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Abstract. The notion of orbit finite data monoid was recently intro-
duced by Bojańczyk as an algebraic object for defining recognizable lan-
guages of data words. Following Büchi’s approach, we introduce the new
logic ‘rigidly guarded MSO’ and show that the data languages definable
in this logic are exactly those recognizable by orbit finite data monoids.
We also establish, following this time the approach of Schützenberger,
McNaughton and Papert, that the first-order variant of this logic defines
exactly the languages recognizable by aperiodic orbit finite data monoids.
Finally, we give a variant of the logic that captures the larger class of
languages recognized by non-deterministic finite memory automata.

1 Introduction

Data languages are languages over an infinite alphabet – the letters of which are
called data values – which are closed under permutation of the data values. This
invariance under permutation makes any property concerning the data values,
other than equality, irrelevant. Some examples of data languages are:

� The sets of words containing exactly k distinct data values.

� The sets of words where the first and last data values are equal.

� The sets of words with no consecutive occurrences of the same data value.

� The sets of words where each data value occurs at most once. (⋆)

The intention behind data values in data words (or data trees, . . . ) is to model,
e.g. the id’s in a database, or the process or users numbers in the log of a system.
Those numbers are used as identifiers, and we are interested only in comparing
them by equality. The invariance under permutation of data languages captures
this intention. Data words can also be defined to have both a data value and a
letter from a finite alphabet at each position. This is more natural in practice,
and does not make any difference in the results to follow.

The paper aims at understanding better how the classical theory of regular
languages can be extended to data languages. The classical theory associates
regular languages to finite state automata or, equivalently, to finite monoids. For
instance, important properties of regular languages can be detected by exploiting
equivalences with properties of the monoid – see, e.g. Straubing’s book [14] or
Pin’s survey [11] for an overview of the approach.

Recently, Bojańczyk introduced the notion of data monoids [3] as a frame-
work for algebraic characterizations of data languages. Bojańczyk focused on the
languages of data words recognizable by orbit finite data monoids, an analog of



finite monoids for data languages. All the above examples but ⋆ are recognizable
with this definition. Our main objective is to understand better the expressive
power of the orbit finite data monoid model by comparing it with automaton-
based models and logical formalisms for data words.

In terms of logic, there is a natural way to define logics for data words. It
is sufficient for this to use a predicate x ∼ y meaning that the data values at
positions x and y are equal. In particular, one may think that the monadic
(second-order) logic with this new predicate is a good candidate to equivalently
specify recognizable languages, i.e., would play the role of monadic logic in the
standard theory of regular languages. However, this is not the case, as monadic
logic happens to be much too expressive. One inclusion indeed holds: every
language of data words recognized by an orbit finite monoid is definable in
monadic logic. However, the converse does not hold, as witnessed by the formula

∀ x, y. x ≠ y → x ≁ y, (⋆⋆)

which defines the above (non-recognizable) language ⋆. More generally, it has
been shown that monadic logic (indeed, even first-order logic with data equal-
ity) has an undecidable satisfiability problem and it can express properties not
implementable by automaton models, such as finite memory automata (FMA,
described below) [10]. We naturally aim at answering the following question:

Is there a natural variant of monadic logic which defines precisely the
data languages recognizable by orbit finite data monoids?

We answer this question positively, introducing rigidly guarded MSO (abbrevi-
ating monadic second-order logic with rigidly guarded data equality tests). This
logic allows testing equality of two data values only when the two positions are
related in an injective way (we say rigid). That is, data equality tests are allowed
only in formulas of the form ϕ(x, y) ∧ x ∼ y, where ϕ is rigid, i.e., defines a partial
injection. For instance, it is easy to check whether there are two consecutive posi-
tions sharing the same data value, e.g., by the formula ∃ x, y. (x = y+1) ∧ x ∼ y.
The guard (x = y + 1) is rigid since x uniquely determines y, and vice versa.
However, it is impossible to describe the language ⋆ in this logic. In particular,
the above formula ⋆⋆ can be rewritten as ¬∃ x, y. (x ≠ y) ∧ x ∼ y, but this time
the guard x ≠ y is not rigid: for a given x, there can be several y such that x ≠ y.
It may seem a priori that the fact that rigidity is a semantic property is a severe
drawback. This is not the case since (i) rigidity can be enforced syntactically,
and (ii) rigidity is decidable for formulas in our logic.

To validate the robustness of our approach, we also answer to the following
question inspired from the seminal Schützenberger-McNaughton-Papert result:

Does the rigidly guarded FO logic (i.e., the first-order fragment of rigidly
guarded MSO) correspond to aperiodic orbit finite data monoids?

We answer this question positively as well. We finally consider data languages
recognizable by finite memory automata and we prove that a natural variant of
rigidly guarded MSO, called ∃backward-rigidly guarded MSO captures the class
of data languages recognized by non-deterministic finite memory automata.
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Overall, we don’t claim that data languages recognizable by orbit finite data
monoids are the counterpart to the notion of regular languages in the standard
theory, since this model is rather expressively weak (see related work below).
However, in this restricted framework, we are able to recover several of the
major results which hold for usual regular languages.

Related work. This work is highly related to the well known theory of regular
languages. We refer by this to the key equivalence between monadic logic and
regular languages due to Büchi [5], and the Schützenberger-McNaughton-Papert
result that characterizes the subclass of first-order definable languages [13, 9].

The other branch of related work is the one concerned with languages of data
words. The first contribution in this direction is due to Kaminski and Francez
[7], who introduced finite memory automata (FMA for short). These automata
possess a fixed finite set of registers that can store data values. At each step such
an automaton can compare the current data value with the values stored in the
registers, and can decide to store this value in some register (forgetting the pre-
vious content of the register). This model of automaton, in its non-deterministic
form, has a decidable emptiness problem and an undecidable universality prob-
lem (decidability of the latter problem is recovered in the deterministic variant).

Recently, the deterministic model of FMA has been modified by requiring a
stricter policy in the use of registers [2]. This modification does not affect the
expressive power of the model, but, as opposed to the original model, the new
model can be efficiently minimized. In [1] partial results on relating automata to
logics are also given. The question of characterizing the first-order logic definable
language among the languages recognized by deterministic FMA is still open.

Many other automaton models for data languages have been studied in the
literature (see [12] for a survey). These include pebble automata [10] and data
automata [4], the latter introduced as a mean of capturing decidable logics over
data words. The algebraic theory for these models has not been developed, nor
is there an exact characterization of definability in logics for any of these models.

Contribution and structure of the paper. These are our contributions:

1. We show how infinite orbit finite data monoids can be finitely represented.

2. We introduce a new logic called “rigidly guarded MSO” – a natural weaken-
ing of MSO logic with data equality tests. Although the syntax of our logic
is based on a semantic property, one can decide whether a formula belongs
to the logic or not.

3. We show that satisfiability of rigidly guarded MSO formulas is decidable.

4. We show that rigidly guarded MSO is as expressive as orbit finite data
monoids, and that its first-order fragment corresponds precisely to aperiodic
orbit finite data monoids.

5. We give a decidable variant of rigidly guarded MSO that captures the data
languages recognized by non-deterministic finite memory automata and has
a decidable satisfiability problem. We also provide a decidable logic for data
trees along the same lines.
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Section 2 gives preliminaries on data languages and data monoids, and explains
how to define representations of data monoids with finitely many orbits. Section 3
introduces rigidly guarded MSO and its first-order fragment. Section 4 describes
the translation from rigidly guarded MSO (resp., FO) formulas to orbit finite
data monoids (resp., aperiodic orbit finite data monoids) recognizing the same
languages. Section 5 describes the converse translation, namely, from (aperiodic)
orbit finite data monoids to rigidly guarded MSO (resp., FO) formulas. Section
6 introduces a variant of rigidly guarded MSO that captures precisely the class
of languages recognized by non-deterministic finite memory automata. Finally,
Section 7 provides an assessment of the results and related open problems.

Acknowledgments. We would like to thank Michael Benedikt and Anca Muscholl
for the many helpful remarks on the paper.

2 Data Monoids

In this paper, D will usually denote an infinite set of data values (e.g., d, e, f, . . .)
and A will denote a finite set of symbols (e.g., a, b, c, . . .). A data word over the
alphabet D × A is a finite sequence u = (d1, a1) . . . (dn, an) in (D × A)∗. The
domain of u, denoted Dom(u), is {1, . . . , n}.

Given a set C ⊆ D of data values, a (data) renaming on C is a permutation
on C that is the identity for all but finitely many values of C. We denote by
GC the set of all renamings on C. Renamings are naturally extended to tuples
of data values, data words, sets of data words, and so on. A data language over
D ×A is a set of data words in (D ×A)∗ that is closed under renamings in GD.

Recall that a monoid is an algebraic structureM = (M, ⋅) where ⋅ is an asso-
ciative product on M andM contains an identity 1M. A monoid is aperiodic if for
all elements s, there is n such that sn = sn+1. We say that the set GC of renamings
acts on a monoid M = (M, ⋅) if there is a function ˆ that maps every renaming
τ ∈ GC to an automorphism τ̂ onM. That is, for all renamings τ, π ∈ GC and all
elements s, t ∈M , we have (i) τ̂ ○ π = τ̂ ○ π̂, (ii) τ̂id(s) = s, where τid is the iden-
tity function on C, (iii) τ̂(s) ⋅ τ̂(t) = τ̂(s ⋅ t), and (iv) τ̂(1M) = 1M. For example,
consider the free monoid ((D ×A)∗, ⋅) consisting of all finite words over D ×A
equipped with the operation of juxtaposition (the empty word ε playing the role
of the identity). The group GD of data renamings acts on the free monoid when
the action is defined by τ̂((d1, a1) . . . (dn, an)) = (τ(d1), a1) . . . (τ(dn), an).

We say that a renaming τ is a stabilizer of an element s of a monoidM acted
upon by GC , if τ̂(s) = s. A set C ′ ⊆ D of data values supports an element s if
all renamings that are the identity on C ′ are stabilizers of s. It is known that
the intersection of two sets that support s is a set that supports s as well [3, 6].
Hence we can define the memory of s, denoted mem(s), as the intersection
of all sets that support s. Note that there are finite monoids whose elements
have infinite memory (see [3] for an example). On the other hand, monoids that
are homomorphic images of the free monoid contains only elements with finite
memory. As we are interested in homomorphic images of the free monoid, we

4



will consider monoids whose elements have finite memory (this property is called
finite support axiom and the resulting algebraic objects data monoids).

Definition 1. A data monoid M = (M, ⋅, ˆ) over C is a monoid (M, ⋅) that is
acted upon by GC , in which every element has finite memory.

Unless otherwise stated, data monoids are defined over the set D of data values.
The orbit of an element s ofM = (M, ⋅, ˆ) is the set of all elements τ̂(s) with

τ ∈ GD. Note that two orbits are either disjoint or equal. We say thatM is orbit
finite if it contains finitely many orbits. It is easy to see that if two elements are
on the same orbit, then their memories have the same size. Hence an orbit finite
data monoid has a uniform bound on the size of the memories (this is not true
for arbitrary data monoids).

A morphism between two data monoidsM = (M, ⋅, ˆ) and N = (N,⊙, ˇ) is a
monoid morphism that commutes with the action of renamings.A data language
L ⊆ (D×A)∗ is recognized by a morphism h ∶ (D×A)∗ → M if the membership
of a word u ∈ (D ×A)∗ in L is determined by the element h(u) ofM, namely, if
L = h−1(h(L)). As L is closed under renamings, h(L) is a union of orbits.

Finite presentations of data monoids. Since orbit finite data monoids are
infinite objects, we need suitable representations that ease algorithmic manipu-
lation. The basic idea is to consider the restriction of an orbit finite data monoid
to a finite set of data values:

Definition 2. Given a data monoid M = (M, ⋅, ˆ) and C ⊆ D, we define the
restriction of M to C to be M∣C = (M ∣C , ⋅ ∣C , ˆ∣C), where M ∣C consists of all
elements s ∈ M such that mem(s) ⊆ C, ⋅ ∣C is the restriction of ⋅ to M ∣C , and
ˆ∣C is the restriction of ˆ to GC and M ∣C .

Note that s ⋅ t ∈M ∣C and τ̂(s) ∈M ∣C for all s, t ∈M ∣C and τ ∈ GC . Hence, if C is
finite,M∣C is a finite data monoid.3 Hereafter, we denote by ∥M∥ the maximum
cardinality of the memories of the elements of an orbit finite data monoid M.

Proposition 1. LetM,M′ be orbit finite data monoids such that ∥M∥ = ∥M′∥
and let C ⊆D be of cardinality at least 2∥M∥. IfM∣C andM′∣C are isomorphic,
then so are M and M′.

The above proposition shows that the restriction of an orbit finite data
monoidM over a sufficiently large finite set C uniquely determinesM. A more
careful analysis shows that many operations on orbit finite data monoids (e.g.,
the product of two such monoids, the quotient with respect to a congruence) can
be performed at the level of the finite restriction. This allows us to effectively
compute the results of algebraic operations on orbit finite data monoids.

Term-based presentations of data monoids. We have just shown how we
can represent an infinite data monoid by a finite one. It is also possible to give

3 One has to keep in mind that data monoids over finite sets do not satisfy the same
properties as those over infinite sets. For instance, the Memory Theorem, as stated
in [3], does not hold for data monoids over finite sets.
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a more explicit presentation of orbit finite data monoids using what we call a
term-based presentation system. Each element is a term of the form o(d1, . . . , dk)
in which o is an orbit name (belonging to some fixed set) of a fixed arity k, and
d1, . . . , dk are distinct values. Those terms are furthermore considered modulo an
equivalence relation, and equipped with a binary operation. Such a presentation
is valid if the binary operation is associative over the equivalence classes, and if
the data values respect the renaming policy required for data monoids. Under
those suitable assumptions, the equivalence classes of terms equipped with the
associative operation as product and the natural renaming operations form a
data monoid. Furthemore, if there are finitely many orbit names, then the rep-
resented data monoid is orbit finite. We also show that conversely, every orbit
finite data monoid can be represented by such a term-based representation, using
finitely many orbit names.

This kind of presentation ease algorithmic manipulations of the elements
of the data monoid, and are heavily used in the proofs. Some open questions
are directly related to this presentation such as: is it possible to get rid of the
equivalence relation for recognizing a language of data words?

3 Rigidly guarded logics

From now on, we abbreviate monadic second-order logic with data equality tests
by MSO. MSO formulas are built up from atoms of the form x < y, a(x), x ∈X,
or x ∼ y, using boolean connectives and existential quantifications over first-order
variables (e.g., x, y, . . .) and monadic second-order variables (e.g., X,Y, . . .). The
meaning of an atom x ∼ y is that the data values at the two positions that
correspond to the interpretation of the variables x and y must be the same. The
meaning of the other predicates is as usual.

Here we introduce a new logic called “rigidly guarded MSO”. We say that
a formula ϕ(x, y) with two free first-order variables x, y is rigid if for all data
words u ∈ (D × A)∗ and all positions x (resp., y) in u, there is at most one
position y (resp., x) in u such that u ⊧ ϕ(x, y). Rigidly guarded MSO is obtained
from MSO by enforcing the following restriction: every data equality test of the
form x ∼ y must be guarded by a rigid formula ϕ(x, y). Precisely, the formulas
of rigidly guarded MSO are build up using the following grammar:

ϕ ∶= ∃ x. ϕ ∣ ∃ Y . ϕ ∣ x < y ∣ a(x) ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕrigid(x, y) ∧ x ∼ y
where a ∈ A and ϕrigid(x, y) is a rigid formula that is generated by the same
grammar. Rigidly guarded FO is the first-order fragment of rigidly guarded MSO.

The notion of rigidity is a semantic property, and this may seem prob-
lematic. However, we can enforce rigidity syntactically as follows. Instead of
a guard ϕrigid(x, y) in a formula, one uses the new guard

ϕ̃rigid(x, y) =def ϕrigid(x, y) ∧ ∀ x′, y′. ϕrigid(x′, y′) → (x = x′ ↔ y = y′) .
It is easy to check that ϕ̃rigid is always rigid, and that furthermore, if ϕrigid

is rigid then it is equivalent to ϕ̃rigid. This trick allows us to enforce rigidity
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syntactically. We will also see in Corollary 2 below that one can decide if a
formula respects the rigidity assumption in all its guards (the problem being
undecidable when data tests are not guarded).

We remark that in this logic, the similar constructions ϕrigid(x, y) ∧ x ≁ y,
ϕrigid(x, y) → x ∼ y, and ϕrigid(x, y) → x ≁ y can be derived. This is thanks to
the Boolean equivalences ϕ → ϕ′ iff ϕ → (ϕ ∧ ϕ′), ϕ ∧ ¬ϕ′ iff ¬(ϕ → ϕ′), and
ϕ→ ¬ϕ′ iff ¬(ϕ ∧ ϕ′).

Example 1. Let us consider the language L≥k of all data words that contain at
least k different data values. If k = 1 we just need to check the non-emptiness
of the word by the sentence ∃ x. true. For k = 2 it is sufficient to test for the
existence of two distinct consecutive data values, using for instance the formula
∃ x, y. (x + 1 = y) ∧ x ≁ y. For k > 2, one can proceed by induction as follows.
One first observes that if a word has at least k distinct data values, then there is
a minimal factor witnessing this property, say [x, y]. A closer inspection reveals
that, in this case, [x + 1, y − 1] is a maximal factor that uses exactly k − 2 data
values and thus belongs to the language L≥k−2 ∖ L≥k−1. By induction, the fact
that [x+1, y−1] is a maximal factor that belongs to L≥k−2 ∖L≥k−1 is expressible
in rigidly guarded FO by a formula ϕ(x, y). Furthermore, this formula ϕ(x, y)
is rigid according to its semantic definition. We conclude that the language L≥k
is defined by the formula ∃ x, y. ϕ(x, y) ∧ x ≁ y.

To simplify the notation, it is sometimes convenient to think of a first-order
variable x as a second-order variable X interpreted as a singleton set. Therefore,
by a slight abuse of notation, we shall often write variables in uppercase letters,
without explicitly saying whether these are first-order or second-order variables
(their correct types can be inferred from the atoms they appear in). As usual, we
write ϕ(X1, . . . ,Xm) whenever we want to make explicit that the free variables
of ϕ are among X1, . . . ,Xm. Moreover, given a formula ϕ(X1, . . . ,Xm), a data
word u ∈ (D ×A)∗, and some unary predicates U1, . . . , Um ⊆ Dom(u), we write
u ⊧ ϕ(U1, . . . , Um) whenever ϕ holds on u by interpreting the free variables
X1, . . . ,Xm with the predicates U1, . . . , Um.

As usual, given a formula ϕ(X̄) with some free (first-order or monadic second-
order) variables X1, . . . ,Xm, one can see it as defining the language

JϕK = {⟨u,U1, . . . , Um⟩ ∶ u ⊧ ϕ(U1, . . . , Um)} ⊆ (D ×A ×Bm)∗

where B denotes the binary alphabet {0,1} and ⟨u,U1, . . . , Um⟩ is the word over
the alphabet D ×A ×Bm that has letter (d, a, b1, . . . , bm) at position i iff (d, a)
is the i-th letter of u, and for all j = 1 . . .m, bj is 1 if i ∈ Uj , and 0 otherwise.

4 From the logic to data monoids

In this section, we show that every data language defined by a rigidly guarded
MSO sentence is recognized by an orbit finite data monoid. Our proof follows
the classical technique for showing that MSO definable languages over standard
words can be recognized by monoids. Namely, we show that each construction
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in the logic corresponds to a closure under some operation on recognizable lan-
guages: disjunction corresponds to union, negation corresponds to complement,
existential quantification corresponds to projection, etc.

The principle of the proof is to establish that, given a rigidly guarded MSO
formula ϕ(X̄), the language JϕK is recognized by an orbit finite data monoid.
Though this statement is true, it cannot be used – as it is the case in the standard
theory – as an induction hypothesis. The problem is that the operation that
corresponds to existential quantification (i.e. projection) transforms an orbit
finite data monoid into a data monoid which is not orbit finite, in general. That
is why our induction hypothesis is stronger, and states that JϕK is recognized by
an orbit finite data monoid via a projectable morphism, to be defined below (we
write s ≐ t whenever the elements s and t are in the same orbit):

Definition 3. Let h be a morphism from the free data monoid (D×A×Bm)∗ to
a data monoid M = (M, ⋅, ˆ). We say that h is projectable if for all data words
u ∈ (D×A)∗ and all tuples of predicates Ū = (U1, . . . , Um) and V̄ = (V1, . . . , Vm),

h(⟨u, Ū⟩) ≐ h(⟨u, V̄ ⟩) implies h(⟨u, Ū⟩) = h(⟨u, V̄ ⟩) .

We now state the theorem, which is at the same time our induction hypothesis:

Theorem 1. For all rigidly guarded MSO formulas ϕ(X̄), the language JϕK is
effectively recognized by an orbit finite data monoid with a projectable morphism.

From the above theorem we obtain, in particular, the following key corollaries:

Corollary 1. Every data language definable in rigidly guarded MSO (resp.,
rigidly guarded FO) is recognizable by an orbit finite data monoid (resp., aperi-
odic orbit finite data monoid).

Note that the claim for the first-order case is deduced using the result that
every language recognized by an orbit finite data monoid and definable in FO
(without any rigidity assumption) is recognized by an aperiodic orbit finite data
monoid [3]. That is why Theorem 1 needs not to consider the first-order case.

Corollary 2. The satisfiability problem for rigidly guarded MSO logic is decid-
able. Moreover, one can decide whether a formula belongs to the rigidly guarded
MSO logic, and in this case whether the formula is rigid.

The proof of Theorem 1 is by structural induction on the rigidly guarded
MSO formulas: the translation of the atomic formulas x < y, a(x), x ∈ Y are easy
(at least towards non-aperiodic monoids) and the translations of the Boolean
connectives are as in the classical case.

The translation of the existential closures uses a powerset construction on
orbit finite data monoids. Since data monoids are in general infinite objects, the
standard powerset construction would yield infinitely many orbits even if the
original data monoid has finitely many of them. In our case, the construction
remembers all possible elements of the original monoid, but since the morphism
is projectable, one never has to store more than one element per orbit. Indeed,
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whenever another element in the same orbit is encountered, it has to be equal
to the one already present: this limitation allows us to preserve orbit finiteness.

The most technical part concerns the translation of the rigidly guarded data
tests ϕ(x, y) ∧ x ∼ y. The rigidity assumption on the guard ϕ(x, y) is cru-
cial for this result: if ϕ(x, y) were not rigid, then the data monoid recognizing
Jϕ(x, y) ∧ x ∼ yK would still be orbit finite, but the morphism would in gen-
eral not be projectable. The proof that Jϕ(x, y) ∧ x ∼ yK is recognized via a
projectable morphism requires a bit of analysis since rigidity is a semantic as-
sumption and hence one cannot directly deduce from it a property for the data
monoid. However, one can use the rigidity property for “normalizing” the data
monoid, allowing the construction to go through.

5 From data monoids to the logic

Having shown that every language defined by a rigidly guarded MSO (resp., FO)
formula is recognized by an orbit finite data monoid (resp., by an aperiodic orbit
finite data monoid), we now show the converse.

Theorem 2. Given an orbit finite data monoid M, a morphism h from the
free data monoid to M, and an orbit o, one can compute a rigidly guarded
MSO sentence ϕ that defines the data language L = h−1(o). Moreover, if M is
aperiodic, then ϕ is a rigidly guarded FO sentence.

This is the most technical result of the paper. Note that in the classical theory
of regular languages, the analogous of Theorem 2 (at least the part involving only
MSO) is straightforward: indeed, a monoid can be used as an automaton, and it
is sufficient to write an MSO formula that guesses a run of such an automaton
and checks that it is valid and accepting. We cannot use such a proof for data
monoids: not only there is no equivalent automaton model, but furthermore, the
above approach is intrinsically not compatible with the notion of rigidity.

Our proof follows a structure similar to Schützenberger’s proof that languages
recognized by aperiodic monoids are definable by star-free expressions (i.e., in
FO logic). The proof relies on an induction on the structure of ideals of the data
monoid, the so called Green’s relations [11]. This requires specific study of this
theory for orbit finite data monoids. Such a study was initiated by Bojańczyk
[3], but we had to develop several new tools for our proof to go through (these
tools concern the size of H-classes and the analysis of the memory inside the J -
classes). As opposed to the classical case, the proof is significantly more involved
for MSO compared to FO.

6 Logics for finite memory automata

In this section, we try to see how guards as introduced above can help con-
structing decidable logics. We consider languages recognized by finite memory
automata (FMA) [7]. These extend finite state automata by a finite set of regis-
ters, storing values from an infinite alphabet D. Data words are processed from
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left to right. At each step the automaton compares (up to equality) the current
input value with the values that are stored in its registers. Based on this infor-
mation, the automaton decides whether or not to store the input value in one of
its registers, updates its state, and moves one symbol to the right.

The deterministic variant of FMA can be viewed as the natural automaton
counterpart of orbit finite data monoids. However, deterministic FMA are more
expressive than orbit finite data monoids, as witnessed by the language

L =def {d1 . . . dn ∶ n ∈ N, d1 = di for some 1 < i ≤ n}
which is recognizable by deterministic FMA, but not by orbit finite data monoids.
Moreover, unlike classical finite automata, non-deterministic FMA are even more
expressive than deterministic FMA, as witnessed by the language

L′ =def {d1 . . . dn ∶ n ∈ N, di = dj for some 1 ≤ i < j ≤ n}.
It thus comes natural to look for logical characterizations of data languages
recognizable by deterministic (resp., non-deterministic) FMA.

A natural attempt at finding a logic for FMA consists in relaxing the notion
of rigidity. One could imagine using backward-rigid guards for data tests. These
are formulas ϕ(x, y) that determine the leftmost position min(x, y) from the
rightmost position max(x, y) (but possibly not the other way around). Formulas
of backward-rigidly guarded MSO are built up using the grammar:

ϕ ∶= ∃ x. ϕ ∣ ∃ Y . ϕ ∣ x < y ∣ a(x) ∣ x ∈ Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕbackward(x, y) ∧ x∼y
where ϕbackward is a backward-rigid formula generated from the same grammar
(as usual, we can enforce backward-rigidity syntactically). For example the above
language L can be easily defined by the backward-rigidly guarded MSO sentence
∃ x, y. (x < y ∧ ∀ z. x ≤ z) ∧ x ∼ y. One can translate backward-rigidly guarded
MSO formulas to equivalent deterministic FMA, but not the other way around:

Proposition 2. Every language definable in backward-rigidly guarded MSO is
recognizable by deterministic FMA. There is a language recognized by a deter-
ministic FMA which cannot be defined in backward-rigidly guarded MSO.

We do not have a candidate logic that corresponds precisely to determin-
istic FMA. However, we are able to characterize the larger class of languages
recognized by non-deterministic FMA. The logic for this class is obtained from
backward-rigidly guarded MSO by allowing the guards to use additional second-
order variables (which however needs to be quantified existentially in the out-
ermost part of the formula). The logic, abbreviated ∃backward-rigidly guarded
MSO, consists of the formulas ∃ Z̄. ϕ, with ϕ is generated by the grammar

ϕ ∶= ∃x. ϕ ∣ ∃Y . ϕ ∣ x<y ∣ a(x) ∣ x∈Y ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ∃backward(x, y, Z̄) ∧ x∼y
where ϕ∃backward is a formula from the same grammar that determines min(x, y)
from max(x, y) and Z̄, and where the quantifications are over variables different
from Z̄ (the variables Z̄ are quantified only in the outermost part of ∃ Z̄. ϕ).

Theorem 3. A language is definable in ∃backward-rigidly guarded MSO iff it is
recognizable by non-deterministic FMA.
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As it happens for rigidly guarded MSO logic, one can derive from Theorem
3 the following decidability results:

Corollary 3. The satisfiability problem for ∃backward-rigidly guarded MSO is
decidable. Moreover, one can decide whether a formula belongs to the ∃backward-
rigidly guarded MSO, and in this case whether the formula is ∃backward-rigid.

It is also easy to generalize both Theorem 3 and Corollary 3 to data tree
languages recognized by non-deterministic finite memory tree automata [8]. For
this we use a natural variant of ∃backward-rigidly guarded MSO on data trees.
The guarded tests in this case are of the form

ϕ∃downward(x, y, Z̄) ∧ ϕ′
∃downward(x, z, Z̄) ∧ y ∼ z

where ϕ∃downward(x, y, Z̄) (resp. ϕ′
∃downward(x, z, Z̄)) is a formula in the logic

that determines the position y (resp., z) from an ancestor x in the data tree
and the second-order variables Z̄. This logic happens to be equivalent with the
natural extension of non-deterministic FMA to trees.

Finally, it is natural to look for effective characterizations of data languages
that are both recognizable by non-deterministic FMA and definable in (unre-
stricted) FO. However, it is known that such characterization cannot be achieved:
in [1] it has been shown that the problem of determining whether a language
recognized by a non-deterministic FMA is definable in FO is undecidable. The
problem of characterizing FO within the class of languages recognizable by de-
terministic FMA is still open.

7 Conclusion and future work

We have shown that the algebraic notion of orbit finite data monoid corresponds
to a variant of the logic MSO which is – and this is of course subjective – natural.
It is natural in the sense that it only relies on a single and understandable
principle: guarding data equality tests by rigidly definable relations.

We believe that this notion of guard is interesting by itself. Of course, it is
not the first time that guards are used to recover some decidability properties
from a too expressive logic. What is more original in the present context is the
equivalence with the algebraic object, which shows that this approach is in some
sense maximal: it is not just a particular technique among others for having
decidability, but it is sufficient for completely capturing the expressiveness of
the very natural algebraic model.

Another contribution of the present work is the development of the structural
understanding of orbit finite data monoids. By structural understanding, we refer
to Green’s relations. These relations form a major tool in most involved proofs
concerning finite monoids. The corresponding study of Green’s relations for orbit
finite data monoids was already a major argument in the proof of [3], and it had
to be developed even further in the present work.

Finally, we proved that a variant of the same logic captures the larger class
of data languages recognized by non-deterministic NFA.
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We are only at the beginning of understanding the various notions of recog-
nizability for data languages. However, several interesting questions were raised
during our study. Some of them concern the fine structure of the logic:

The nesting level of guards seems to be a robust and relevant parameter
in our logic. Can we understand it algebraically? Can we decide it?

Other questions concern the more general model of FMA:

Can we characterize among the languages recognized by deterministic
FMA the ones recognizable by orbit finite data monoids? Can we give a
logic equivalent to deterministic FMA and characterize its FO fragment?
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