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I. INTRODUCTION

Control specifications for a single dynamical process can be often fullled by designing a gain scheduling controller R(s, w),
where w is a time-varying parameter, so that the controller R(s, w̄) is tailored to some system operating region (e.g. a
proportional controller when the output error e = y − r is large and an integral controller when the error is below a given
threshold).

Such idea can be extended to deal with systems whose parameters depend linearly on a time-varying parameter w(t), the so
called Linear Parameter Varying (LPV ) plants, and such parameter is known at each time instant and can be used to tune
the controller.

The first goal which will be analyzed will be that of designing a gain scheduling controller such that for every constant (time
frozen) value of the parameter w̄ the closed-loop system is stable and, moreover, stability is preserved for the time-varying
closed-loop system

The second goal which will be achieved will be that of finding an ad-hoc state space realization (F̃ (w), G̃(w), H̃(w), K̃(w))
of a given gain scheduling controller R(s, w) = (F (w), G(w), H(w),K(w)) so that closed-loop stability is preserved when
the parameter varies and it is such that for every frozen valued w̄

H(w̄) (sI − F (w̄))−1
G(w̄) +K(w̄) = H̃(w̄)

(
sI − F̃ (w̄)

)−1

G̃(w̄) + K̃(w̄)

This accompanying notes will consider both problems of synthesizing gain scheduling controller for LPV plants or finding
ad hoc realizations of a given family of scheduling controllers.

The solution of both problems is based on Lyapunov arguments [1], [2], [3] and strongly relies on the Youla parametrization
of stabilizing controllers for linear plants. To this aim, an overview of the Zhou-Doyle-Glover like parametrization [4] will
also be presented.

By means of the above parameterization it will be shown how the presented gain scheduling problem for LPV systems
can be solved by splitting it into simpler problems: state feedback, state estimation and realization of an ad-hoc chosen Youla
parameter.
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II. YOULA COPRIME PARAMETERIZATION FOR SISO SYSTEMS

The material here presented is extracted from [5].
Consider the proper SISO plant

P (s) = (A,B,C,D) =
nP (s)
dP (s)

with
dP (s) = det (sI −A) nP (s) = Cadj (sI −A)B +DdP (s),

Theorem 2.1: Assume P (s) is asymptotically stable. The set of all the controllers C(s) for which the feedback loop is
internally stable is {

Q

1− PQ
: Q ∈ S

}
When the plant is not stable, we first determine a coprime factorization over S, the set of asymptotically stable, proper,

real rational functions, of the plant P (s). S is a commutative ring with identity, i.e. F,G ∈ S ⇒ F +G, FG ∈ S.
Two transfer functions M and N are coprime if there exists X,Y ∈ S such that

NX +MY = 1

(M,N are coprime iff they have no finite or infinite common zeros in Re(s) ≥ 0.
Let P = N

M be a coprime factorization and X,Y be a solution of NX +MY = 1.
Theorem 2.2: The set of all the controllers which internally stabilize P (s) = N(s)

M(s) is{
X +MQ

Y −NQ
, Q ∈ S

}
The resulting closed–loop transfer functions are

T (s) =
CP

1 + CP
=

X+MQ
Y−NQ

N
M

1 + X+MQ
Y−NQ

N
M

=
NX +NMQ

MY −MNQ+NX +NMQ
= N(X +MQ)

S(s) =
1

1 + CP
= 1− T (s) = M(Y −NQ)

A. Coprime factorization SISO state space realization (optional)

In this section we give a control feedback interpretation of the factorization. The presented material is introduced to give a state
space interpretation of the coprime factorization, but it will not be used in the sequel since a direct state-space parametrization
will be adopted. Given P = (A,B,C,D) let J and L be such that A+BJ and A+LC are asymptotically stable and consider
the estimated state feedback control law as in figure 1. The closed loop system dynamics becomes

Plant+
+v

+

u y
Estimator +

v1

+
_x̂

J

Fig. 1. Youla SISO parametrization

ẋ = (A+BJ)x−BJe+Bv
ė = (A+ LC)e
y = (C +DJ)x−DJe+Dv
u = Jx− Je+ v

The transfer function from v to u is

M(s) :=
[
A+BJ B

J 1

]
and that from v to y is

N(s) :=
[
A+BJ B
C +DJ D

]
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so that
u = Mv, y = Nv ⇒ y = NM−1u =

N

M
u, with N,M ∈ S

The transfer function from y and u to v1 is described by

˙̂x = (A+ LC)x̂+ (B + LD)u− Ly
v1 = −Jx̂+ u

so that, denoting by

X(s) :=
[
A+ LC −L
−J 0

]
and by Y (s)

Y (s) :=
[
A+ LC B + LD
−J 1

]
both in S, we have that the transfer function from v to v1 is

MX +NY = 1
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III. SYSTEM REPRESENTATIONS AND OPERATIONS

Given an n dimensional continuous-time plant

P (s) :
{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) =

[
A B
C D

]
with m inputs and p outputs, its p×m transfer matrix is

P (s) = C (sI −A)−1
B +D

Definition 3.1: The transfer matrix P̂ (s) is a right (left) inverse of the transfer matrix P (s) if P (s)P̂ (s) = I (P̂ (s)P (s) = I)
Lemma 3.1: Let D† denote a right DD† = I (or left D † D = I) inverse of D. The right (left) inverse of P is the n

dimensional p-inputs/m-outputs system

P † :
[
A−BD†C −BD†

D†C D†

]
Remark 3.1: A SISO system P (s) = n(s)

d(s) admits a right=left inverse iff the degree of n(s) is equal to the degree of d(s)
Example 3.1:

P (s) =
s+ 1
s+ 3

:
{
ẋ = −3x+ u
y = −2x+ u

A = −3, B = 1, , C = −2 , D = 1

P−1(s) =
s+ 3
s+ 1

:
{

ż = −z − y
u = −2z + y

Definition 3.2: Given a transfer matrix P (s) a state space realization (A,B,C,D) is minimal if A has the smallest possible
dimension.

Theorem 3.1: A state space realization (A,B,C,D) of a transfer matrix

P (s) =
N(s)
d(s)

where d(s) is a monic scalar polynomial and N(s) a polynomial matrix, is minimal iff (A,B) is controllable and (C,A) is
observable.

Theorem 3.2: Given two minimal realizations (A1, B1, C1, D1) and (A2, B2, C2, D2) of the same transfer matrix P (s) there
exists a unique nonsingular matrix S such that

A2 = SA1S
−1, B2 = SB1, C2 = C1S

−1

The next result is concerned on the determination of realizations whose system matrices share the same quadratic Lyapunov
function.

Lemma 3.2: Assume a family of asymptotically stable transfer matrices (A(w), B(w), C(w), D(w)) (of the same dimension)
which depend on a parameter w ∈ W is given. Then there exists a family of transformation matrices S(w) such that, denoting
by Ã(w) = S(w)A(w)S−1(w),

Ã(w)T + Ã(w) < 0 ∀ w ∈ W

Proof: Since for every value of w A(w) has negative eigenvalues, it is possible to compute the positive–definite solution
P (w) of the Lyapunov equation:

AT (w)P (w) + P (w)A(w) = −I. (1)

and every P (w) admits a factorization
P (w) = ST (w)S(w), (2)

where S(w) is an upper triangular matrix (Cholesky’s decomposition). Then

Ã(w)︷ ︸︸ ︷
S(w)A(w)S−1(w) +

Ã(w)T︷ ︸︸ ︷
S−T (w)A(w)TST (w) =

S−T (w)
(
ST (w)S(w)A(w) +A(w)TST (w)S(w)

)
S−1(w) = −S−T (w)S−1(w) < 0

Remark 3.2: The above result, which is at the basis of the development of the next sections and was first presented in [1],
allows to determine, given a family of asymptotically stable transfer matrices, same dimensional equivalent realizations which
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share the same quadratic Lyapunov function, V (x) = xTx. In simpler words it states that for any given a system ẋ = A((w))x,
which is asymptotically stable for every constant w ∈ W ,there exist a transformation S(w) such that the LPV system

ẋ = Ã(w)x

is asymptotically stable.
In the next section the solution of the gain scheduling problem will also pass through the determination of equivalent

realizations of different dimensions, whose definition is reported next.
Definition 3.3: We say that two realizations (A1, B1, C1, D1) and (A2, B2, C2, D2) of P (s) are equivalent if

C1 (sI −A1)−1
B1 +D1 = C2 (sI −A2)−1

B2 +D2

and
• (A1, B1) and (A2, B2) are stabilizable;
• (C1, A1) and (C2, A2) are detectable.

(i.e., the unobservable/uncontrollable subspaces of each realization are asymptotically stable)
Definition 3.4: Given a (p1 + p2)× (m1 +m2) transfer matrix

P =
[
P11 P12

P21 P22

]
(3)

and the m2 × p2 and m1 × p1 transfer matrices
∆l, ∆u

consider the connection as in figure 2 corresponding to the dynamic systems

l
∆

∆
u

V

V O

O

P

P

Y U

Y U

Fig. 2. Lower (left) and upper (right) linear fractional transformations (LFT)

[
U(s)
O(s)

]
=

[
P11 P12

P21 P22

] [
Y (s)
V (s)

]
V (s) = ∆lO(s)

[
U(s)
O(s)

]
=

[
P11 P12

P21 P22

] [
Y (s)
V (s)

]
Y (s) = ∆uU(s)

the lower and upper linear fractional transformations (LFT) are defined as

Fl(P,∆l) = P11 + P12∆l (I − P22∆l)
−1
P21

Fu(P,∆u) = P22 + P21∆u (I − P11∆u)−1
P12

Lemma 3.3: Let G = Fl(P,K). Then, if P and G are proper, detP (∞) 6= 0, det
(
P −

[
G 0
0 0

])
6= 0, P12 and P21

square and invertible, K is proper and
K = Fu(P−1, G)
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IV. GAIN SCHEDULING CONTROLLER FOR SISO STABLE LPV PLANTS

In this section we will consider the gain scheduling problem for SISO stable LPV plants. We start from a couple of motivating
examples and subsequently we will provide a solution based on the Youla parametrization for stable SISO plants.

Example 4.1: Consider the simple fluid plant represented in Fig. 3. Its (stable) first-order model is

h

p

h
1

Fig. 3. Simple fluid–flow plant.

ẏ(t) = −α y(t) + w(t)u(t), α > 0 (4)

where y(t) = h(t)− h̄ is the deviation of the actual level h(t) in the reservoir from the equilibrium level h̄, u(t) is the valve
opening, p(t) is the (measured) pressure in the tank, h1(t) is the level of the fluid in the tank and w(t) = ρ

√
p(t)/γ + h1(t),

with γ denoting the fluid density and with ρ constant. Assume that bounds of the form 0 < w− ≤ w(t) ≤ w+, ∀t are given
and that the controller transfer function is

κ(w)
s+ β

, β > 0, (5)

with
κ(w) = −κ0

w
, κ0 > 0 , (6)

to compensate for pressure variations.
When w is constant, the feedback control system is internally stable with characteristic polynomial:

d(s) = s2 + (β + α)s+ αβ + κ0. (7)

The controller (5) admits the two realizations:

Σ1(w) =
[
−β 1
−κ0/w 0

]
, Σ2(w) =

[
−β −κ0/w
1 0

]
, (8)

yielding, respectively, the closed–loop system matrices:

A1(w) =
[
−α −κ0

1 −β

]
, A2(w) =

[
−α w
−κ0/w −β

]
. (9)

Σ1(w) leads to an asymptotically stable feedback system independently of how w varies with time, whereas Σ2(w) may not.
Indeed, if α and β are small enough and w varies over a sufficiently large range, the system may be unstable [6].

Example 4.2: Let P (s) in Fig. 4 be

P (s) =
1

s+ µ
. (10)

R(s,w)+ +

−

r(t)

d(t)

P(s)

Fig. 4. LTI plant with LPV compensator.

To (partly) suppress a disturbance d(t) with a (dominant) sinusoidal component of frequency ω0, the controller transfer
function can be chosen as

R(s) =
κω2(s+ α)

s2 + 2ξωs+ ω2
(11)
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with ω = ω0 and ξ small.
If the disturbance frequency varies in a range ω− ≤ ω0 ≤ ω+ (as is often the case in practice), the parameter ω in (11) must
be adjusted accordingly (which, of course, requires measuring the disturbance frequency) and the control system becomes an
LPV system whose stability depends on the controller realization. By realizing the controller in companion form, the state,
input and output matrices of the resulting closed–loop system turn out to be:

[
ACL BCL

CCL 0

]
=


−µ κω2α κω2 0

0 0 1 0
−1 −ω2 −2ξω 1
1 0 0 0

 . (12)

Assume for simplicity α = µ in (11) to cancel the pole of (10). Then the realization is nonminimal and, indeed, equivalent to[
ACL BCL

CCL 0

]
=

 0 1 0
− (κ+ 1)ω2 −2ξω 1

κω2 1 0

 . (13)

It is known that this system is unstable for ξ small and w varying with time.
From the above examples it is apparent that the closed-loop stability does not depend on the controller only, but on its

realization too.
Let us formulate the problem and its solution in the general setting.

e
T

−

+
+

r y
P(w)R(w)

u

Fig. 5. SISO feedback control loop

Theorem 4.1: Given a SISO LPV family of stable plants P (s, w) = (A(w), B(w), C(w)) and a gain scheduling controller
R(s, w) = (F (w), G(w), H(w),K(w)) such that the closed-loop system is stable for any fixed value of the parameter w ∈ W ,
there exists an equivalent gain scheduling controller R̃(s, w) = (F̃ (w), G̃(w), H̃(w), K̃(w)) such that the resulting LPV
closed-loop system is asymptotically stable.

Proof: Since the closed loop system is stable for any constant value of w, it is possible to rewrite the gain scheduling
controller as

R(s, w) =
Q(s, w)

1−Q(s, w)P (s, w)
(14)

Solving the above in Q(s, w) yields

Q(s, w) =
R(s, w)

1 +R(s, w)P (s, w)

(the above is the control sensitivity function, say the transfer function from r to u in figure 5) whose state space realization is

+ +

e
T y

u
−

r + +

+

P(w)

R(w)

Q(w) P(w)

Fig. 6. Controller parametrization

Q(s, w) :


ż =

ACL(w)︷ ︸︸ ︷[
A(w)−B(w)K(w)C(w) B(w)H(w)

−G(w)C(w) F (w)

]
z(t) +

BCL(w)︷ ︸︸ ︷[
B(w)K(w)
G(w)

]
r(t)

u(t) =
[
−K(w)C(w) H(w)

]︸ ︷︷ ︸
CCL(w)

z(t) + K(w)︸ ︷︷ ︸
DCL(w)

r(t)
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Since the family ACL(w) is asymptotically stable for every value of w there exists a family of transformations S(w) such that
the LPV system

ż =

ÃCL(w)︷ ︸︸ ︷
S(w)ACL(w)S

−1(w) z +

B̃CL(w)︷ ︸︸ ︷
S(w)BCL(w) r(t)

u = CCL(w)S−1(w)︸ ︷︷ ︸
C̃CL(w)

z +DCL(w)︸ ︷︷ ︸
D̃CL(w)

r(t)

is asymptotically stable for every trajectory of w ∈ W . Let Q̃(s, w) = (ÃCL, B̃CL, C̃CL, D̃CL).
Clearly, as in (14), for every w the controller

R̃(w) =
Q̃(w)

1− Q̃(w)P (w)

is equivalent to R(w). Its state space realization (w dropped for clarity) is

R̃ :


[
q̇1
q̇2

]
=

[
ÃCL B̃CLC

BC̃CL A+BD̃CLC

] [
q1
q2

]
+
[

B̃CL

BD̃CL

]
eT

u =
[
C̃CL D̃CLC

] [ q1
q2

]
+ D̃CLeT

To check that the so derived realization results in closed-loop stability for the LPV system it is sufficient to rewrite the
closed-loop system dynamics: q̇1

q̇2
ẋ

 =

 ÃCL B̃CLC −B̃CLC

BC̃CL (A+BD̃CLC) −BD̃CLC

BC̃CL BD̃CLC A−BD̃CLC

 q1
q2
x

+

 B̃CL

BD̃CL

BD̃CL

 r
y =

[
0 0 C

]  q1
q2
x


with the new state variables

z1 = x z2 = q1 z3 = q2 − x

which yields (w back in place for final show) ż1
ż2
ż3

 =

 A(w) B(w)C̃CL(w) B(w)D̃CL(w)C(w)
0 ÃCL(w) B̃CL(w)C(w)
0 0 A(w)

 z1
z2
z3

+

 B(w)D̃CL(w)
B̃CL(w)

0

 r(k)

y =
[
C(w) 0 0

]  z1
z2
z3


In the general case, when dealing with MIMO or LPV unstable systems, a complete parametrization of the controllers is
needed. To this aim, the next section will briefly present the Youla state parametrization which will be subsequently used to
solve the gain scheduling problem in the general case.
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V. STATE SPACE YOULA PARAMETRIZATION

Theorem 5.1: Given the MIMO plant (A(w), B(w), C(w)) let J(w) and L(w) be such that A(w)+B(w)J(w) and A(w)+
L(w)C(w) are asymptotically stable. Then, for every transfer matrix (Youla parameter) T (s, w) with no poles in the closed
right half plane the y-to-u transfer function obtained from

˙̂x = (A(w) +B(w)J(w) + L(w)C(w))x̂− L(w)y +B(w)v
u = J(w)x̂+ v
o = C(w)x̂− y

V (s) = T (s, w)O(s)

or, equivalently, defining

Q0(s, w) =

 A(w) +B(w)J(w) + L(w)C(w) −L(w) B(w)
J(w) 0 I
C(w) −I 0

 =
[
Q11

0 (w) Q12
0 (w)

Q21
0 (w) Q22

0 (w)

]
R(s, w) = Fl(Q0(w, s), T (w, s))

is a (positive feedback stabilizing) controller R(w, s). Such controller can be written as a lower LFT

+
+

+

ν

ustab

J(w)

C(w)

ESTIM. STATE
FEEDBACK

u

x

o

y
A(w),B(w),C(w)

PLANT

T(s,w) +
+ _

OBSERVER

Fig. 7. Stabilizing controller

Remark 5.1: Remember that for every choice of T (w, s) there is obviously an extra degree of freedom in the choice of its
state representation (F (w), G(w), H(w),K(w))

Theorem 5.2: Given the plant P (s, w) = (A(w), B(w), C(w)), let L(w) and J(w) be such that A(w) + B(w)J(w) and
A(w) + L(w)C(w) are asymptotically stable. Then, for any (positive feedback) stabilizing controller

R(s, w) = (F (w), G(w), H(w),K(w))

there exists an asymptotically stable Youla parameter T (s, w) such that

R(s, w) = Fl (Q0(s, w), T (s, w))

The Youla parameter can be computed as the upper LFT

T (s, w) = Fu

(
Q−1

0 (s, w), R(s, w)
)

and its state space representation is[
q̇1
q̇2

]
=

[
A(w) +B(w)K(w)C(w) −B(w)H(w)

−G(w)C(w) F (w)

] [
q1
q2

]
+
[
B(w)K(w)− L(w)

−G(w)

]
o

v =
[
J(w)−K(w)C(w) H(w)

] [ q1
q2

]
−K(w)o

(15)



9

0
Q (s,w)

0
Q (s,w)

UY

V O

O

U

V

Y
−1

T(s,w)

R(s,w)

Fig. 8. Lower (left) and upper (right) linear fractional transformations (LFT)

Proof: Recall that the inverse of a transfer function matrix with state space realization O(s) = (Ao, Bo, Co, Do) is

O−1(s) : (Ao −BoD
−1
o Co,−BoD

−1
o , D−1

o Co, D
−1
o )

Since for the transfer function Q0(s, w) the above matrices (w dropped for clarity) are

Ao = A+BJ + LC Bo =
[
−L B

]
Co =

[
J
C

]
Do =

[
0 I
−I 0

]
the matrices needed for the computation of the inverse are

D−1
o =

[
0 −I
I 0

]
Ao −BoD

−1
o Co,−BoD

−1
o = A+BJ + LC −

[
−L B

] [ J
C

]
= A

−BoD
−1
o =

[
−B −L

]
D−1

o Co =
[
−C
J

]
and thus the state space realization of Q−1

0 (s) is

Q−1
0 (s, w) :

(
A,
[
−B −L

]
,

[
−C
J

]
,

[
0 −I
I 0

])
The upper LFT of Q0(s, w) and R(s, w) state representation is thus

q̇1 = A(w)q1 −B(w)u− L(w)o
y = −C(w)q1 − o
v = J(w)q1 + u
q̇2 = F (w)q2 +G(w)y
u = H(w)q2 +K(w)y

which, by proper rearrangement, results in the state representation (15). Finally, to show that such state space system is
asymptotically stable it is sufficient to check that[

I 0
0 −I

] [
A(w) +B(w)K(w)C(w) −B(w)H(w)

−G(w)C(w) F (w)

] [
I 0
0 −I

]
=
[
A(w) +B(w)K(w)C(w) B(w)H(w)

G(w)C(w) F (w)

]
which is the closed-loop system matrix with the adopted stabilizing controller.

Remark 5.2: Note that, for a given T (s, w) of order nT , the order of the controller obtained via Youla parametrization is
nT + nP , being nP the order of the plant. Viceversa, for a given controller of minimal form of order nK , the corresponding
Youla parameter has dimension nK +nP . This in turn implies that if one goes from the controller to the Youla parameter and
then back to it via Youla parameterization, the so obtained controller has order equal to 2nP + nK .
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VI. GAIN SCHEDULING CONTROLLERS, GENERAL CASE

In the general case, when dealing with MIMO/unstable LPV plants, the first problem one has to deal with is that of checking
whether there is a gain scheduling controller and the second is that, given a gain scheduling controller, to rewrite it so that the
overall LPV systems is asymptotically stable, as formalized next.

A. Problem setting

Consider the linear parameter varying n-states, m-inputs and p-outputs plant

ẋ(t) = A(w)x(t) +B(w)u(t),
y(t) = C(w)x(t), (16)

and w ∈ W , with W compact. For this system we consider two problems.
Problem 1: (Stabilizability) Design a gain scheduling controller

ż(t) = F (w) z(t) +G(w) y(t),
ξ(t) = H(w) z(t) +K(w) y(t), (17)

such that closed-loop stability is preserved for any admissible trajectory w(t) ∈ W
Problem 2: (Parametrization) Given a gain scheduling controller

ż(t) = F (w) z(t) +G(w) y(t),
ξ(t) = H(w) z(t) +K(w) y(t),

find an equivalent realization
ż(t) = F̃ (w) z(t) + G̃(w) y(t),
ξ(t) = H̃(w) z(t) + K̃(w) y(t),

such that

• H(w) (sI − F (w))−1
G(w) +K(w) = H̃(w)

(
sI − F̃ (w)

)−1

G̃(w) + K̃(w)
for every constant value w ∈ W

• closed-loop stability is preserved for any admissible trajectory w ∈ W .
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B. Stabilizability conditions

To check the closed-loop system beahviour, different notions of stability can be adopted. In the following we will mainly
focus on quadratic stabilizability conditions (i.e., which can be checked by means of quadratic Lyapunov functions) and on
polyhedral stabilizability.

Theorem 6.1: The LPV system (16) is quadratically stabilizable by means of a compensator of the form (17) if and only
if there exist two positive–definite matrices P and Q, and two matrices U(w) and Y (w) dependent on parameter w such that

PA(w)T +A(w)P +B(w)U(w) + U(w)TB(w)T < 0 , (18)

A(w)TQ+QA(w) + Y (w)C(w) + CT (w)Y (w)T < 0 , (19)

Proof: If (16) is quadratically stabilized by (17), then by definition there exists a symmetric positive definite matrix P

such that
(
A(w)cl

)
P + P

(
A(w)cl

)T
< 0. After a proper partition, we write[

A(w) +B(w)K(w)C(w) B(w)H(w)
G(w)C(w) F (w)

] [
P11 P12

PT
12 P22

]
+
[
P11 P12

PT
12 P22

] [
A(w) +B(w)K(w)C(w) B(w)H(w)

G(w)C(w) F (w)

]T

< 0

If we take the left upper block of the previous expression, denoting by U(w) .= K(w)C(w)P11 +H(w)PT
12, we have

(A(w) +B(w)K(w)C(w))P11 + (B(w)H(w))PT
12 + P11(A(w) +B(w)K(w)C(w))T + P12(B(w)H(w))T =

= A(w)P11 + P11A(w)T +B(w)U(w) + U(w)TB(w) < 0

which is eq. (18). The dual equation (19) is derived exactly in the same way.
To show that the two conditions imply quadratic stabilizability, assume that (18) and (19) hold and take the linear gains

J(w) = U(w)P−1 and L(w) = Q−1Y (w). Consider now the observer–based feedback compensator

˙̂x(t) = (A(w) + L(w)C(w) +B(w)J(w))x̂(t)− L(w)y(t) +B(w)v(t)
u(t) = J(w)x̂(t) + v(t)

(20)

and apply the change of variables x1(t) = x(t) and x2(t) = x̂(t)− x(t) to achieve the closed loop system matrix[
A(w) +B(w)J(w) B(w)J(w)

0 A(w) + L(w)C(w)

]
(21)

Both diagonal blocks are quadratically stable with Lyapunov matrices given by P and Q, respectively, since

P (A(w) +B(w)J(w))T + (A(w) +B(w)J(w))P = PA(w)T + U(w)TB(w)T +A(w)P +B(w)U(w) < 0
(A(w) + L(w)C(w))TQ+Q(A(w) + L(w)C(w)) = A(w)TQ+ C(w)TY (w)T +QA(w) + Y (w)C(w) < 0

Since the system is in upper triangular form with LPV diagonal blocks, the overall systems is LPV stable.

If less conservative conditions are required, one can resort to polyhedral Lyapunov functions, as per the next result.
Theorem 6.2: The LPV system (16) is polyhedrally stabilizable by means of a compensator of the form (17) if and only

if there exist a full row rank n× µ matrix X , a full column rank ν × n matrix R, as well as an m× µ matrix U(w), a ν × p
matrix L(w) and M matrices P (w) and Q(w) dependent on w such that

A(w)X +B(w)U(w) = XP (w) 1̄TP (w) ≤ −β1̄T , (22)

RA(w) + L(w)C(w) = Q(w)R Q(w)1̄ ≤ −β1̄ (23)

Proof: If a closed-loop polyhedral function exists then[
A(w) +B(w)K(w)C(w) B(w)H(w)

G(w)C(w) F (w)

] [
X
Z

]
=
[
X
Z

]
P (w) 1̄TP (w) ≤ −β1̄T (24)

whose upper block row yields

A(w)X +B(w)K(w)C(w)X +B(w)H(w)Z = A(w)X +B(w)U(w) = XP (w), (25)

where U(w) = K(w)C(w)X +H(w)Z, which proves (22). Condition (23) can be proven in a similar way by duality.
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To show that (22) and (23) imply polyhedral stabilizability, consider the compensator of order ν + µ− n described by

ṙ(t) = Q(w)r(t)− L(w)y(t) +RB(w)u(t), (26)
x̂(t) = Mr(t), (27)
ż(t) = FSF (w)z(t) +GSF (w)x̂(t), (28)
u(t) = HSF (w)z(t) +KSF (w)x̂(t) + v(t), (29)
v(t) = 0, (30)

where M is any left inverse of R, i.e.,
MR = I, (31)

and FSF (w), GSF (w), HSF (w),KSF (w) can be computed from[
KSF (w) HSF (w)
GSF (w) FSF (w)

]
=
[
U(w)
V (w)

] [
X
Z

]−1

, (32)

where Z is any complement of X that makes the square matrix
[
X
Z

]
invertible and

V (w) = ZP (w). (33)

Letting
s(t) .= R x(t)− r(t) (34)

and choosing [xT zT sT ]T as the state vector, after simple manipulations the following closed–loop matrix is obtained: A(w) +B(w)KSF (w) B(w)HSF (w) −B(w)KSF (w)M
GSF (w) FSF (w) −GSF (w)M

0 0 Q(w)

 . (35)

The above system is in diagonal form and both diagonal blocks are LPV stable (see [3]).
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C. Gain scheduling parametrization: quadratic case

In this section we will show that if the LPV system (A(w), B(w), C(w), D(w)) is quadratically stabilizable, then every
gain scheduling controller (F (w), G(w), H(w),K(w)) which is such that the closed loop system is asymptotically stable for
every frozen value of w can be reparametrized by means of the Youla results as to obatain an LPV stable closed–loop system.

Theorem 6.3: If the stabilizability conditions in theorem 6.1 hold then for any w-frozen gain scheduling stabilizing controller
R(s, w) = (F (w), G(w), H(w),K(w)) there exists an equivalent realization R̃(s, w) = (F̃ (w), G̃(w), H̃(w), K̃(w)) such that
the closed-loop LPV system is asymptotically stable.

Proof: From the results in the previous sections it is known that for any stabilizing controller the corresponding Youla
parameter T (s, w) can be computed as

T (s, w) = Fu

(
Q0(s, w)−1, R(s, w)

)
Its asymptotically state space realization is

[
q̇1
q̇2

]
=

AY ou(w)︷ ︸︸ ︷[
A(w) +B(w)K(w)C(w) −B(w)H(w)

−G(w)C(w) F (w)

] [
q1
q2

]
+

BY ou(w)︷ ︸︸ ︷[
B(w)K(w)− L(w)

−G(w)

]
o

v =
[
J(w)−K(w)C(w) H(w)

]︸ ︷︷ ︸
CY ou(w)

[
q1
q2

]
−K(w)︸ ︷︷ ︸
DY ou(w)

o

Since the family of transfer matrices T (s, w) is stable for every w, there exists a family of transformation matrices S(w) such that
T̃ (s, w) = (ÃY ou(w), B̃Y ou(w), C̃Y ou(w).D̃Y ou(w)) = (S(w)AY ou(w)S−1(w).S(w)BY ou(w), CY ou(w)S(w)−1, DY ou(w))
is LPV stable. The stabilizing controller R̃(s, w) = Fl(Q0(s, w), T̃ (s, w)) is equivalent to the original one. Its state space
realization, obtained as the LFT of the state estimator and the Youla parameter, is

˙̂x = (A(w) +B(w)J(w) + L(w)C(w)) x̂− L(w)y +B(w)v
o = C(w)x̃− y

ẋT = ÃY ou(w)xT + B̃Y ou(w)o
v = C̃Y ou(w)xT + D̃Y ou(w)o
u = Jx̂+ v

To obtain the resulting closed loop system dynamics it is sufficient to add to the previous equations the state update one

ẋ = A(w)x+B(w)u
y = C(w)x

To verify the LPV stability it is then sufficient to rewrite the above with the change of variables

x1 = x, x2 = xT , x3 = x− x̂

so as to obtain ẋ1

ẋ2

ẋ3

 =

 A(w) +B(w)J(w) B(w)C̃Y ou(w) −B(w)(J(w) + D̃Y ou(w)C(w))
0 ÃY ou(w) B̃Y ou(w)C(w)
0 0 A(w) + L(w)C(w)

 x1

x2

x3


which is in upper triangular form with LPV asymptotically stable diagonal blocks.
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D. Gain scheduling parametrization: polyhedral case

The polyhedral case is skipped here for brevity. The only difference with respect to the quadratic case is that the estimation
dynamics are not given by A(w) + L(w)C(w) but by the matrix Q(w) and the state feedback dynamics A(w) + B(w)J(w)
have to be replaced by the dynamic observer as seen in the “Stabilizability conditions” section (see equations (21) and (35))
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VII. SUMMARY: GAIN SCHEDULING CONTROLLER REALIZATION, QUADRATIC CASE

The realization of the gain-scheduling controller can be done as follows. Let P(w) = (A(w), B(w), C)(w) and let R(s, w) =
(F (w), G(w), H(w),K(w)) be a positive feedback stabilizing controllers.

Step 1 Find matrices J(w) and L(w) such that A(w) + B(w)J(w) and A(w) + L(w)C(w) are asymptotically stable (hard if
all the involved matrices are dependent on w), compute the observer-based controller Q0(s, w).

Step 2 Compute the Youla parameter corresponding to R(s, w), T (s, w) = Fu(Q−1
0 , R(s, w)).

Step 3 Compute an LPV stable realization of Q(s, w) : (ÃY ou(w), B̃Y ou(w), C̃Y ou(w), D̃Y ou(w))
The (positive feedback) gain scheduling controller realization which guarantees LPV stability is given by[ ˙̂x

ẋT

]
=

[
A(W ) +B(w)J(w) + L(w)C(w) +B(w)D̃Y ou(w)C(w) B(w)C̃Y ou(w)

B̃Y ou(w)C(w) ÃY ou(w)

] [
x̂
xt

]
+
[
L(w) +B(w)D̃Y ou(w)

B̃Y ou(w)

]
y

u =
[
J(w) + D̃Y ou(w)C(w) C̃Y ou(w)

] [ x̂
xT

]
− D̃Y ou(w)y
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