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1 Introduction

This note was given as a handout at the 2009 Bertinoro summer school on robust control with constraints.
The following paper are appended at the end of the file, because they contain further develoopment along
the directions given in the note:

• LMI-based anti-windup with exponentially stable plants [12]: it contains the development of static and
dynamic anti-windup with global sector characterizations (see also [14] for the external anti-windup
case and [9] for the reduced order design);

• LMI-based anti-windup with any plant [17]: it contains the development of static and dynamic anti-
windup with regional sector characterizations. A discrete-time version of these results is given in
[22].

• Analysis of stability and performance with quadratic, max of quadratics and convex hull of quadratics
[18]. This is an extended version of the paper [16].

• Analysis of stability and performance with piecewise quadratic Lyapunov functions [5].

• LMI-based bounded stabilization (not anti-windup!) using controller with internal deadzone loops [4].

Additional references that could give insight into the anti-windup approaches are the survey [25] and the
work [10] and references therein, where the Model Recovery Anti-windup (formerly called L2 anti-windup)
is used. This solution was not covered in the Bertinoro class.

1.1 Description of feedback loop

This chapter starts by addressing analysis of feedback loops with saturation. In particular, it develops tools
for verifying internal stability and quantifying L2 external stability for the well-posed feedback intercon-
nection of a linear system with a saturation nonlinearity. Such a system is depicted in Figure 1 and has
state-space representation

H̃





ẋ = Ãx + B̃σ + Ẽw

z = C̃x + D̃σ + F̃w

u = K̃x + L̃σ + G̃w

σ = sat(u) .

(1)

It is more convenient for analysis and synthesis purposes to express this system in terms of the deadzone
nonlinearity q = u − sat(u) as shown in Figure 2. The state-space representation of (1) using the deadzone
nonlinearity is obtained by first solving for u in the equation

u = K̃x + L̃u − L̃q + G̃w . (2)

The solution can be obtained when I − L̃ is invertible, which is a necessary condition for well-posedness of
the feedback system (1). For more information on well-posedness, see Section 4.2. The solution is used to
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write the system (1) as

H





ẋ = Ax + Bq + Ew
z = Cx + Dq + Fw
u = Kx + Lq + Gw
q = u − sat(u)

(3)

where 


A B E
C D F
K L G


 =




Ã −B̃ Ẽ

C̃ −D̃ F̃
0 0 0


 +




B̃

D̃
I


 (I − L̃)−1

[
K̃ −L̃ G̃

]
. (4)

u

w z

σ
H̃

Figure 1: A closed-loop system involving a saturation nonlinearity.
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Figure 2: A closed-loop system involving a saturation nonlinearity written in compact form in negative
feedback with a deadzone nonlinearity.

1.2 Quadratic functions and semidefinite matrices

The tools used here rely on nonnegative, quadratic functions for analysis. Such functions will lead to
numerical algorithms that involve solving a set of linear matrix inequalities (LMIs) in order to certify
internal stability or quantify external performance. Efficient commercial LMI solvers are widely available.

A nonnegative, quadratic function is a mapping x 7→ xT Px where P is symmetric, in other words, P is
equivalent to its transpose, and xT Px ≥ 0 for all x. In general, a symmetric matrix P that satisfies xT Px ≥ 0
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for all x will be called a positive semidefinite matrix, written mathematically as P ≥ 0. If xT Px > 0 for
all x 6= 0, then P will be called a positive definite matrix, written mathematically as P > 0. A symmetric
matrix Q is negative semidefinite, written mathematically as Q ≤ 0, if −Q is positive semidefinite. A similar
definition applies for a negative definite matrix. All of these terms are reserved for symmetric matrices. The
reason for this is that a general square matrix Z can be written as Z = S+N where S is symmetric and N is
anti-symmetric, i.e., N = −NT and then it follows that xT Zx = xT Sx. In other words, the anti-symmetric
part plays no role in determining the sign of xT Zx. The notation P1 > P2, respectively P1 ≥ P2, indicates
that the matrix P1 −P2 is positive definite, respectively positive semidefinite. Note that if P > 0 then there
exists ε > 0 sufficiently small so that P > εI.

2 Unconstrained feedback systems

To set the stage for results regarding the system (3), consider using quadratic functions to analyze uncon-
strained feedback systems, where the saturation nonlinearity in (3) is replaced by the identity function, in
other words, q ≡ 0, so that the system (3) becomes

ẋ = Ax + Ew
z = Cx + Fw .

(5)

2.1 Internal stability

When checking internal stability, w is set to zero, z plays no role, and (5) becomes simply ẋ = Ax. To
certify exponential stability for the origin of this system, one method that generalizes to feedback loops with
input saturation involves finding a nonnegative, quadratic function that strictly decreases along solutions,
except at the origin. Quadratic functions are convenient because they lead to stability tests that involve
only linear algebra.

To determine whether a function is decreasing along solutions, it is enough to check whether, when eval-
uated along solutions, the function’s time derivative is negative. For a continuously differentiable function,
the time derivative can be obtained by computing the directional derivative of the function in the direction
Ax and then evaluating this function along the solution. This corresponds to the mathematical equation

·︷ ︸︸ ︷
V (x(t)) = 〈∇V (x(t)), Ax(t)〉

where V represents the function,

·︷ ︸︸ ︷
V (x(t)) represents its time derivative along solutions at time t, ∇V (x) is

the gradient of the function and 〈∇V (x), Ax〉 is the directional derivative of the function in the direction
Ax. For a quadratic function V (x) = xT Px, where P is a symmetric matrix, the classical chain rule gives
that this directional derivative equals

xT (PA + AT P )x.

Thus, in order for the time derivative to be negative along solutions, except at the origin, it should be the
case that the directional derivative satisfies

xT (AT P + PA)x < 0 ∀x 6= 0 ,

in other words, AT P + PA < 0. In summary, to certify internal stability for the system (5) with a given
matrix A, one looks for a symmetric matrix P satisfying

P ≥ 0
0 > AT P + PA .

(6)

This is a particular example of a set of linear matrix inequalities (LMIs), which will be discussed in more
detail in Section 3. Software for checking the feasibility of LMIs is widely available. It turns out that the
LMIs in (6) are feasible if and only if the system (5) is internally stable.

3



2.2 External stability

Now the external disturbance w is no longer constrained to be zero. Thus, the relevant equation is (5). The
goal is to determine the L2 gain from disturbance w to the performance output variable z and simultaneously
establish internal stability. It is possible to give an arbitrarily tight upper bound on this gain by again
exploiting nonnegative, quadratic functions. However, the quadratic function will not always be decreasing
along solutions. Instead, an upper bound on the time derivative will be integrated to derive a relationship
between the energy in the disturbance w and the energy in the performance output variable z. Again, the
directional derivative of the function xT Px in the direction Ax + Ew generates the time derivative of the
function along solutions. This time the directional derivative is given by

xT (AT P + PA)x + 2xT PEw.

In order to guarantee an L2 gain less than a number γ > 0 and to establish internal stability at the same
time, it is sufficient to have

xT (AT P + PA)x + 2xT PEw < −γ

(
1

γ2
zT z − wT w

)
∀(x, w) 6= 0 . (7)

Using the definition of z in (5), this condition is the same as having, for all (x, w) 6= 0,

[
x
w

]T ([
AT P + PA PE

ET P −γI

]
+

1

γ

[
CT

F T

] [
C F

]) [
x
w

]
< 0 .

In other words, the large matrix in the middle of this expression is negative definite. In summary, to certify
internal stability and L2 external stability with gain less than γ > 0 for the system (5) with a given set of
matrices (A, B, E, F ), it suffices to find a symmetric matrix P satisfying

P ≥ 0

0 >

[
AT P + PA PE

ET P −γI

]
+

1

γ

[
CT

F T

] [
C F

]
.

(8)

This is another set of LMIs, the feasibility of which can be tested with standard commercial software.
Moreover, such software can be used to approximate the smallest possible number γ that makes the LMIs
feasible. The feasibility of the LMIs in (8) is also necessary for the L2 gain to be less than γ with internal
stability.

3 Linear Matrix Inequalities

As the preceding sections show, the analysis of dynamical systems benefits greatly from the availability of
software to solve linear matrix inequalities (LMIs). The sections that follow show that LMIs also arise when
using quadratic functions to analyze feedback loops with saturation. The goal of this section is to provide
some familiarity with LMIs and to highlight some aspects to be aware of when using LMI solvers.

Linear matrix inequalities are generalizations of linear scalar inequalities. A simple example of a linear
scalar inequality is

2za + q < 0, (9)

where a, q are known parameters and z is a free variable. In contrast to the linear scalar equality 2za+q = 0,
which either admits no solution (if a = 0 and q 6= 0), an infinite number of solutions (if a = 0 and q = 0),
or one solution (if a 6= 0), the linear scalar inequality (9) either admits no solutions (if a = 0 and q ≥ 0) or
admits a convex set of solutions given by {z ∈ R : z < −q/(2a)}. In the former case the inequality is said
to be infeasible. In the latter case it is said to be feasible.

Linear matrix inequalities generalize linear scalar inequalities by allowing the free variables to be matrices,
allowing the expressions in which the free variables appear to be symmetric matrices, and generalizing
negativity or positivity conditions to negative or positive definite matrix conditions.
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Replacing the quantities in (9) with their matrix counterparts and insisting that the resulting matrix is
symmetric gives the linear matrix inequality

AT ZT + ZA + Q < 0 . (10)

In this LMI, A and Q are known matrices and Q is symmetric. The matrix Z comprises m times n
free variables where m denotes the number of columns of Z and n denotes the number of rows of Z.
Characterizing the solution set of (10) is not as easy as before, because the solution space will be delimited
by several hyperplanes that depend on the entries of the matrices A and Q. However, one important property
of this solution set is that it is convex. In particular, if the matrices {Z1, . . . , Zk} all satisfy the LMI (10)
then for any set of numbers {λ1, . . . , λk}, where each of these numbers is between zero and one, inclusive,
and the sum of the numbers is one, the matrix

Z :=
k∑

i=1

λiZi

also satisfies the LMI (10). The convexity property arises from the fact that (10) is linear in the free variable
Z.

Now consider the case where Q is taken to be zero and the free variable Z is required to be symmetric
and positive semidefinite. The variable Z will be replaced by the variable P for this case. With the free
variable being symmetric, the parameter A is now required to be a square matrix. Now, recall that the
matrix condition AT P + PA < 0 is equivalent to the existence of ε > 0 such that AT P + PA + εI ≤ 0.
Therefore, an extra free variable ε can be introduced to write the overall conditions as the single LMI

[
P 0
0 −(AT P + PA + εI)

]
≥ 0 . (11)

The implicit constraint that P is symmetric reduces the number of free variables in the matrix P to the
quantity n(n+1)/2 where n is the size of the square matrix P . The feasibility of the LMI (11) is equivalent
to the simultaneous feasibility of the two LMIs

P ≥ 0
0 > AT P + PA

(12)

which match the LMIs (6) that appeared in the analysis of internal stability for linear systems. It is worth
noting that most LMI solvers have difficulty with inequalities that are not strict. This is because sometimes,
in this case, the feasibility is not robust to small changes in the parameters of the LMI. For example, with
the choice

A =

[
0 1
−1 0

]

the LMIs P > 0 and 0 ≥ AT P +PA are feasible (note that the strictly inequality and the nonstrict inequality
have been exchanged relative to (12)) as can be seen by taking P = I. However, the LMIs are not feasible if
one adds to A the matrix εI for any ε > 0. On the other hand, strict LMIs, if feasible, are always robustly
feasible. Fortunately, the feasibility of the LMIs (12) is equivalent to the feasibility of the LMIs

P > 0
0 > AT P + PA .

(13)

This can be verified by letting P̂ denote a feasible solution to (12) and observing that P̂ + εI must be a
feasible solution to (13) for ε > 0 sufficiently small. From the discussion in Section 2.1, it follows that the
LMIs (13) are feasible if and only if the system ẋ = Ax is internally stable.

Next consider the matrix conditions that appeared in Section 2.2, the feasibility of which was equivalent
to having L2 external stability with gain less than γ > 0 and internal stability for (5). Using the same idea
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as above to pass to a strict inequality for the matrix P , the feasibility of the matrix conditions in (8) is
equivalent to the feasibility of the matrix conditions

P > 0

0 >

[
AT P + PA PE

ET P −γI

]
+

1

γ

[
CT

F T

] [
C F

]
.

(14)

The matrices (A, E, C, F ) are parameters that define the problem. If the value γ is specified, then the
feasibility of the resulting LMIs in terms of the free variable P can be checked with an LMI solver. If the
interest is in finding values for γ > 0 to make the matrix conditions feasible, then γ can be taken to be a
free variable. However, the matrix conditions do not constitute LMIs because of the nonlinear dependence
on the free parameter γ through the factor 1/γ that appears. Fortunately, there is a way to convert the
matrix conditions above into LMIs in the free variables γ and P using the following fact:

(Schur complements) Let Q and R be symmetric matrices and let S have the same number of
rows as Q and the same number of columns as R. Then the matrix condition

[
Q S
ST R

]
> 0

is equivalent to the matrix conditions

R > 0
Q − SR−1ST > 0 .

This fact can be applied to the matrix conditions (14) to obtain the matrix conditions

γ > 0
P > 0

0 >




AT P + PA PE CT

ET P −γI F T

C F −γI




(15)

which are LMIs in the free variables P and γ. If the system ẋ = Ax is internally stable then these LMIs
will be feasible. This follows from the fact that there will exist P > 0 satisfying AT P + PA < 0, which
is the matrix that appears in the upper left-hand corner of the large matrix in (15), and a consequence of
Finsler’s Lemma, which is the following:

(Finsler’s Lemma) Let Q be symmetric and let H have the same number of columns as Q. If
ζT Qζ < 0 for all ζ 6= 0 satisfying Hζ = 0 then, for all γ > 0 sufficiently large, Q − γHT H < 0.

If one applies this fact with the matrix

Q :=




AT P + PA PE CT

ET P 0 F T

C F 0




and

H =




0 0 0
0 I 0
0 0 I




one sees that the LMIs in (15) will be feasible for an appropriate P matrix and large enough γ > 0.
To determine a tight upper bound on the L2 gain, one is interested in making γ as small as possible.

The task of minimizing γ subject to satisfying the LMIs (15) is an example of an LMI eigenvalue problem
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and can be written as:

min
P,γ

γ, subject to

P > 0, (16a)

0 >




AT P + PA PE CT

ET P −γI F T

C F −γI


 . (16b)

Since large block matrices that appear in LMIs must always be symmetric, the entries below the diagonal
must be equal to the transposes of the entries above the diagonal. For this reason, such matrices can be
replaced with the ‘⋆’ symbol without any loss of information. For example, (16) can be written as

min
P,γ

γ, subject to

P > 0, (17a)

0 >




AT P + PA PE CT

⋆ −γI F T

⋆ ⋆ −γI


 . (17b)

with no loss of information.
An alternative notation that may simplify (16) relies on the use of the function “He” which, given any

square matrix X is defined as HeX := X + XT , so that (16) can be written as

min
P,γ

γ, subject to

P > 0, (18a)

0 > He




PA PE 0
0 −γI/2 0
C F −γI/2


 . (18b)

The LMI feasibility and eigenvalue problems can be solved efficiently using modern numerical software
packages. As an example, the code needed in MATLAB’s LMI control toolbox to implement the search for
the optimal solution to (16) or, equivalently, of (17) and (18) is given next.

Example 1 Implementing LMIs using the MATLAB’s LMI control toolbox requires first defining the LMI
constraints structure and then running the solver on those constraints. The LMI constraints are specified
by a start line (setlmis([]);) and an end line (mylmisys=getlmis;) which also gives a name to the LMI
constraints. Then the LMI constraints consist of a first block where the LMI variables are listed and of a
second block where the LMI constraints are described in terms of those variables. The following code gives
a rough idea of how this should be implemented. Comments within the code provides indications of where
the different blocks are located. For more details, the reader should refer to the MATLAB’s LMI control
toolbox user’s guide.

% Initialize the LMI system

setlmis([]);

% Specify the variables of the LMI

P = lmivar(1,[length(A) 1]);

gamma = lmivar(1,[1 0]);

% Describe the LMI constraints

% 1st LMI (P>0)
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Ppos = newlmi;

lmiterm([-Ppos 1 1 P],1,1);

% 2nd LMI (L2 gain)

L2lmi = newlmi;

lmiterm([L2lmi 1 1 P],1,A,’s’);

lmiterm([L2lmi 1 2 P],1,E);

lmiterm([L2lmi 2 2 gamma],-1/2,eye(size(E,2)),’s’);

lmiterm([L2lmi 3 1 0],C);

lmiterm([L2lmi 3 2 0],F);

lmiterm([L2lmi 3 3 gamma],-1/2,eye(size(C,1)),’s’);

% Assign a name to the LMI system

mylmisys=getlmis;

% Solve the LMI

% Choose the function to be minimized (gamma)

n = decnbr(mylmisys);

cost = zeros(n,1);

for j=1:n,

cost(j)=defcx(mylmisys,j,gamma);

end

% Run the LMI solver

[copt,xopt]=mincx(mylmisys,cost);

% Decode the solution (if any)

if not(isempty(copt)),

Psol = dec2mat(mylmisys,xopt,P);

gammasol = dec2mat(mylmisys,xopt,gamma);

% compare to alternative Hinf norm computation

sys = pck(A,E,C,F);

out = hinfnorm(sys);

disp([out(2) gammasol])

end

•

Example 2 The MATLAB code illustrated in the previous example is quite streamlined and using the LMI
control toolbox in such a direct way can many times become quite complicated in terms of actual MATLAB
code. An alternative to this is to indirectly specify the LMI constraints and use the LMI control toolbox
solver by way of the YALMIP (=Yet Another LMI Parser) front-end. The advantages of using YALMIP
mainly reside in the increased simplicity of the code (thereby significantly reducing the probability of typos)
and in the code portability to alternative solvers to the classical LMI control toolbox (SeDuMi is a much
used alternative). The same calculation reported in the previous example is computed using the YALMIP
front-end in the following code:

% compute the size of the matrices

n = length(A);

[ny,nu] = size(F);
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% decision variables

P=sdpvar(n); % symmetric n-x-n

gamma=sdpvar(1); % scalar

% define the inequality constraints

M = [ P*A P*E zeros(n,ny);

zeros(nu,n) -gamma/2*eye(nu) zeros(nu,ny);

C F -gamma/2*eye(ny)];

constr = set(M+M’<0) + set(P>0);

% set the solver and its options

% here we use the LMI Control Toolbox

opts=sdpsettings;

opts.solver=’lmilab’;

% solve the LMI minimizing gamma

yalmipdiagnostics=solvesdp(constr,gamma,opts)

% evaluate solution variables (if any)

Psol=double(P);

gammasol=double(gamma);

% compare to alternative Hinf norm computation

sys = pck(A,E,C,F);

out = hinfnorm(sys);

disp([out(2) gammasol])

•

Example 3 CVX is another useful program for solving structured convex optimization problems, including
LMIs. The previous calculations in CVX are as follows:

cvx_begin sdp

% compute the size of the matrices

n = length(A);

[ny,nu] = size(F);

% decision variables

variable P(n,n) symmetric;

variable gamma;

% define the inequality constraints

M = [ P*A P*E zeros(n,ny);

zeros(nu,n) -gamma/2*eye(nu) zeros(nu,ny);

C F -gamma/2*eye(ny)];

minimize gamma

subject to

gamma>0;

P>0;

M+M’<0;
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cvx_end

•

There are a few points to make about the variability in solutions to LMI eigenvalue problems returned
by using different commercial solvers. First, notice that the LMI eigenvalue problem in (17) involves an
optimization over an open set of matrices. So, technically, it is not possible to achieve the minimum. It would
be more appropriate to say that the optimization problem is looking for the infimum. Indeed, if a minimum
γ∗ existed and satisfied the LMIs then it would also be the case that γ − ε satisfied the LMIs for ε > 0
sufficiently small, contradicting the fact that γ∗ is a minimum. A consequence of this fact is that, since it is
not possible to reach an infimum, each solver will need to make its own decision about the path to take toward
the infimum and at what point to stop. Different paths to the infimum and different stopping conditions
will cause different solvers to return different solutions. Second, unless the optimization is strictly convex,
the solution to the optimization problem may not be unique. This fact may also contribute to variability in
the solutions returned by different solvers. In each of these cases, the different minima returned should be
quite close to one another, whereas the matrices returned that satisfy the LMIs may be quite different.

Before moving on to the analysis of constrained feedback systems, one additional matrix manipulation,
which will be used to analyze systems with saturation, will be introduced. It is closely related to Finsler’s
Lemma.

(S-procedure) Let M0 and M1 be symmetric matrices and suppose there exists ζ∗ such that
ζ∗M1ζ

∗ > 0. Then the following statements are equivalent:

i. There exists τ > 0 such that M0 − τM1 > 0.

ii. ζT M0ζ > 0 for all ζ 6= 0 such that ζT M1ζ ≥ 0.

The implication from (i) to (ii) is simple to see, and does not require the existence of ζ∗ such that
ζ∗M1ζ

∗ > 0. The opposite implication is nontrivial.

4 Constrained feedback systems: global analysis

4.1 Sector characterizations of nonlinearities

In order to arrive at LMIs when checking the internal stability and L2 external stability for feedback loops
with saturations or deadzones, one typically inscribes the saturation or deadzone into a conic region and
applies the S-procedure. To understand the idea behind inscribing a nonlinearity into a conic region, consider
a scalar saturation function. Figure 3 contains, on the left, the block diagram of the saturation function and,
on the right, the graph of the saturation function. The figure emphasizes that the graph of the saturation
function is contained in a conic sector delimited by the line passing through the origin with slope zero and
the line passing through the origin with slope one. The deadzone nonlinearity, as shown in Figure 4, is
also contained in this sector. In fact, the sector contains any scalar nonlinearity with the property that its
output y always has the same sign as its input u and y has a magnitude that is never bigger than that of u.
This condition can be expressed mathematically using the quadratic inequality y(u − y) ≥ 0, which, when
focusing on the deadzone nonlinearity where y = q, becomes

q(u − q) ≥ 0 .

This condition says that qu ≥ q2, which captures the sign and magnitude information described above.
For a decentralized nonlinearity where each component of the nonlinearity is inscribed in the sector

described above, the quadratic condition

nu∑

i=1

wiqi(ui − qi) ≥ 0
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ui σi = sat(ui)

ui

σi

Figure 3: The scalar saturation function and its sector properties.

ui

ui

qi = dz(ui)

qi

Figure 4: The scalar deadzone function and its sector properties.

holds, where qi are the components of the output vector y, ui are the components of the input vector u and
wi are arbitrary positive weightings. This can also be written as

qT W (u − q) ≥ 0 (19)

where W is a diagonal matrix consisting of the values wi.
A sector characterization of nonlinearities introduces some conservativeness since the analysis using

sectors will apply to any nonlinearity inscribed in the sector. The payoff in using sector characterizations
is that the mathematical description, in terms of quadratic inequalities, is compatible with the analysis of
feedback systems using quadratic functions. Indeed, the S-procedure described earlier permits combining
the quadratic inequality describing the sector with the quadratic inequalities involved in the directional
derivative to arrive at LMIs for the analysis of feedback loops with sector nonlinearities. This will be done
subsequently.

4.2 Guaranteeing well-posedness

Before analyzing the feedback loop given by (3), shown in Figure 2, it must be established that the feedback
loop is well posed. In particular, it should be verified that the equation

u − L(u − sat(u)) = v

admits a solution u for each v and that the solution u(v) is a sufficiently regular function of v. When sat(u)
is decentralized, the equation admits a solution that is a Lipschitz function of v when each of the matrices

I − L∆ ∆ = diag(δ1, . . . , δnu
), δi ∈ {0, 1} ∀i ∈ {1, . . . , nu}

is invertible. It turns out that each of these matrices is invertible when there exists a diagonal, positive
definite matrix W such that

LT W + WL − 2W < 0 . (20)

This LMI in W will appear naturally in the analysis LMIs in the following sections. The LMI can be
strengthened by replacing the ‘2’ with a smaller positive number in order to guarantee that the feedback
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loop is not too close to being ill posed. In particular, in many of the algorithms proposed later in this book,
the following LMI will be employed,

LT W + WL − 2(1 − ν)W < 0 , (21)

or equivalent versions of it. This LMI is be referred to as strong well-posedness constraint and enforces a
bound on the speed of variation of the closed-loop state (by bounding the Lipschitz constant of the right
hand side of the dynamic equation).

4.3 Internal stability

To analyze internal stability for (3), set w = 0 and consider the resulting system, which is given by

ẋ = Ax + Bq
z = Cx + Dq
u = Kx + Lq
q = u − sat(u) .

(22)

Again, a nonnegative, quadratic function V (x) = xT Px will be used. Like in the case of linear systems, it
is desirable for the time derivative of V (x(t)) to be negative except at the origin. The time derivative is
obtained from the directional derivative of V (x) in the direction Ax + Bq, which is given by

〈∇V (x), Ax + Bq〉 = xT (AT P + PA)x + 2xT PBq. (23)

Since q is the output of the deadzone nonlinearity, it follows from the discussion in Section 4.1 that the
property

qT W (u − q) ≥ 0

holds for any diagonal positive semidefinite matrix W . Then, using the definition of u in (22), the requirement
on the time derivative translates to the condition

qT W (Kx + Lq − q) ≥ 0 , (x, q) 6= 0 =⇒ xT (AT P + PA)x + 2xT PBq < 0 . (24)

In order to guarantee this implication, it is enough to check that

xT (AT P + PA)x + 2xT PBq + 2qT W (Kx + Lq − q) < 0 ∀(x, q) 6= 0 . (25)

This is the easy implication in the S-procedure, where the τ has been absorbed into the free variable W . In
fact, the S-procedure can be used to understand that there is no loss of generality in replacing (24) by (25).
The condition (25) can be written equivalently as

[
x
q

]T [
AT P + PA PB + KT W
BT P + WK WL + LT W − 2W

] [
x
q

]
< 0 ∀(x, q) 6= 0 . (26)

In other words,

0 >

[
AT P + PA PB + KT W

⋆ WL + LT W − 2W

]
(27)

= He

[
PA PB
WK WL − W

]
.

This condition is an LMI in the free variables P , which should be positive semidefinite, and W , which should
be diagonal and positive definite. The matrices (A, B, K, L) are parameters that define the system (22).
Notice that, because of the lower right-hand entry in the matrix, the LMI condition for well-posedness given
in Section 4.2 is automatically guaranteed when (27) is satisfied. In addition, because of the upper left-hand
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entry in the matrix, the matrix A must be such that the linear system ẋ = Ax is internally stable. Finally,
note that the LMI condition is not necessary for internal stability. For example, consider the system

ẋ = −x + q
u = x
q = u − sat(u) .

(28)

The LMI for internal stability becomes

0 >

[
−2p −p − w
⋆ −2w

]
(29)

or, equivalently,

He

[
p w
p w

]
> 0 . (30)

In order for this matrix to be positive definite, the determinant of the matrix, given by 4pw − (p + w)2,
must be positive. However, 4pw − (p + w)2 = −(p − w)2 which is never positive. Therefore, the internal
stability LMI is not feasible. Nevertheless, the system is internally stable since the system is equivalent to
the system

ẋ = −sat(x) (31)

for which the quadratic function V (x) = x2 decreases along solutions but not at a quadratic rate.
In general, the LMI for internal stability for the system (3) will not be feasible if the linear system

ẋ =
[
A + B(I − L)−1K

]
x is not internally stable. This is the system that results from (3) by setting w = 0

and sat(u) ≡ 0. To put it another way, when the system (3) is expressed as a feedback interconnection of a
linear system with a saturation nonlinearity rather than a deadzone, the resulting system is

ẋ =
[
A + B(I − L)−1K

]
x − B

[
I + (I − L)−1L

]
σ +

[
E + B(I − L)−1G

]
w

z =
[
C + D(I − L)−1K

]
x − D

[
I + (I − L)−1L

]
σ +

[
F + D(I − L)−1G

]
w

u = (I − L)−1 [Kx − Lσ + Gw]
σ = sat(u) .

(32)

Then, for the LMI-based internal stability test in (27) to be feasible, it is necessary that (32) with σ = 0
and w = 0 is internally stable.

4.4 External stability

Now consider establishing L2 external stability for the system (3). Again relying on a nonnegative, quadratic
function, and combining the ideas in Sections 2.2 and 4.3, it is sufficient to have that

qT W (Gw + Kx + Lq − q) ≥ 0 , (x, q, w) 6= 0

implies

xT (AT P + PA)x + 2xT P (Bq + Ew) < −γ

(
1

γ2
zT z − wT w

)
. (33)

Then, using the definition of z, and applying the S-procedure and Schur complements, produces the condition




AT P + PA PB + KT W PE CT

⋆ −2W + WL + LT W WG DT

⋆ ⋆ −γI F T

⋆ ⋆ ⋆ −γI


 < 0 (34)

which is an LMI in the unknowns P = P T > 0, W > 0 diagonal and γ > 0. The four blocks in the upper
left corner correspond to the LMI for internal stability given in (27). It follows that if the system (3) is
internally stable then the LMI (34) is feasible using the solutions P and W from the internal stability LMI
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and then picking γ > 0 sufficiently large. Of course, the goal is to see how small γ can be chosen. This
objective corresponds to solving the eigenvalue problem

min
P,W,γ

γ, subject to

P = P T > 0, W > 0 diagonal (35a)

He




PA PB PE 0
WK WL − W WG 0

0 0 −γI/2 0
C D F −γI/2


 < 0. (35b)

Since a necessary condition for global internal and external stability for the system (3) is that the matrix
A+B(I −L)−1K is exponentially stable, there will be many situations where the LMIs given in this section
will not be feasible. For this reason, it is helpful to have a generalization of these results for the case where
only regional internal and external stability can be established. This is the topic of the next section.

5 Constrained feedback systems: regional analysis

5.1 Regional sectors

To produce LMI results that are helpful for a regional analysis of systems with saturation, it is necessary
to come up with a tighter sector characterization of the saturation nonlinearity while still using quadratic
inequalities. This appears to be impossible to do globally. However, for analysis over a bounded region,
there is a way to make progress. For the scalar saturation function, one fruitful idea is to take H to be an
arbitrary row vector and note that the quadratic inequality

(σ + Hx)(u − σ) ≥ 0 ∀x satisfying sat(Hx) = Hx (36)

will hold for any input/output pairs u and σ generated by the saturation nonlinearity. This can be verified
by checking two cases:

i. If σ := sat(u) = u then σ = u and so the quadratic form on the left-hand side is zero.

ii. If sat(u) 6= u then the sign of (u − σ) is equal to the sign of u and also the sign of σ + Hx is equal to
the sign of u so that the product is not negative. The condition sat(Hx) = Hx is used in this step.

The corresponding condition for the deadzone nonlinearity having input u and output q can be derived
from (36) by using the definition q := dz(u) = u − sat(u) = u − σ. The resulting quadratic condition is

(u − q + Hx)q ≥ 0 ∀x satisfying sat(Hx) = Hx . (37)

The decentralized vector version of this inequality is

(u − q + Hx)T Wq ≥ 0 ∀x satisfying sat(Hx) = Hx (38)

where H is now a matrix of appropriate dimensions and W is a diagonal, positive definite matrix. In order
to have sat(Hx) = Hx for all possible values of x, it must be the case that H = 0. In this case, the sector
condition in (38) reduces to the global sector condition used previously.

5.2 Internal stability

In this section, the sector characterization of the previous section is exploited. The saturation nonlinearity
is taken to be decentralized, the saturation limits are taken to be symmetric, and the ith function is limited
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in range to ±ūi. In order to guarantee the condition sat(Hx(t)) = Hx(t) for solutions to be considered,
which is needed to exploit the sector condition of the previous section, the condition

xT HT
i Hix/ū2

i < xT Px ∀x 6= 0 (39)

is imposed, where Hi denotes the i-th row of H. Using Schur complements, the condition (39) can be written
as the matrix condition [

P HT
i

Hi ū2

i

]
> 0 , i = 1, . . . , nu . (40)

According to (39), xT Px ≤ 1 implies sat(Hx) = Hx. So, the analysis of internal stability can now proceed
like before but restricting attention to values of x for which xT Px ≤ 1 and using the sector condition from
the previous section. Indeed, if in the set E(P ) :=

{
x : xT Px ≤ 1

}
the quadratic function xT Px is decreasing

along solutions, then the set E will be forward invariant and convergence to the origin will ensue.
Picking up the analysis from Section 4.3 immediately after the description of the directional derivative

of the quadratic function xT Px in the direction Ax+Bq in equation (23), the condition (24) is now replaced
by the condition

qT W (Hx + Kx + Lq − q) ≥ 0 , (x, q) 6= 0 ,
=⇒ xT (AT P + PA)x + 2xT PBq < 0 .

(41)

In order to guarantee this implication, it is enough to check that, for all (x, q) 6= 0,

xT (AT P + PA)x + 2xT PBq + 2qT W (Hx + Kx + Lq − q) < 0 . (42)

The condition (42) can be written equivalently as

[
x
q

]T [
AT P + PA PB + KT W + HT W

BT P + WK + WH WL + LT W − 2W

] [
x
q

]
< 0 . (43)

In other words,

0 > He

[
PA PB

WH + WK WL − W

]
. (44)

The matrix conditions that can then be used to establish internal stability over the region E(P ) are
given by (40) and (44) together with P > 0, W > 0 and the condition that W is diagonal. These conditions
are not linear in the free variables P , W and H. In particular, notice the term HT W that appears in
the upper right-hand corner of the matrix in (44). Nevertheless, there is a nonlinear transformation of the
free variables that results in an LMI condition. The transformation exploits the fact that the condition
S < 0 is equivalent to the condition RT SR < 0 for any invertible matrix R. Make the definitions Q := P−1,
U := W−1, and Y := HQ. These definitions make sense since W and P must be positive definite. Moreover,
P , W and H can be recovered from Q, U and Y . Now observe that

[
P−1 0
0 I

] [
P HT

i

Hi ū2

i

] [
P−1 0
0 I

]
=

[
Q QHT

i

HiQ ū2

i

]
=

[
Q Y T

i

Yi ū2

i

]
(45)

and

[
P−1 0
0 W−1

] [
AT P + PA PB + KT W + HT W

⋆ WL + LT W − 2W

] [
P−1 0
0 W−1

]

=

[
QAT + AQ BU + QKT + QHT

⋆ LU + ULT − 2U

]

=

[
QAT + AQ BU + QKT + Y T

⋆ LU + ULT − 2U

]
.

(46)
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Thus, internal stability over the region E(Q−1) results if the following LMIs are feasible in the free parameters
Q, U and Y :

Q > 0
U > 0 diagonal

0 > He

[
AQ BU

Y + KQ LU − U

]

[
Q Y T

i

Yi ū2

i

]
> 0 , i = 1, . . . , nu .

(47)

Moreover, it is possible to use these LMIs as constraints for optimizing the set E(Q−1) in some way. In the
next section, LMIs will be given for establishing internal stability and minimizing the L2 external gain over
a region. Numerical examples will be given there.

5.3 External stability

Consider establishing L2 external stability for the system (3) over a region. The initial condition will be
taken to be zero and the size of the solution x(t) will be limited by limiting the energy in the disturbance
input w. In particular, if it is true that

V̇ (x(t)) ≤ wT (t)w(t) (48)

whenever x(t)T Px(t) ≤ s2 and if ||w||2 ≤ s then it follows by integrating this inequality that

x(t)T Px(t) = V (x(t)) ≤ ||w||22 ≤ s2 ∀t ≥ 0 . (49)

Thus, changing the bound in (39) to

s2xT HT
i Hix/ū2

i < xT Px ∀x 6= 0 (50)

will guarantee that sat(Hx(t)) = Hx(t) for all disturbances w with ||w||2 ≤ s. The condition (50) corre-
sponds to the matrix condition

[
P HT

i

Hi ū2
i /s2

]
> 0 , i = 1, . . . , nu . (51)

The appropriate condition on the derivative of the function xT Px is guaranteed by the fact that condition

qT W (Hx + Gw + Kx + Lq − q) ≥ 0 , (x, q, w) 6= 0

implies

xT (AT P + PA)x + 2xT P (Bq + Ew) < −
1

γ2
zT z + wT w , (52)

which generalizes the inequalities (7) and (33) addressing the same problem, respectively for the case without
saturation and for the case with a global sector bound on the saturation. As compared to (7) and (33) the
right hand side of the inequality above is divided by γ. This is a key fact which allows to write inequality
(49) independently of γ and therefore to derive the LMIs (54) below for the regional L2 gain computation.

Using the definition of z, and applying the S-procedure and Schur complements, produces the matrix
conditions

0 >




AT P + PA PB + KT W + HT W PE CT

⋆ WL + LT W − 2W WG DT

⋆ ⋆ −I F T

⋆ ⋆ ⋆ −γ2I


 (53)

= He




PA PB PE 0
WH + WK WL − W WG 0

0 0 −I/2 0
C D F −γ2I/2


 .
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The four blocks in the upper left corner correspond the the LMI for internal stability given in (44). Like
before, the matrix conditions (51) and (53) are not linear in the free variables P , W , and H. Again, notice
the HT W term that appears but that the matrix conditions can be reformulated as LMIs through a nonlinear
transformation on the free variables. Using the same transformation as in the case for internal stability, the
following LMIs are obtained in the free variables Q, U and Y :

Q > 0
U > 0

0 > He




AQ BU E 0
Y + KQ LU − U G 0

0 0 −I/2 0
CQ DU F −γ2I/2




[
Q Y T

i

Yi ū2
i /s2

]
> 0 , i = 1, . . . , nu .

(54)

The minimum γ2 > 0 for which the LMIs are feasible is a nondecreasing function of s. An upper bound
on the nonlinear gain from ||w||2 to ||z||2 can be established by solving the LMI eigenvalue problem of
minimizing γ2 subject to the LMIs (54) for a wide range of values for s and plotting γ as a function of s.

Next, an example of nonlinear gain computation is provided to illustrate the use of the LMIs (54).

Example 4 Consider a one-dimensional plant stabilized by negative feedback through a unit saturation
and subject to a scalar disturbance w. The closed-loop dynamic equation is given by

ẋp = axp + sat(u) + w

u = −(a + 10)xp,

which can be written in terms of the deadzone function as

ẋp = −10xp + q + w
q = dz((a + 10)xp).

(55)

System (55) will be analyzed in three main cases:

1. a = 1, which resembles an exponentially unstable plant stabilized through a saturated loop;

2. a = 0, which represents an integrator, namely a marginally stable plant stabilized through a saturated
loop;

3. a = −1, which represents an exponentially stable plant whose speed of convergence is increased through
a saturated loop.

When adopting the representation (3), system (55) is described by the following selection, with z = xp:




A B E

C D F

K L G


 =




−10 −1 1

1 0 0

−a − 10 0 0


 , (56)

The matrices (56) can be used in the LMI conditions (54) for different values of s, to compute the
nonlinear gains for the three cases under consideration. The resulting curves are shown in Figure 5 where
it is possible to appreciate the three different behaviors characterizing exponentially stable plants, non
exponentially unstable plants with poles on the imaginary axis and exponentially unstable plants.

In particular, for exponentially stable plants the global L2 gain is finite so that the nonlinear L2 ap-
proaches the finite L2 gain of the uncontrolled plant as s grows arbitrarily large. For non exponentially
stable plants there isn’t a global finite L2 gain so that the curve admits a finite value for each s but grows
arbitrarily large for increasing values of s. Finally, for exponentially unstable plants, there is a large enough
value of s for which the gain becomes unbounded, so that there is a finite value of s such that the nonlinear
L2 gain grows unbounded approaching that value. •

17



10
−1

10
0

10
1

10
−1

10
0

10
1

N
on

lin
ea

r 
G

ai
ns

a=−1
a=0
a=1

Figure 5: Nonlinear L2 gains for the three cases considered in Example 4.

6 Regional synthesis for external stability

This section addresses synthesis in feedback loops with saturation based on the LMIs that were derived earlier
in this chapter. Only the case of regional L2 external stability is described. The purpose of this chapter is
to give an indication of the types of calculations that arise in the synthesis of anti-windup algorithms.

6.1 LMI formulations of anti-windup synthesis

In typical anti-windup synthesis, the designer can inject the deadzone nonlinearity, driven by the control
input, at various places in the feedback loop and can also inject the state of a filter driven by the deadzone
nonlinearity. Letting x denote the composite state of the plant having np components, unconstrained
controller having nc components, and anti-windup filter having naw components, the synthesis problem can
be written as

ẋ = Ax + B0(u − q) + B1

(
K1C1x + Φ1q

)
+ Ew

z = C2x + Dq + Fw

u = K0x + Lq + K2C1x + Φ2q + Gw
q = u − sat(u)

(57)

where the design parameters are K1, K2, Φ1 and Φ2. All of the other matrices are fixed by the problem
description, coming either from the plant model or the model of the unconstrained controller and are
overlined for notational convenience. Typically C1x represents the states of the anti-windup augmentation
filter. The design parameters K1 and K2 determine how those states are used to determine the characteristics
of the filter and the injected terms in the controller. When using static anti-windup augmentation, which
corresponds to the case where there are no states in the anti-windup augmentation filter, the matrices K1

and K2 are set to zero. The design parameters Φ1 and Φ2 determine how the deadzone nonlinearity is
injected into the state equations and controller. The matrix B1 limits where the states of the anti-windup
filter and the deadzone nonlinearity can be injected into the dynamical equations.

With the definitions



A B E

C D F

K L G


 =




A + B0K0 + (B1K1 + B0K2)C1 B0(L + Φ2 − I) + B1Φ1 E + B0G

C2 D F

K0 + K2C1 L + Φ2 G


 ,

(58)

the system (57) agrees with the system (3) and the corresponding regional performance analysis LMI from
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Section 5.3 is
Q > 0
U > 0 diagonal

0 >




QAT + AQ BU + QKT + Y T E QCT

⋆ LU + ULT − 2U G UDT

⋆ ⋆ −I F T

⋆ ⋆ ⋆ −γ2I




[
Q Y T

i

Yi ū2
i /s2

]
> 0 , i = 1, . . . , nu .

(59)

Since some of the components of A, B, K, and L are free for design, these matrices are replaced in (59) by
their definitions from (58). The additional definitions

Θ1 := Φ1U
Θ2 := Φ2U

(60)

give relationships between Φi and Θi for i ∈ {1, 2} that are invertible because U is positive definite by
assumption.

Using these definitions, the matrix conditions (59) become

Q > 0
U > 0 diagonal

0 > He




(A + B0K0)Q + (B1K1 + B0K2)C1Q B1Θ1 + B0((L − I)U + Θ2) B0G + E QC
T

2

K0Q + K2C1Q + Y Θ2 + (L − I)U G UD
T

0 0 −1

2
I F

T

0 0 0 −1

2
γ2I




0 > −

[
Q Y T

i

Yi ū2
i /s2

]
, i = 1, . . . , nu .

(61)
In the case of static anti-windup augmentation, where K1 = 0 and K2 = 0, the conditions (61) constitute
LMIs in the free variables U , Q, Θ1, Θ2, and γ. Note that in (61) all the fixed parameters are overlined and
all the free variables are not.

For some problems related to anti-windup synthesis, C1 is invertible and then, with the definitions

X1 := K1C1Q

X2 := K2C1Q ,
(62)

which give an invertible relationship between Ki and Xi, i ∈ {1, 2}, the conditions (61) constitute LMIs in
the free variables U , Q, Θ1, Θ2, X1, X2, and γ.

In the more typical situation where C1 is not invertible, a different approach can be taken to eliminate
the nonlinear terms that involve products of Q and Ki, i ∈ {1, 2}, at least when the size of the anti-windup
augmentation filter has the same number of states as the plant model. In this situation, define

Λ :=

[
K1 Θ1

K2 Θ2

]
(63)

and construct matrices Ψ, H and G such that the conditions (61) become

Q > 0
U > 0
0 > He (Ψ + HΛG)

0 >

[
Q Y T

i

Yi ū2
i /s2

]
, i = 1, . . . , nu .

(64)
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According to the “Elimination lemma” from linear algebra, there exists a value Λ satisfying 0 >
He (Ψ + HΛG) if and only if

0 > W T
HΨWH

0 > W T
GΨWG

(65)

where WH and WG are any full rank matrices satisfying W T
HH = 0 and GWG = 0.

Then, exploiting the special structure of anti-windup problems, the matrices Q and Y can be partitioned
as

Q =




[
R11 R12

RT
12

R22

]
N

NT M


 , P = Q−1 =

[
S−1 P12

P T
12

P22

]
, Y =

[
Z Yb Yc

]

where R11 is an np × np matrix, R22 is an nc × nc matrix, and M in an naw × naw matrix, and it can be
verified that W T

HΨWH < 0 is an LMI in R11 and Z, while W T
GΨWG < 0 is an LMI in S. Then, as long as

R11 and S satisfy the condition R11 − S11 > 0, which is another LMI in R11 and S, it is always possible to
pick R12, R22, N , and M so that PQ = I. Finally, as long as

0 <

[
R11 ZT

i

Zi ū2

i /s2

]
, i = 1, . . . , nu ,

which is yet another LMI in R11 and Z, it is always possible to pick Yb and Yc so that

0 <

[
Q Y T

i

Yi ū2
i /s2

]
, i = 1, . . . , nu .

Finally, with Y and Q generated, it is possible to find Λ and U such that 0 > He (Ψ + HΛG).

6.2 Restricting the size of matrices

It is sometimes convenient to restrict the size of the matrices determined by the LMI solver when seeking
for optimal solutions minimizing the gain γ2 in (61). Indeed, it may sometimes happen that minimizing the
gain leads the LMI solver in a direction where certain parameters become extremely large providing very
little performance increase. To avoid this undesirable behavior, it is often convenient to restrict the size of
the free variables in (61) by incorporating extra constraints in the LMI optimization.

Given any free matrix variable M , one way to restrict its entries is to impose a bound κ on its maximum
singular value, namely impose

MT M < κ2I.

This can be done by dividing the equation above by κ and applying a Schur complement to κI−MT 1

κ
M > 0,

which gives: [
κI MT

M κI

]
> 0.

This type of solution can be used, for example, to restrict the size of the anti-windup matrices K1, K2, Φ1

and Φ2 in (61). In particular, this is achieved by imposing
[

κI ΛT

Λ κI

]
> 0, U > I, (66)

where Λ is defined in equation (63). Then, since by (60)
[

K1 Φ1

K2 Φ2

]
=

[
K1 Θ1

K2 Θ2

] [
I 0
0 U−1

]
,

the anti-windup parameters will satisfy
∣∣∣
[

K1 Φ1

K2 Φ2

]∣∣∣ ≤ |Λ|
∣∣U−1

∣∣ ≤ |Λ| ≤ κ, where | · | denotes the maximum

singular value of its argument.
Notice that imposing the extra constraints (66) reduces the feasibility set of the synthesis LMIs and

conservatively enforces the bound on the anti-windup matrices (because it also restricts the set of allowable
free variables U). However it works well in many practical cases.
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7 Notes and references

LMIs have played a foundational role in analysis and control of dynamical systems for several decades. A
comprehensive book on this topic is the classic [1], where an extensive list of references can be found. That
book also contains the facts quoted herein concerning Schur complements, Finsler Lemma, the S-procedure,
and the elimination lemma. The analysis of Section 4 corresponds to the MIMO version of the classical
circle criterion in state-space form. The regional analysis of Section 5 is primarily due to the generalized
sector condition introduced in [15] and [3].

The global and regional analysis discussed in Sections 4 and 5 corresponds to the quadratic results of
[16] where also nonquadratic stability and L2 performance estimates are given. The synthesis method of
Section 6 corresponds to the regional techniques of [17] for the most general case but previous papers followed
that approach for anti-windup synthesis: the static global design of [23], the dynamic global design of [12, 26]
and its external extension in [14], the discrete-time results of [24] and [21]. The “Elimination Lemma” used
in Section 6 can be found in [1]. It was first used as shown here in the context of LMI-based H∞ controller
synthesis. The corresponding techniques appeared simultaneously and independently in [7] and [19] (see
also, [6] for an explicit solution to the second design step when applying the elimination lemma).

Well posedness for feedback loops involving saturation nonlinearities has been first addressed in [27],
where results from [2] were used to establish sufficient conditions for well posedness. Similar tools were
also used in [12], where the well posedness of the earlier schemes of [23] was also proved. The strong well
posedness constraint discussed in Section 4.2 arises from the results of [13]. More recently, in [16] a further
characterization of sufficient only and necessary and sufficient conditions has been given.

Regarding the LMI solvers mentioned in Examples 1-3, the LMI control toolbox [8] of MATLAB can be
purchased together with MATLAB. YALMIP [20] is a modeling language for defining and solving advanced
optimization problems. CVX [11] is a package for specifying and solving convex programs. Both [20] and
CVX [11] are extensions of MATLAB which can be downloaded from the web for free and easily installed
as toolboxes on a MATLAB installation.
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