
A Contraction Method to Decide MSO Theories of Deterministic Trees

Angelo Montanari Gabriele Puppis
Dipartimento di Matematica e Informatica, Università di Udine

{montana,puppis}@dimi.uniud.it

Abstract

In this paper we generalize the contraction method, orig-
inally proposed by Elgot and Rabin and later extended by
Carton and Thomas, from labeled linear orderings to col-
ored deterministic trees. The method we propose rests on
a suitable notion of indistinguishability of trees with re-
spect to tree automata that allows us to reduce a number
of instances of the acceptance problem for tree automata to
decidable instances involving regular trees. We prove that
such a method works effectively for a large class of trees,
which is closed under noticeable operations and includes
all the deterministic trees of the Caucal hierarchy obtained
via unfoldings and inverse finite mappings as well as sev-
eral trees outside such a hierarchy.

1 Introduction

Monadic Second-Order (MSO) logic has been com-
monly used as a specification language, because it is pow-
erful enough to express relevant properties of graph struc-
tures such as reachability and confluency properties. Un-
fortunately, the model-checking problem for the MSO logic
(i.e., the problem of deciding whether a given MSO for-
mula holds in a relational structure or not) turns out to be
highly undecidable for many structures. Decidability has
been proved for the linear order (ω,<) (resp., the infinite
complete binary tree) by Büchi (resp., Rabin) by reducing
the model checking problem to the acceptance problem for
Büchi (resp., Rabin tree) automata [12]. Büchi’s result has
been exploited to deal with extensions of (ω,<) with unary
predicates. The acceptance problem for an expanded struc-
ture (ω,<, P), with P ⊆ ω, is the problem of determining,
for any given Büchi automaton M , whether M accepts (the
infinite word that characterizes) (ω,<, P). Elgot and Ra-
bin gave a positive answer to this problem for various rele-
vant predicates, e.g., the factorial one [7]. Intuitively, their
approach consists in defining a transformation of a given
infinite word u into another infinite word u′ and a trans-
formation of a Büchi automaton M into another automaton

M ′ in such a way that M accepts u iff M ′ accepts u′. If u′

happens to be ultimately periodic, the latter condition (and
hence the original question) can be checked effectively. In
[3] Elgot and Rabin’s method is generalized to deal with the
class of profinitely ultimately periodic words, whose accep-
tance problem can be traced back to the case of ultimately
periodic words.

In this paper, we show that a similar approach can be fol-
lowed to deal with expanded tree structures. Here the role of
ultimately periodic words is taken by regular colored trees
and the notion of factorization for infinite words is accord-
ingly generalized to branching structures. More precisely,
we show that the model-checking problem for MSO logic
interpreted over deterministic vertex-colored trees can be
reduced to the problem of deciding whether a Rabin/Muller
tree automaton accepts a given relational structure viewed
as a deterministic vertex-colored tree (acceptance problem).
Such a problem is easily decidable in the case of regular
trees. By exploiting a suitable notion of tree equivalence
(indistinguishability) with respect to Rabin/Muller tree au-
tomata, we show that it is decidable over a large class of
non-regular trees as well. We also prove that such a class is
closed with respect to natural operations on trees. Finally,
we show that it includes meaningful relational structures in-
side and outside the so-called Caucal hierarchy [4].

The paper extends and refines previous results presented
in [8] by introducing a more general notion of factoriza-
tion, which allows reductions towards branching structures,
instead of linear ones, and by identifying a much larger
class of reducible trees, which is closed under several nat-
ural transformations on trees. The proposed approach is
somehow related to Shelah’s composition method, which
directly exploits indistiguishability of relational structures
with respect to MSO formulas [11]. However, unlike our
automaton-based one, Shelah’s composition method finds it
difficult to manage different valuations of a given variable
over distinct copies of the same factor. This is a problem,
in particular, when one needs to reduce a branching struc-
ture to a linear one (see the example in Section 3.2). An
extended version of the work can be found in [10].

2 Basic notation and terminology

We use the term label (resp., color) to identify a symbol,
usually taken from a finite setA (resp., C), marking an edge
(resp., a vertex) of a graph. An A-labeled graph is a tuple
G = (D, (Ea)a∈A), where D (also denoted Dom(G)) is
a set of vertices and (Ea)a∈A are binary relations defining
the edges and their labels. An expanded graph is a graph
equipped with some unary predicates, namely, a structure
(G, V̄), where G is a graph and V̄ = (V1, ..., Vm), with
Vi ⊆ Dom(G) for all 1 ≤ i ≤ m. Any expanded
graph (G, V̄) is canonically represented by a C-colored
graph GV̄ = (G,Ω), where C = P({1, . . . ,m}) and
Ω : Dom(G) → C is a coloring function mapping a ver-
tex v ∈ Dom(G) to the set of all indices 1 ≤ i ≤ m such
that v ∈ Vi. A tree is a graph such that, for every vertex v,
there exists a unique path, called access path, from a desig-
nated source vertex, called root, to v. We identify each ver-
tex v ∈ D of a tree (resp., deterministic tree) with its access
path (resp., with the sequence of labels in its access path).
In particular, we view a deterministic A-labeled C-colored
tree T as a partial function fromD ⊆ A∗ toC, whereD is a
prefix-closed language over A. Accordingly, we denote the
color of a vertex v of T by T (v) and the a-successor of v in
T by va. Unless otherwise stated, we assume that trees are
deterministic, labeled over a finite set A, and colored over
a finite alphabet C. A full tree is a deterministic tree such
that, whenever (u, ua) ∈ Ea holds for some a ∈ A, then
(u, ua′) ∈ Ea′ holds for every a′ ∈ A. An important role
is played by the so-called (C-colored) B-augmented trees.
These trees have internal nodes colored over C and leaves
colored over B.

As for tree automata, we make use of Muller acceptance
conditions, rather than Rabin ones. A (Muller) tree automa-
ton is a tuple M = (S,A,C,∆, I,F), where S is a finite
set of states, A is a finite set of labels, C is a finite set of
colors, ∆ ⊆ S × C × SA is a transition relation, I ⊆ S
is a set of initial states, and F ⊆ P(S) is a family of sets
of final states. Given an infinite complete tree T , a run of
M on T is an infinite complete S-colored tree P such that
for every v ∈ Dom(P),

(
P (v), T (v), (P (va))a∈A

)
∈ ∆.

We say that P is successful, and hence T is accepted by M
(shortly T ∈ L (M)), if P (ε) ∈ I and for every infinite
path π in P , Inf (P |π) ∈ F , where P |π denotes the se-
quence of states along π and Inf (P |π) denotes the set of
all states that occur infinitely often along π.

3 The automaton-based decision method

In this section we develop an automaton-based method
to decide MSO theories of deterministic trees. The method
can be viewed as a generalization of the contraction method,
originally proposed by Elgot and Rabin and later extended

by Carton and Thomas, which exploits noticeable properties
of an ‘indistinguishability’ relation for Büchi automata to
decide MSO theories of expanded linear orders [3, 7].

Rabin’s Theorem [12] establishes a strong correspon-
dence between MSO formulas satisfied by an expanded tree
(T, V̄) and Rabin (equivalently, Muller) tree automata ac-
cepting its canonical representation TV̄ : for every formula
ϕ(X̄), one can compute a tree automaton M (and, con-
versely, for every tree automaton M , one can compute a
formula ϕ(X̄)) such that T � ϕ[V̄] iff TV̄ ∈ L (M). Let
us call acceptance problem for a tree TV̄ , denoted Acc(TV̄),
the problem of deciding, for any tree automatonM , whether
M accepts TV̄ . We have that the MSO theory of an ex-
panded tree structure (T, V̄) is decidable iff Acc(TV̄) is de-
cidable. For the sake of simplicity, hereafter we shall omit
the subscript V̄ , thus writing T for TV̄ . Given a regular tree
T , by viewing T as a tree automaton recognizing the single-
ton {T} and by exploiting the closure of tree automata with
respect to intersection and the decidability of their empti-
ness problem, one can easily show that the problem Acc(T)
is decidable. In the following, we extend such a result to a
large class of trees, including non-regular ones.

3.1 Indistinguishability of trees

Here we introduce the basic ingredients of the
automaton-based approach to the decidability of MSO the-
ories of tree structures we propose. It is worth pointing out
that the definitions given in this section can be easily tai-
lored to different types of automata, such as, for instance,
Rabin tree automata and parity tree automata.

First of all, we slightly generalize the notion of tree au-
tomaton in order to allow computations over incomplete
non-empty full B-augmented trees. To this end, it suffices
to extend the acceptance condition of the automaton: we
define a B-augmented (Muller) tree automaton as a tuple
M = (S,A,B,C,∆, I,F ,B), where B is the set of colors
for the leaves of the input tree and B ⊆ B × S ×P(S)
specifies the acceptance condition for the leaves of a B-
augmented tree. A run of M on a non-empty full B-
augmented tree T is an S-colored tree P such that (i)
Dom(P) = Dom(T) and (ii) for every internal vertex v
of P ,

(
P (v), T (v), (P (va))a∈A

)
∈ ∆ (note that only the

colors of the internal nodes of T are involved in the defini-
tion of run of M). We say that the run P is successful, and
hence T is accepted by M , if (i) P (ε) ∈ I, (ii) for every
infinite path π in P , Inf (P |π) ∈ F , and (iii) for every leaf
v in P , (T (v), P (v), Img(P |πv)) ∈ B, where πv denotes
the access path of v in P and Img(P |πv) denotes the set of
states that occur along πv .

Relevant information about a run of a given automaton
on a tree is collected in a suitable data structure, called fea-
ture (of the run of the automaton on the tree).

2

Definition 1. Let T be a non-empty full B-augmented tree
and P a run of a B-augmented tree automaton M on T . We
define the feature [T, P] as the triple P (ε),

{Inf (P |π) : π ∈ Bch(P)},
{(T (v), P (v), Img(P |πv) : v ∈ Fr(P)}


where Bch(P) is the set of infinite paths in P originating
from the root and Fr(P) is the set of all leaves of P .

The above definition accounts for the occurrences of states
along finite and infinite paths in the run P . In particular, the
first component of the feature [T, P] identifies the state at
the root of the run, the second component identifies, for ev-
ery infinite path π in T , the set of states that occur infinitely
often along π, and the third component identifies, for every
leaf v of T , the color of v, the state at v, and the set of states
that occur at least once along the access path of v.

In order to generalize the notions of run and feature to
empty and non-full trees, we introduce a fresh symbol ⊥
and we assume that automata read⊥ on the missing succes-
sors, as well as on their descendants, of any internal vertex
of a tree. More precisely, we introduce a suitable opera-
tion, called completion, which extends a B-augmented tree
T by appending infinite complete ⊥-colored trees to every
missing successor of an internal vertex. If T is the empty
tree, then the completion of T , denoted T⊥, is the infinite
complete ⊥-colored tree. If T is a non-empty tree, then
the completion T⊥ of T is defined as follows: we set F =
{va : v ∈ Dom(T) \ Fr(T), a ∈ A, va 6∈ Dom(T)} and
we let Dom(T⊥) = Dom(T) ∪ (F · A∗), T⊥(v) = T (v),
for every v ∈ Dom(T), and T⊥(v) = ⊥, for every
v ∈ F ·A∗. Note that T⊥ is a non-empty, full,B-augmented
tree. This makes it possible to apply the notions of run
and feature to any given B-augmented tree, under the pro-
viso that the input alphabet of the automaton contains the
dummy symbol ⊥.

Given aB-augmented tree T and aB-augmented tree au-
tomaton M , in order to decide whether T ∈ L (M), we in-
troduce the notion of M -type of T , which is a collection of
features of the form [T⊥, P], where P ranges over a suitable
set P of runs of M on T⊥ (different choices for P may re-
sult into differentM -types of T). We allowP to be a proper
subset of the set of all runs of M on T⊥, because there can
be runs which are subsumed by other ones and thus can
be ‘forgotten’. The notion of subsumed run is as follows.
Given two runs P, P ′ of M on T⊥, we say that P ′ is sub-
sumed by P , and we write P � P ′, iff (i) P (ε) = P ′(ε),
(ii) for every infinite path π in P , there is an infinite path π′

in P ′ such that Inf (P |π) = Inf (P ′|π′), and (iii) for every
leaf v in P , there is a leaf v′ in P ′ such that T (v) = T (v′),
P (v) = P ′(v′), and Img(P |πv) = Img(P ′|πv′). Notice
that the relation � is a quasi-order. Moreover, if P and P ′

are two runs of M on T⊥ and if P � P ′, then P is success-

ful whenever P ′ is successful. Given a set P of partial runs
of M on T⊥, we say that P is complete if for every partial
run P ′ of M on T⊥, there is P ∈ P such that P � P ′.

Definition 2. Given a B-augmented tree automaton M and
a B-augmented tree T , an M -type of T is a set of features
of the form [T⊥, P], where P ranges over a complete set P
of runs of M on T⊥. The basic M -type of T is the (unique)
set of features of the form [T⊥, P], where P ranges over all
runs of M on T⊥.

Note that the notion of M -type is independent from the ac-
ceptance condition of M , that is, from I, F , and B. We
denote by TM the set of all possible M -types of a B-
augmented tree automaton M . Since TM is included in the
finite set P(S ×P(P(S)) ×P(B × S ×P(S))), for
any M there exist only finitely many different M -types.

We have that the acceptance problem of a B-augmented
tree T is equivalent to the problem of computing (and
checking) one of its M -type, for any given B-augmented
tree automaton M . On the one hand, given an au-
tomaton M = (S,A,B,C ∪ {⊥},∆, I,F ,B) and an
M -type t of a B-augmented tree T , we have that T
is accepted by M iff t contains a feature of the form(
s, {Xi}i∈I , {(bj , sj , Yj)}j∈J

)
, with s ∈ I, Xi ∈ F for

all i ∈ I , and (bj , sj , Yj) ∈ B for all j ∈ J . Such
a condition can be easily checked on the given M -type t
(as a matter of fact, this implies that pairs of B-augmented
trees T, T ′ having a common M -type are indistinguish-
able by the automaton M , that is, T ∈ L (M) iff T ′ ∈
L (M)). On the other hand, if Acc(T) is decidable (this
is the case, for instance, with regular trees), then, for ev-
ery automaton M = (S,A,B,C ∪ {⊥},∆, I,F ,B), one
can compute an M -type of T by exploiting an automaton-
driven selection of the features of T⊥. Such a selec-
tion can be done by building, for any candidate feature
f =

(
s, {Xi}i∈I , {(bj , sj , Yj)}j∈J

)
, an automaton Mf =(

S,A,B,C ∪ {⊥},∆, {s}, {Xi}i∈I , {(bj , sj , Yj)}j∈J

)
,

which differs from M at most in the acceptance condition,
that accepts T⊥ iff f belongs to an M -type of T .

3.2 From trees to their retractions

We now show how M -types can actually be exploited to
solve non-trivial instances of the acceptance problem. To
this end, we introduce the notion of factorization, which al-
lows us to decompose a tree T into its basic components.
Each component, called factor, is obtained by selecting the
elements of T that lie in between some distinguished ver-
tices. Taking advantage of the notion of factorization, we
define a retraction of T , which is a tree-shaped arrange-
ment of M -types corresponding to the factors of T ; then,
we prove that the acceptance problem for T can be reduced
to the acceptance problem for a retraction of it.

3

b1

b2

b1

Figure 1. An example of a factorization.

Definition 3. Given a B-augmented tree T , a factoriza-
tion Π of T is a (possibly non-deterministic) B-labeled un-
colored tree such that (i) ε ∈ Dom(Π), (ii) Dom(Π) ⊆
Dom(T), (iii) for all u, u′ ∈ Dom(Π), with u 6= u′, (u, u′)
is an edge of Π iff u′ is a descendant of u in T and there ex-
ists no other u′′ ∈ Dom(Π) that occurs along the path from
u to u′ in T , and (iv) the edge labels of Π are arbitrarily
chosen in B.

Since a B-augmented tree T can be viewed as a B′-
augmented tree, for any B′ ⊇ B, one can use arbitrarily
large sets B′ to label the edges of a factorization. From
now on, if not explicitly mentioned, we shall assume the set
of edge labels of a factorization of a B-augmented tree T
to be exactly B. We can graphically represent a factoriza-
tion of a tree by first identifying its vertices (the nodes of
the left-hand side tree of Figure 1 which are surrounded by
gray circles) and then drawing the resulting edges, together
with their labels (the right-hand side tree of Figure 1).

The (marked) factors of a B-augmented tree T with re-
spect to a factorization Π are defined as follows. Let u ∈
Dom(Π) and Succ(u) = {u′ : (u, u′) is an edge of Π}.
The unmarked factor of T rooted at u, denoted by TΠ[u],
is the tree obtained by selecting the vertices of T⊥ which
are descendants of u, but not proper descendants of any
u′ ∈ Succ(u), in T⊥. For any vertex u (6= ε) in Π, we
define the marker of u as the label b ∈ B of the (unique)
edge in Π having target u, and we denote it by mΠ[u]. The
marked factor of T rooted at u, denoted T+

Π [u], is the tree
obtained from TΠ[u] by recoloring each leaf u′ with the cor-
responding marker mΠ[u′]. Note that every marked factor
of T is a non-empty full B-augmented tree.

Hereafter, we assume that all marked factors are regu-
lar trees. Such an assumption guarantees that M -types of
marked factors can be computed; moreover, it excludes triv-
ial factorizations, e.g., those consisting of a single factor.

Definition 4. Let T be a B-augmented tree, M a B-
augmented tree automaton, and Π a factorization of T . A
retraction R of T with respect to M and Π is a B-labeled
TM -colored tree such that (i)Dom(R) = Dom(Π), (ii) for
every b ∈ B, (u, u′) is a b-labeled edge in R iff (u, u′) is
a b-labeled edge in Π, and (iii) each vertex u of R is col-
ored with an M -type (in TM) of the corresponding marked
factor T+

Π [u].

In general, a retraction R, as well as a factorization Π, may
be a nondeterministic tree, possibly having vertices with un-
bounded (or even infinite) out-degree. Since tree automata
operate on deterministic trees, we have to identify a retrac-
tion R with a suitable infinite complete deterministic tree.
This is possible, for instance, if for every pair of edges
(u, u′) and (u, u′′) in R labeled with the same symbol, the
subtrees of R rooted at u′ and u′′ are isomorphic. In such a
case, by collapsing isomorphic subtrees issued from edges
labeled with the same symbol, one can obtain a determinis-
tic B-labeled tree bisimilar to R. From now on, we restrict
ourselves to retractions which are bisimilar to deterministic
trees. Formally, we say that a tree

−�
R encodes a retraction

R if
−�
R is an infinite complete deterministic tree bisimilar

to the infinite complete tree obtained from R by adding ⊥-
colored vertices. The encoding of a retraction is unique up
to isomorphisms and it can be provided in input to a suitable
tree automaton.

We now show how, given a tree T , an automaton M , a
factorization Π of T , and a retractionR of T with respect to
M and Π, one can build a suitable tree automaton

−�
M such

that M accepts T iff
−�
M accepts the encoding

−�
R of R.

−�
M

mimics the behavior of M at a ‘coarser’ level and it can
be effectively computed from M . Its input alphabet is the
set TM of all M -types plus the additional symbol ⊥; its
states encode the finite amount of information processed by
M during its computations up to a certain point; its tran-
sitions compute the new states which extend information
given by the current state with information provided by the
input symbol, i.e., the M -type of a marked factor or ⊥.

−�
M

is formally defined as follows.

Definition 5. Given a B-augmented tree automaton M =
(S,A,B,C ∪ {⊥},∆, I,F ,B), we define the automaton
−�
M = (Q,B,TM ∪ {⊥},∆′, I ′,F ′), where:
• Q =

{
(d, x,U ,V) : d ∈ B, x ∈ {0, 1},U ⊆ P(S),

V ⊆ S ×P(S)×P(S)
}

;
• for every state q = (d, x,U ,V) and every tuple of states

(qb)b∈B ,
(
q,⊥, (qb)b∈B

)
∈ ∆′ iff for all b ∈ B, qb =

(d, 1,U ,V);
• for every M -type t of the form

{(
sh, {Xh,i}i∈I ,

{(bj , sh,j , Yh,j)}j∈J

)}
h∈H

, where H, I , and J are
suitable index sets, every state q = (d, 0,U ,V), where
U = {Ul}l∈L and V = {(rg, Vg,Wg)}g∈G for suit-
able index sets L and G, and every tuple of states
(qb)b∈B ,

(
q, t, (qb)b∈B

)
∈ ∆′ iff there exists a mapping

h : G → H such that (i) for all g ∈ G, rg = sh(g)

and (ii) for all b ∈ B, qb = (b, 0,Ub,Vb), with Ub =
U∪{Xh(g),i}g∈G,i∈I

and Vb = {(sh(g),j , Yh(g),j ,Wg∪
Yh(g),j)}g∈G,j∈J with bj=b;

• I ′ consists of all states of the form (d, 0, ∅, {(s, ∅, ∅)}),
with d ∈ B and s ∈ I;

• F ′ consists of all sets of states {q1, ..., qn} such that

4

w Tw
−�
Rw

Figure 2. An application of Theorem 1.

(i) q1 = (d1, x,U ,V1), ..., qn = (dn, x,U ,Vn),
(ii) U ⊆ F , (iii) if x = 1, then n = 1, V1 ={

(rg, Vg,Wg)
}

g∈G
, where G is a suitable index set,

and for all g ∈ G, (d1, rg,Wg) ∈ B, and (iv) if x = 0
and Vk = {(rk,g, Vk,g,Wk)}g∈Gk

, where Gk is a suit-
able index set, for k = 1, ..., n, then ∅ (G′1 ⊆ G1, ...,
∅ (G′n ⊆ Gn implies

⋃
1≤k≤n,g∈G′

k
Vk,g ∈ F .

The following theorem provides a way to compute an M -
type t of a tree T from a given

−�
M -type t′ of the encoding

−�
R of a retraction of T 1. As a corollary of Theorem 1, we
have that the acceptance problem for M over T can be ef-
fectively reduced to that for

−�
M over

−�
R. The upshot of such

a result is that, given an automaton M running on a tree T ,
if we are able to compute (a representation of) the encoding
−�
R of a retraction of T with respect to M , then the decid-
ability of Acc(

−�
R) implies that of Acc(T). Moreover, if two

trees T, T ′ have bisimilar retractions R,R′ with respect to
a given automaton M , then T ∈ L (M) iff T ′ ∈ L (M ′).

Theorem 1. Let T be a B-augmented tree, M a B-
augmented tree automaton, Π a factorization of T , R a re-
traction of T with respect to M and Π, and

−�
R the encoding

of R. One can compute an M -type of T from a given
−�
M -

type of
−�
R and thus we have that T ∈ L (M) iff

−�
R ∈ L (

−�
M).

The proof is rather involved (see [10] for details). It ex-
ploits a suitable two-way correspondence between (the fea-
tures of) the runs of M on T and (the features of) the runs
of
−�
M on

−�
R. Roughly speaking, from the definition of the

automaton
−�
M , we have that, for every run

−�
P of

−�
M on

−�
R,

one can build a corresponding run P of M on T , and, con-
versely, for every run P of M on T , one can build a run

−�
P

of
−�
M on

−�
R and a corresponding run P ′ ofM on T such that

P is subsumed by P ′. This allows one to define a complete
set of runs of M on T on the grounds of a complete set of
runs of

−�
M on

−�
R.

We conclude the section with a simple example of ap-
plication of Theorem 1. Let w be an infinite word over an

1Even in the case in which t′ is the basic
−�
M -type of

−�
R, we cannot guar-

antee the computed t to be the basic M -type of T . This further explains
the need for the notions of subsumed run and complete set of runs.

alphabetC. It can be thought of as an expanded linear struc-
ture (N+, E, (Vc)c∈C), where (i, j) ∈ E iff j = i + 1 and
i ∈ Vc iff w[i] = c. We denote by Tw the infinite complete
{1, 2}-labeled C-colored tree obtained by assigning color
w[i] to every vertex that belongs to the i-th level of the tree.
Formally, Tw(v) = w[|v| + 1] for every v ∈ {1, 2}∗ (see
Figure 2). If the MSO theory of w is decidable, then that of
Tw is decidable as well. This can be proved by showing that
Tw is nothing but the unfolding of the graphG, labeled over
a binary alphabet {1, 2}, which is obtained from w via the
MSO-definable interpretation that introduces a new copy of
each edge of w. By exploiting the MSO-compatibility of
the unfolding operation, one can reduce the model check-
ing problem for Tw to that for G, which can in its turn be
reduced to that of w. Our method provides an alternative
proof of the decidability of the MSO theory of Tw, which is
independent from the MSO-compatibility of the unfolding
operation. Let B = {b} and let Π be the factorization of
Tw with edges labeled over B (recall that Tw can be viewed
as a B-augmented tree) such that Dom(Π) = Dom(Tw).
Given a tree automaton M running on Tw, we can turn it
into an equivalent B-augmented tree automaton by letting
the third component of the acceptance condition be empty
(i.e., B = ∅). We then define a retraction Rw of Tw with
respect to M and Π as follows. Let Dom(Rw) = Dom(Π)
and, for every v ∈ Dom(Rw), let Rw(v) be the basic M -
type of the marked factor of Tw in v with respect to Π (i.e.,
the B-augmented tree c〈b, b〉, where c = w[|v|+ 1]). Let Ω
be the (computable) function that maps each symbol c ∈ C
to the basic M -type of the B-augmented tree c〈b, b〉. It can
be easily shown that Rw is bisimilar to the linear structure
−�
Rw = Ω(w). As a matter of fact, the structure

−�
Rw can be

obtained from w via an MSO-definable interpretation that
replaces every color c ∈ C with the corresponding basic
M -type Ω(c). Thus, by Theorem 1, the decidability of the
acceptance problem for Tw (and hence the decidability of
the MSO theory of Tw) follows immediately from the decid-
ability of Acc(w) (hence from the decidability of the MSO
theory of w).

Even though tree automata are intimately related to MSO
formulas evaluated over deterministic trees, we do not know
whether the above result can be obtained by means of She-
lah’s composition method [11]. Precisely, we found it dif-
ficult to directly map (without using MSO-compatibility of
the unfolding operation) formulas over Tw to equivalent for-
mulas over a memoryless recoloring of w.

4 The class of reducible trees

In this section we define the class of reducible trees,
which properly includes that of regular trees and whose el-
ements enjoy decidable MSO theories. Intuitively, the de-
cidability of the MSO theories of reducible trees follows

5

from the possibility of recursively reducing their acceptance
problem to that for retractions of them. In addition, we
prove that the class of reducible trees is closed with respect
to various natural operations. These results, besides show-
ing the robustness of the class of reducible trees, provide
a neat framework to reason on retractions of trees and to
easily transfer decidability results.

Reducible trees are inductively defined as follows.

Definition 6. Any regular tree is a rank 0 tree. Given a tree
T and a natural number n > 0, T is a (B-augmented) rank
n tree if, for every (B-augmented) tree automaton M , there
exist a factorization Π of T and a retraction R of T with
respect to M and Π such that the encoding of R is a rank
n−1 tree. A reducible tree is a rank n tree for some n ≥ 0.

According to Definition 6, the decidability of the MSO the-
ory of a reducible tree T follows from Theorem 1 and from
the decidability of the acceptance problem for regular trees,
provided that there exists an effective way to compute (a
representation) of the encoding of a retraction of T with
respect to any given automaton M . Let the footprint of a
tree T be the minimum amount of information that should
be provided to make the reduction from T to its retraction
feasible. Such a footprint can be inductively defined as fol-
lows. Given a B-augmented rank 0 tree T , a footprint of T
is any finite rooted B ∪ C-colored graph, whose unfolding
is isomorphic to T . Given a B-augmented rank n > 0 tree
T , a footprint of T is any computable function ξ that maps
a B-augmented tree automaton M to a set B′ ⊇ B and a
footprint of a rank n − 1 B′-labeled tree

−�
R which encodes

a retraction of T with respect to M . Hereafter, we restrict
ourselves to reducible trees which are modeled according
to any suitable (internal or external) representation system
that allows the computation of their footprints. Under such
a restriction, we have the following result.

Theorem 2. Reducible trees enjoy a decidable acceptance
problem.

The inductive definition of rank n tree induces a hierar-
chical structure on the class of reducible trees. Establish-
ing whether or not such a hierarchy is strictly increasing,
namely, whether or not, for every n > 0, the class of rank
n trees properly includes the class of rank n− 1 trees, is an
open problem.

It is possible to prove that the class of reducible trees
properly includes that of residually ultimately periodic trees
introduced in [8]. Such an inclusion reflects the generality
of the notion of factorization proposed in this paper, which
allows reductions towards branching structures, instead of
linear ones. We may distinguish between the two notions
of factorizations by defining linear factorization any fac-
torization that satisfies the definition given in [8]. One can
view a linear factorization of a tree T as a factorization Π

a b

a b a b

a b a b a b a b

c

c c

c c c c

Figure 3. A reducible tree which is not resid-
ually ultimately periodic.

of T (according to Definition 3), which satisfies the follow-
ing property: for every pair of paths π and π′ in Π, labeled,
respectively, by words u and u′, having the same length and
terminating with the same symbol, the marked factor of T
in u and the marked factor of T in u′ coincide. Moreover,
the definition proposed in [8] associates with each linear
factorization an ordinal n, called level, which takes into ac-
count the form of its factors. For instance, all factors in a
level 1 linear factorization must be regular trees, while those
in a level 2 linear factorization must be decomposable into
level 1 linear factorizations. Consider now the A-labeled
C-colored tree T depicted in Figure 3, whereA = {a, b, c},
C = {0, 1}, Dom(T) = {a, b}∗ ∪ {a, b}∗ · {c} · {a, b}∗,
and, for every v ∈ Dom(T), T (v) = 1 iff v = u · c · u for
some u ∈ {a, b}∗. Clearly, all subtrees of T rooted at the
vertices u ∈ {a, b}∗ are two-by-two non-isomorphic. Due
to such a particular structure, there exists not a linear fac-
torization of T of any level. However, by exploiting closure
properties of rank n trees (see Section 4.1), one can easily
prove that T is a rank 1 tree.

4.1 Closure properties of reducible trees

In this section we prove several closure properties for the
class of reducible trees, which are based on compositional
properties of M -types. We say that the class of rank n trees
(resp., reducible trees) is effectively closed under a family
F of operations on trees whenever the application of any
transformation t ∈ F results in a tree whose footprint is
computable on the grounds of the footprint of the input tree.
In the following, we show that reducible trees are closed un-
der (suitable variants of) three powerful operations on trees,
namely, finite-state recolorings, second-order tree substitu-
tions, and top-down deterministic tree transducers.

As for the first operation, we distinguish among three
different notions of recoloring: finite-state recoloring with-
out lookahead (i.e., the output of a Mealy tree automa-
ton working in top-down fashion on an input colored tree),
finite-state recoloring with bounded lookahead (which al-
lows the inspection of the subtree rooted at the current posi-
tion up to a bounded depth and makes transitions dependent
on that portion of the subtree), and finite-state recoloring

6

with rational lookahead (which allows the inspection of the
whole subtree rooted at the current position and makes tran-
sitions dependent on the subtree classification induced by a
given finite class of rational tree languages).

A second-order tree substitution of the form T JFcKc∈C

replaces all c-colored vertices in the tree T by a new tree
Fc, simultaneously for all colors c ∈ C. The subtrees
rooted at the 1-st, 2-nd, ..., k-th successor of a replaced c-
colored vertex are possibly attached to the replacing tree
Fc as follows: we mark the leaves of Fc with elements
from A, which act as placeholders for the subtrees to be
attached, making every replacing tree anA-augmented tree.
A second-order tree substitution can be viewed either as
a function σ, specified by an m-tuple of replacing trees
F1, ..., Fm, with C = {c1, ..., cm}, which maps a tree T
to the tree T JF1/c1, ..., Fm/cmK, or as a function γ, spec-
ified by a tree T and by an n-tuple of colors ci1 , ..., cin

,
with 1 ≤ n ≤ m, which maps the n-tuple (F1, ..., Fn) to
T JF1/ci1 , ..., Fn/cin

K. These two views of a second-order
tree substitution give rise to the notions of tree morphism
and tree insertion, respectively. We say that a tree morphism
(resp., a tree insertion) is regular if the trees F1, ..., Fm are
regular (resp., the tree T is regular).

Top-down deterministic tree transducers are finite-state
machines that process a tree in a top-down fashion and re-
place the vertex in the current position with a regular tree,
which may depend on the current state and on the color
of the current vertex. At each computation step, differ-
ent states can be spread among different (copies of the)
successors of the current vertex. Like finite-state recolor-
ings, tree transducers can be enriched with the facility of
bounded/rational lookahead.

Theorem 3. For every n ∈ N, the class of rank n trees is
effectively closed under regular tree morphisms and finite-
state recolorings with bounded lookahead.

We give an intuitive account of the proof of Theorem 3 (see
[10] for more details). Let F be the set of involved trans-
formations. If n = 0, we can easily show that the class of
regular trees is closed under any transformation in F . As
for the inductive step, we fix a rank n tree T , with n > 0,
a transformation t ∈ F mapping T to t(T), and a tree au-
tomaton M running on t(T). Then, one can show that there
are a suitable tree automatonM ′ running on T , a rank n−1
tree
−�
R encoding a retraction of T with respect to M ′, and a

transformation t′ ∈ F mapping
−�
R to a tree t′(

−�
R), such that

t′(
−�
R) encodes a retraction of t(T) with respect to M . By

exploiting the inductive hypothesis, it turns out that t′(
−�
R) is

a rank n − 1 tree and hence t(T) is a rank n tree. Such a
result allows one to interpret MSO-compatibility of several
tree transformations in terms of reducibility. As a matter
of fact, we believe that the proof of the above theorem can

be generalized to include the case of finite-state recolorings
with rational lookahead.

The tree transformations we described so far are not in-
dependent. Indeed, it is possible to show that finite-state re-
colorings without lookahead (resp., with bounded, rational
lookahead) together with regular tree morphisms subsume
deterministic top-down tree transducers without lookahead
(resp., with bounded, rational lookahead). More precisely,
given a tree transducer N without lookahead (resp., with
bounded, rational lookahead), the output of N on a tree
T can be obtained by first applying to T a regular tree
morphism, then a finite state-recoloring without lookahead
(resp., with bounded, rational lookahead), and finally an-
other regular tree morphism. Conversely, both finite-state
recolorings without lookahead (resp., with bounded, ratio-
nal lookahead) and regular tree morphisms can be thought
of as special cases of tree transducers without lookahead
(resp., with bounded, rational lookahead). Taking advan-
tage of such relationships, we can exploit Theorem 3 to
prove that the class of reducible trees is effectively closed
with respect to top-down deterministic tree transducers with
bounded lookahead.

As for tree insertions, we have the following result.
By a slight abuse of terminology, given an A-augmented
tree automaton and an n-tuple of A-augmented trees F̄ =
(F1, ..., Fn), we say that t̄ = (t1, ..., tn) is an M -type of F̄
if for every 1 ≤ i ≤ n, ti is an M -type of Fi.

Theorem 4. LetM be anA-augmented tree automaton and
γ a regular tree insertion. Given a tuple t̄ of M -types, one
can compute an M -type t′ such that, for every tuple F̄ of
A-augmented trees, if t̄ is an M -type of F̄ , then t′ is an
M -type of γ(F̄).

Theorem 4 implies that for every regular tree insertion γ
and every automaton M , there is a computable function
γM : T n

M → TM that maps an M -type of an n-tuple
of trees F̄ to an M -type of the tree γ(F̄). The function
γM is called an abstraction of the regular tree insertion γ.
Moreover, if n = 1, the pair (AM , ◦) is a finite monoid,
where AM is the set of all abstractions of regular tree in-
sertions and ◦ is the operation of functional composition.
Indeed, we have that (i) AM is a finite set (since there are
only finitely many M -types in TM), (ii) tree insertions are
closed under functional composition (this follows from as-
sociativity of substitutions), (iii) abstractions of regular tree
insertions are closed under functional composition (since
regular tree insertions map regular trees into regular trees),
and (iv) there exists an abstraction idM playing the role of
the identity in AM .

Finally, it is possible to show that reducible trees are
closed under the operation of unfolding with backward
edges and loops, denoted BackUnf . Such an operation
maps an A-labeled tree T to the unfolding of the rooted

7

a

b

a

b

a

b

c c c

F0

F0

F0

F0 F1

F1

F1

F1

a

a

c

c

a

a

c

c

a

a

c

c

a

a

c

c

c

c

a

a

b

b

b

b b

b

b

b
a

a

a

a a

a

a

a

F0

F1

F1

F2

F2

a

a

a

a

a

a

c

c

c

F

x

x

x

a

a

a

a

a

a

c

c

c

b

b

b

a

a

a

G

Figure 4. Unfolding of the semi-infinite line.

graph resulting from T after the addition of backward Ā-
labeled edges and #-labeled loops (cf. [1]).

Theorem 5. For every rank n tree T , BackUnf (T) is a rank
n+ 1 tree, and thus the class of reducible trees is effectively
closed under BackUnf .

4.2 Examples of reducible trees

The class of reducible trees obviously includes all reg-
ular trees; moreover, it includes a number of non-regular
ones, such as, for instance, all deterministic trees in the first
two levels of the Caucal hierarchy and several deterministic
trees outside it. Here, we provide two noticeable examples
of reducible trees, which should explain how the previously
disclosed closure properties can be used. A number of other
meaningful examples can be found in [10].

To start with, we consider the well-known example of the
semi-infinite line. Let L = (N, Ea, Eb, Ec) be the semi-
infinite line with a-labeled forward edges, b-labeled back-
ward edges, and c-labeled loops (see the top part of Figure
4). Let TL be the unfolding of L from the leftmost ver-
tex. The bottom left part of Figure 4 depicts the tree TL,
where, for each i ∈ N, Fi denotes the unfolding from the
rightmost vertex of the subgraph Li obtained by restrict-
ing L to set of vertices {0, ..., i− 1}. We give an alter-
native proof of the decidability of the MSO theory of TL,
which exploits the closure properties of reducible trees in-
stead of the MSO-compatibility of the unfolding operation.
The idea is to give an inductive definition of the components
F0, F1, F2, ..., which allows us to prove that TL is a rank 1
tree. By construction, every vertex v of TL corresponds to
a unique path πv in L. We denote by −�π v the last vertex of
L along the path πv and we define the factorization Π of T
with respect to B = {a} by letting Dom(Π) be the set of
all vertices v of TL such that there is no a proper ancestor v′

of v for which −�π v = −�π v′ (the set Dom(Π) is represented
in Figure 4 by circled nodes). Then, we label the resulting
edges of Π with the symbol a. Notice that Π has unbounded
degree. However, for every pair of vertices u, u′ in Π, if the
access paths of u and u′ in Π have the same length, then
the marked factor of TL in u and the marked factor of TL in

... ...

...

... ...

...

... ...

...

f
(0

)
le

v
e
ls

︷︸︸︷ f
(1

)
le

v
e
ls

︷
︸︸

︷

Tf

x x

a1 a1 a1 a1

G

a1 a1

F

Figure 5. An example of reducible tree out-
side the Caucal hierarchy.

u′ turn out to be isomorphic. This means that we can iden-
tify access paths in Π having the same length, thus showing
that, for any givenB-augmented tree automatonM , there is
a suitable retraction of TL, with respect to Π and M , which
is bisimilar to a deterministic B-labeled tree. Such a re-
traction can be obtained as follows. Let F and G be the
two B-augmented trees depicted in the right part of Figure
4 and let γ be the regular tree insertion specified by G (the
vertices that must be replaced with the input of γ are col-
ored with x). Then, we set Fi = γi(F), for every i ∈ N. It
is easy to see that, for every vertex u of Π at distance i from
the root, the marked factor T+

Π [u] of TL in u is isomorphic
to the tree Fi. Thus, by Theorem 4, the tree

−�
RL such that

(i) Dom(
−�
RL) = B∗, (ii)

−�
RL(ε) is the basic M -type of F0,

and (iii)
−�
RL(ai+1) = γM (RL(ai)), for all i ∈ N, encodes

a retraction of TL with respect to M and Π. Since TM is a
finite set, from the Pigeonhole Principle it follows that

−�
RL

is a regular tree. In fact, we just showed that the encoding
−�
RL of a retraction of TL can be obtained via a finite-state
recoloring of the semi-infinite line, which is a rank 0 tree.
By Theorem 3, this implies that TL is a rank 1 tree, whose
footprint can be effectively built. As a matter of fact, such
a result can be viewed as a trivial implication of Theorem
5: TL is nothing but the tree resulting from the application
of BackUnf to the semi-infinite line. Not surprisingly, the
proof technique used in this example can be applied to any
rank n tree, thus proving that reducible trees are closed un-
der BackUnf .

We now provide an example of a reducible tree that does
not belong to the Caucal hierarchy. Let f be a strictly mono-
tone function over N, that is, i < j implies f(i) < f(j)
for every i, j ∈ N, and g be the function defined by
g(0) = f(0) and g(i + 1) = f(i + 1) − f(i) − 1, for
all i ∈ N. Moreover, let A = {a1, a2} and C = {0, 1}. We
denote by Tf the A-labeled C-colored tree obtained from
the infinite completeA-labeled {0}-colored tree by recolor-
ing every vertex at distance f(i) from the root, for i ∈ N,
with 1 (see the left part of Figure 5, where we represent
0-colored vertices with white nodes and 1-colored vertices
with black nodes). We define a factorization Π of Tf with
respect to B = {a1} by letting Dom(Π) be the set includ-
ing the root and all successors of 1-colored vertices and by

8

labeling the resulting edges of Π with a1. Even though Π
has unbounded degree, by identifying access paths with the
same length, we can obtain, for every B-augmented tree
automaton M , a retraction of TL, with respect to Π and M ,
which is bisimilar to a deterministic tree. Let F and G be
the two A-augmented trees depicted in the right part of Fig-
ure 5 and let γ be the regular tree insertion specified by G
(the vertices of G that must be replaced with the input of γ
are identified by the color x). Then, we set Fi = γg(i)(F),
for every i ∈ N. It is easy to see that, for every vertex u
of Π at distance i ∈ N from the root, the marked factor of
Tf in u is isomorphic to the A-augmented tree Fi. More-
over, if γM is the abstraction of the regular tree insertion γ
with respect to M and t is the basic M -type of F , then for
every i ∈ N, (γM)g(i)(t) is an M -type of Fi. This implies
that the deterministic tree

−�
Rf defined by Dom(

−�
Rf) = B∗

and
−�
Rf (ai

1) = (γM)g(i)(t), for all i ∈ N, is bisimilar to a
retraction of Tf with respect to Π and M . One can show
that
−�
Rf is a regular tree, provided that g is ultimately pe-

riodic with respect to finite monoids (see [10] for defini-
tions and proofs). Under such an hypothesis, the tree Tf

turns out to be a rank 1 tree and hence it enjoys a decidable
MSO theory. As an example, the hypothesis holds if f is
the tower of exponentials tow , defined by tow(0) = 1 and
tow(i + 1) = 2tow(i). In such a case, the resulting tree Tf

can be easily proved to be outside the Caucal hierarchy.

4.3 Relationships with Caucal hierarchy

In [2], Carayol and Wöhrle show that, for each level of
the Caucal hierarchy, there exists a representative graph,
called generator, from which all other graphs belonging
to that level can be obtained via MSO-definable interpreta-
tions. For a given n ∈ N, the generator Gn for the n+ 1-th
level of the Caucal hierarchy is defined as the n-fold appli-
cation of the treegraph operation to the infinite binary com-
plete tree. These generators are closely related to another
family of trees that Cachat introduces to simulate games on
higher order pushdown systems [1]. These trees, denoted
by C0, C1, . . ., are obtained from the infinite complete bi-
nary tree via n-fold applications of BackUnf . It can be
proved that each generatorGn can be obtained from the tree
Cn via a suitable MSO-definable interpretation that first re-
stricts the domain to the vertices/words that do not contain
occurrences of a · ā or ā ·a (where a denotes a forward edge
and ā the corresponding backward edge introduced by the
BackUnf operation) and then reverses the ā-labeled edges.
It follows that also Cachat trees are generators of the graphs
of the Caucal hierarchy via MSO-definable interpretations.
Here, we define another class of tree generators, which con-
tains all Cachat trees and that generates all deterministic
trees in the Caucal hierarchy via inverse rational mappings,
which are special cases of MSO-definable interpretations.

Definition 7. A level 0 tree generator is a regular tree. For
every n ∈ N, a level n+1 tree generator is a tree of the form
T ′ = BackUnf (T), where T is a level n tree generator.

Theorem 5 immediately implies that level n tree generators
are rank n trees.

Consider now unfoldings of graphs obtained from trees
via inverse rational mappings [4]. Intuitively, the applica-
tion of an inverse rational mapping to a tree T results in
a graph G, whose domain coincides with that of T and
where (u, v) is an a′-labeled edge in G iff there exists a
path from u to v in T labeled with a word in a designated
rational language h(a′). In the general case, a path can be
empty or can traverse edges in either direction. Given a
set A of labels, we denote by ε the empty path and by a
(resp., ā) a path that traverses a single a-labeled edge in
forward (resp., backward) direction, for any a ∈ A. The ap-
plication of the inverse of a rational mapping of the form
h : A′ → P

(
(A ∪ Ā)∗

)
to an A-labeled graph (or

tree) produces an A′-labeled graph. Let us consider now
two special forms of rational mapping, namely, A-flip map-
ping and A-forward mapping. The former one is defined as
the (unique) finite mapping hA : A′ → P

(
(A∪Ā)∗

)
such

that (i) A′ = A ∪ Ā ∪ {#}, (ii) h(a) = {a} for all a ∈ A,
(iii) h(ā) = {ā} for all ā ∈ Ā, and (iv) h(#) = {ε}. In-
tuitively, h−1

A extends an input (A-labeled) tree T with (Ā-
labeled) backward edges and (#-labeled) loops. Clearly,
for every A-labeled tree T , BackUnf (T) coincides with the
unfolding of the rooted graph h−1

A (T). As for the other
mapping, an A-forward mapping is any rational mapping
h such that h(a′) ⊆ A+ for all a′ ∈ A′, namely, h defines
regular path expressions by using labels of forward edges
only (neither backward edges nor loops are allowed). Note
that, for every A-forward mapping h : A′ → P(A+)
and for every A-labeled tree T , h−1(T) is a (possibly non-
deterministic) A′-labeled tree. Moreover, the operations
of inverse forward mapping h−1 and unfolding Unf over
rooted graphs commute up to bisimulation, namely, for ev-
ery A-forward mapping h and for every A-labeled rooted
graph G, the two trees Unf

(
h−1(G)

)
and h−1

(
Unf (G)

)
are bisimilar. Finally, it turns out that any inverse ratio-
nal mapping h : A′ → P

(
(A ∪ Ā)∗

)
can be decom-

posed into an inverseA-flip mapping followed by an inverse
A ∪ Ā ∪ {#}-forward mapping. These properties allow us
to state the following result.

Proposition 6. For every rational mapping h : A′ →
P
(
(A ∪ Ā)∗

)
, there is a rational B-forward mapping

h̄ : A′ → P(B+), with B = A ∪ Ā ∪ {#}, such that,
for every A-labeled tree T , the two trees Unf

(
h−1(T)

)
and

h̄−1
(
BackUnf (T)

)
are bisimilar. Moreover, if both trees

are deterministic, then they are isomorphic.

In virtue of Proposition 6 and Definition 7, we have that tree
generators together with inverse rational forward mappings

9

suffice to generate all deterministic trees in the Caucal hier-
archy. Since inverse rational forward mappings are special
cases of MSO-definable interpretations that preserve bisim-
ilarity of graphs, by a result of Colcombet and Löding [5],
it follows that any inverse rational forward mapping can
be implemented by a tree transducer with rational looka-
head. Moreover, since tree transducers with rational looka-
head are subsumed by finite-state recolorings with rational
lookahead and regular tree morphisms, if the class of rank
n trees were closed under finite-state recolorings with ra-
tional lookahead (as we expect), then the class of reducible
trees would capture all deterministic trees in the Caucal hi-
erarchy. As a matter of fact, we already know that rank n
trees are closed under finite-state recolorings with bounded
lookahead. Hence, since inverse finite forward mapping can
be implemented by tree transducers with bounded looka-
head, we have that reducible trees capture all determinis-
tic trees obtained by iterating unfoldings and inverse finite
mappings, starting from regular trees. Such a class of trees
is properly included, starting from level 3, in the Caucal
hierarchy (as an example, the tree depicted in Figure 3 be-
longs to the 3-rd level of the Caucal hierarchy and it can-
not be obtained via inverse finite mappings and unfoldings
starting from regular trees).

5 Conclusions

In this paper, we developed an automaton-based method
to decide MSO theories of deterministic tree structures.
By exploiting a suitable notion of tree indistinguishabil-
ity with respect to tree automata, we showed that the ac-
ceptance problem for Rabin/Muller tree automata can be
used to decide a large class of deterministic trees, called re-
ducible trees, which includes many non-regular ones. Fur-
thermore, we proved that such a class is closed with re-
spect to various natural operations on trees, including finite-
state recolorings with bounded lookahead, regular tree mor-
phisms, and unfoldings with backward edges and loops.
We are currently investigating the closure of the class of
reducible trees under finite-state recolorings with rational
lookahead, whose validity would imply that the class of re-
ducible trees includes all deterministic trees in the Caucal
hierarchy. We are also trying to extend the notion of re-
ducible tree to capture the trees generated by the so-called
higher-order recursive program schemes [6] (the MSO theo-
ries of trees generated by unsafe higher-order recursive pro-
gram schemes have been recently proved to be decidable
by Ong [9]). Finally, we are investigating the relationships
between our automaton-based method and Shelah’s compo-
sition one [11]. We believe it possible to generalize both of
them to deal with non-deterministic colored trees as well as
with generic relational structures.

Acknowledgements

We are grateful to the anonymous referees for their use-
ful remarks. The work has been funded by the bilateral
project “Temporal logics in computer and information sci-
ences”, supported by the Italian Ministero degli Affari Es-
teri and the National Research Foundation of South Africa,
under the Joint Italy/South Africa Science and Technology
Agreement, and by the Italian PRIN project on “Constraints
and preferences as a unifying formalism for system analysis
and solution of real-life problems”.

References

[1] T. Cachat. Higher order pushdown automata, the Caucal hi-
erarchy of graphs and parity games. In Proc. of the 30th In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, volume 2719 of LNCS, pages 556–569. Springer,
2003.

[2] A. Carayol and S. Wöhrle. The Caucal hierarchy of infi-
nite graphs in terms of logic and higher-order pushdown au-
tomata. In Proc. of the 23rd Conference on Foundations
of Software Technology and Theoretical Computer Science,
volume 2914 of LNCS, pages 112–123. Springer, 2003.

[3] O. Carton and W. Thomas. The monadic theory of morphic
infinite words and generalizations. Information and Compu-
tation, 176(1):51–65, 2002.

[4] D. Caucal. On infinite terms having a decidable monadic
theory. In Proc. of the 27th International Symposium on
Mathematical Foundations of Computer Science, volume
2420 of LNCS, pages 165–176. Springer, 2002.

[5] T. Colcombet and C. Löding. On the expressiveness of de-
terministic transducers over infinite trees. In Proc. of the
21st Annual Symposium on Theoretical Aspects of Computer
Science, volume 2996 of LNCS, pages 428–439. Springer,
2004.

[6] W. Damm. The IO- and OI-hierarchies. Theoretical Com-
puter Science, 20:95–207, 1982.

[7] C. Elgot and M. Rabin. Decidability and undecidability
of extensions of second (first) order theory of (generalized)
successor. Journal of Symbolic Logic, 31(2):169–181, 1966.

[8] A. Montanari and G. Puppis. Decidability of MSO theories
of tree structures. In Proc. of the 24th Conference on Foun-
dations of Software Technology and Theoretical Computer
Science, volume 3328 of LNCS, pages 430–442. Springer,
2004.

[9] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In Proc. of the 21st Symposium on
Logic in Computer Science, pages 81–90. IEEE Computer
Society, 2006.

[10] G. Puppis. Automata for Branching and Layered Temporal
Structures. PhD thesis, Dipartimento di Matematica e Infor-
matica, Università di Udine, Italy, 2006.

[11] S. Shelah. The monadic theory of order. Annals of Mathe-
matics, 102:379–419, 1975.

[12] W. Thomas. Languages, automata, and logic. In G. Rozem-
berg and A. Salomaa, editors, Handbook of Formal Lan-
guages, volume 3, pages 389–455. Springer, 1997.

10

