such a restriction of the labelling function by τ).

Below, we introduce suitable abstractions, called profiles, for the labels that
can appear in a slice of a compass structure. Intuitively, for each slice Gs =
(D × {y1, y2}, τ) and each pair of atoms (F,G), where possibly F = ∅ or both
F = ∅ and G = ∅ (dummy atoms), we keep track of the number of coordinates
x ∈ D such that τ(x, y1) = F and τ(x, y2) = G. In particular, in these abstractions,
we forget the occurrence order of the pairs of atoms along the x-axis. To this
end, we make extensive use of multisets. Given a multiset M and an element e in
M , we denote by M(e) the multiplicity, that is, the number of occurrences, of e
in M , and we write M(e) =∞ when M contains infinitely many occurrences of
e. We freely use set-theoretic notations with multisets. For example, we denote
membership by e ∈M , containment by M ⊆ N , etc. Moreover, given a multiset M
of n-tuples and a set I ⊆ {1, . . . , n} of component indices, we denote by M ∣I the
projection of M onto I, that is, the multiset that contains exactly ∑e∣I=fM(e)
occurrences of each I-tuple f (note that the sum ranges over all n-tuples e
that coincide with f on the components indexed in I). Note that, differently

6



from set projections, projections of multisets are injective, as they send distinct
occurrences of tuples to distinct occurrences of tuples. In particular, ∣I defines
a bijection from multiset M to multiset M ∣I . Finally, we denote by set(M) the
support of a multiset M , that is, the set of all elements e such that M(e) ≥ 1.

We associate with each slice Gs = (D × {y1, y2}, τ) of a globally fulfilling
compass structure G, the multiset M defined by M(F,G) = ∣{x ∈ D ∶ τ(x, y1) =
F, τ(x, y2) = G}∣ for all (F,G) ∈ (atoms(ϕ) ⊎ {∅})2. We call this multiset the
profile of the slice Gs and we denote it by profile(Gs). Note that the projection
profile(Gs)∣1 (resp., profile(Gs)∣2) onto the first (resp., second) component is a
multiset that represents the number of occurrences of each atom along the lower
(resp., upper) row of the slice Gs. Definition 1 below captures a more general
notion of profile that does not refer to a particular compass structure. We will
then introduce trees labelled with profiles as abstractions of compass structures.

Definition 1. A profile is a multiset M of pairs of (possibly dummy) atoms
(F,G) ∈ (atoms(ϕ) ⊎ {∅})2 such that: (i) for all (F,G) ∈ M , if F ≠ ∅, then
G ≠ ∅ and F ↑ G; (ii) for all (F,G), (F ′,G′) ∈ M , reqA(F ) = reqA(F ′) and
reqA(G) = reqA(G′); (iii) M contains infinitely many occurrences of pairs (∅,G)
with G ≠ ∅; (iv) M contains exactly one occurrence of a pair (F,G) with F
π-atom and exactly one occurrence of a pair (∅,H) with H π-atom (for short,
we denote the two pairs (F,G) and (∅,H) by Mπ and Mπ, respectively); (v)
if Mπ = (F,G), then reqĀ(F ) = ⋃(F ′,G′) ∈M obs(F ′); similarly, if Mπ = (∅,H),
then reqĀ(H) = ⋃(F ′,G′) ∈M obs(G′).
Definition 2. A profile tree is an infinite finitely-branching tree T = (T,N,E),
where T is a decomposition of some dense order with endpoints, N is a function
mapping nodes of T to profiles, and E is a function mapping nodes of T to
multisets of tuples of atoms, such that:
– (profile-match) every node s ∈ T has at least two children, say, s1, . . . , sn,

with n ≥ 2, and E(s) is a multiset of (n + 1)-tuples such that E(s)∣1,n+1 =
N(s) and E(s)∣i,i+1 = N(si) for all 1 ≤ i ≤ n;

– (profile-finite-req) for every node s ∈ T and pair (F1, Fn+1) ∈ N(s), with
F1 ≠ ∅, if N(s)(F1, Fn+1) < ∞, then E(s) contains exactly N(s)(F1, Fn+1)
occurrences of tuples (F1, . . . , Fn+1) such that reqB̄(F1) = ⋃2≤i≤n+1 obs(Fi)∪
reqB̄(Fn+1) and reqB(Fn+1) = ⋃1≤i≤n obs(Fi) ∪ reqB(F1);

– (profile-infinite-req) for every node s ∈ T and pair (F1, Fn+1) ∈ N(s), with
F1 ≠ ∅, if N(s)(F1, Fn+1) = ∞, then E(s) contains at least one occurrence
of a tuple (F1, . . . , Fn+1) such that reqB̄(F1) = ⋃2≤i≤n+1 obs(Fi)∪ reqB̄(Fn+1)
and reqB(Fn+1) = ⋃1≤i≤n obs(Fi) ∪ reqB(F1);

– (profile-dummy) for every node s ∈ T and pair (∅,G) ∈ N(s), with G ≠ ∅,
E(s) contains at least one occurrence of a π-tuple, i.e., a tuple with a π-atom,
of the form (F1, . . . , Fn+1), with F1 = ∅ and Fn+1 = G.

In addition, if the profile at the root s0 of T contains only the pair Nπ(s0) =
(F,G), with F π-atom and reqB̄(G) = ∅, and some pairs of the form (∅,H),
with H ≠ ∅ and reqB̄(H) = ∅, then T is said to be a full profile tree.

The first item of Definition 2 enforces the matching conditions between the
pairs in the profile of a node and the pairs in the profiles of its children. The
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second item requires that all requests that appear in a pair (F,G) of the profile
of a node s are either “locally fulfilled” by the observables of corresponding pairs
in the profiles of the children or transferred to other nodes of the profile tree at
the same level as s. This condition, however, concerns only those pairs (F,G)
that have finite multiplicity in the profile; for the remaining pairs, we enforce a
similar, but weaker condition (third item of the definition). Finally, the fourth
item requires that for each atom G, if the profile N(s) contains the pair (∅,G),
then at least one occurrence of this pair is “refined” in the multiset E(s) by an
occurrence of a tuple of the form (∅, . . . ,∅, F, . . . ,G) that contains a π-atom F
(such a tuple is called for short π-tuple) and that ends with the atom G (possibly
F = G). We will see later that this condition is necessary for the fulfilment of
the requests along the direction Ā.

Below, we show that full profile trees are correct (though not yet finite)
abstractions of globally fulfilling compass structures. We present this result with
two statements showing, respectively, completeness and a weak form of soundness
of profile trees. Note that the two-way correspondence is sufficient for witnessing
satisfiability of AĀBB̄ formulas by means of profile trees.

Proposition 2. For every globally fulfilling compass structure G = (D × D, τ)
over a dense order with endpoints D, there is a full profile tree T = (T,N,E)
such that T is a decomposition of D and, for all nodes s ∈ T , N(s) = profile(Gs).
Conversely, for every full profile tree T = (T,N,E), with T decomposition
of some dense order with endpoints D, there is a globally fulfilling compass
structure G = (D′ × D′, τ), with D′ ⊆ D dense order with endpoints, such that
set(profile(Gs)) = set(N(s)) for all s ∈ T .

Below, we show how to further restrict ourselves to a complete subset of full
profile trees and derive finite representations of them. The general idea is to
normalise profile trees so as to obtain structures that are sufficiently “regular”
to be represented by finite trees. To this end, we introduce a finite variant of the
notion of profile tree, called finite profile tree, that is obtained by enforcing the
conditions of Definition 2 to internal nodes only (accordingly, since the multisets
E(s) that are associated with the leaves s in a finite profile tree are not anymore
relevant, one can assume that the function E is undefined on the leaves). We also
introduce a strengthening of the containment relation on multisets, denoted by
⊑ and defined as follows: M ⊑ N iff set(M) = set(N) and M(F̄ ) ≤ N(F̄ ) (resp.,
M(F̄ ) = N(F̄ )) for all tuples F̄ (resp., π-tuples F̄ ). The following definition
captures precisely the set of profile trees we are interested in.

Definition 3. Let T be a finite or infinite profile tree. We say that T is pseudo-
regular iff for all paths π, there are s, s′ ∈ π, with s proper ancestor of s′, such
that N(s) ⊑ N(s′) and N(s)(∅,G) = N(s′)(∅,G) for all atoms G.

In the following, we mainly work with profiles that appear at the roots of
infinite profile trees (feasible profiles for short). We observe that the restriction
of the partial order ⊑ to feasible profiles is a well partial order: indeed, the
definition of profile tree implies that every π-tuple has multiplicity either 0 or
1 in any feasible profile, which in turn means that ⊑ is the conjunction of the
well partial order ⊆ and an equivalence of finite index. Hence, by a combination
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of Dickson’s and König’s lemmas, every infinite pseudo-regular tree has a finite
prefix that is also pseudo-regular (a prefix of a tree is any restriction of it to an
upward-closed set of nodes). A converse result also holds:

Proposition 3. For every finite pseudo-regular profile tree T , there is an infinite
profile tree T ′ that has the same profile as T at the root.

The crux of our semi-decision procedure for testing the satisfiability of AĀBB̄
formulas is to enumerate all atoms that appear in feasible profiles. Proposition
3 allows us to use finite pseudo-regular profile trees as witnesses of existence of
some of these atoms. Unfortunately, this is not yet the end of the story, because
not all profile trees are pseudo-regular and hence, a priori, there might exist
atoms that appear only in infinite profile trees that are not pseudo-regular. The
last piece of the puzzle amounts at showing that this is not the case and that we
can indeed safely restrict ourselves to atoms appearing in pseudo-regular profile
trees. We will prove this result by normalizing infinite profile trees via a series
of operations that “inflate” the profiles as much as possible.

An important aspect that must be taken into account while inflating the
profiles in a tree is that there are matching constraints to satisfy. As a matter
of fact, these constraints induce dependencies between the multiplicities of pairs
(∅, F ) in the profile associated with a node s and the multiplicities of corre-
sponding pairs (F,G) in the profile associated with the right sibling of s. As
a consequence, there will be differences in the treatment of pairs of the form
(∅, F ) and pairs of the form (F,G), with F ≠ ∅. We take a brief interlude to
give an example of the type of dependencies that can be enforced.

Example 1. Consider a formula ϕ that contains, among other conjuncts, the
subformula [G](a → [B]¬a ∧ [B̄]¬a). Figure 3 describes a slice of a compass
structure that may satisfy ϕ, with some distinguished points annotated with
observables and requests. The formula requires that all a-labelled points lie on
distinct vertical axes; on the other hand, it allows arbitrarily many a-labelled
points to be horizontally aligned. This is a representative example because, in
general, forbidding multiple occurrences of an observable along the same hori-
zontal line can be only done using the modal operator [E], which is not available
in the logic. As concerns the multiplicities of the example profile, we observe
that by inserting multiple a-labelled points along a single horizontal line and by
accordingly modifying the upper part of the compass structure, one can get as
many pairs of atoms (F,G), where ⟨B̄⟩a ∈ F and [B̄]¬a ∈ G. On the other hand,

⟨B̄⟩a ⟨B̄⟩a ⟨B̄⟩a
⟨Ā⟩a

⟨Ā⟩a
a

[B̄]¬a

a
a

[B̄]¬a [B̄]¬a ⟨B̄⟩a⟨B̄⟩a

Fig. 3. Dependencies between multiplicities.

to increase the number of pairs
(∅, F ), where ⟨B̄⟩a ∈ F , one has to
introduce new horizontal lines end-
ing with π-atoms H such that ⟨Ā⟩a ∈
H: this is not always possible as
other conjuncts of ϕ may enforce
bounds to the number of π-atomsH.

As shown by the above example, the simplest way one can inflate a profile,
while preserving its feasibility, is by increasing the multiplicites associated with
the pairs (F,G), where F ≠ ∅. We formalise this in the next lemma.
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Lemma 1. If N is a feasible profile and N ′ is a profile such that N ⊑ N ′ and
N(∅,G) = N ′(∅,G) for all atoms G, then N ′ is feasible too. Moreover, a profile
tree with root profile N ′ can be obtained from a profile tree with root profile N
without modifying the underlying decomposition tree.

We describe a second inflation method, which depends on the previous one
and can be used to further simplify the reasoning on the matching conditions of
a profile tree T = (T,N,E). In particular, it shows that w.l.o.g. one can assume
that the finiteness of the multiplicity of any tuple (F1, . . . , Fn+1) in a multiset
E(s) depends only on the multiplicity of the first component F1 in E(s)∣1. This
property is formalized below by the definition of “pointwise fair” profile tree,
followed by a corresponding lemma that shows how to enforce the property.

Definition 4. A multiset E of (n + 1)-tuples is fair if for all (n + 1)-tuples
(F1, . . . , Fn+1) ∈ E, with F1 ≠ ∅, E∣1(F1) = ∞ implies E(F1, . . . , Fn+1) = ∞. A
profile tree T = (T,N,E) is pointwise fair if all multisets E(s) are fair.

Lemma 2. For every feasible profile N , there is an infinite pointwise fair profile
tree that has root profile N ′ ⊒ N . Moreover, one can assume that, for all pairs
of atoms (F,G), if N ∣1(F ) <∞, then N(F,G) = N ′(F,G).

A third inflation method makes use of the fact that the partial order ⊑ re-
stricted to the set of feasible profiles is ω-complete.

Lemma 3. Every sequence of feasible profiles N0 ⊑ N1 ⊑ ... has a supremum
supiNi, defined by (supiNi)(F,G) = supi∈N (Ni(F,G)) for all atoms F,G, that
is a feasible profile.

We have described three ways of increasing the multiplicities of profiles at
the roots of profile trees. In general, these techniques are not applicable to nodes
that are strictly below the root. This is why we introduce a new partial order ⊴,
incomparable with ⊑, that is defined only over feasible profiles N,N ′ as follows:

N ⊴ N ′ iff

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N ⊆ N ′

set(N ∣2) = set(N ′∣2)
N(F,G) = N ′(F,G) for all atoms F,G ≠ ∅.

We observe that from any infinite ⊴-chain of feasible profiles, one can extract an
infinite sub-sequence that is also a ⊑-chain. Thus, an immediate consequence of
Lemma 3 is that every ⊴-chain has an upper bound. In its turn, the existence
of upper bounds on ⊴-chains implies the existence of feasible profiles that are
maximal with respect to ⊴ (this can be seen as a consequence of Zorn’s Lemma):

Corollary 1. For all feasible profiles N , there is a ⊴-maximal profile N ′ ⊵ N .

Based on existence of ⊴-maximal profiles, we say that a profile tree is point-
wise ⊴-maximal if all its profiles are ⊴-maximal. Below, we show that all atoms
of feasible profiles appear at the roots of some pseudo-regular profile trees.

Proposition 4. For every infinite pointwise fair profile tree with root profile
N , there is an infinite pointwise fair and pointwise ⊴-maximal profile tree with
root profile N ′ ⊵ N .

Proposition 5. Every infinite pointwise fair and pointwise ⊴-maximal profile
tree is pseudo-regular.
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Wrapping up, we can devise a semi-decision procedure that tests the satisfia-
bility of a formula ϕ over Q. The procedure works as follows. It first transforms ϕ
into an equi-satisfiable formula ϕ] [ interpreted over a dense order with endpoints
D. Then, the procedure enumerates all finite full pseudo-regular trees, until a tree
is found that contains the formula ⟨G⟩ϕ] [ as an observable of one of its atoms.
The above semi-decision procedure is correct, namely, it terminates successfully
iff the input formula ϕ is satisfiable over Q. Indeed, if ϕ is satisfiable over Q,
then ϕ] [ is satisfiable over a dense order with endpoints D, and hence there is a
globally fulfilling compass structure G that contains ⟨G⟩ϕ] [ as an observable of
all its atoms. By Propositions 4 and 5, there is also an infinite, pseudo-regular
full profile tree T that witnesses ⟨G⟩ϕ] [ at the root profile. By the remarks that
follow Definition 3, there is also a prefix of T that is a finite pseudo-regular full
profile tree, and eventually this tree must be discovered by the procedure. Con-
versely, if the procedure terminates with a finite pseudo-regular full profile tree
witnessing ⟨G⟩ϕ] [, then by Proposition 3 there is an infinite full profile tree T ,
and hence a compass structure G, that witness the satisfiability of ⟨G⟩ϕ] [ over
D. One can then conclude that ϕ is satisfiable over Q.

A full decision procedure that solves the satisfiability problem for AĀBB̄ over
Q can simply run in parallel the two semi-decision procedures that we described
for unsatisfiability and satisfiability of AĀBB̄ formulas.

As for the satisfiability problem over the class of all interval structures, one
can simply observe the following. The logic AĀBB̄, as any other HS fragment,
can be viewed as a fragment of first-order logic that uses binary relations to
express properties of pairs of elements of the underlying temporal domain. The
relation < of the temporal domain can be easily constrained by a first-order
formula so as to define a linear order, and Allen’s relations can be expressed
in first-order logic in term of <. From Löwenheim-Skolem theorem, it follows
that every interval structure can be assumed to contain only countably many
intervals. Moreover, since every countable linear order can be embedded inside
Q, satisfiability of formulas of a given HS fragment over the class of all linear
orders can be reduced to their satisfiability over Q, provided that the fragment
is powerful enough to express such an embedding. This is the case with AĀBB̄:
it suffices to introduce a distinguished proposition letter #, to constrain all #-
labelled intervals to be singletons ([G](#→ π)), and to relativize all modalities
to intervals with endpoints labelled by # (intervals that satisfy ⟨B⟩# ∧ ⟨A⟩#).
We conclude by establishing the precise complexity of the satisfiability problem.

Theorem 2. The satisfiability problem for AĀBB̄ interpreted over Q, as well as
over the class of all linear orders, is decidable, but not primitive recursive.

5 Conclusions

In this paper we close the open questions concerning the satisfiability problem
for the interval temporal logic AĀBB̄. First, we generalized the undecidability
result from [11] to R and to the class of all Dedekind-complete linear orders, and
then we proved that it is decidable in two interesting cases: Q and the class of
all interval structures. To decide satisfiability of AĀBB̄ formulas over Q we used
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a combination of techniques from [4] (tree-shaped decomposition of models) and
[11] (encoding of models by systems with counters), plus new key ingredients
(separation into two semi-decision procedures, Konig’s lemma). As concerns the
second result, the decidability of AĀBB̄ over the class of all interval structures
follows from the decidability over Q and from Löwenheim-Skolem theorem, which
allows us to assume, without loss of generality, that the interval structures are
countable and hence embeddable inside Q. The fact that AĀBB̄ is powerful
enough to express the embedding of a countable order inside Q completes the
reduction. It is worth pointing out that the same technique cannot be applied to
all HS fragments; for instance, the satisfiability problem for the temporal logic
of sub-/super-intervals DD̄ is known to be decidable over Q [2, 10], but it is open
for the class of all interval structures.
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