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Abstract
We study a variant of the classical membership problem in automata theory, which
consists of deciding whether a given input word is accepted by a given automaton. We
do so through the lenses of parameterized dynamic data structures: we assume that the
automaton is fixed and its size is the parameter, while the input word is revealed as in
a stream, one symbol at a time following the natural order on positions. The goal is to
design a dynamic data structure that can be efficiently updated upon revealing the next
symbol, while maintaining the answer to the query on whether the word consisting
of symbols revealed so far is accepted by the automaton. We provide complexity
bounds for this dynamic acceptance problem for timed automata that process symbols
interleaved with time spans. The main contribution is a dynamic data structure that
maintains acceptance of a fixed one-clock timed automaton A with amortized update
time 2O(|A|) per input symbol.
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1 Introduction

Imagine we would like to monitor whether the behaviour of a server is correct. The run
of the server can be abstracted by an infinite stream w = a1a2a3 . . . ∈ �ω, where �

is a finite alphabet of possible events. The events are disclosed one at a time on the
input, and at every moment we should tell whether the prefix consisting of the events
observed so far is correct.

A simple yet expressive formalism for describing properties of such data streams
is provided by classical finite automata. For example, suppose we would like to verify
the property that a certain resource is being used by at most one process. Assume
that the alphabet is � = {o, r} ∪ �, where o denotes a request of the resource, r
denotes a release of the resource, and � contains other immaterial events. The streams
satisfying the discussed property can be then characterised as those where every prefix
is accepted by the two-state automatonA of Fig. 1. Here, a state indicates whether the
resource is currently available or not.

Verifying the correctness of a stream over time can be formalized through the fol-
lowing dynamic acceptance problem: for a fixed automatonA, design a data structure
that upon receiving subsequent events from the stream, monitors whether the prefix
read so far is accepted byA. An obvious, though usually suboptimal solution would be
to store in the data structure the prefix read so far, and, upon receiving a new symbol,
run the automaton on the whole prefix. This would require time linear in the total
length of the prefix, which after a while can become very large compared to |A|, the
size of the automaton A. So we would like to minimize the update time by smartly
organizing and reusing information computed before.

Cast in thisway, the dynamic acceptanceproblemnaturally lends itself to a treatment
using the notions of parametrised complexity. Namely, we consider the automaton A
fixed and use the parameter |A| as a measure for expressing guarantees on the update
time. Ideally, we would like to obtain update time bounded by a computable function
of |A| only. This way, our work inscribes into the area of parameterized dynamic data
structures, which is a direction that is still relatively unexplored, but starts to attract
considerable attention; see e.g., [1–3] and references therein for an overview of recent
advances.

For finite automata, the dynamic acceptance problem can be solved easily with
update time O(|A|), as follows. After reading a prefix u, the data structure stores the
subset of states S ⊆ Q in which the automaton may be after reading u (in general, we
allow the automaton to be non-deterministic). Upon receiving the next input symbol,
the set S is updated by applying the possible transitions on every state in S. Moreover,
telling whether A accepts the current input prefix boils down to checking whether S
contains an accepting state. Both the update and the query described above can be
implemented in time linear in |A|.

Unfortunately, real-life scenarios involve many aspects that cannot be captured by
a simple formalism such as finite automata. One of these aspects is time. Consider the
following example of property that needs to be verified: at every moment in time when
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(a) (b)

Fig. 1 Left: a finite automatonA recognising language �∗(o�∗r�∗)∗({ε} ∪ o�∗), where occurrences of o
are interleaved by occurrences of r . Right: a timed automaton B with single clock x

an event occurs, a special backupoperation has beenperformedwithin the last 24 hours,
but not within the last 1 hour. A natural choice to model this and similar properties is
to enhance finite automata with the ability of measuring time, by adding one or more
clocks and allowing transitions with constraints on clocks – a formal definition of this
automatonmodel, called timed automaton, will be given in Sect. 2. The above property
could be verified at every incoming event by testing whether the sequence of events
received is accepted by a suitable timed automaton. The timed automaton would have
one clock x and two states, “before backup” and “after backup”, and would behave as
follows (see the right hand-side of Fig. 1). More precisely, for every incoming event,
the timed automaton non-deterministically guesses a backup event b and verifies that
it occurred within the last 24 hours, but not within the last 1 hour. Thus, upon reading
an occurrence of a backup event b, the timed automaton may either ignore this event
and remain in the initial state “before backup”, or move from state “before backup”
to state “after backup” while resetting the clock. A sequence u of events is accepted if
the automaton reaches the final state “after backup” and, for those events that occurred
after the reset, the value of the clock is in the range (1, 24].

Timed automata are a central topic in the area of verification, and they have a rich
and diverse literature, see e.g., [4–6]. In this work we are interested in the dynamic
acceptance problem for timed automata, defined analogously to that for finite automata.

Note that in the setting of timed automata, the same technique that worked for
finite automata will not work so easily. The reason is that for a finite automaton A,
the set of configurations in which A may be is a subset of the set of control states,
whose size is bounded by the size of A. On the other hand, a configuration of a
timed automaton consists of a control state and a tuple of clock values, so the number
of possible configurations is a priori unbounded. Concretely, after reading a prefix
of length n, there may be as many as O(|A| · nk) different configurations which the
given k-clock timed automatonmay possibly reach, due to non-determinism and clock
resets. Efficient maintenance of this configuration set in a data structure poses themain
conceptual challenge in this paper.
Our contribution We design a dynamic data structure that, for a fixed timed automa-
tonAwith one clock, monitors whetherA accepts the prefix read so far with amortized
update timeO(23|A|). This can be improved to worst-case (i.e., non-amortized) update
time when the input stream is discrete, that is, when all time spans between consec-
utive events are equal. Our data structure actually works in a slightly more general
setting, where the automaton A is not entirely fixed, but rather is provided on input
upon initialization of the data structure.

Wealso give a somewhat complementary lower bound: under the3SUMConjecture,
we prove that there exists a fixed timed automaton A with two clocks and additive
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constraints on them such that no data structure for the dynamic acceptance problem
forAmay achieve strongly sublinear amortized update time (i.e., timeO(n1−δ) for δ >

0). Here, by additive constraintswemean that in the transition relation ofAwemay use
affine clock conditions that involve more than one clock, e.g., x + y = c, where x,y
are clocks and c is a constant.

If the given timed automaton A has more than one clock, but only constraints
involving a single clock are allowed, it remains open whether there is an efficient data
structure for the dynamic acceptance problem or a lower bound similar to the above
one.
Related work A preliminary version of this work appeared in [7].

The setting is close to runtime verification [8], an area that focuses on verification
techniques that could be performed at runtime, e.g. using timed automata [9, 10].
However, while we study monitoring a data stream through a suitable data structure in
the dynamic setting, studies on runtime verification typically focus on static problems.
An example of such a problem is: given an input prefix u, verify whether there is a
sequence of events that extends u to a word accepted by the device (e.g., a finite
automaton). The problem studied in [11] is similar to the setting presented here;
however, this line of work considers clock constants (e.g., 24 in Fig. 1) as part of the
input, contributing to the parameter of the complexity bounds, and this considerably
simplifies the setting (see Sects. 2 and 3).

The dynamic acceptance problem that we consider here resembles the setting of
streaming algorithms; see e.g., [12–14] for works with a similar motivation. In this
context, a typical problem is to compute (possibly approximately) some statistics or an
aggregate function over the sequence of data, where the main point is to assume severe
restrictions on the space usage. Note that in our setting, we focus on obtaining low
time complexity per update and query, rather than optimizing the space complexity.
In this respect, our work leans more towards the area of dynamic data structures, in
particular dynamic query evaluation [15, 16]. For Boolean properties several papers
[17–19] have considered streaming algorithms for testing membership in regular and
context-free languages. Another variant of the problem was considered in [20–22],
where the regular property is verified on the last N letters of the stream, instead of the
entire prefix up to the current position.

The closest to our setting is the work [23], which studies the dynamic evaluation
problem for monoids over a sliding window, and describes a data structure that can
be updated in constant time for a fixed finite monoid. When the monoid is finite,
the considered problem is basically the same as monitoring whether the input stream
restricted to the sliding window is accepted by a finite automaton. We show in Exam-
ple 1, that in this case, the problem can be reduced to the dynamic acceptance problem
for a special form of timed automaton.

2 Preliminaries

Finite automataA finite automaton is a tupleA = (�, Q, I , E, F), where� is a finite
alphabet,Q is afinite set of states, E ⊆ Q×�×Q is a transition relation, and I , F ⊆ Q
are the sets of initial and final states. A run of A on a word w = a1 . . . an ∈ �∗ is a
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sequence ρ = q0
a1−→ q1

a2−→ . . .
an−→ qn where (qi−1, ai , qi ) ∈ E for all i = 1, . . . , n.

Moreover, ρ is a successful run if q0 ∈ I and qn ∈ F . A word w is accepted by A if
there is a successful run of A on w.
Timed automata Let X be a finite set of clocks, usually denoted x,y, . . .. A clock
valuation is a function ν : X → R≥0 from clocks to non-negative reals. Clock
conditions are formulas defined by the grammar: CX := true | x < c | x >

c | x = c | (CX ∧ CX ) | (CX ∨ CX ), where x ∈ X and c ∈ R≥0. By a slight
abuse of notation, we also denote by CX the set of clock conditions over X . Given a
clock condition γ and a valuation ν, we say that ν satisfies γ and write ν |
 γ , if the
arithmetic expression obtained from γ by substituting each clock xwith its value ν(x)

evaluates to true.
A timedautomaton is a tupleA = (�, Q, X , I , E, F), where�, Q, I , F are defined

exactly as for finite automata, X is a finite set of clocks, and E ⊆ Q×�×CX ×Q×2X

is a finite transition relation. We say that c ∈ R≥0 is a clock constant ofA if c appears
in some clock condition of a transition from E . A configuration of A is a pair (q, ν),
where q ∈ Q and ν is a clock valuation. Recall that finite automata process words over
a finite alphabet �; likewise, timed automata process timed words over an alphabet
of the form � � R>0, with � finite.

A run of a timed automaton A on a timed word w = e1 . . . en ∈ (� ∪ R>0)
∗

is a sequence ρ = (q0, ν0)
e1−→(q1, ν1)

e2−→ . . .
en−→(qn, νn), where each (qi , νi ) is a

configuration and

• if ei ∈ R>0, then qi+1 = qi and νi+1(x) = νi (x) + ei for all x ∈ X ;
• if ei ∈ �, then there is a transition (qi , ei , γ, qi+1, Z) ∈ E such that νi |
 γ and
either νi+1(x) = 0 or νi+1(x) = νi (x) depending on whether x ∈ Z or x ∈ X\Z .

Thus, the set Z in a transition (qi , ei , γ, qi+1, Z) ∈ E corresponds to the subset
of clocks that are reset when firing the transition. Note that the values of the other
clocks stay unchanged. An example of a one clock timed automaton was given in the
introduction (see Fig. 1).

A run ρ as above is successful if q0 ∈ I , ν0(x) = 0 for all x ∈ X , and qn ∈ F . A
word w ∈ (� ∪ R>0)

∗ is accepted by A if there is a successful run of A on w.
Size of an automaton The size of a finite automaton A = (�, Q, I , E, F) is defined
as |A| = |Q| + |E |. This is asymptotically equivalent to essentially every possible
definition of size of a finite automaton that can be found in the literature. The size of
a timed automaton A = (�, Q, X , I , E, F) is instead defined as |A| = |Q| + |X | +∑

(p,a,γ,q,Z)∈E |γ |, where |γ | is the number of atomic expressions (i.e., expressions
of the form true, x < c, x > c, x = c) appearing in the clock condition γ . Note that
the size of a timed automaton does not take into account the magnitude of the clock
constants. These constants are specified with the automaton and stored in suitable
floating-point memory cells (see the computation model below).
Computation modelAs clock constants and time spans in the input stream are arbitrary
real numbers, it is convenient to use the real RAM model of computation [24]. This is
a standard model with integer memory cells that can store integers and floating-point
memory cells that can store real numbers. There are no bounds on the bit length or
precision of the stored numbers. However, in practice, our model will only receive
inputs with real numbers that are represented symbolically (e.g., rational numbers).
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Basic arithmetic operations — addition, subtraction, multiplication, and division —
can be performed in unit time, but modulo arithmetics and rounding are not included
in the model. In fact, we do not use multiplication or division on real numbers either.

3 The Dynamic Acceptance Problem

The dynamic acceptance problem amounts to designing a data structure that can be
initialized for a given timed automaton A with one clock, and afterwards, upon con-
suming consecutive elements of the data stream, efficiently maintains the information
on whether the word read so far is accepted byA. Formally, the data structure should
support the following operations:

• init(A): Initialize the data structure for a given automaton A. This automaton
is fixed for the entire lifespan of the data structure.

• accepted: Query whether the prefix of the stream consumed up to the current
moment is accepted by A.

• read(e): Consume the next element e from the input stream, be it a letter from
� or a time span from R>0, and update the data structure accordingly.

The running time of each of these operations needs to be as low as possible. More
precisely, we shall say that a data structure supports dynamic acceptance in time
f (s, n) if the first operationinit(A) takes atmost f (s, 0) time, and every subsequent
execution of accepted or read(e) takes at most f (s, n) time, where s = |A| and n
is the number of stream elements consumed so far. Similarly, a data structure supports
dynamic acceptance in amortized time f (s, n) if the first operation init(A) takes
at most f (s, 0) time and, for every n, the first n operations of the form accepted
and read(e) take at most n · f (s, n) time in total. Ultimately, we are interested in
designing data structures where the complexity guarantee f (s, n) is independent of n,
that is, the (amortized) update time is a function of |A| only.

Before presenting the complexity results in detail, we provide an example of appli-
cation of the dynamic acceptance problem.

Example 1 We discuss the relationship between our dynamic acceptance problem for
timed automata and an aggregation problem for monoids over a sliding window, as
considered in [23]. When the monoid is finite, every element of it represents a regular
language, and thus the aggregation problem can be seen as an acceptance problem.
This means that the aggregation problem for finite monoids over a sliding window is
reducible to an automaton acceptance problem in the sliding window model (see also
[22]). We formalize this problem below.

Let A = (�, Q, I , E, F) be a finite automaton and C a positive integer defining
the width of the sliding window. The acceptance problem ofA with a sliding window
of widthC consists of processing, from left to right, an arbitrary inputw = a1a2a3 . . .

over �, while maintaining the answer to the following query: is the sequence of the
last C consumed letters accepted by A? The goal is to design a data structure that,
upon consuming a new letter of a potentially infinite stream, can be updated in a time
that only depends on the automaton A, and not on size of the window C .
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Fig. 2 Reducing the sliding window acceptance problem to the dynamic acceptance problem

Next, we explain how the above problem can be reduced to our dynamic acceptance
problem. Here, we consider only streams that are discrete, and in fact even slightly
more restricted: we assume that every input stream belongs to the language ({1} ·
�)ω, namely, that the letters from � are interleaved by the time unit 1. We map the
input word w = a1a2a3 . . . to a corresponding discrete stream ŵ = 1a11a21a3 . . .,
and modify the finite automaton A to obtain a corresponding timed automaton Â,
as follows. We introduce a new state q̂ , which will be the only final state of Â,
and a clock x. We then replace every transition (q, a, q ′) of A with the transition
(q, a,true, q ′, ∅). Note that these transitions have a vacuous clock condition, hence
they are applicable in Â whenever the original transitions of A are so. In addition,
when the former transition (q, a, q ′) reaches a final state q ′ ∈ F , we also have a
transition (q, a,x = C, q̂, ∅) in Â. Finally, we add looping transitions on the initial
states that reset the clock, that is, transitions of the form (q, a,true, q, {x}), with q ∈
I and a ∈ �. Figure 2 shows the timed automaton Â corresponding to an automatonA
recognising ab∗a.

From the above construction it is clear that Â accepts a prefix 1a1 . . . 1an of ŵ if and
only ifA accepts theC-letter factor an−C+1 . . . an ofw. Thus, the acceptance problem
forA in theC-width slidingwindowmodel is reduced to the dynamic acceptance prob-
lem for Â over the stream ŵ. Wewill see later (Theorem 1) that there is a data structure
that supports dynamic acceptance for Â with update timeO(23|Â|) = O(26|A|). This
means that we can process one letter at a time from a word w, while answering in
time O(26|A|) whether A accepts the sequence of the last C consumed letters. Note
that the complexity here is independent of the parameter C .

Example 2 Consider a scenario from complex event processing (CEP), with a specifi-
cation language called CEL and defined by the following grammar [25, 26]:

ϕ := a | (ϕ � ϕ) | (ϕ Within t)

where a ∈ � and t ∈ N. A wordw = a1a2 . . . an ∈ �∗ matches an expression ϕ from
the above grammar, denoted w � ϕ, if one of the following cases holds:

• ϕ = an ,
• ϕ = (ϕ1 � ϕ2), w = w1 · w2, w1 � ϕ1, and w2 � ϕ2,
• ϕ = (ϕ′ Within t) and am . . . an � ϕ′, where m = max{1, n − t}.

Given a word w = a1a2 . . . and an expression ϕ, we would like to read w sequen-
tially, as in a stream, and decide, at each position n = 1, 2, . . . , whether the
prefix wn = a1 . . . an matches a fixed expression ϕ. One can reduce this latter prob-
lem to the dynamic acceptance problem for timed automata, by using a discrete timed
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Fig. 3 Translation of a CEL expression into an equivalent single-clock timed automaton

word ŵ = 1a11a21 . . . as before and by translating the expression ϕ into an appropri-
ate timed automaton. We omit the straightforward details of the translation of a CEL
expression to an equivalent timed automaton, and we only remark that every occur-
rence of theWithin operator in an expression corresponds to a condition on a specific
clock in the equivalent timed automaton. This means that, in general, the translation
may require a timed automaton with multiple clocks. However, there are simple cases
where, even in the presence of nested Within operators, one can construct an equiv-
alent timed automaton with a single clock. More precisely, this is possible when, for
every occurrence of aWithin operator, say (ϕ Within t), and for every sub-expression
of ϕ of the form (ϕ1 � ϕ2), ϕ2 does not contain aWithin operator. This is the case, for
instance, of the expression ϕ = (((a � b)Within 4) � c)Within 10. This expression
describes a sequence containing three (possibly not contiguous) events a, b, c, with
a and b at distance at most 4 and a and c at distance at most 10. Figure 3 shows a
single-clock timed automaton that is equivalent to ϕ, in the sense that it accepts a
timed word of the form 1a11a21 . . . 1an if and only if a1a2 . . . an � ϕ. In this case one
can validate any input stream against a fixed expression ϕ in time that is constant per
input letter, by simply reducing to our dynamic acceptance problem for single-clock
timed automata and discrete timed words.

Results We say that a stream w is discrete if its elements range over � � {1}, that is,
if all time spans in the stream coincide with the time unit 1. Our main result is the
following:

Theorem 1 Consider the dynamic acceptance problem for timed automata with one
clock. There is a data structure that

• supports dynamic acceptance in time O(23|A|) on discrete streams, and
• supports dynamic acceptance in amortized time O(23|A|) on arbitrary streams,

where A is the automaton provided upon initialization.

We stress that the complexity in Theorem1 depends only on the size ofA. In particular,
it does not depend on the bit-length of clock constants (e.g., constant 24 in Fig. 1). Note
that thanks to the assumption of the real RAM model, the question of the complexity
of arithmetic operations on reals is separated from the running time analysis in the
Proof of Theorem 1. This feature reflects the real-life scenarios, where the automaton
is small, while real numbers involved can be efficiently manipulated by the processor
despite having large bit-length The Proof of Theorem 1 is presented in Sect. 4.

We do not know whether this theorem can be generalized to timed automata with
more than one clock while preserving independence of the time complexity of updates
from the length of the consumed stream prefix. However, we establish a negative result
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for a slightlymore powerfulmodel of timed automata, called timed automatawith addi-
tive constraints (see e.g., [5]). Formally, a timed automaton with additive constraints
is defined exactly as a timed automaton — that is, as a tupleA = (�, Q, X , I , E, F)

consisting of an input alphabet, a set of states, a set of clocks, etc. — but clock condi-
tions are now allowed to satisfy an extended grammar obtained by adding new rules
of the form (

∑
x∈Z x) ∼ c, where Z ⊆ X and ∼ ∈ {<,>,=}. For instance, one can

write x+ y ≤ c, where c is a clock constant. To give some background, let us briefly
discuss in more detail the power of this extension. Allowing additive constraints is
a non-trivial extension of timed automata and in particular it makes the emptiness
problem undecidable [5, Theorem 2]. However, undecidability holds when at least
four clocks are available. Moreover, it is shown that for timed automata with additive
constraints with two clocks the emptiness problem is decidable; and the proof is a
straightforward modification of the standard region construction [5, Proposition 1].

Our negative result relies on the 3SUM Conjecture, stated just below. Recall that in
the 3SUM problem we are given a set S of positive real numbers and the question is to
determine whether there exist a, b, c ∈ S satisfying a + b = c. It is easy to solve the
problem in timeO(n2), where n = |S|; the 3SUM Conjecture asserts that this cannot
be significantly improved:

[3SUM Conjecture] In the real RAM model, the 3SUM problem cannot be solved
in strongly sub-quadratic time, that is, in time O(n2−δ) for any δ > 0, where n is the
number of values forming the

Theorem 2 If the 3SUM Conjecture holds, then there is a two-clock timed automa-
tonAwith additive constraints such that there is no data structure that, when initialized
on A, supports dynamic acceptance in time O(n1−δ) for any δ > 0, where n is the
length of the consumed stream prefix.

A detailed discussion on the 3SUM Conjecture and the Proof of Theorem 2 are
postponed to Sect. 5.

4 Data Structure: Proof of Theorem 1

Notation Let us fix, once and for all, the timed automaton A = (�, Q, X , I , E, F)

with a single clock x that is provided upon initialization. By adding a non-accepting
sink state, if necessary, we may assume that for every q ∈ Q and a ∈ �, some
transition over letter a can be always applied at q at any time (with a trivial clock
condition). Note that this means that the number of runs never decreases over time.

As A uses only one clock x, every configuration of A can be written simply as
a pair (q, t), where q ∈ Q is the state and t ∈ R≥0 is the value of the clock x.
Let 0 = C0 < C1 < . . . < Cm be the clock constants used in A, where we assume
without loss of generality that C0 = 0. For simplicity we also let Cm+1 = ∞. Note
that m ≤ |A|.

Consider now an arbitrary stream w ∈ (� ∪ R>0)
ω. For every n ∈ N, let wn =

w[1 . . . n] be the n-element prefix ofw. Recall thatwn can be thought of as the stream
prefix that is disclosed after n operations read(e). We say that a configuration (q, t)
is active at step n if there is a run of A on wn that starts in a configuration (q0, 0) for
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some q0 ∈ I and ends in (q, t). We let Kn be the set of all configurations (q, t) that
are active at step n.
Partitioning the problem It is clear that the dynamic acceptance problem essentially
boils down to designing an efficient data structure that maintains Kn upon reading
subsequent elements from the stream. This data structure should offer a query on
whether Kn contains an accepting configuration. The main observation is that any
two clock values t and t ′ that are in the same relative order with respect to the clock
constants C1, . . . ,Cm (i.e., for every i = 1, . . . ,m, t < Ci iff t ′ < Ci , and simi-
larly t ≤ Ci iff t ′ ≤ Ci ) satisfy exactly the same clock conditions in E . Precisely, let
us consider the partition of R≥0 into intervals J0, J1, …J2m+1, where J2i = [Ci ,Ci ],
J2i+1 = (Ci ,Ci+1), for all i ∈ {0, . . . ,m}. The following assertion holds: for any
two configurations (q, t), (q, t ′), with t, t ′ ∈ Ji for some 0 ≤ i ≤ 2m + 1, exactly the
same transitions are available in (q, t) as in (q, t ′).

For n ∈ N and i ∈ {0, . . . , 2m + 1}, let

Kn[i] = { (q, t) ∈ Kn : t ∈ Ji }.

The idea is to maintain each set Kn[i] in a separate data structure. Each of these data
structures follows the same design, which we call the inner data structure.
Inner data structure: an overview Every inner data structure is constructed for an
interval J ∈ {J0, . . . , J2m+1}. We will denote it by D[J ], or simply by D[i] when
J = Ji . Each structure D[J ] stores a set of configurations L satisfying the following
invariant: all clock values of configurations in L belong to J . In the final design we
will maintain the invariant that the set L stored by D[i] at step n is equal to Kn[i], but
for the design of D[J ] it is easier to treat L as an arbitrary set of configurations with
clock values in J .

The inner data structure should support the following methods:

• Method init(J ) stores interval J and initializes D[J ] by setting L = ∅.
• Methodaccepted() returns true or false, depending onwhether or not L contains
an accepting configuration, that is, a configuration (q, t) such that q ∈ F .

• Methodinsert(q, t) adds a configuration (q, t) to L . Thismethodwill be always
applied with a promise that t ∈ J and t ≤ t ′ for all configurations (q ′, t ′) already
present in L .

• Method updateTime(r), where r ∈ R>0, increments the clock values of all
configurations in L by r . All configurations whose clock values ceased to belong
to J are removed from L , and they are returnedby themethodonoutput. This output
is organised as a doubly linked list of configurations, sorted by non-decreasing
clock values.

• Method updateLetter(a) updates L by applying to all configurations in L all
possible transitions over the given letter a ∈ �. Precisely, the updated set com-
prises all configurations (q, t) that can be obtained from configurations belonging
to L before the update using transitions over a that do not reset the clock. The
configurations (q, 0) which can be obtained from L using transitions over a that
do reset the clock are not included in the updated set, but are instead returned by
the method as a doubly linked list.
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In Sect. 4.2 we will provide an efficient implementation of the inner data structure,
which is encapsulated in the following lemma.

Lemma 3 For each J ∈ {J0, J1, . . . , J2m+1}, the inner data structure D[J ]
can be implemented so that methods init(), accepted(), insert(·, ·), and
updateLetter(·) run in time O(2|A|), while method updateTime(·) runs in
time O(2|A|) · �, where � is the size of its output.

Wepostpone the Proof of Lemma 3 andwe shownowhow to use it to prove Theorem1.
That is, we design an outer data structure that monitors the acceptance of A.

4.1 Outer Data Structure

The outer data structure consists of a list D[0], . . . , D[2m + 1], where each D[i] is
a copy of the inner data structure constructed for the interval Ji . We will keep the
following invariant:

I1. After step n, for each i ∈ {0, 1, . . . , 2m + 1} the data structure D[i] stores Kn[i].
We first explain how the outer data structure implements the promised operations:

initialization, queries about the acceptance, and updates upon reading the next element
of the stream w. Then we discuss the amortized complexity of the updates.
Initialization Given A, we store A in the data structure and we read the clock
constants 0 = C0 < C1 < . . . < Cm from A. Then we initialize 2m + 1
copies D[0], . . . , D[2m + 1] of the inner data structure by calling method init(J )

for each interval J among J0, J1, . . . , J2m+1. Finally, for each initial state q, we apply
method insert(q, 0) on D[0]. As K0 = {(q, 0) : q ∈ I }, after this we have that
Invariant (I1) holds for n = 0.
Query We query all the data structures D[0], . . . , D[2m + 1] for the existence of
accepting configurations using the accepted() method, and return the disjunction
of the answers. The correctness follows directly from Invariant (I1).
Update by a time span Suppose the next element from the stream is a time
span r ∈ R>0. We update the outer data structure as follows. First, we apply
method updateTime(r) to each data structure D[i]. This operation increments the
clock values of all configurations stored inD[i] by r , but may output a set of configura-
tions whose clock values ceased to fit in the interval Ji . Recall that this set is organised
as a doubly linked list of configurations, sorted by non-decreasing clock values; call
this list Si . Now, we need to insert each configuration (q, t) that appears on those lists
into the appropriate data structureD[ j], where j is such that t ∈ J j . However, we have
to be careful about the order of insertions: we process the lists S2m+1, S2m, . . . , S0
in this precise order, and each list Si is processed from the end, that is, following the
non-increasing order of clock values. When processing a configuration (q, t) from the
list Si , we find the index j > i such that t ∈ J j and apply the method insert(q, t)
on the structure D[ j]. In this way the condition required by the insert method —
that t ≤ t ′ for every configuration (q ′, t ′) currently stored in D[ j] — is satisfied. It is
also easy to see that Invariant (I1) is preserved after the update.
Update by a letter Suppose the next symbol read from the stream is a letter a ∈ �. We
update the outer data structure as follows. First, we applymethodupdateLetter(a)
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to each data structure D[i]. This operation applies all possible transitions on letter a
to all configurations stored in D[i], and outputs a list of configurations Ri where the
clock got reset. All these configurations have clock value 0, hence the length of Ri

is at most |Q|. It now suffices to insert all the configurations (q, 0) appearing on all
the lists Ri to D[0] using method insert(q, 0). We may do this in any order, as the
condition required by the insert method is trivially satisfied. Again, Invariant (I1)
is clearly preserved after the update.

This concludes the implementation of the outer data structure.While the correctness
is clear from the description, we are left with arguing that the time complexity is as
promised.

From Lemma 3 it readily follows that each of the following operations takes
time O(2|A|): initialization, a query about the acceptance, and an update by a let-
ter. As for an update by a time span r ∈ R>0, by Lemma 3 the complexity of such
an update is O(2|A|) · ∑2m+1

i=0 |Si |, where S0, . . . , S2m+1 are the sets returned by the
applications of method updateTime(r) to data structures D[0], . . . , D[2m + 1],
respectively. We need to argue that the amortized time complexity of all these updates
is bounded by O(2|A|).

Consider the following definition: a clock value t ∈ R≥0 is active at step n if Kn

contains a configuration with clock value t . Observe that upon an update by a time
span r ∈ R>0, the set of active clock values simply gets shifted by r , while upon an
update by a letter a ∈ � it stays the same, except that clock value 0 may also become
active. Since at step 0 the only active clock value is 0, we conclude that for every n ∈ N,
at most n + 1 active clock values may have appeared until step n. Note that there may
be at most |Q| different active configurations with the same active clock value, hence
the complexity of each update by a time span is bounded by O(2|A|) · |Q| times the
number of active clock values that change membership from an interval to another
one, where we imagine that each active clock value is shifted by the time span. Since
every active clock value can change membership in an interval at most 2m + 1 times,
and since the total number of active values that appear until step n is at most n+1, we
derive that the total time spent on updates by time spans throughout the first n steps is
bounded byO(2|A|) · |Q| · (2m + 1) · (n + 1). Hence, by recalling that |Q|,m ≤ |A|,
we conclude that the amortized time complexity is O(23|A|).

Finally, note that in the case of discrete streams each set Si consists of configurations
with the same clock value, hence |Si | ≤ |Q| ≤ |A| for all i ∈ {0, . . . , 2m + 1}. So in
this case, the complexity of an update by a time span is bounded byO(23|A|), without
any amortization.

This finishes the Proof of Theorem 1, assuming Lemma 3. We prove the latter next.

4.2 Inner Data Structure

We now describe the inner data structure D[J ] and prove Lemma 3. Let us fix an
interval J ∈ {J0, . . . , J2m+1}.Wedenote by L the set of configurations currently stored
by the inner data structureD[J ]. It is convenient to represent L by a functionλ : R≥0 →
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2Q defined by

λ(t) = { q ∈ Q : (q, t) ∈ L}.

We let L̂ be the set of all clock values that are active in L , that is, L̂ comprises
all t ∈ R≥0 such that λ(t) �= ∅. Recall that we assume that L̂ ⊆ J .

Before we dive into the details, let us discuss the intuition. The basic idea is to store
all the configurations in L in a queue, implemented as a doubly-linked list ordered by
non-decreasing clock values. To handle clock values efficiently, we do not store them
directly. Instead, we maintain a global clock that measures the total time since the
initialization of the data structure, and each configuration bears a timestamp that is the
value of this global clock at the moment of the last reset. Thus, updating by a time span
boils down to increasing the value of the global clock and popping any configurations
at the back of the queue whose clock values ceased to fit into the interval J .

Updating by a letter is more problematic, as we need to apply the transition rela-
tion of the automaton A to all the configurations of L simultaneously. In the data
structure we store a partition of the active clock values L̂ according to their images
under λ(·), so that for each block of this partition (whose number is at most 2|Q|), we
can simultaneously update all corresponding configurations in constant time. There
is a caveat here: it is possible that for some t, t ′ ∈ L̂ we have λ(t) �= λ(t ′) before
the update, but λ(t) = λ(t ′) after the update. That is, the blocks of the partition may
require merging upon updates. We resolve this issue by representing the partition in
a forest, similarly as the union-find data structure would do. The key point is that the
height of this forest can be kept bounded by 2|Q|.
Description of the structure In short, the data structureD[J ] consists of three elements:

• The clock, denoted y, is a real that represents the total time elapsed since initial-
ization.

• The list, denoted l, stores the set of active clock values L̂ .
• The forest, denoted f, is built on top of the elements of l and describes the
function λ.

We describe the list and the forest in more details (the reader can refer to Fig. 4).
The list The list l encodes the clock values present in L̂ , sorted in the increasing order
and organised into a doubly linked list. Each node α on l is a record consisting of:

• next(α): a pointer to the next node on the list;
• prev(α): a pointer to the previous node on the list; and
• timestamp(α) ∈ R: the timestamp of the node.

As usual, the data structure stores l by maintaining pointers to the first and last nodes.
The clock value represented by a node α on l is equal to clock(α) = y −

timestamp(α); this will always be a non-negative real. Thus, the timestamp is
essentially the total elapsed time recorded at the moment of the last reset of the clock.
Note that this implementation allows for a simultaneous increment of clock(α) for
all nodes α on l in constant time: it suffices to simply increment y.
The forest Forest f represents the mapping from elements t ∈ L̂ , encoded in l,
to respective sets of control states λ(t). It is a rooted forest where nodes may have
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Fig. 4 The inner data structure. List elements are depicted as squares while the forest nodes are depicted
as circles. The black circles are the roots

arbitrarily many children, and these children are unordered. Every node γ of f is a
record containing:

• parent(γ ): a pointer to the parent of γ ; and
• #children(γ ): an integer equal to the number of children of γ .

The leaves of the forest will always coincide with the nodes on the list l. In particular,
we augment the records stored for the nodes on l by adding the parent(·) pointer,
and treat them as nodes of the forest f at the same time. The counter #children(·)
would always be equal to 0 for those nodes, so we may omit it.

The roots of the forest are the nodes β with no parent, i.e., parent(β) = ⊥. We
will maintain the invariant that no root is a leaf in f, that is, every root has at least one
child. In the data structure we store a doubly linked list containing all the roots of f.
This list will be denoted r, and again it is stored by pointers to its first and last element.
Thus, the records of the roots of f are augmented by next(·) and prev(·) pointers
describing the structure of r, with the usual meaning. In addition to this, every root β
of f carries two additional values:

• states(β) ⊆ Q: a non-empty subset of control states for which β is responsible;
and

• rank(β): an integer from the set {1, 2, 3, . . . , 2|Q|}.
We will maintain two invariants about these values. First, the sets states(β) must
be different for distinct roots β of f, and the same holds for the ranks rank(β). Note
that this implies that f has at most 2|Q| − 1 roots. Second, for every root β, the tree
rooted at β —which is the tree containing β and all its descendants in f—has depth
at most rank(β) + 1 where the depth of a forest is the maximum number of edges
on a path from a leaf to a root. Note that this implies that the depth of the forest f is
bounded by 2|Q| + 1.

Function λ is then represented as follows. For every nodeα onl, letroot(α) be the
root of the tree of f that contains α. Then denoting t = clock(α), we have λ(t) =
states(root(α)). Note that the invariant stated above implies that from every
leaf α of f, root(α) can be computed from α by following the parent(·) pointer
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at most 2|Q| ≤ 2|A| times. Hence, given t ∈ L̂ and a node α on l satisfying t =
clock(α), we can compute λ(t) in time O(2|A|).
Invariants For convenience, we gather here all the invariants maintained by the inner
data structure which we mentioned before:

I2. For each node α on l, the value clock(α) = y−timestamp(α) belongs to J .
I3. The nodes on l are sorted by increasing clock values, or equally by decreasing

timestamps. That is, timestamp(α) > timestamp(next(α)) for every non-
last node α on l.

I4. Every root of f has at least one child, and the leaves of f are exactly all the nodes
on l.

I5. The roots of f carry pairwise different, non-empty sets of control states,
and they have pairwise different ranks. Moreover, all the ranks belong to the
set {1, 2, . . . , 2|Q|}.

I6. For each root β of f, the depth of the tree rooted at β is at most rank(β) + 1.

ImplementationNowweshowhow to implement themethodsinit(J ),accepted(),
insert(q, t), updateTime(r), and updateLetter(a) in the data structure.
Recall that all these methods should work in time O(2|A|), with the exception
of updateTime(r) which is allowed to work in time O(2|A|) · �, where � is the
size of its output. The description of each method is supplied by a running time anal-
ysis and an argumentation of the correctness, which includes a discussion on why the
invariants stated above are maintained.
Removing nodes Before we proceed to the description of the required methods, we
briefly discuss an auxiliary procedure of removing a node from the list l and from
the forest f, as this procedure will be used several times. Suppose we are given a
node α on the list l and we would like to remove it, which corresponds to removing
from L all configurations (q, t)where t = clock(α) and q ∈ λ(t). We can remove α

from l in the usual way. Then we remove α from f as follows. First, we decrement
the counter of children in the parent of α. If this counter stays positive then there
is nothing more to do. Otherwise, we need to remove the parent of α as well, and
accordingly decrement the counter of children in the grandparent of α. This can again
trigger removal of the grandparent and so on. If eventually we need to remove a root
of f, we also remove it from the list r in the usual way. Since, by Invariants (I5)
and (I6), the depth of f is bounded by 2|Q| + 1 = O(2|A|), the whole procedure can
be performed in time O(2|A|). It is clear that all the invariants are maintained.
Initialization The init(J ) method stores the interval J , that defines the range of
clock values that could be represented in the data structure. It also sets y = 0 and
initializes l and r as empty lists. The correctness and the running time are clear.
Acceptance query The accepted() method is implemented as follows. We iterate
through the list r to check whether there exists a root β of f such that states(f)

contains any accepting state, say q. If this is the case, then by Invariant (I4) there is
a node α on l satisfying root(α) = β, hence (q, t) is an accepting configuration
that belongs to L , where t = clock(α). So we may return a positive answer from
the query. Otherwise, all configurations in L have non-accepting states, and we may
return a negative answer. Note that since by Invariant (I5) the list r has length at
most 2|Q| − 1, the above procedure works in time O(2|A|).
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Insertion We now implement the method insert(q, t), where (q, t) is a configura-
tion. Recall that when this method is executed, we have a promise that t ∈ J and t ≤ t ′
for all configurations (q ′, t ′) that are currently present in D[J ].

Let α be the first node on the list l. Let t ′ = clock(α). By the promise, we
have t ≤ t ′. We consider cases: either t < t ′ or t = t ′. The former case also captures
the situation when l is empty. When t < t ′ or l is empty, the new configuration (q, t)
gives rise to a new active clock value t . Therefore, we create a new list node α0 and
insert it at the front of the list l. We set the timestamp as timestamp(α0) = y − t ,
so that the node correctly represents the clock value t . It is clear that Invariants (I2)
and (I3) are thus satisfied.

Next, we need to insert the new node α0 to the forest f. We iterate through the list r
in search for a root β that satisfies states(β) = {q}. In case there is one, we simply
set parent(α0) = β and increment #children(β). Otherwise, we construct a
new root β0 with states(β0) = {q} and #children(β0) = 1, insert it at the front
of the list r, and set parent(α0) = β0. To determine the rank of β0, we find the
smallest integer k ∈ {1, . . . , 2|Q|} that is not used as the rank of any other root of f.
Observe that, by Invariant (I5), the forest f has at most 2|Q| − 1 roots, so there is
always such a number k, and it can be found in time O(2|A|) by inspecting the list r.
We then set rank(β0) = k. It is clear that this operation can be performed again in
time O(2|A|), and that Invariants (I4), (I5), and (I6) are maintained. For the last one,
observe that the new leaf α0 is attached directly under a root of f, so no tree in f
existing before the insertion could have increased its depth.

We are left with the case when t = t ′. We first compute the set X equal to λ(t)
before the insertion: it suffices to find root(α) in time O(2|A|) and read X =
states(root(α)). If q ∈ X then the configuration (q, t) is already present in L ,
so there is nothing to do. Otherwise, we need to update the data structure so that λ(t)
is equal to X ∪ {q} instead of X . Consequently, we remove the node α from l and
from f, using the operation described earlier, and we insert a new node α′ at the front
of l, with the same timestamp equal to that of α. Thus, clock(α′) = t . We next
insert the new node α′ to the forest f using the same procedure as described in the
previous paragraph, but applied to the state set X ∪{q} instead of {q}. Again, it is clear
that these operations can be performed in time O(2|A|), and the same argumentation
shows that all the invariants are maintained.
Update by a time spanNext,we implement themethodupdateTime(r), for r ∈ R>0.
First, we increment y by r . Thus, for every node α in the list l, the value clock(α) is
incremented by r . However, the Invariant (I2) may have ceased to hold, as some active
clock values could have been shifted outside of the interval J . The configurations with
these clock values should be removed from the data structure and their list should be
the output of the method.

We extract these configurations as follows. Construct an initially empty list of
configuration lret, on which we shall build the output. Iterate through the list l,
starting from its back. For each consecutive node α, compute t = clock(α). If t ∈ J ,
then break the iteration and returnlret, as there are nomore configurations to remove.
Otherwise, find root(α) in time O(2|A|), read λ(t) = states(root(α)), and add
at the front of lret all configurations (q, t) for q ∈ λ(t), in any order. Then remove α
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from the list l and from the forest f, and proceed to the previous node in l (if there
is none, finish the iteration).

By Invariant (I3), it is clear that in this way we remove from D[J ] exactly all
the configurations whose clock values got shifted outside of J , hence Invariants (I2)
and (I3) are maintained. As the forest structure was influenced only by removals,
Invariants (I4), (I5), and (I6) are maintained as well. Note that the output list lret is
ordered by non-decreasing clock values, as required. As for the time complexity, the
procedure presented above takes time O(2|A|) · �′, where �′ is the number of nodes
that we remove from l. As for every node α the set states(root(α)) is non-empty
and of size at most |Q|, with every removed node we add to lret between 1 and |Q|
new configurations. Hence, we can also bound the complexity byO(2|A|) · �, where �

is the number of configurations that appear in the output list lret.
Update by a letter We proceed to the method updateLetter(a), where a ∈ �. As
argued before, every clock condition appearing inA is either true for all clock values
in J , or false for all clock values in J . For every subset of states S ⊆ Q, let�(S) be the
set of all states q such that there is a transition (p, a, q, γ, ∅) in E for some p ∈ S and
clock condition γ that is true in J . In other words, �(S) comprises states reachable
from the states of S by non-resetting transitions over a that are available for clock
values in J . We define �(S) in a similar way, but for resetting transitions over a that
are available for clock values in J .

First, we compute the output of the method, which is {(q, 0) : q ∈ �(S)} where S
is the set of all states appearing in the configurations of L . Note that, by Invariant (I4),
S can be computed in time O(2|A|) by iterating through the list r and computing
the union of sets states(β) for roots β appearing on it. Thus, the output can be
computed in time O(2|A|).

Second, we need to update the values of function λ by applying all possible non-
resetting transitions over a. This can be done by iterating through the list r and, for
each root β appearing on it, substituting states(β) with �(states(β)). Note that
since we assumed that for every state q, some transition over a is always available at q,
it follows that � maps non-empty sets of states to non-empty sets of states. Hence,
after this substitution the roots of f will still be assigned non-empty sets of states.
However, Invariant (I5) may cease to hold, as some roots may now be assigned the
same set of states.

Wefix this as follows. For every rootβ off, inspect the listr and find the rootβ ′ that
has the largest rank among those satisfying states(β) = states(β ′). If β = β ′,
then do nothing. Otherwise, turn β into a non-root node of f, remove it from the
list r, set parent(β) = β ′, and increment #children(β ′) by one. Note that after
applying this modification, the function λ stored in the data structure stays the same,
while Invariant (I5) becomes satisfied.

As for the other invariants, the satisfaction of Invariants (I2), (I3), and (I4) after the
update is clear. However, we need to be careful about Invariant (I6), as we might have
substantially modified the structure of the forest f. Observe that each modification
of f that we applied boils down to attaching a tree with a root of some rank i as a child
of a tree with a root of some rank j > i . By Invariant (I6), the former tree has depth at
most i + 1, which is bounded from above by j . Thus, after the attachment, the depth
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of the latter tree cannot become larger than j + 1. We conclude that Invariant (I6) is
maintained as well.

Finally, note that since the number of roots of f is always bounded by 2|Q| − 1, all
the operations described above can be performed in time O(2|A|).

5 Lower Bound for Two-Clock Timed Automata with Additive
Constraints

In this section, we prove a complexity lower bound for a variant of the dynamic
acceptance problem. Ideally, we would like to prove that there is a timed automatonA
with two clocks such that no data structure can support dynamic acceptance for A
in time depending only on |A|. This would imply that our result (Theorem 1) for the
dynamic acceptance problem for single-clock timed automata cannot be generalised to
the multiple-clock setting.We are not able to establish optimality in this sense.We can
however prove a result along the same line, by considering timed automata extended
with additive constraints, that is, having clock conditions of the form

(∑
x∈Z x

) ∼ c,
and by relying on certain complexity assumptions (Conjecture 3, also known as 3SUM
Conjecture).

The 3SUM Conjecture was introduced by Gajentaan and Overmars [27, 28] in a
stronger form, which postulated the non-existence of sub-quadratic algorithms, that
is, achieving running time o(n2). This formulation was refuted by Grønlund and Pettie
[29], who gave an algorithm for 3SUMwith running timeO(n2/(log n/ log log n)2/3)

in the real RAMmodel, which can be improved toO(n2(log log n)2/ log n)when ran-
domization is allowed. However, the existence of a strongly sub-quadratic algorithm
is conjectured to be hard.

Recall that in the 3SUM problem, we are given a set S of positive real numbers and
the question is to determine whether there exist a, b, c ∈ S satisfying a + b = c. We
remark that the original phrasing of the conjecture allows non-positive numbers on
input and asks for a, b, c ∈ S such that a+b+c = 0. It is easy to reduce this standard
formulation to our setting, for example by replacing S with S′ = {3M + x : x ∈
S} ∪ {6M − x : x ∈ S}, where M is any real that is larger than the absolute value of
a, for all a ∈ S.

The 3SUM Conjecture has received significant attention in the recent years, as it
was realised that it can be used as a base for tight complexity lower bounds for a
variety of discrete graph problems, including questions about efficient dynamic data
structures [1, 30–32]. In this setting, it is common to assume the integer formulation
of the conjecture: there exists d ∈ N such that the 3SUM problem, where the input
numbers are integers from the range [−nd , nd ], cannot be solved in strongly sub-
quadratic time, assuming the word RAM model with words of bit-length O(log n).
The construction we are going to present in this section proves an analogous lower
bound for the dynamic acceptance problem, assuming the former integer formulation
of the 3SUM Conjecture. For this, we would need to amend the formulation of the
dynamic acceptance problem, so that it makes sense to use the word RAM model
instead of the real RAM model. More precisely, we assume that (1) the input stream
is finite and expected to have total length at most N , (2) the clock constants and the
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time spans in the stream are integers of bit-length at most M , and (3) the data structure
solving the monitoring problem should work in the word RAM model with words of
bit-length O(M + log N ).

We now prove Theorem 2. That is, we provide a lower bound for the dynamic
acceptance problem for two-clock timed automata with additive constraints under the
3SUM Conjecture.

Our approach is similar in spirit to the other lower bounds on dynamic problems,
which we mentioned above [1, 30–32]. We first prove 3SUM-hardness of deciding
acceptance by a timed automatonwith additive constraints in the static setting.We then
show that any data structure that supports monitoring in amortized strongly sub-linear
time would violate the 3SUM-hardness of the former static acceptance problem, thus
proving Theorem 2.

The Proof of Theorem 2 follows almost directly from an analogous 3SUM-hardness
result in the static setting:

Lemma 4 If the 3SUMConjecture holds, then there is a two-clock timed automatonA
with additive constraints for which there is no algorithm that, given a finite timed
word w ∈ (� � R>0)

∗ as input, where � is a two-letter alphabet, decides whetherA
accepts w in time O(n2−δ) for any δ > 0 and for n = |w|.
Proof We construct a two-clock timed automaton A with additive constraints and an
algorithm that, given a set S of n positive reals, outputs in time O(n log n) a word
w ∈ (� � R>0)

∗ such that w is accepted by A if and only if there are a, b, c ∈ S
satisfying a + b = c. We find it more convenient to first present the construction of w

from S. Then we present the automaton A and analyse its runs on w.
Let S = {s1, s2, . . . , sn} be a set of positive real numbers and let M = max(S)+1.

By sorting S we may assume that 0 < s1 < . . . < sn < M . We set � = {♦,♠}. The
word obtained from S is defined as

w = u ♠ u ♠ v,

where

u = 2(M − sn) ♦ 2(sn − sn−1) ♦ 2(sn−1 − sn−2) ♦ . . . ♦ 2(s2 − s1) ♦ 2(s1 − 0);
v = (M − sn) ♦ (sn − sn−1) ♦ (sn−1 − sn−2) ♦ . . . ♦ (s2 − s1) ♦.

Note that w has length O(n) and can be constructed from S in time O(n log n).
Intuitively, the factors u, u, and v above are responsible for the choice of a, b, and c,
respectively.

Wenowdescribe a timed automatonA that acceptsw if and only if there area, b, c ∈
S such that a+b = c. The automaton is depicted in Fig. 5. It uses two clocks, named x
and y. All the transitions have trivial (always true) clock conditions, apart from the
transition from r1 to r2, where we check that the sum of clock values is equal to 4M .
The only initial state is p1; the only accepting state is r2.

Next, we analyse the runs ofA on w, with the goal of showing thatA accepts w if
and only if there are a, b, c ∈ S such that a + b = c. Consider any successful run ρ
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Fig. 5 Timed automaton for reducing 3SUM

ofA on w. Observe that the moment of reading the first symbol ♠ in w must coincide
with firing the transition from p2 to q1. At this moment, the automaton has consumed
the first factor u of w, and there was a moment where it moved from state p1 to
state p2 upon reading one of the ♦ symbols from u. Supposing that the transition in ρ

from p1 to p2 happens at the i-th symbol ♦ of u, the clock valuation at the moment of
reaching q1 for the first time must satisfy x = 2(si − si−1) + . . . + 2(s2 − s1) + 2s1
(= 2si ). We conclude the following.

Claim 4.1 The set of possible valuations for clock x at the moment of reaching the
state q1 for the first time is {2a : a ∈ S}.

Next, observe that the moment of reading the second occurrence of ♠ in w must
coincide with firing the transition from q2 to r1. Between the first and the second
symbol ♠ the automaton consumes the second factor u, and the clock x increases
exactly by the sum of the time spans within u, i.e., by 2M . On consuming the second
factor u, the clock y is reset once, and precisely when firing the transition from q1
to q2, which happens upon reading one of the occurrences of ♦ in u. Again, if this
happens when reading the j-th occurrence of ♦, then, after the reset, y is incremented
by exactly 2s j units. We conclude the following.

Claim 4.2 The set of possible clock valuations at the moment of reaching the state r1
for the first time is {(x = 2a + 2M, y = 2b) : a, b ∈ S}.

Finally, after consuming the last factor v, the automaton can move to the accepting
state r2 if and only if at some point, upon reading an occurrence of♦, the condition x+
y = 4M holds. Observe that the sum of the first k numbers encoded in v is equal
toM−sn−k+1. Hence, after parsing those numbers, the set of possible clock valuations
is {(x = 2a + 2M + M − c, y = 2b + M − c) : a, b ∈ S}, for some choice
of c ∈ S. Moreover, the latter valuations satisfy the condition x+y = 4M if and only
if a + b = c.

Based on the above arguments, we infer that a successful run like ρ exists on inputw
if and only if there are a, b, c ∈ S such that a + b = c. To conclude the proof, we
observe that if an algorithm could decide whether A accepts w in time O(n2−δ) for
any δ > 0, then by combining this algorithm with the presented construction, one
could solve 3SUM in time O(n2−δ). This would contradict the 3SUM Conjecture. ��

Now, Theorem 2, which we restate below for convenience, follows almost directly
from the previous lemma.
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Theorem 2 If the 3SUM Conjecture holds, then there is a two-clock timed automa-
tonAwith additive constraints such that there is no data structure that, when initialized
on A, supports dynamic acceptance in time O(n1−δ) for any δ > 0, where n is the
length of the consumed stream prefix.

Proof Consider the timed automatonA provided by Lemma 4. If a data structure as in
the statement of the theorem existed, then using this data structure one could decide
in strongly sub-quadratic time whether any input timed word w is accepted by A, by
simply applying the sequence of read(·) operations corresponding tow, followed by
the query accepted. ��

6 Concluding Remarks and FutureWork

In thisworkwe studied the dynamic acceptance problem for timed automata processing
data streams. We designed a suitable data structure for one-clock timed automata,
where the amortized update time depends only on the size of the automaton. We leave
as an open question whether this result can be generalised to the case of multiple
clocks.

More generally speaking, it seems that our work identifies dynamic variants of clas-
sic automata problems as a potential area of interest for the paradigm of parametrised
dynamic data structures. More precisely, if the automaton model in question allows
for the device to potentially be in an unbounded number of configurations, then the
dynamic maintenance of this set of configurations is a computationally challenging
problem, as show-cased in this paper. There are multiple models of devices where sim-
ilar questions can be asked. Examples include counter automata, register automata,
weighted automata, or pushdown automata.
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32. Pătraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: 42nd ACM Symposium
on Theory of Computing, STOC 2010, pp. 603–610. ACM, Cambridge, Massachusetts, USA (2010).
https://doi.org/10.1145/1806689.1806772

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.STACS.2018.31
https://doi.org/10.25819/ubsi/464
https://doi.org/10.1145/3093742.3093925
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.1016/j.comgeo.2011.11.006
https://doi.org/10.1145/3185378
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1145/1806689.1806772

	Dynamic Data Structures for Timed Automata Acceptance
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Dynamic Acceptance Problem
	4 Data Structure: Proof of Theorem 1
	4.1 Outer Data Structure
	4.2 Inner Data Structure

	5 Lower Bound for Two-Clock Timed Automata with Additive Constraints
	6 Concluding Remarks and Future Work
	References




