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Abstract
We consider equivalence and containment problems for word transductions. These problems
are known to be undecidable when the transductions are relations between words realized by
non-deterministic transducers, and become decidable when restricting to functions from words
to words. Here we prove that decidability can be equally recovered the origin semantics, that
was introduced by Bojańczyk in 2014. We prove that the equivalence and containment problems
for two-way word transducers in the origin semantics are PSpace-complete. We also consider
a variant of the containment problem where two-way transducers are compared under the ori-
gin semantics, but in a more relaxed way, by allowing distortions of the origins. The possible
distortions are described by means of a resynchronization relation. We propose MSO-definable
resynchronizers and show that they preserve the decidability of the containment problem under
resynchronizations.
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1 Introduction

Finite-state transducers over words were studied in computer science very early, at the
same time as finite-state automata, see e.g. [19, 1, 12, 4]. A transducer defines a binary
relation between words by associating an output with each transition. It is called functional
if this relation is a partial function. Whereas the class of functions defined by one-way
transducers, i.e. transducers that process their input from left to right, has been extensively
considered in the past, the study of two-way transducers is quite recent. Connections to
logic, notably through the notion of graph transformations definable in monadic second-order
logic (MSO) [7, 13], have shown that the functions realized by two-way word transducers
can be equally defined in terms of MSO transductions [14]. This result is reminiscent of
Büchi-Elgot characterizations that hold for many classes of objects (words, trees, traces,
etc). For this reason, transductions described by functional two-way word transducers are
called regular functions. For a recent, nice survey on logical and algebraic properties of
regular word transductions the reader is referred to [17].

Non-determinism is a very natural and desirable feature for most types of automata.
However, for word transducers, non-determinism means less robustness. As an example,
non-deterministic transducers are not equivalent anymore to NMSOT (the non-deterministic
version of MSO transductions), however the latter is equivalent to non-deterministic stream-
ing transducers [3]. A major problem is the undecidability of the equivalence of non-
deterministic, one-way word transducers [18] (also called NGSM, and capturing the class
of rational relations). In contrast, equivalence of functional, two-way word transducers is

© Sougata Bose, Anca Muscholl, Vincent Penelle, Gabriele Puppis;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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decidable [9], even in PSpace. This complexity is mainly based on the fact that it can be
checked in PSpace if two non-deterministic, two-way automata are equivalent (see e.g. [21]).

The equivalence test is one of the most widely used operation on automata, so that it
becomes a natural question to know what is needed to recover decidability of equivalence
for rational relations, and even for regular relations, which are transductions defined by
non-deterministic, two-way transducers. The main result of our paper is that equivalence
of non-deterministic, two-way transducers is decidable if one adopts a semantics based on
origin information. According to this origin semantics [5], each letter of the output is tagged
with the input position that generated it. Thus, a relation in the origin semantics becomes
a relation over Σ∗× (Γ×N)∗. Surprisingly, the complexity of the equivalence test turns out
to be as low as it could be, namely in PSpace (thus PSpace-complete for obvious reasons).

As a second result, we introduce a class of MSO-definable resynchronizations for regular
relations. A resynchronization [15] is a binary relation over Σ∗ × (Γ × N)∗ that preserves
the input and the output (i.e., the fist two components), but can change the origins (i.e.,
the third component). Resynchronizations allow to compare transducers under the origin
semantics in a more relaxed way, by allowing distortions of origins. Formally, given two
non-deterministic, two-way transducers T1, T2, and a resynchronization R, we want to com-
pare T1, T2 under the origin semantics modulo R. Containment of T1 in T2 modulo R means
that for each tagged input/output pair σ′ generated by T1, there should be some tagged
input/output pair σ generated by T2 such that (σ, σ′) ∈ R. In other words, the resynchro-
nization R describes possible distortions of origin, and we ask whether T1 is contained in
R(T2). The resynchronizations defined here correspond to MSO formulas that describe the
change of origin by mainly considering the input (and to some small extent, the output).
The containment problem under such resynchronizations turns to be undecidable, unless we
enforce some restrictions. It is decidable for those resynchronizations R that use formulas
satisfying a certain (decidable) ‘boundedness’ property. In addition, if R is fixed, then the
containment problem modulo R is solvable in PSpace, thus with the same complexity as
the origin-equivalence problem. This is shown by providing a two-way transducer T ′2 that
is equivalent to R(T2) (we say that R(T2) is realizable by a transducer), and then we check
containment of T1 in T ′2 using our first algorithm. We conjecture that our class of resyn-
chronizations captures the rational resynchronizations of [15], but we leave this for future
work.

Related work and discussion. The origin semantics for transducers has been intro-
duced in [5], and was shown to enjoy several nice properties, in particular a Myhill-Nerode
characterization that can be used to decide the membership problem for subclasses of trans-
ductions, like first-order definable ones. The current state of the art counts quite a number
of results related to the origin semantics of transducers. In [6] a characterization of the class
of origin graphs generated by (functional) streaming transducers is given (the latter models
were studied in [2, 3]). Decision problems for tree transducers under the origin semantics
have been considered in [16], where it is shown that origin-equivalence of top-down tree
transducers is decidable. Note that top-down transducers correspond on words to one-way
transducers, so the result of [16] is incomparable with ours.

As mentioned before, the idea of resynchronizing origins of word transducers has been
introduced by Filiot et al. in [15] for the case of one-way transducers. Rational resyn-
chronizers as defined in [15] are one-way transducers R that read sequences of the form
u1v1u2v2 · · ·unvn, where u1 · · ·un represents the input and v1 · · · vn the output, with the
origin of vi being the last letter of ui. It is required that any image of u1v1u2v2 · · ·unvn
through R leaves the input and the output part unchanged, thus only origins change. The
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definition of resynchronizer in the one-way case is natural. However, it cannot be extended
to two-way transducers, since there is no word encoding of tagged input-output pairs re-
alized by arbitrary two-way transducers. Our approach is logic-based: we define MSO
resynchronizations that refer to origin graphs. More precisely, our MSO resynchronizations
are formulas that talk about the input and, to a limited extent, about the tagged output.
Overview. After introducing the basic definitions and notations in Section 2, we present
the main result about the equivalence problem in Section 3. Resynchronizations are con-
sidered in Section 4. A full version of the paper is available at https://arxiv.org/abs/
1807.08053.

2 Preliminaries

Given a word w = a1 . . . an, we denote by dom(w) = {1, . . . , n} its domain, and by w(i) its
i-th letter, for any i ∈ dom(w).
Automata. To define two-way automata, and later two-way transducers, it is convenient to
adopt the convention that, for any given input w ∈ Σ∗, w(0) = ` and w(|w|+ 1) = a, where
`,a /∈ Σ are special markers used as delimiters of the input. In this way an automaton can
detect when an endpoint of the input has been reached and avoid moving the head outside.

A two-way automaton (2NFA for short) is a tuple A = (Q,Σ,∆, I, F ), where Σ is the
input alphabet, Q = Q≺ ·∪Q� is the set of states, partitioned into a set Q≺ of left-reading
states and a set Q� of right-reading states, I ⊆ Q� is the set of initial states, F ⊆ Q

is the set of final states, and ∆ ⊆ Q × (Σ ] {`,a}) × Q × {left, right} is the transition
relation. The partitioning of the set of states is useful for specifying which letter is read
from each state: left-reading states read the letter to the left, whereas right-reading states
read the letter to the right. A transition (q, a, q′, d) ∈ ∆ is leftward (resp. rightward) if
d = left (resp. d = right). Of course, we assume that no leftward transition is possible when
reading the left marker `, and no rightward transition is possible when reading the right
marker a. We further restrict ∆ by asking that (q, a, q′, left) ∈ ∆ implies q′ ∈ Q≺, and
(q, a, q′, right) ∈ ∆ implies q′ ∈ Q�.

To define runs of 2NFA we need to first introduce the notion of configuration. Given a
2NFA A and a word w ∈ Σ∗, a configuration of A on w is a pair (q, i), with q ∈ Q and
i ∈ {1, . . . , |w|+ 1}. Such a configuration represents the fact that the automaton is in state
q and its head is between the (i− 1)-th and the i-th letter of w (recall that we are assuming
w(0) = ` and w(|w| + 1) = a). The transitions that depart from a configuration (q, i) and
read a are denoted (q, i) −a−→ (q′, i′), and must satisfy one of the following conditions:

q ∈ Q�, a = w(i), (q, a, q′, right) ∈ ∆, and i′ = i+ 1,
q ∈ Q�, a = w(i), (q, a, q′, left) ∈ ∆, and i′ = i,
q ∈ Q≺, a = w(i− 1), (q, a, q′, right) ∈ ∆, and i′ = i,
q ∈ Q≺, a = w(i− 1), (q, a, q′, left) ∈ ∆, and i′ = i− 1.

q0 q1 q2

q3q4q5

q6 q7 q8 q9

a1 a2
a3

a2a1
`

a1 a2 a3

1 2 3 4

` a1 a2 a3 a

A configuration (q, i) on w is initial (resp. fi-
nal) if q ∈ I and i = 1 (resp. q ∈ F and
i = |w| + 1). A run of A on w is a sequence
ρ = (q1, i1) −b1−→ (q2, i2) −b2−→ · · · −bm−−→ (qm+1, im+1)
of configurations connected by transitions. The
figure to the right depicts an input w = a1a2a3
(in blue) and a possible run on it (in red), where
q0, q1, q2, q6, q7, q8 ∈ Q� and q3, q4, q5 ∈ Q≺, and
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1, 2, 3, 4 are the positions associated with the various configurations. A run is successful if
it starts with an initial configuration and ends with a final configuration. The language of
A is the set [[A]] ⊆ Σ∗ of all words on which A has a successful run.

When A has only right-reading states (i.e. Q≺ = ∅) and rightward transitions, we say
that A is a one-way automaton (NFA for short).
Transducers. Two-way transducers are defined similarly to two-way automata, by intro-
ducing an output alphabet Γ and associating an output from Γ∗ with each transition rule.
So a two-way transducer (2NFT for short) T = (Q,Σ,Γ,∆, I, F ) is basically a 2NFA as
above, but with a transition relation ∆ ⊆ Q× (Σ ] {`,a})× Γ∗ ×Q× {left, right}. A tran-
sition is usually denoted by (q, i) −a|v−−→ (q′, i′), and describes a move of the transducer from
configuration (q, i) to configuration (q′, i′) that reads the input letter a and outputs the word
v. The same restrictions and conventions for two-way automata apply to the transitions of
two-way transducers, and configurations and runs are defined in a similar way.

The output associated with a successful run ρ = (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ · · · −bm|vm−−−−→
(qm+1, im+1) is the word v1v2 · · · vm ∈ Γ∗. A two-way transducer T defines a relation
[[T ]] ⊆ Σ∗ × Γ∗ consisting of all the pairs (u, v) such that v is the output of some successful
run ρ of T on u. Throughout the paper, a transducer is non-deterministic and two-way.
Origin semantics. In the origin semantics for transducers [5], the output is tagged with
information about the position of the input where it was produced. If reading the i-th letter
of the input we output v, then all letters of v are tagged with i, and we say they have
origin i. We use the notation (v, i) to denote that all positions in v have origin i. The
outputs associated with a successful run ρ = (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ (q3, i3) · · · −bm|vm−−−−→
(qm+1, im+1) in the origin semantics are the words of the form ν = (v1, j1)(v2, j2) · · · (vm, jm)
over Γ×N, where, for all 1 ≤ k ≤ m, jk = ik if qk ∈ Q�, and jk = ik − 1 if qk ∈ Q≺. Under
the origin semantics, the relation defined by T , denoted [[T ]]o, is the set of pairs σ = (u, ν)
—called synchronized pairs— such that u ∈ Σ∗ and ν ∈ (Γ × N)∗ is the output of some
successful run on u. Take as example the 2NFA run depicted in the previous figure, and
assume that any transition on a letter a ∈ Σ outputs a, while a transition on a marker ` or
a outputs the empty word ε. The output associated with that run in the origin semantics
is (a1, 1)(a2, 2)(a3, 3)(a2, 2)(a1, 1)(a1, 1)(a2, 2)(a3, 3).

Given two transducers T1, T2, we say they are origin-equivalent if [[T1]]o = [[T2]]o. Note
that two transducers T1, T2 can be equivalent in the classical semantics, i.e. [[T1]] = [[T2]],
while they can have different origin semantics, so [[T1]]o 6= [[T2]]o.
Regular outputs. The transducers we defined just above consume input letters while
outputting strings of bounded length. In order to perform some crucial constructions later
—notably, to shortcut factors of runs with empty output— we need to slightly generalize
the notion of output associated with a transition, so as to allow producing arbitrarily long
words on reading a single letter. Formally, the transition relation of a transducer with
regular outputs is allowed to be any subset ∆ of Q × (Σ ] {`,a}) × 2Γ∗2Γ∗2Γ∗ × Q × {left, right}
such that, for all q, q′ ∈ Q, a ∈ Σ, d ∈ {left, right}, there is at most one language L ⊆ Γ∗
such that (q, a, L, q′, d) ∈ ∆; moreover, this language L must be non-empty and regular.
A transition (q, i) −a|L−−→ (q′, i′) means that the transducer can move from configuration
(q, i) to configuration (q′, i′) while reading a and outputting any word v ∈ L. Accordingly,
the outputs that are associated with a successful run ρ = (q1, i1) −b1|L1−−−→ (q2, i2) −b2|L2−−−→
(q3, i3) · · · −bn|Lm−−−−→ (qm+1, im+1) in the origin semantics are the words of the form ν =
(v1, j1)(v2, j2) · · · (vm, jm), where vk ∈ Lk and jk = ik or jk = ik−1 depending on whether
qk ∈ Q� or qk ∈ Q≺. We say that two runs ρ1, ρ2 are origin-equivalent if they have the same
sets of associated outputs. Clearly, the extension with regular outputs is only syntactical,
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and it preserves the expressiveness of the class of transducers we consider. In the remaining
of the paper, we will tacitly refer to above notion of transducer.
PSpacePSpacePSpace-constructibility. As usual, we call the size of an automaton or a transducer
the number of its states, input symbols, transitions, plus, if present, the sizes of the NFA
descriptions of the regular output languages associated with each transition rule.

In our complexity analysis, however, we will often need to work with online presentations
of automata and transducers. For example, we may say that an automaton or a transducer
can be computed using a polynomial amount of working space (at thus its size would be at
most exponential) w.r.t. a given input. The terminology introduced below will be extensively
used throughout the paper to describe the computational complexity of an automaton, a
transducer, or a part of it, in terms of a specific parameter.

Given a parameter n ∈ N, we say that an automaton or a transducer has PSpace-
constructible transitions w.r.t. n if its transition relation can be enumerated by an algorithm
that uses working space polynomial in n, and in addition, when the device is a transducer,
every transition has at most polynomial size in n. In particular, if a transducer has PSpace-
constructible transitions, then the size of the NFA representing every output language is
polynomial. Similarly, we say that an automaton is PSpace-constructible w.r.t. n if all its
components, —the alphabets, the state set, the transition relation, etc.— are enumerable
by algorithms that use space polynomial in n.

3 Equivalence of transducers with origins

We focus on the equivalence problem for two-way transducers. In the classical semantics,
this problem is known to be undecidable even if transducers are one-way [18] (called NGSM
in the latter paper). We consider this problem in the origin semantics. We will show that,
in this setting, equivalence becomes decidable, and can even be solved in PSpace – so with
no more cost than equivalence of non-deterministic two-way automata:

I Theorem 1. Containment and equivalence of two-way transducers under the origin se-
mantics is PSpace-complete.

The proof of this result is quite technical. As a preparation, we first show how to
check origin-equivalence for transducers in which all transitions produce non-empty outputs,
namely, where the transition relation is of the form ∆ ⊆ Q × (Σ ] {`,a}) × 2Γ+2Γ+

2Γ+ × Q ×
{left, right}. We call busy any such transducer.

3.1 Origin-equivalence of busy transducers
An important feature of our definition of transducers is that, along any possible run, an in-
put position is never read twice in a row. In other words, our transducers do not have “stay”
transitions. For a busy transducer, this implies that the origins of outputs of consecutive
transitions are always different. As a consequence, runs of two busy transducers can be
only origin-equivalent if they visit the same sequences of positions of the input and have the
same possible outputs transition-wise. To give the intuition, we note that origin-equivalence
of busy classical transducers, with single output words associated with transitions, can be
reduced to a version of equivalence of 2NFA, where we ask that runs have the same shape.
Already the last condition does not allow to apply the PSpace algorithm for equivalence of
2NFA of [21], and the naive algorithm would be of exponential time. Some more complica-
tions arise when we assume regular outputs, which will be required when we shall deal with
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non-busy transducers. We introduce now the key notions of transition shape and witness
procedure.

Let T1, T2 be busy transducers over the same input alphabet, with Ti = (Qi,Σ,Γi,∆i, Ii, Fi)
for i = 1, 2. We say that two transitions t1 ∈ ∆1 and t2 ∈ ∆2, with ti = (qi, ai, q′i, Li, di),
have the same shape if a1 = a2, q1 ∈ Q1,≺ ⇔ q2 ∈ Q2,≺, and q′1 ∈ Q1,≺ ⇔ q′2 ∈ Q2,≺ (and
hence d1 = d2).

We assume that there is a non-deterministic procedureW, called witness procedure, that
does the following. Given a transition t1 = (q1, a1, q

′
1, L1, d1) of T1, W returns a set X ⊆ ∆2

of transitions of T2 satisfying the following property: for some word v ∈ L1, we have

X =
{
t2 = (p2, a2, q2, L2, d2) ∈ ∆2 : v ∈ L2, and t2 has same shape as t1

}
.

Note that W is non-deterministic: it can return several sets based on the choice of v. If
t1 ∈ ∆1 and X is a set that could be returned by W on t1, we write X ∈ W(t1). However,
if T1 and T2 were classical transducers, specifying a single output word for each transition,
then W could return only one set on t1 ∈ ∆1, that is, the set of transitions of T2 with the
same shape and the same output as t1.

The intuition behind the procedure W is the following. Consider a successful run ρ1 of
T1 on u. Since T1, T2 are both busy, [[T1]]o ⊆ [[T2]]o necessarily means that for all possible
outputs produced by the transitions of ρ1, there is some run ρ2 of T2 on u that has the same
shape as ρ1 and the same outputs, transition-wise. Procedure W will precisely provide, for
each transition t1 of T1 with output language L ⊆ Γ+, and for each choice of v ∈ L, the set
of all transitions of T2 with the same shape as t and that could produce the same output v.

We introduce a last piece of terminology. Given a run ρ1 = t1 . . . tm of T1 of length m
and a sequence ξ = X1, . . . , Xm of subsets of ∆2 (witness sequence), we write ξ ∈ W(ρ1)
whenever Xi ∈ W(ti) for all 1 ≤ i ≤ m. We say that a run ρ2 = t′1 . . . t

′
m of T2 is ξ-compatible

if t′i ∈ Xi for all 1 ≤ i ≤ m. The following result (proved in the appendix) is crucial:

I Proposition 2. Let T1, T2 be two busy transducers over the same input alphabet, and W a
witness procedure. Then [[T1]]o ⊆ [[T2]]o if and only if for every successful run ρ1 of T1, and for
every witness sequence ξ ∈ W(ρ1), there is a successful run ρ2 of T2 which is ξ-compatible.

Next, we reduce the problem [[T1]]o ⊆ [[T2]]o to the emptiness problem of a one-way
automaton (NFA) B. In this reduction, the NFA B can be exponentially larger than T1, T2,
but is PSpace-constructible under suitable assumptions on T1, T2, and W.

I Lemma 3. Given two busy transducers T1, T2 with input alphabet Σ and a witness procedure
W, one can construct an NFA B that accepts precisely the words u ∈ Σ∗ for which there exist
a successful run ρ1 of T1 on u and a witness sequence ξ ∈ W(ρ1) such that no ξ-compatible
run ρ2 of T2 is successful.

Moreover, if T1, T2 have a total number n of states and PSpace-constructible transitions
w.r.t. n, and W uses space polynomial in n, then B is PSpace-constructible w.r.t. n.

The proof of the lemma (in the appendix) is based on variants of the classical tech-
niques of subset construction and crossing sequences [20, 21]. Below, we state an immediate
consequence of the previous proposition and lemma:

I Corollary 4. Given two busy transducers T1, T2 with a total number n of states, and given
a witness procedure that uses space polynomial in n, the problem of deciding [[T1]]o ⊆ [[T2]]o
is in PSpace w.r.t. n.
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3.2 Origin-equivalence of arbitrary transducers
We now consider transducers that are not necessarily busy. To show that origin-equivalence
remains decidable in PSpace, we will modify the transducers so as to make them busy, and
reduce in this way the origin equivalence problem to the case treated in Section 3.1.

A naive idea would be to modify the transitions that output the empty word ε and make
them output a special letter #. This however would not give a correct reduction towards
origin-equivalence with busy transducers. Indeed, a transducer may produce non-empty
outputs, say v1, v2, . . . , with transitions that occur at the same position, say i, and that are
interleaved by runs traversing other positions of the input but producing only ε. In that
case, we would still need to compare where the words v1, v2, . . . were produced, and see that
they may form a contiguous part of the output with origin i. The above idea is however
useful if we first normalize our transducers in such a way that maximal subruns generating
empty outputs are unidirectional. Paired with the fact that the same input position is never
visited twice on two consecutive transitions, this will give the following characterization:
two arbitrary transducers are origin-equivalent if and only if their normalized versions, with
empty outputs replaced by #, are also origin-equivalent.

For simplicity, we fix a single transducer T = (Q,Σ,Γ,∆, I, F ), which could be thought
of as any of the two transducers T1, T2 that are tested for origin-equivalence. To normalize
T we consider runs that start and end in the same position, and that produce empty output.
Such runs are called lazy U-turns and are formally defined below. We will then abstract
lazy U-turns by pairs of states, called U-pairs for short.

I Definition 5. Given an input word u, a left (resp. right) lazy U-turn at position i of u is
any run of T on u of the form (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ · · · −bm|vm−−−−→ (qm+1, im+1), with
i1 = im+1 = i, ik < i (resp. ik > i) for all 2 ≤ k ≤ m, and vk = ε for all 1 ≤ k ≤ m.

For brevity, we shall often refer to a left/right lazy U-turn without specifying the position i
and the word u, assuming that these are clear from the context.

The pair (q1, qm+1) of states at the extremities of a left/right lazy U-turn is called a
left/right U-pair (at position i of u). We denote by U ý

i (resp. Uý
i ) the set of all left

(resp. right) U-pairs at position i (again, the input u is omitted from the notation as it
usually understood from the context).

Note that we have U ý
i ⊆ Q≺ × Q� and Uý

i ⊆ Q� × Q≺. Accordingly, we define the
word u ýover 2Q≺×Q� that has the same length as u and labels every position i with the
set U ý

i of left U-pairs. This u ýis seen as an annotation of the original input u, and can
be computed from T = (Q,Σ,Γ,∆, I, F ) and u using the following recursive rule:

qq1

q′1

...
qk

q′k q′

ii− 1

u(i− 1) | ε

u(i− 1) | ε

u(i− 1) | ε

(q, q′) ∈ u ý(i) if and only if q ∈ Q≺ ∧
(
q, u(i− 1), ε, q′, right

)
∈ ∆

or q ∈ Q≺ ∧ ∃ (q1, q
′
1), . . . , (qk, q′k) ∈ u ý(i− 1)

(
q, u(i− 1), ε, q1, left

)
∈ ∆(

q′j , u(i− 1), ε, qj+1, left
)
∈ ∆ ∀1 ≤ j ≤ k(

q′k, u(i− 1), ε, qk, right
)
∈ ∆.

The annotation uý with right U -pairs satisfies a symmetric recursive rule.
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Of course, the annotations u ý, uý are over alphabets of exponential size. This does
not raise particular problems concerning the complexity, since we aim at deciding origin-
equivalence in PSpace, and towards this goal we could work with automata and transducers
that have PSpace-constructible transitions. In particular, we can use the recursive rules for
u ýand uý to get the following straightforward lemma (proof omitted):

I Lemma 6. Given a transducer T , one can compute an NFA U that has the same number
of states as T and such that [[U ]] = {u⊗u ý⊗uý : u ∈ Σ∗}, where ⊗ denotes the convolution
of words of the same length. The NFA U is PSpace-constructible w.r.t. the size of T .

To normalize the transducer T it is convenient to assume that the sets of left and right
U-pairs can be read directly from the input (we refer to this as annotated input). For this, we
introduce the transducer TU , that is obtained from T by extending its input alphabet from Σ
to Σ×2Q≺×Q�×2Q�×Q≺ , and by modifying the transitions in the obvious way, that is, from
(q, a, L, q′, d) to

(
q, (a, U ý, Uý), L, q′, d

)
for any U ý⊆ Q≺×Q� and Uý ⊆ Q�×Q≺. Note

that TU does not check that the input is correctly annotated, i.e. of the form u⊗ u ý⊗ uý

(this is done by the NFA U). Further note that TU has exponential size w.r.t. T , but its
state space remains the same as T , and its transitions can be enumerated in PSpace.

We are now ready to describe the normalization of TU , which produces an origin-
equivalent transducer Norm(TU ) with no lazy U-turns. The transducer Norm(TU ) is obtained
in two steps. First, using the information provided by the annotation of the input, we short-
cut all runs of TU that consist of multiple transitions outputting at the same position and

q q′1

q2

...
qk−1q′k−1

qk

q′

a | L ⊇ L1 · · ·Lk

a | L1

a | L2

a | Lk−1

a | Lk

interleaved by lazy U-turns. The resulting transducer is
denoted Shortcut(TU ). After this step, we will eliminate
the lazy U -turns, thus obtaining Norm(TU ). Formally,
Shortcut(TU ) has for transitions the tuples of the form(
q, (a, U ý, Uý), L, q′, d

)
, where L is the smallest language

that contains every language of the form L1 · L2 · · ·Lk for
which there are q1, q

′
1, . . . , qk, q

′
k and d1, . . . , dk, with q =

q1, q′k = q′ (and hence dk = d), (qi, a, Li, q′i, di) ∈ ∆, and
(q′i, qi+1) ∈ U ý∪ Uý for all i (see the figure to the right).
Note that there is no transition

(
q, (a, U ý, Uý), L, q′, d

)
when there are no languages L1, L2, . . . , Lk as above.
The output languages associated with the transitions of Shortcut(TU ) can be constructed
using a classical saturation mechanism, which is omitted here, they are regular, and their
NFA representations are polynomial-sized w.r.t. the size of the NFA representations of the
output languages of TU . This implies that Shortcut(TU ) has PSpace-constructible transi-
tions w.r.t. the number of its states, exactly like TU .

Recall that two runs are origin-equivalent if they produce the same synchronized pairs.
The next lemma shows that, on correctly annotated inputs, Shortcut(TU ) is origin-equivalent
to TU , even when avoiding U-turns. The proof of the lemma is in the appendix.

I Lemma 7. Let w = u ⊗ u ý⊗ uý be an arbitrary input annotated with left and right
U-pairs. Every successful run of TU on w is origin-equivalent to some successful run of
Shortcut(TU ) on w without lazy U-turns. Conversely, every successful run of Shortcut(TU )
on w is origin-equivalent to some successful run of TU on w.

The next step of the normalization consists of restricting the runs of Shortcut(TU ) so as to
avoid any lazy U-turn. This is done by simply forbidding the shortest possible lazy U-turns,
namely, the transitions that output ε and that remain on the same input position. On the
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one hand, since every lazy U-turn contains a transition of the previous form, forbidding this
type of transitions results in forbidding arbitrary lazy U-turns. On the other hand, thanks
to Lemma 7, this will not affect the semantics of Shortcut(TU ). Formally, we construct from
Shortcut(TU ) a new transducer Norm(TU ) by replacing every transition rule (q, a, L, q′, d)
with (q, a, L′, q′, d), where L′ is either L or L\{ε}, depending on whether q ∈ Q≺ ⇔ q′ ∈ Q≺
or not. We observe that Norm(TU ) has the same set of states as the original transducer T ,
and PSpace-constructible transitions w.r.t. the size of T . The proof of the following result
is straightforward and thus omitted.

I Lemma 8. TU and Norm(TU ) are origin-equivalent when restricted to correctly annotated
inputs, i.e.: [[TU ]]o ∩R = [[Norm(TU )]]o ∩R, where R = [[U ]]× (Γ× N)∗.

We finally come to the last step of the reduction. This amounts to consider two normal-
ized transducers Norm(T1,U ) and Norm(T2,U ) that read inputs annotated with the left/right
U-pairs of both T1 and T2, and replacing, in their transitions, the empty output by a special
letter # /∈ Γ. Formally, in the transition relation of Norm(Ti,U ), for i = 1, 2, we replace every
tuple (q, a, L, q′, d), where q is left-reading iff q′ is left-reading, with the tuple (q, a, L′, q′, d),
where L′ is either (L \ {ε})∪{#} or L, depending on whether ε ∈ L or not. The transducer
obtained in this way is busy, and is thus called Busy(Ti,U ). Moreover, the states of Busy(Ti,U )
are the same as those of Ti, and its transitions are PSpace-constructible. The proposition
below follows immediately from the previous arguments, and reduces origin-containment
between T1 and T2 to an origin-containment between Busy(T1,U ) and Busy(T2,U ), but rela-
tivized to correctly annotated inputs.

I Proposition 9. Given two transducers T1 and T2,

[[T1]]o ⊆ [[T2]]o if and only if [[Busy(T1,U )]]o ∩ R ⊆ [[Busy(T2,U )]]o ∩ R.

where R = [[U ′]]× (Γ×N)∗ and U ′ is an NFA that recognizes inputs annotated with left/right
U-pairs of both T1 and T2.

It remains to show that, given the transducers T1, T2, there is a PSpace witness procedure
for Busy(T1,U ),Busy(T2,U ):

I Proposition 10. Let T1, T2 be transducers with a total number n of states, and Busy(Ti,U ) =
(Qi, Σ̂,Γ,∆i, Ii, Fi) for i = 1, 2 (the input alphabet Σ̂ is the same as for U ′). There is a
non-deterministic procedure W that works in polynomial space in n and returns on a given
transition t1 = (q1, a1, q

′
1, L1, d1) of Busy(T1,U ) any set X ⊆ ∆2 of transitions of Busy(T2,U )

such that for some v ∈ L1:

X =
{
t2 = (p2, a2, q2, L2, d2) ∈ ∆2 : v ∈ L2, and t2 has same shape as t1

}
.

We can now conclude with the proof of our main result, which we recall here:

I Theorem 1. Containment and equivalence of two-way transducers under the origin se-
mantics is PSpace-complete.

Proof. The lower bound follows from a straightforward reduction from the classical equiv-
alence problem of NFA. For the upper bound, in view of Proposition 9, we can consider
origin containment between the transducers Busy(T1,U ) and Busy(T2,U ), obtained from T1
and T2, respectively. We recall that Busy(Ti,U ) has at most ni = |Ti| states and PSpace-
constructible transitions w.r.t. ni, for i = 1, 2. We then apply Proposition 2 and Lemma
3 to reduce the containment problem to an emptiness problem for the intersection of two
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PSpace-constructible NFA, i.e. B and U ′. We observe that U ′ is basically the product of
two NFA obtained from Lemma 6 by letting T = Ti, once for i = 1 and once for i = 2.
Finally, we use the same arguments as in the proof of Corollary 4 to conclude that the latter
emptiness problem is decidable in PSpace w.r.t. n = n1 + n2. J

4 Containment modulo resynchronization

In this section we aim at generalizing the equivalence and containment problems for trans-
ducers with origins. The goal is to compare the origin semantics of any two transducers up
to ‘distortions’, that is, differences in the origin tagging each position of the output.

Recall that [[T ]]o is the set of synchronized pairs σ = (u, ν), where u ∈ Σ∗ is a possible
input for the transducer T and ν ∈ (Γ × N)∗ is an output (tagged with origins) produced
by a successful run of T on u. Given a pair σ = (u, ν) ∈ [[T ]]o, we denote by in(σ), out(σ),
and orig(σ) respectively the input word u, the output word obtained by projecting ν onto
the finite alphabet Γ, and the sequence of input positions obtained by projecting ν onto N.
This notation is particularly convenient for describing resynchronizations, that is, relations
between synchronized pairs. Following prior terminology from [15], we call resynchronization
any relation R between synchronized pairs that preserves input and output words, but can
modify the origins, namely, such that (σ, σ′) ∈ R implies in(σ) = in(σ′) and out(σ) = out(σ′).

The containment problem modulo a resynchronization R [15] is the problem of deciding,
given two transducers T1, T2, if for every σ′ ∈ [[T1]]o, there is σ ∈ [[T2]]o such that (σ, σ′) ∈ R,
or in other words if every synchronized pair of T1 can be seen as a distortion of a synchronized
pair of T2. In this case we write for short T1 ⊆R T2. We remark that, despite the name
‘containment’ and the notation, the relation ⊆R is not necessarily transitive, in the sense
that it may happen that T1 ⊆R T2 and T2 ⊆R T3, but T1 6⊆R T3.

We propose a class of resynchronizations that can be described in monadic second-order
logic (MSO). The spirit is that, as synchronized pairs are (special) graphs, graph transfor-
mations à la Courcelle and Engelfriet [8] are an adequate tool to define resynchronizers.
However, we cannot directly use MSO logic over origin graphs, since this would result in an
undecidable containment problem. Our MSO resynchronizers will be able to talk about (reg-
ular) properties of the input word and the output word, and say how origins are distorted.
We will show that containment modulo MSO resynchronizations is decidable, assuming a
(decidable) restriction on the change of origins.

I Definition 11. An MSO resynchronizer R is a tuple (α, β, γ, δ), where
α(I) is an MSO formula over the signature of the input word, and has some free monadic
variables I = (I1, . . . , Im), called input parameters,
β(O) is an MSO formula over the signature of the output word, and has some free
monadic variables O = (O1, . . . , On), called output parameters,
γ is a function that maps any element τ ∈ Γ× Bn, with B = {0, 1}, to an MSO formula
γ(τ)(I, y, z) over the input signature that has a tuple of free monadic variables I (input
parameters) and two free first-order variables y, z (called source and target, respectively),
δ is a function that maps any pair of elements τ, τ ′ ∈ Γ × Bn, with B = {0, 1}, to an
MSO formula δ(τ, τ ′)(I, z, z′) over the input signature that has a tuple of free monadic
variables I (input parameters) and two free first-order variables z, z′ (called targets).

The input and output parameters I, O that appear in the formulas of an MSO resynchronizer
play the same role as the parameters of an NMSO-transduction [14]. They allow to express
regular properties of the input and output word, respectively, through the first two formulas,
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α(I) and β(O). The other two formulas are used to describe how the origin function is
transformed. They depend on the input and output parameters, in particular, on the “type”
of the positions of the output word, as defined next.

Given an output word v = out(σ) and an interpretation O = O1, . . . , On ⊆ dom(v)
for the output parameters, let us call output-type of a position x ∈ dom(v) the element
τ = (v(x), b1, . . . , bn) ∈ Γ× Bn, where each bi is either 1 or 0 depending on whether x ∈ Oi
or not. Based on the output-type τ of x, the formula γ(τ)(I, y, z) describes how the origin
of x is redirected from a source y to a target z in the input word. Similarly, δ(τ, τ ′)(I, z, z′)
constraints the origins z, z′ of two consecutive output positions x, x + 1, based on their
output-types τ and τ ′. This is formalized below.

I Definition 12. An MSO resynchronizer R = (α, β, γ, δ) induces the resynchronization
[[R]] defined by (σ, σ′) ∈ [[R]] if and only if in(σ) = in(σ′), out(σ) = out(σ′), and there are
I = I1, . . . , Im ⊆ dom(in(σ)) and O = O1, . . . , On ⊆ dom(out(σ)) such that:

(in(σ), I) � α (or equally, (in(σ′), I) � α),
(out(σ), O) � β (or equally, (out(σ′), O) � β),
for all x ∈ dom(out(σ)) with output-type τ , if orig(σ)(x) = y and orig(σ′)(x) = z, then
(in(σ), I, y, z) � γ(τ),
for all pairs of consecutive positions x and x + 1 in out(σ) with output-types τ and τ ′,
respectively, if orig(σ′)(x) = z and orig(σ′)(x+ 1) = z′, then (in(σ), I, z, z′) � δ(τ, τ ′).

I Example 13. We provide a few examples of MSO resynchronizers:
1. The most unconstrained resynchronization, called universal resynchronization, groups

any two synchronized pairs with the same input and output strings. This is readily
defined by an MSO resynchronizer Runiv = (α, β, γ, δ) without parameters, where α =
β = γ(τ)(y, z) = δ(τ, τ ′)(z, z′) = true for all τ, τ ′ ∈ Γ.

2. Consider a resynchronization that displaces the origin in a
synchronized pair by one position to the left or to the right. An
instance of this resynchronization is shown to the right, where
solid arrows represent origins in the initial synchronized pair,

i n p u t

o u t p u t

and dashed arrows represent origins in the modified synchronized pair. This transfor-
mation can be defined by a parameterless MSO resynchronizer R±1 = (α, β, γ, δ), where
α = β = true, γ(τ)(y, z) = (z = y − 1) ∨ (z = y + 1), and δ(τ, τ ′)(z, z′) = true for
all τ, τ ′ ∈ Γ. Note that the reflexive and transitive closure of [[R±1]] gives the universal
resynchronization [[Runiv]].

3. We give a variant of the previous resynchronizer R±1,
where the direction of movement of the origin is controlled
by a property of the output position, e.g. the parity of the
number of b’s that precede that position in the output.
We see an instance of the resynchronization to the right (as

i n p u t

a b a a a b
O : 0 0 1 1 1 1

usual, solid and dashed arrows represent initial and modified origins). The transfor-
mation can be defined by an MSO resynchronizer with a single output parameter O
that encodes the parity condition (an interpretation of O is shown in the figure as an
annotation of the output over B = {0, 1}). Formally, we let R′±1 = (α, β, γ, δ), where
α = true, β(O) = ∀x

(
b(x) → (x ∈ O ↔ x + 1 6∈ O)

)
∧
(
¬b(x) → (x ∈ O ↔ x + 1 ∈

O)
)
∧ (x = first → x ∈ O)), and γ and δ are defined on the basis of the output-types

τ, τ ′ ∈ Γ× B, as follows: γ(τ)(y, z) enforces either z = y + 1 or z = y − 1 depending on
whether τ ∈ Γ× {0} or τ ∈ Γ× {1}, and δ(τ, τ ′)(z, z′) = true.
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4. Let us now consider a resynchronization that does not
modify the origins, but only constrain them so as to
obtain a ‘regular’ subset of synchronization pairs. Here
the allowed synchronization pairs are those that corre-
spond to the process of applying a rational substitution
f : Σ→ 2Γ∗ to an input over Σ. The figure to the right
describes a possible synchronized pair for f defined by

a b b a b a

c d c c d d
Oa,(q,c,q) : 1 0 1 1 0 0

Oa,(q,d,q′) : 0 1 0 0 1 1
Ofirst : 1 0 0 0 0 0
Olast : 0 0 0 0 0 1

f(a) = c∗d and f(b) = ε. Below, we show how to define such a resynchronization for
an arbitrary rational substitution f . We fix, for each letter a ∈ Σ, an NFA Aa that
recognizes the regular language f(a). We then define an MSO resynchronizer Rf that
uses one output parameter Oa,t for every letter a ∈ Σ and every transition t of Aa, plus
two additional output parameters Ofirst and Olast . By a slight abuse of notation, given
the output-type τ of a position x, we write τ [a, t] = 1 whenever x ∈ Oa,t, and similarly
for τ [first] and τ [last]. The first formula α of the resynchronizer holds vacuously, as we
have no restriction on the input. The second formula β requires that the parameters
Oa,t form a partition of the output domain in such a way that if a position x is labeled
by a letter c ∈ Γ and x ∈ Oa,t, then t is a c-labeled transition of Aa. In addition, β
requires that the parameters Ofirst and Olast are singletons consisting of the first and
the last output position, respectively. The third component γ of the resynchronizer is
defined by γ(τ)(y, z) = a(y) ∧ (y = z) whenever τ [a, t] = 1 (the origin is not modified,
and the transition annotating the output position must belong to the correct NFA). The
last component δ restricts further the parameters and the origins for consecutive output
positions, so as to simulate successful runs of the NFA. Formally, δ(τ, τ ′)(z, z′) enforces
the following constraints:
• if τ [a, t] = 1, τ ′[a, t′] = 1, and z = z′, then the target state of t coincide with the

source state of t′, namely, tt′ forms a factor of a run of Aa,
• if τ [a, t] = 1, τ ′[a′, t′] = 1, and z < z′, then the target state of t must be final, the

source state of t′ must be initial, and every input letter strictly between z and z′ is
mapped via f to a language that contains ε,

• if τ [first] = 1 and τ [a, t], then the source state of t must be initial, and every input
letter strictly before z is mapped via f to a language that contains ε,

• if τ ′[last] = 1 and τ ′[a, t], then the target state of t must be final, and every input
letter strictly after z′ is mapped via f to a language that contains ε.

5. We conclude the list of examples with a resynchronization that
moves the origin of an arbitrarily long output over an arbitrar-
ily long distance. This resynchronization contains the pairs
(σ, σ′), where σ (resp. σ′) maps every output position to the

i n p u t

o u t p u t

first (resp. last) input position, as shown in the figure. This is defined by the MSO
resynchronizer R1st−to−last = (α, β, γ, δ), where α = β = δ(τ, τ ′)(z, z′) = true and
γ(τ)(y, z) = (y = first) ∧ (z = last), for all τ, τ ′ ∈ Γ. Note that the resynchronization
[[R1st−to−last ]] is also ‘one-way’, in the sense that it contains only synchronized pairs that
are admissible outcomes of runs of one-way transducers. However, [[R1st−to−last ]] is not
captured by the formalism of one-way rational resynchronizers from [15].

Recall the Example 13.1 above, which defines the universal resynchronization [[Runiv]]. The
containment problem modulo [[Runiv]] boils down to testing classical containment between
transducers without origins, which is known to be undecidable [18]. Based on this, it is clear
that in order to compare effectively transducers modulo resynchronizations, we need to
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restrict further our notion of MSO resynchronizer. Intuitively, what makes the containment
problem modulo resynchronization undecidable is the possibility of redirecting many sources
to the same target. This possibility is explicitly forbidden in the definition below. Also
observe that, since [[Runiv]] is the reflexive and transitive closure of [[R±1]], we cannot take
our resynchronizations to be equivalence relations.

I Definition 14. An MSO resynchronizer (α, β, γ, δ) is k-bounded if for all inputs u, pa-
rameters I = I1, . . . , Im ⊆ dom(u), output-types τ ∈ Γ × Bn, and targets z ∈ dom(u),
there are at most k distinct sources y1, . . . , yk ∈ dom(u) such that (u, I, yi, z) � γ(τ) for all
i = 1, . . . , k. An MSO resynchronizer is bounded if it is k-bounded for some k.

Note that all resynchronizers from Example 13 but Runiv are bounded. For instance,
R1st−to−last is 1-bounded and R±1 is 2-bounded.

It is also easy to decide the boundedness property of an MSO resynchronizer by reducing
it to a problem of finite-ambiguity for finite automata [22]:

I Proposition 15. t is decidable to know whether a given MSO resynchronizer is bounded.

The goal is to reduce the problem of containment modulo a bounded MSO resynchronizer
to a standard containment problem in the origin semantics. For this, the natural approach
would be to show that transducers are effectively closed under bounded MSO resynchro-
nizers. However, this closure property cannot be proven in full generality, because of the
(input) parameters that occur in the definition of resynchronizers. More precisely, two-way
transducers cannot guess parameters in a consistent way (different guesses could be made
at different visits of the same input position). We could show the closure if we adopted a
slightly more powerful notion of transducer, with so-called common guess [6]. Here we prefer
to work with classical two-way transducers and explicitly deal with the parameters. Despite
the different terminology, the principle is the same: parameters are guessed beforehand and
accessed by the two-way transducer as explicit annotations of the input. Given a transducer
T over an expanded input alphabet Σ× Σ′ and an NFA A over Σ× Σ′, we let

[[T ]]o�
A
Σ =

{
(u, ν) ∈ Σ∗ × (Γ× N)∗ : ∃ u′ ∈ Σ′|u| u⊗ u′ ∈ [[A]], (u⊗ u′, ν) ∈ [[T ]]o

}
.

In other words, [[T ]]o�AΣ is obtained from [[T ]]o by restricting the inputs of T via A, and then
projecting them on Σ.

The following result is the key to reduce containment modulo bounded MSO resynchro-
nizers to containment in the origin semantics.

I Theorem 16. Given a bounded MSO resynchronizer R with m input parameters, a trans-
ducer T with input alphabet Σ×Σ′ and an NFA A over Σ×Σ′, one can construct a transducer
T ′ with input alphabet Σ× Σ′ × Bm and an NFA A′ over Σ× Σ′ × Bm such that

[[T ′]]o�
A′
Σ =

{
σ′ : (σ, σ′) ∈ [[R]] for some σ ∈ [[T ]]o�

A
Σ
}
.

Moreover, if R is fixed, T has n states and PSpace-constructible transitions w.r.t. n, and
A is PSpace-constructible w.r.t. n, then T ′ and A′ have similar properties, namely, T ′ has
a number of states polynomial in n and PSpace-constructible transitions w.r.t. n, and A′
is PSpace-constructible w.r.t. n.

Proof. To prove the claim, it is convenient to assume that R has no input nor output
parameters. If this were not the case, we could modify T in such a way that it reads
inputs over Σ × Σ′ × Bm, exposing a valuation of the parameters I, and produces outputs
over Γ × Bn, exposing a valuation O. We could then apply the constructions that follow,
and finally modify the resulting transducer T ′ by projecting away the input and output
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annotations. We observe that the projection operation on the output is easier and can be
implemented directly at the level of the transitions of T ′, while the projection of the input
requires the use of the notation [[T ′]]o�A

′

Σ , for the reasons that we discussed earlier. In both
cases the complexity bounds are preserved.

Let R = (α, β, γ, δ) a bounded MSO resynchronizer with no input/output parameters.
Since there are no existentially quantified parameters, [[R]] can be seen as the relational
composition of four different resynchronizations, as induced by the formulas of R. For-
mally, we have [[R]] = [[Rα]] ◦ [[Rβ ]] ◦ [[Rγ ]] ◦ [[Rδ]], where Rα = (α, true, γid , δtrue), Rβ =
(true, β, γid , δtrue), Rγ = (true, true, γ, δtrue), Rδ = (true, true, γid , δ), γid(τ)(y, z) = (y = z)
and δtrue(τ, τ ′)(z, z′) = true for all output-types τ, τ ′ ∈ Γ. This means that, to prove the
claim, it suffices to consider only one resynchronizer at a time among Rα, Rβ , Rγ , Rδ. The
case of Rα, Rβ is quite straightforward, since it amounts to intersect the input and output
with the regular language of α and β, respectively.

We now consider the most interesting case, that of Rγ = (true, true, γ, δtrue), which
modifies the origins. The case of δ is similar and can be found in the full version. The
rough idea here is that T ′ has to simulate an arbitrary run of T , by displacing the origins
of any output letter with type τ from a source y to a target z, as indicated by the formula
γ(τ)(x, y). Since a factor of an output of T that originates at the same input position can be
broken up into multiple sub-factors with origins at different positions, here it is convenient
to assume that T outputs at most a single letter at each transition. This assumption can be
made without loss of generality, since we can reproduce any longer word v that is output by
some transition (q, i) −a|L−−→ (q′, i′) letter by letter, with several transitions that move back
and forth around position i.

The idea of the construction is as follows. Whenever T outputs a letter b with origin
in y, T ′ non-deterministically moves to some position z that, together with y, satisfies the
formula γ(b) (note that b is also the output-type of the produced letter). Then T ′ produces
the same output b as T , but at position z. Finally, it moves back to the original position y.
For the latter step, we will exploit the fact that R is bounded.

Now, for the details, we construct from γ a finite monoid (M, ·), a monoid morphism
h : (Σ×Σ′×B×B)∗ →M , and some subsets Fτ ofMτ , for each output-type τ ∈ Γ, such that
(u, x, y) � γ(τ) if and only if h(ux,y) ∈ Fτ , where ux,y is the encoding on u of the positions
x and y, namely, ux,y(i) =

(
(u(i), bi=x, bi=y)

)
for all 1 ≤ i ≤ |u|, and bi=x (resp. bi=y) is

either 1 or 0 depending on whether i = x (resp. i = y) or not. Similarly, we denote by u∅,∅
the encoding on u of two empty monadic predicates. For all 1 ≤ i ≤ j ≤ |u|, we then define
`i = h(u∅,∅[1, i− 1]), rj = h(u∅,∅[j + 1, |u|]), and mi,j = h(ui,j [i, j]). We observe that

(u, y, z) � γ(τ) iff
{
`y ·my,z · rz ∈ Fτ if y ≤ z
`z ·mz,y · ry ∈ Fτ if y > z.

The elements `i and ri associated with each position i of the input u are functionally
determined by u. In particular the word `1 . . . `|u| (resp. r1 . . . r|u|) can be seen as the run of
a deterministic (resp. co-deterministic) automaton on u. Without loss of generality, we can
assume that the values `i and ri are readily available as annotations of the input at position
i, and checked by means of a suitable refinement A′ of the NFA A.

We now describe how T ′ simulates a transition of T , say q −a|b−−→ q′, that originates at
a position y and produces the letter b (the simulation of a transition with empty output
is straightforward). The transducer T ′ stores in its control state the transition rule to be
simulated and the monoid element `y associated with the current position y (the source).
It then guesses whether the displaced origin z (i.e. the target) is to the left or to the right
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of y. We only consider the case where z ≥ y (the case z < y is symmetric). In this case T ′
starts moving to the right, until it reaches some position z ≥ y such that (u, y, z) � γ(b) (as
we explained earlier, this condition is equivalent to checking that `y ·my,z · rz ∈ Fb). Once
a target z is reached, T ′ produces the same output b as the original transition, and begins a
new phase for backtracking to the source y. During this phase, the transducer will maintain
the previous monoid elements `y, my,z, and, while moving leftward, compute mz′,z for all
z′ ≤ z. We claim that there is a unique z′ such that `z′ = `y and mz′,z = my,z, and hence
such z′ must coincide with the source y. Indeed, if this were not the case, we could pump
the factor of the input between the correct source y and some z′ 6= y, showing that the MSO
resynchronizer Rγ is not bounded. Based on this, the transducer T ′ can move back to the
correct source y, from which it can then simulate the change of control state from q to q′
and move to the appropriate next position. Any run of T ′ that simulates a run of T on
input u, as described above, results in producing the same output v as T , but with the origin
mapping modified from i 7→ yi to i 7→ zi, for all 1 ≤ i ≤ |v| and for some 1 ≤ yi, zi ≤ |u| such
that (u, yi, zi) � γ(v(i)). In other words, we have [[T ′]]o = {σ′ : (σ, σ′) ∈ [[R]], σ ∈ [[T ]]o}.

With the above constructions, ifR is fixed and if T has n states and PSpace-constructible
transitions w.r.t. n, then similarly T ′ has a number of states polynomial in n and PSpace-
constructible transitions w.r.t. n. Finally, a PSpace-constructible NFA A′ can be obtained
from a direct product of the NFA A, U , and a suitable NFA for checking inputs annotated
with the monoids elements `z, rz. J

The above result is used to reduce the containment problem modulo a bounded MSO
resynchronizer R to a containment problem with origins (relativized to correctly annotated
inputs). That is, if T1, T2 are transducers with input alphabet Σ, and T ′2 ,A′ are over the
input alphabet Σ× Σ′ and constructed from T2 using Theorem 16, then

T1 ⊆R T2 iff [[T1]]o ⊆ [[T ′2 ]]o�
A′
Σ iff [[T1]]o�

Σ×Σ′ ∩ R′ ⊆ [[T ′2 ]]o ∩ R′

where R′ = [[A′]] × (Γ × N)∗ and �Σ′ is the inverse of the input-projection operation,
i.e. [[T ]]o�Σ×Σ′ =

{
(u ⊗ u′, ν) ∈ (Σ × Σ′)∗ × (Γ × N)∗ : u ⊗ u′ ∈ [[A]], (u, ν) ∈ [[T ]]o

}
. We

also recall from Section 3 that the latter containment reduces to emptiness of a PSpace-
constructible NFA, which can then be decided in PSpace w.r.t. the sizes of T1 and T2. We
thus conclude with the following result:

I Corollary 17. The problem of deciding whether T1 ⊆R T2, for any pair of transducers
T1, T2 and for a fixed bounded MSO resynchronizer R, is PSpace-complete.

5 Conclusions

We studied the equivalence and containment problems for non-deterministic, two-way word
transducers in the origin semantics, and proved that the problems are decidable in PSpace,
which is the lowest complexity one could expect given that equivalence and containment of
NFA are already PSpace-hard. This result can be contrasted with the undecidability of
equivalence of non-deterministic, one-way word transducers in the classical semantics.

We have also considered a variant of containment up to ‘distortions’ of the origin, called
containment modulo a resynchronization R, and denoted ⊆R. We identified a broad class of
resynchronizations, definable in MSO, and established decidability of the induced contain-
ment problem. In fact, we obtained an optimal fixed-parameter complexity result: testing a
containment T1 ⊆R T2 modulo a bounded MSO resynchronization R is PSpace-complete in
the size of the input transducers T1, T2, where the fixed parameter is the size of the formulas
used to describe R.

FSTTCS 2018
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Our logical definition of resynchronizations talks implicitly about origin graphs. Since
we cannot encode the origin semantics of arbitrary two-way transducers by words, we have
chosen to work directly with origin graphs defined by two-way transducers. A classical way
to define resynchronizations of origin graphs would be to use logical formalisms for graph
transformations. Unfortunately, the classical MSO approach [7, 13] does not work in our
setting, since satisfiability of MSO over origin graphs of two-way transducers is already
undecidable, which means that the definable resynchronizations would not be realizable by
two-way transducers.

Another possibility would be to use a decidable logic over origin graphs, like the one
introduced by Filiot et al. in [10]. Their logic is not suited either for our purposes, since it
allows predicates of arbitrary arity defined using MSO over the input word. The reason is
that single head devices would not be able to move between the tuples of positions related
by those definable predicates, and thus, in particular, we would not be able to guarantee
that the definable resynchronizations are realizable by two-way transducers.

Yet an alternative approach to the above problem consists in viewing tagged outputs as
data words, and using transducers to transform data words. Durand-Gasselin and Haber-
mehl introduced in [11] a framework for transformations of data words. However, this
approach would be unsatisfactory, because the transformation does not take the input into
account.

We conjecture that the bounded MSO resynchronizers defined here strictly capture the
rational resynchronizers introduced in [15]. In particular, although MSO resynchronizers
do not have the ability to talk about general origin graphs, they presumably can describe
‘regular’ origin graphs of one-way transducers, i.e., graphs expressed by regular languages
over sequences that alternate between the input and the output word. We also recall that the
MSO resynchronizer R1st−to−last from Example 13.5 contains only origin graphs of one-way
transducers, but cannot be defined by a rational resynchronizer.

Another natural question that we would like to answer concerns compositionality: are
bounded MSO resynchronizers closed under relational composition? In other words, given
two bounded MSO resynchronizersR,R′, is it possible to find (possibly effectively) a bounded
MSO resynchronizer R′′ such that [[R′′]] = [[R]] ◦ [[R′]]?
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