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Abstract—This paper considers closed-loop quadratic stability
and L, performance properties of linear control systems subject to
input saturation. More specifically, these properties are examined
within the context of the popular linear antiwindup augmentation
paradigm. Linear antiwindup augmentation refers to designing a
linear filter to augment a linear control system subject to a local
specification, called the “unconstrained closed-loop behavior.”
Building on known results on ‘H., and LPV synthesis, the fixed
order linear antiwindup synthesis feasibility problem is cast as a
nonconvex matrix optimization problem, which has an attractive
system theoretic interpretation: the lower bound on the achievable
L, performance is the maximum of the open and unconstrained
closed-loopL- gains. In the special cases of zero-order (static) and
plant-order antiwindup compensation, the feasibility conditions
become (convex) linear matrix inequalities. It is shown that, if
(and only if) the plant is asymptotically stable, plant-order linear
antiwindup compensation is always feasible for large enougit-
gain and that static antiwindup compensation is feasible provided
a quasi-common Lyapunov function, between the open-loop and

since actuator saturation is ubiquitous, it is critical for practical
applications. Over the last decade considerable attention has
been given to controlling linear systems with input saturation
and significant progress has been reported in the literature.
The control objective for linear systems with input saturation
becomes even more difficult to obtain when the behavior of the
feedback algorithm must match a given behavior in the absence
of input saturation. For example, the controller may need to be a
particular PID controller for initial conditions and disturbances
that do not trigger input saturation. A local requirement like this
can arise for many reasons. In flight control, handling qualities
specifications dictate local controller attributes. In vibration at-
tenuation problems, frequency domain specifications constrain
the local design. In general, it is common to encounter control
problems where many years of experience have gone into the
development of a small signal controller and an augmentation

unconstrained closed-loop, exists. Using the solutions to the matrix Of that controller is desired to handle the effects of input satura-

feasibility problems, the synthesis of the antiwindup augmentation
achieving the desired level oL, performance is then accomplished
by solving an additional LMI.

Index Terms—Antiwindup analysis, antiwindup synthesis, con-
trol systems, cost optimal control, finite £, gain, linear matrix
inequalities (LMIs), linear parameter varying (LPV).

I. INTRODUCTION

P

tion that appear occasionally. Augmentation is necessary when
the predetermined controller is ill suited for the input satura-
tion nonlinearity. Among early control algorithms, those that
were most seriously affected by input saturation were those that
contained integral action, e.g., Pl or PID controllers. It was ob-
served that, due to input saturation, the state of the integrator
would “wind up” to excessively large values, leading to slug-
gish performance of the closed-loop control system [18]. Itis for
this reason that the phrase “antiwindup augmentation” is used

ERHAPS the first problem in nonlinear control is to desigky describe the problem of synthesizing controllers, subject to
high performance feedback algorithms for linear systems|ocal specification (called the unconstrained controller), for

with input saturation. This task is theoretically challenging anflpear systems with input saturation.

As first noted in [5], the most typical embodiment of anti-
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L z becomes inactive. When viewed in this LMI-based framework,
w_{_» P e the antiwindup augmentation design witty, performance
Ye u Yy S : .. .
¢ ‘W——,—’ IT,, objective leads to nice system theoretic interpretations: a lower
’Tc = bound on theLl, gain achievable by the augmented system
TL q is the maximum of theC, gains of the open-loop plant (with
AW zero control input) and that of the unconstrained closed-loop
Tau system. Moreover, when the antiwindup compensator order is
zero (static) or equal to the order of the plant (plant-order), the
Fig. 1. Antiwindup augmentation scheme. nonconvex matrix constraints can be reformulated in terms of

(convex) LMI constraints that can be easily solved, optimizing
the work of [30], the induced, norm was linked directly with 910Pally the performance and providing simple and effective

the behavior of the closed-loop system during saturation. F§Rnstructions for the antiwindup augmentation. Finally, by
thermore, various stability and performance tests for the clos&gY of these new tools, _plant-order augmentation can be
loop system could be formulated as convex feasibility proﬁ-h(_)Wn to_ be always _fea_5|ble (for I_arge enougb gam),_
lems, for which efficient solvers are now available. In [29], &'h'le st_at|c augmentation IS feasible if and Only if there exists
formal definition of the antiwindup problem was given. An im& quasi-common quadratic '-Vapun‘?" function between the
portant aspect of this definition was that recovery of linear peqpen-loop plant and the unconstrained closed-loop system.

formance (a concept also discussed in [6] and the referendfiQreover, asymptotlc stability of the plant is showr_1 to be a
therein) was stated in terms of nonline&y gains involving the "ecessary condition for the glob&} performance requirement

unconstrained and the actual response of the system. of this paper to be attainable.

In recentyears, several control applications started employing-M! tools have been brought to bear on the antiwindup
linear matrix inequalities (LMIs) [4] as a tool to exploit theffamework in very recent years. One of the earliest papers
(sometimes not evident) convexity of certain optimization prohere LMIs and antiwindup were combined is [19] where
lems in order to compute global optima in an extremely simplitability andZ, performance analysis of closed-loop systems
fied way. Although many valid antiwindup constructions hav#ith static antiwindup compensation is formulated as an LMI
been proposed, especially in the last decade that do not relyRsablem amounting to the determination of a “simultaneous
LMIs (see, e.g., [10], [20], [27], [24], [15], and [13]), we will quadratic Lyapunov function.” Moreover, [19] formulates
only focus here on LMI-based antiwindup designs. the associated synthesis problem in terms of bilinear matrix

While the control problem suggested by Fig. 1 is nonlinednequalities. In [17], the stability analysis of more general an-
one way to tackle it is to treat it as a linear parameter varyifigvindup closed-loop systems arising from known antiwindup
(LPV) problem, whereat(y.) is replaced by ()y. and®(-)  constructions were formulated in terms of LMIs and a first
is a measurable, matrix-valued function taking values in a sifempt to transform these LMI stability analysis tools into
consistent with reproducing the saturation nonlinearity. Withigentroller synthesis tools was made by the same authors in
this approach, special care has to be taken in assuring th@l, where the modified mixed»/H.. control problem was
well-posedness of the interconnection around the nonlinear#@yought to bear in the static and dynamic antiwindup synthesis
This is not an issue in the general LPV framework bec#i@g Problem, noting that it was associated with nonlinear matrix
is only a function of time. However, in the control problem irinequalities. Only recently, a complete LMI formulation of the
Fig. 1, ©(t) is actually better written a®(y.(t)), and might static antiwindup design problem, (namely, the case where the
result undefined if the system’s responget) is not well SystemAW in Fig. 1 is static, i.e., it has no dynamic state)
defined. We address and solve this well-posedness problemWis given in [22]. The result stops short of a system theoretic
this paper, by means of a global nonsmooth inverse functigﬁerpretation of the feaSlbl'lty conditions for static antiwindup.
theorem. The great advantage provided by the LPV frameworkThe main drawback of the static construction in [22] is that in
is that quadratic stability and performance by means of fixesveral situations the LMI constraints are unfeasible. To address
order antiwindup augmentation can be addressed using this problem, the same authors proposed an alternative static
LMI-based LPV synthesis ideas in [1] and [3] which derivantiwindup design in [21], based on the approximate solution
from a combination of [23] and [8] (see also [12]). Thesef nonlinear matrix inequalities, to relax the quadratic stability
synthesis ideas were applied to the control of linear systemegjuirement to piecewise quadratic stability.
with input saturation in [26] and [32], but not to what we have The rest of the paper is organized as follows. Section Il gives a
called the antiwindup augmentation problem since the contqmiecise statement of the problem including a Lyapunov-based
is not designed to match a given local controller. formulation of stability and performance. Section Il gives

The goal of this paper is to construct fixed-order dynamitie main results of this paper. In Section IlI-B, necessary
antiwindup compensators which guarantee a given level afid sufficient conditions for the existence of an antiwindup
performance using suitable finit, gains of the augmented compensator guaranteeing stability and a given level of perfor-
system as the performance obijective (this was also considemeg@ince is given. Interesting connections between the existence
in [22]). The basis for the study is the LMI-baskd,, controller of a suitable antiwindup compensator and properties of the
characterization of [8] and [12], where both full and reducedpen-loop plant and of the unconstrained closed-loop system
order controllers meeting al., norm-bound are describedare established based on this conditions. Furthermore, it is
in terms of a nonconvex feasibility problem, which reduce tshown how, for some special values of the antiwindup com-
a convex feasibility problem when a certain rank constraipensator order, these conditions can be easily checked solving
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LMIs based on the unconstrained controller and plant ma- Ly | 2,
trices. In these special cases, based on the LMI formulation, ﬂ» y u P y
the minimization of the performance level can be carried out C < - [z,

as a simple convex optimization problem that converges to a [ 2]

global minimum. Section IlI-A proposes a LMI to ascertain E 0

the performance of a given antiwindup compensator applied

to a given system. In Section IlI-C, it is shown that, once th&g. 2. Unconstrained closed-loop system.

necessary and sufficient conditions have been verified, it is

posslble to construct th? deS|_r e_d antlwmd_up compensator By Input Saturation and Antiwindup Augmentation
solving another LMI which efficiently provides a state-space o ) _ _ )
representation of the dynamics of such an antiwindup com-nstead of considering a particular plant input nonlinearity,
pensator. In Section IV, the proposed antiwindup constructi¥f® consider a class of input nonlinearities defined in Defini-
method is applied to a simulation example taken from tHon 2 (which requires the immediately following definition) in
literature and to an experimental system. The remaining s@kder to state necessary and sufficient conditions for stability
tion V provides the necessary tools for the proof of the mafind performance.

contribution of this paper through the statement and proof of Pefinition 1: Given any symmetric positive—definite matrix
interesting intermediate results. Vs € R™>*" and two matricesVy, W, € R™*", define the

Vs-productof W; andW, as

Il. PROBLEM DEFINITION (W, Wa)y, := WV, W,

A. Unconstrained Closed-Loop System i ) )
A function f : R"™ — R™ is said tobelong to the sector

Consider a lineaplantgiven by [0, 1]y, if {f(w),w— f(w))y. > 0forallw € R™. Afunction
&y = Apxp + By uu + By yw [+ R™ — R™ is said tobelong to the incremental sector

P Y= Cp,yxp + Dp,yuu + Dp,yww (1) [07 []Vs if <Jf(y)/ I- Jf(’y))‘/; > 0 for almost ally € R™-,

z2=0p.p+ Dyt + Dp pw whereJ f(y) denotes the Jacobian dfevaluated ay. o

Definition 2: A function ¢ : R™ — R™ is said to belong

wherez, € R™ is the plant statey € R" is the control , 4 if the functiong( - ) is locally Lipschitz, belongs to the
input, w € R™ is the exogenous input (possibly containing, remental sectd), 1]y, andg(0) = 0 o

d:sturbance, refglrebr}ci and measurementh:ngse)llﬁ"y IS :che Remark 1: If ¢(-) belongs tody, theng( -) belongs to the
plant output available for measurementc R™- is the perfor- sector(0, ]y, . Also, whenV, = T, the V,-product(W, W)y

mance output (possibly corresponding to a weighted trackingincides with the standard produdt? W,. Furthermore, the

el’ror) and Ap, Bp.,u.? Bp,u/': Qp,y: Dp,lyu; Dp.,yun Cp,z7 Dp,zua . ec:tor[o7 I]I property COinCideS W|th the SeCt{ﬂ', I] property
andD,,.,, are matrices of suitable dimensions. The plant With.fined in [14, p. 403] o

u = 0 will be referred to as thepenl—loop plant Suppose the control input of the plant is subject to a nonlin-
Assume also that, aminconstrained controllethas been earit
) y, namely
designed

c { ie = Acwe + Beyy + Beww + 01 u = ¢(yec) 5)

2)
c:OC;EC—l—DCq +Dcww+v (
Y Y ; 2 whereg( - ) belongs tody, .

(wherez, € R" is the controller statey. € R"+ is the con-  Remark 2: The ¢( - ) in (5) could be a decentralized satura-
troller output,»; andw, are additional inputs that will be usedjon function, namely

for antiwindup augmentation amdl., B, ,, B. .,, C., D, ,,, and
D.. ., are matrices of suitable dimensions) in such a way that its sat(y.) := [sat1(ye1) sata(ye2) - - satn, (Yen, )]
interconnection to the linear plant through the equations

T

wherée
u:y(‘ UIZO v2:0 (3) y
is well-posed and guarantees internal stability of the arising sati(yei) 1= max{l M}
closed-loop system. The interconnection of (1) and (2) via (3) T M;
corresponds to the block diagram in Fig. 2 which we will refertR/[ CRM > 0fori—1 . Such decentralized satura-
as theungonséptr?med 2'03537'009 systefly selecting the state tion functions belong t@v/ if VS is a diagonal positive—definite
Ty = [‘Lp ;EC] € Rrerxncer wherengr, := Np + Ne, and matrix s o

focusing on the effect of the exogenous inpubn the perfor-

. . . Given an integen.,,, > 0, we address the problem of de-
mance output, we can write the dynamics of the unconstrained . , L
i d . signing an ordef,,, linearantiwindup compensator
closed-loop system as a single linear system with state—spa

representation Taw = MTaw + A2(ye — u)

. v
Ty = AcLT¢ + Ber,ww AW v = [vl} = AsZaw + Aa(ye — u) ©)
2
z = CcL,.®¢ + Dcr, 20w 4)
. 1For the purpose of this paper, decentralized saturation can denote the larger
where Acy, Ber,w, Cev,z, and Dey, . are uniquely deter- set of decentralized functions wheret, ( - ) is locally Lipschitz,sat, (0) = 0

mined by the matrices in (1) and (2). and(d/(ds))sat,(s) € [0,1] almost everywhere far=1,...,n,,.
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Fig. 3. Antiwindup closed-loop system. [ll. LMI-B ASED ANTIWINDUP ANALYSIS AND SYNTHESIS

The main contribution of this paper is presented in three
(wherezx,, € R" is the antiwindup statey € R™ (with parts. In Section IlI-A, we will provide tools for performance
n, = n. + n,) is the antiwindup output, and the matriceanalysis when the antiwindup augmentation (6) is preassigned.
A1, Az, Az, andAy4 are of suitable dimensions) that guaranteda Section I11-B, we provide nonlinear matrix conditions whose
a desirableC, relationship between the exogenous inpuand  feasibility is necessary and sufficient to guarantee the existence
the performance outputfor all ¢( -) that belong toby,. The of an antiwindup compensator that guarantees stability and
interconnection (1), (2), (5), (6) will henceforth be called thgerformance in the sense of Definition 3. For special cases,
antiwindup closed-loop systeamd is shown in Fig. 3. these nonlinear matrix conditions are transformed into a set
of LMIs. Finally, in Section 11I-C, we will give a procedure to
C. Lyapunov Characterization of Stability and Performance construct antiwindup compensators that induce the performance
A desirable stability and performance property for the arevels guaranteed by suitable solutions to the matrix conditions
tiwindup closed-loop system will be presented in terms afi Section III-B.
Lyapunov analysis tools.
Definition 3: Given the linear planP in (1) and the uncon- A. LMI-Based Antiwindup Performance Analysis
strained controlleC in (2), a linear antiwindup compensator  Assume that the plar®® in (1), the controllec in (2) and the
(6) of ordern,,, guarantees well-posedness and quadratic pefinear antiwindup compensatot)V in (6) are given. Then, for
formance of level if the augmented antiwindup closed-loopynalysis purposes, the level of performance can be determined
system (1), (2), (5), (6) is such that, for & - ) that belong to by solving an LMI eigenvalue problem
Dy, To formulate suitably the corresponding LMIs, we need to
1) the interconnection (1), (2), (5), (6) is well-posed; introduce additional notation which corresponds to representing
2) there exists a scalar > 0 and a quadratic LyapunoVthe antiwindup closed-loop system in a compact way, as in
functionV(z) = «" Pz (with z := [z =l 27,]" and  Fig. 4. In particular definaj(-) : R™ — R™ with output
P = PT > 0) such that its time derivativé” along the g € R™ as
dynamics of (1), (2), (5), (6) satisfies
q=1(Ye) == ye — P(ye)- (8)

Next, define the overall state variahle € R", wheren :=
Np + Ne + Nayw, &S

- 1
V< —exle — =272 + ywlw V(z,w) #0. (7)
Y

[¢]

Remark 3: Definition 3 entails (sufficient) conditions for in- w=[aT aT :L.:;PW]T
ternal stability of the antiwindup closed-loop system and for fi- _ P _
nite £, gain~ from w to z for all ¢( - ) that belong taby . In-  which allows the linear dynamics of the plant, controller and
deed, since the interconnection (5) is well-posed [as guarant@&diwindup compensator to be combined and written as

by item 1)], item 2) guarantees & = Az + Byq + Byw
i) quadratic stability derived by rewriting (7) withv = 0, w Ye = Cyx + Dygq + Dyyyw 9)
which implies z=C.t+ D.qq+ D.,w
V < —e|x?; where the matricesA, By, B.,, Cy, Dyq, Dyw,C-, D.q, and

D.,,, are of appropriate dimensions and are uniquely deter-
ii) Lo gain fromw to z smaller tharry. Indeed, inequality mined by the matrices in (1), (2), and (6).
(7) can be integrated on both sides from @ fassuming  After a suitable change of coordinates the interconnec-
zero initial conditions) to obtain tion between (8) and (9), named tl®mpact antiwindup
; Lt . closed-loop systerand shown in Fig. 4, corresponds to the
0<V(t)+ 6/ lz2dt’ < __/ 2|2 dt’ + 7/ lw|? dt’ antiwindup closed-loop system (1), (2), (5), (6).
Jo Y Jo 0 Theorem 1: Given the antiwindup closed-loop system (8),
(9) and a scalaf, the antiwindup closed-loop system is well-

which implies the finiteL, gain~ from w to z: ) i
posed and guarantees quadratic performance of feifednd
”ZH? < ’VHMHQ' 2The LMI eigenvalue problem (see, e.g., [4, p. 10]) is to minimize a linear
function subject to an LMI constraint (or to determine that the constraint is un-
o feasible).
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only if there exists a solutiof@), 6,~) to the following LMl  MC(P,C,n.y,7) as the following set of matrix conditions in

problem: the unknowng R, S,~):
QAT + AQ B,U +QCT B, QCT [RuAT + A,Ryy  B,., RiCT,
UBJ +CyQ DyU+UDy, =2U Dyw UDZ | B, I Dy, | <0 (113)
B;ZL—: Dgw _FYI DZw L Op,lel Dp,zw _’YI
C.Q quU D, —I I SA%L + AcLS BCL,w SCgL;Z
(10a) BE, —I D&, |<0 (11b)
Q = QT >0 (1Ob) L CCL,ZS DCL,zw _fyI
_ —1
U=ov,">0 (10¢) R=RT = [g% glﬂ >0 (11c)
v <A (10d) 12 ez
S=8T>0 (11d)
Proof: See Section V-A. [ | R-S5>0 (11e)
Remark 4: Convex Performance AnalysiSiven a plant, rank (R — §) < nay (11)
controller and antiwindup compensator that make up an N <A N (11g)

antiwindup closed-loop system, the greatest lower bound on

performancey* can be obtained by solving in the unknowns

(Q.6,~) the convex LMI eigenvalue probled := inf(y) MoreoverMC(P,C, n,y,¥) is said to bdeasiblef there exists

subject to (10a)—(10c). o asolution(R, S, ) that satisfies (11). o
Remark 5: If ¢(-) belongs to®y. andV,~' is linearly pa-  The following theorem, representing our main result, pro-

rameterized, then extra degrees of freedom can be exploi¥ges necessary and sufficient conditions for the existence of

when solving the LMIs (10). This is the case for decentralize? antiwindup compensator that guarantees well-posedness and

saturation functions introduced in Remark 2. Observesthat! ~ quadratic performance of levglin terms of the matrix condi-

is linearly parameterized over the family of diagonal positivions MC(P, C, naw, 7).

definite matrices. Hence, in the decentralized case, (10c) can bdheorem 2: Given the planf in (1), the unconstrained con-

replaced by/ = diag(u, . ..u,,) > 0 whereu; are unknown, ftroller C in (2), an integem.,, > 0 and scalar, there exists

thus allowing extra degrees of freedom in the minimization & linear antiwindup compensator of ordey, that guarantees

5. o Wwell-posedness and quadratic performance of keviednd only
Although Theorem 1 provides a useful tool for analysi§ MC(P,C, ., 7) is feasible.
purposes, it can not easily be used for antiwindup synthesis be- Proof: See Section V. u

cause the unknown antiwindup compensator matrices multiplyRemark 6: The Greatest Lower Bound on Achievable
the unknownQ, thus making the matrix inequality (10a) nonPerformance: The goal of optimal antiwindup design is to
linear. In the sequel, suitable procedures are given to constré@fstruct an antiwindup compensator that guarantees a per-

antiwindup compensators that guarantee well-posedness fggnance level as small as possible. Based on Theorem 2, the
quadratic performance. greatest lower bound on achievable performafteuch that

MC(P,C, naw,7*) is feasible can, in principle, be determined
by solving in the unknowngR, S, v) the nonconvex optimiza-
tion problemy* := inf(~y) subject to (11a)—(11f). o

To assist in the system theoretic interpretation of the matrli_x Remarlk 71 1Lower d Biggd‘; on Perfo:mant%e Le}[/_kdls_lntg
inequalities that will follow, recall the well-known LMI formu- emma 1, (11a) and (11b) have a system theoretic interpre-

lation of the bounded real lemma for continuous time systerf?stion' In particular, observe that (11_a) constrf';r'mk) be no
(for a complete proof see, e.g., [25, p. 82]) ess than thé{., norm of the plant® with « = 0, inputw and

Lemma 1 (Bounded Real Lemmaphe following statements OUtpUt,Z or equivalently, no less than t@% gain fromw 1o z .
are equivalent. associated with the open-lc_)op plant. S|m|larly, (11b) constrains
) _ ~ to be no less than th&, gain of the unconstrained closed-loop
1) [ID+ C(sI - A)_IB||0<>_< 7 andA is Hurwitz. system (4). While these two LMIs provide lower bounds for
2) There exists a symmetric positive—definite solutiorio  ne £, gain achievable by the antiwindup closed-loop system,
the LMI (11e) and (11f) establish a nonlinear coupling between the two
conditions. o
Based on the previous remark, it is evident that for condi-
tion (11a) to be feasible the plant (1) needs to be asymptotically
stable. Since Theorem 2 also establishes the necessity of (11) for
antiwindup feasibility, asymptotic stability of the plant is shown
The following definition will be useful to simplify the nota- there to be necessary if one wants to guarantee the global proper-
tion throughout this paper. ties of Definition 3. One of the reasons that itis necessaryfor
Definition 4: Given the plan® in (1), the controllef in (2), to be Hurwitz is that we are asking for global quadratic stability
an integem,,, > 0 and a scalaf, define the matrix conditions in the absence of inputs. Even if we didn’t insist on quadratic

B. Feasibility of the Antiwindup Synthesis Problem

XAT +AX B XCT
BT —~I DT | <o.
CX D I
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stability, with appropriate detectability and stabilizability cons, MC(P,C,n.w,7) is feasible if and only if there exists a
ditions fromw to z, it is a straightforward consequence of theolution(R;1, S, ~) to the following LMI problem:
classical small gain theorem that finite gaia stabilizability

. X : [Ri1 AT + AR B,., R;CT
by bounded controls implies that, is Hurwitz. In the more 1 —; prL o p o
. : . BY —~I D <0 (13a)
general case of non asymptotically stable linear plants (which o p’ﬁ D wlw
is not addressed in this paper), the global properties of Defini- = 7 = pEw _77
tion 3 should be relaxed to be able to guarantee useful results. SAcr +AcLS Berw  SCcrp .
In the next section, we will show that the nonlinear condition BgL,w =1 DgL,zw <0 (13b)
(11f) can be transformed into a linear one, in some special cases. | CoL..S Dcrow =71
1) LMI Formulations of the Feasibility ConditionAn ap- Riy =R, >0 (13c)
pealin_g pr(_)perty of Theor?m 2 i_s that z_;\II but one of the G gT S11 Sia 0 134
conditions INMC(P,C, n.y,7) are linear with respect to the = T | 8L, Sy > (13d)
upknowns(R, S v), the exception being (1.1f.)—the ra_n_k con- Ryy — Sy >0 (13e)
dition. Paralleling the necessary and sufficient conditions for <A 13
reduced ordefH., control synthesis (see, e.g., [8, eq. (26)], T=7 (13f)
when considering thdull order casenay = n, + nc, the Proof [Feasibility of (13)= Feasibility of (11)]: Given a

rank condition is trivially satisfied and the optimization of th%olution(RH, S,7) to (13), takeR1y = S15 and Rys = Sas.
performance level and the determination of the correspondimgien R and S trivially satisfy the rank constraint (11f) since,
solution(R, S, ) reduces to a convex LMI eigenvalue problempy (13e),R;; > Si1, thenR > S > 0. Hence,R is positive
for which numeric algorithms are readily available (see, e.@efinite and(R, S, ~) satisfies Conditions (11) With,y, > n,,.
[9D). [Feasibility of (11) = Feasibility of (13)]. Suppose (11) is
For the full-order case, the rank condition is guaransatisfied by a solutiofiR, S, ~). Then (11e) guaranteds;; —
teed satisfied and the optimal performance leyél such g,, > 0. Then there exists a symmetric positive—definite matrix
that MC(P,C,n;, +n.,7") is feasible can be determinedR,,, such that withR,; — Si; > 0, (13a) is satisfied. ([To
by solving in the unknowngR, S,v) the LMI eigenvalue show this, take: > 0 such thatRy; = Ry + el,,, satisfies

problem o= inf(_v)_ subject to (11a_)—(11e). However,(13a). MoreoverR; — S11 > 0 = Ry — el,, — S11 >
when considering antiwindup compensationreduced-order o = R,; — S;; > 0, as desired]. Finally, (13) is satisfied by
(naw < my + me), the rank condition needs to be satisfiedz,,, 5, ). m

and the conditionsIC(P,C, naw, ) become nonlinear. By  Based on Theorem 2 and Propositions 1 and 2, the following

exploiting the special structure of the antiwindup desigiheorem gives suitable conditions for the feasibility of the con-
problem, in the following Propositions 1 and 2 we will ShOV‘ditionsMC(p7c7naw7:y) in Definition 4.

how to replace the nonlinear rank condition with equivalent Theorem 3: The following properties hold.

linear conditions, for the_ special reduced order Casgs= 0 1) There exists ascaldsuch thaMC(P, C, 0,7) is feasible
andnaw > nyp, respectively. In these two special cases, all "~ it 5ng only if there exists a matri® that is a solution
the matrix inequalities are linear in the unknowns, and the (5 the LMI problem

minimization problem fory becomes a convex LMI eigenvalue

problem. Ry Al + ARy <0
Proposition 1(n.. = 0): ~Given the platlt’P_ in (1), the RAL, + AcLR < 0
controllerC in (2) and a scalaf, MC(P,C,0,) is feasible if R R
and only if there exists a solutigi?, v) to the following LMI R=R" = [RITI R12 > 0. (14)
conditions: R
_ - T oA 2) There exists a scalgrsuch thaMC(P,C, n,,7) is fea-
Rud, + AR Bpw  RuGy . sible if and only ifA, is Hurwitz.
B, —I D, | <0 (12a) 3) If MC(P,C,n1,7) is feasible andn; < mns, then
L CpRn Dpzw =1 | MC(P,C,ns,7) is feasible.
[RALL + ActR BoLw RO . 4) If MC(P,C,n1,7) is feasible andn; > n,, then
BEL; ., —I DL .. 1 <0 (12b) MC(P,C,n,,7) is feasible.
| Ccu.R Devzw  —I | Proof:
R_RT - [Rn Rlz] 50 (120) Item 1) If MC(P,C,0,7) is feasible then by Proposi-
RY, Ra tion 1 there exists a matrik that satisfies (12a) and
v <A. (12d) (12b) with~ = 4. Since each block on the main diag-
onal of both (12a) and (12b) is negative definite, then
Proof: If n,, = 0, (11f) is satisfied if and only if? = S; the top left block diagonal entries which correspond to
thus (11e) is satisfied and (11d) is redundant. Hence, the proof the inequalities (14), are negative definite as well.
follows by rewriting the remaining inequalities in (11) with= Assume there exists a symmetric positive definite
S. [ | matrix R that satisfies (14). Since (14) corresponds to
Proposition 2 (n.w > mnp): Given the plantP in (1), the top left block diagonal entries of Conditions (12a)

the controllerC in (2), an integern,, > mn, and a scalar and (12b), then there exists a large enotigh 4 such
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that (12a) and (12b) are satisfied. The result followa certain performance level for the closed-loop system in
from Proposition 1 pickingy = 7. Fig. 3, they do not provide tools for the construction of such a
Item?2) First, note that there exists a matribcompensator. In this section, based on a solutiBnS, ) to

Ri1 = RY, > 0 such thatRllAf + A,R11 < 0 MC(P,C,naw,7) arising from Theorem 2 or Proposition 1 or

if and only if A, is Hurwitz. Moreover, since the 2, we give a procedure to construct a state-space representation
unconstrained closed-loop system is exponentialbf an antiwindup compensator that guarantees well-posedness
stable, Acr, is Hurwitz and there exists a matrixand quadratic performance of level The effectiveness of the

S = ST > 0 such thatSAL;, + AcpS < 0. Since procedure is then formally stated in Theorem 4.

Ry1 > 0, there exists a sufficiently smadl > 0 such To suitably describe the procedure for the construction of the
that R;; — S11 > 0. TakeS = €S. Then there exists antiwindup compensator, we will first introduce an equivalent

a large enoughy = 7 such that(R,,, S, ) satisfies representation for the antiwindup closed-loop system (1), (2),
(13). The proof is completed by applying Propositio5), (6) represented in Fig. 3. By stacking the plant and the con-

2 pickingy = 7. troller states into a single state vectary, := [+] 2I]T €
Item 3) The result is a direct consequence of DefinR™ct, with ncy, := n, +n., the antiwindup closed-loop system
tion 4 since if the rank condition (11f) holds fag, = can be written as shown in Fig. 5. The dynamics of the sub-
ny then it also holds fon,, = ns > n;. systemH in Fig. 5 is given by
Iltem 4) The result is a direct consequence of Proposi- .
tion 2 since Conditions (13) are independentgf.m gcL = Acr@er + Berww + Bev,gq + Bor,ov
An important implication of Theorem 3 is that not only does’t z =Ccr:xcL + Der,zww + Dt 2qq + Der 20
the antiwindup construction always admit a solution choosing Ye = CerLyrer + Devyuwtt + Devyqd + Dot yov
Naw = n,, but also given the optimal performangé achiev- (15)

able by a solution of any order,,, > n,, then by item 4 of the
theorem, this same performance is achievable by an antiwindgﬂere

compensator of ordet,. Hence, the restriction that the anti- C&B’ Do 2w, I?CL’Z‘“ DQLtvz“c’j.OCL*“J.’ DCEW’I DOCIIL*W’d
windup compensator orderis, does not restrict the minimum andlcr,,» are ot appropriate dimensions ana only depend on
achievable performance level the matrices of the plant (1) and of the controller (2).

Moreover, item 1) of Theorem 3 implies that, in man Based on the linear system (15), we can formalize a procedure

situations, static antiwindup compensation does not provi 1th(|aacons(;ruct|in g thet angwmd??hcogpfn_sa:jtor. c
a feasible solution to this antiwindup problem, regardless of ) Procedure 1 (Construction of the Antiwindup Compen-

the performance levél. Indeed, condition (14) corresponds o2 or): o N
requiring the existence of a quasi-common quadratic LyapunovStep 1) Solve the feasibility conditions

the matrices ACL7 BCL,un BCL,q: BCL,m

function between the open-loop plant and the unconstrained Given the plant?, the controllerC, an in-
closed-loop system. In particular, if the unconstrained controller teger n,, > 0 and a scalary, determine a
is static(Ry; = R), it exactly requires a common quadratic solution (R,S,v) that satisfies the conditions
Lyapunov function. In the general case of a dynamic uncon- MC(P,C, naw, 7). _
strained controller, it is a generalization of this requirement St€p 2) Construct the matrix). _
based on the fact that the size of the unconstrained closed-loop Using the solution( R, S, v) from Step 1, define
system is larger than the size of the open-loop plant. the matrix V€ R™c»*"= as a solution of the fol-
Remark 8: Greatest Lower Bound on Achievable Perfor- lowing equation:

mance via Convex OptimizatiorRemark 6 provides a method

to determine the greatest lower bound on performance by
solving a nonconvex optimization problem. In the light of Since R and S are invertible and Conditions
Propositions 1 and 2, the greatest lower bound on performance (11e) and (11f) of Definition 4 are satisfied, then
can be determined by solving a convex optimization problem
when considering static or at least plant-order antiwindup com-

RS™'R—- R =NNT. (16)

RS™'R — R is positive semidefinite and of rank
naw, SO there always exists a matriX satisfying

pensation. In particular, the greatest lower bound on achievable (16). Define the matrid\/ € R™sv X" as
performance’, using a static antiwindup compensator can

be determined by solving, in the unknow(®, +), the convex M:=IT+NTR™'N. 17)
LMI eigenvalue problem¥* := inf(y) subject to (12a)—(12c).

Similarly, the greatest lower bound on achievable performance, Finally, define the matrix
Ay, » Using an antiwindup compensator of order greater than or Q € Rmertnaw)x(nertnay) gg

equal to the order of the plant can be determined by solving, in RN

the unknowngR;1, S, ), the convex LMI eigenvalue problem: Q= {NT M} (18)
Yn, = inf(7) subject to (13a)—(13e). o

C. LML-Based Antiwindup Svnthesi Step 3) Construct other required matrices
. -Based Antiwindu nthesis i nxn

) P y- _ _ Construct the matricesl, € R"*" B, €
Although the results in Section 1lI-B provide natural condi- R Cyo € R™X™ Dygo € R™*™, C,, €

tions for the existence of an antiwindup compensator achieving R":X" D, € R™Xm HT ¢ RXMawtn.)



1516

AW v TS ?'[ yc
[
LTI ()

T aw

-

Fig. 5. Equivalent representation of the antiwindup closed-loop system.

Gy € Rawtnu)xn g ¢ Rawtnu)xne [l ¢
Rnux(n“‘v+n”), Hg“ c Rn;X(naw+nv),Bw c

R*»*"w D., € R"*™ andD,, € R™*™ as

follows:
| AcL O | BcL,g
ol 2] e[
Cyo = [CCL,y 0]
(19a)
quo = DCL,yq C.o = [CCL,z 0] quo = DCL,zq
T __ [ 0 BCL,U o 0 Inaw
Hy = | I, O Gi=19
[0
Ga= | 1]
Hy =[0 Dcrye] Hi =[0 Decrzol (19b)
B .
B, = COL7 :| D.., = DCL,zw Dyw = DCL,yw
(19¢)
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Theorem 4: Given the plantP, the controllerC, an integer
naw, @ scalary and a solution(R, S, v) to MC(P,C, naw,7),
the LMI (22) constructed according to Procedure 1 is guaranteed
to be solvable forA. Furthermore, the solution defines the
matrices of a linear antiwindup compensator (6) of ordgf
that guarantees well-posedness and quadratic performance of
level 5.

Proof: See Section V. ]
Remark 9: To overcome implementation problems, it might
be desirable for the antiwindup compensator arising from Pro-
cedure 1 to be strictly proper. At least for the case when the con-

troller (2) is strictly proper (namelyj). , = 0 andD, ,, = 0),

this is possible without increasing the performance lévbut
increasing the dimension of the antiwindup compensator (6) by
addingn,, states. Indeed, the conditions of Theorem 2 hold for
a giveny if and only if they hold for someg = v — 6, with

6., sufficiently small. Then, following a singular perturbation
approach (see, e.g., [14, Sec. 9.4)), it can be shown that there
exists a sufficiently small constapt > 0 such that the same
antiwindup compensator augmented with the filter

ng=—q+us

located at its input (namely, choosing = 1 (y.)) still guar-
antees well-posedness and quadratic performance of fevel
Indeed, defining the new state variabfe:= ¢ — ¥(y.), a
singular perturbation argument allows us to prove a relation
similar to (7) for the new antiwindup closed-loop system. In
particular, taking anyl € (0,1) a new (Lipschitz) Lyapunov

Step 4) Construct and solve the antiwindup compensatdtnctionV (z, £) := (1—d)V (z)+dé? can be shown to satisfy

LMI.

(7) for a smallere but the same original value foy (this is

Stack the matrices of the antiwindup compensat@ossible by the preliminary insertion of the margin). o

(6) in a single matrix\ € R(mawFm)X(nawtn.) gg

follows:
A
Ay |-

Choose anys € R,6 > 0 and defineU = ¢§V,71.

A= {Al (20)

A3

Based on the matrices determined in Steps
and 3) of this procedure, -construct the

] € R(n+nu+nw+n1)><(n+nu+nw+nz).H €
R(naw +ny) X (04 ny 4+ ny +nz), and G c

Remark 10: When the saturation function is decentralized
(consequently, by Remark 5] can be selected as a diagonal
positive definite unknown), the static antiwindup construction
in Procedure 1 (witl,,, = 0) corresponds to the optimal static
antiwindup construction proposed in [22], where the mattfix
is an unknown diagonal positive—definite matrix (ther&in!
is referred to as the “stability multiplier”) and the parameter
2) = R, instead of being determined in Step 2), is undetermined

matricesnd considered as an extra unknown variable in the inequality

(22). Indeed, due to the simpler structure of the problem when
n.w = 0 (causingG; = 0), inequality (22) turns out to be

R(maw +mu) X (n 47+ nw +n2) a5 shown in (21a)—(21c) at thelinear in the unknowng), U, A, U, and~, hence being solvable
bottom of the page. Finally, compute the matixassociated through a single-step solution, wheye&an be once again min-
with the desired antiwindup compensator by solving the LMIlimized in a convex way. Although the stability multiplier was

employed in [22] to improve the antiwindup performance, an

U+ GTATH + HTAG < 0. (22) interesting implication of Theorem 2 is that since the conditions
QAT + A.Q BgoU +QCL, B, QCL
T T T
v |UBL+Cy0Q Dyl +UDL, —2U D, UDL, (213)
BT Dz, —I DI,
Con quoU Dzw _’YI
H=[H, Hy, 0 Hj] (21b)
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MC(P,C, naw,~) are independent oV, then the minimum 15
achievable performance level does not depend on the stabili
multiplier. o

-
o

o

IV. APPLICATION EXAMPLES

pitch angle (deg)
flight path angle (deg)

o

In this section, the antiwindup construction proposed in % > 4 0 2 4

Section 1lI-C is applied to two linear windup-prone control
systems. The first one is a simulation example that illustrate 5
the effectiveness of the construction in the nontrivial cas¢s ° -
of a multiple-input—-multiple-output system. The second oneES-10

w
o

20

flaperon angle (deg)
>

is an experimental application that shows the success (g

our algorithms when applied to practical control problems.g_20 0

In particular, the application that we have chosen exhibit: ® -3 J 5 ” ~10— 5 ”
a difficult windup problem for which static antiwindup is time (s) time (s)

not even capable of guaranteeing quadratic stability (this is

verified by checking the conditions in Theorem 3) and the mofdg. 6. Example 1. Comparison of the unconstrained response (bold solid) and
of the saturated response (dotted) to the static (dash-dotted) and dynamic (thin

SOphiSticated plant-order dynamic antiWinduP Compensati%]id) antiwindup designs with = y — w and to the scheme of Kapasoueis
scheme is necessary. al. (dashed).

Example 1 (The Longitudinal Dynamics of an F8 Aircraft
[13], [19]): Consider a fourth-order linear model of the longiscussed thus far, are shown in Fig. 6, where the bold solid
gitudinal dynamics of the F8 aircraft and the eighth order linegfe is the unconstrained trajectory, the dotted line is the satu-
unconstrained controller introduced in [13]. The two inputs tgated trajectory, the dashed line is the antiwindup response with
the plant are the elevator angle and the flaperon angle, e@gh method of [13], the dash-dotted line is our static antiwindup
one limited betweent25 degrees and the two outputs of thgesponse, and the thin solid line is our plant-order antiwindup
plant are the pitch angle and the flight path angle. The copsponse. Both of the antiwindup closed-loop system responses
troller input is the difference between the plant OUtpUt and tl}}%\/e Signiﬁcant overshoot and are, perhaps] undesirable.
reference input. The authors of [13] observe a substantial pernext, we will show that the antiwindup trajectories can be sig-
formance loss when the plant input is subject to saturation af#icantly improved by selecting a different performance output.
propose a reference governor scheme for antiwindup purposgg observe the most substantial degradation in performance of
We will compare their result to the antiwindup compensatotie saturated closed-loop trajectories is the large overshoot and
designed using the methods in this paper. settling time of the pitch angle. For this reason, we select the

The methods in this paper depend on the realization of thgrformance objective to be composed of the pitch angle error
unconstrained controller. Using the matricAs, B., Ca,H, and the angular acceleration due to the plant state on the pitch
andG defined in [13], choose the realization of the controllegngle. In particular, we will define the performance output via

according to the matrices
_[A.+B.G-HC, 0 B k! o 0 o 3
Ao = G 0| TBew=Bey= [0} Cpz = [—.8 —.0006 —12 0
CC = [0 I] Dp,zu = 02><2
3
, . . . -2 0
andD. , andD. ,, are zero matrices of appropriate dimensions. Dy .w = [ 04 0] .

By selecting the performance output y—w wherew denotes

the reference input, a static antiwindup compensator can Aatatic antiwindup compensator can now be constructed using
constructed using Procedure 1 with, = 0 which guarantees Procedure 1 with,,, = 0 which guarantees performance level
performance leve} = 22.19 and the resulting antiwindup com-v = 26.18 and the resulting antiwindup compensator consists
pensator consists of the gain is as shown in the equation at tfiehe gain as shown in the the equation at the bottom of the
bottom of the page. Similarly, a plant-order antiwindup compepage. Similarly, a plant-order antiwindup compensator can be
sator can be constructed using the same performance outputeomktructed using the same pitch angle performance output and
Procedure 1 withr,,, = n,, resulting in an antiwindup com- Procedure 1 withi., = n,, resulting in an antiwindup com-
pensator with guaranteed performance level 19.39. To save pensator with guaranteed performance level 22.91. To save
space, the constructed matrices are not written here. The agfiace, the constructed matrices are not written here. The an-
windup closed-loop system response, and the other resportsesdup closed-loop system response, and some of the other

6.1077 10.113 —5.1947 —1267 —0.17647 0.89373 6.2456 11.053 —0.90667 1.5318 |"

As= —1.9882 9.6373 —3.85643 —566.8 —0.24158 0.31719 -—-1.9261 10.102 0.05948 0.01987
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Fig. 7. Example 1. Comparison of the unconstrained response (bold solid
and of the saturated response (dotted) to the static (dash-dotted) and dynan
(thin solid) antiwindup designs with pitch angle performance output and to the
scheme of Kapasourgt al. (dashed).

responses discussed previously, are shown in Fig. 7 where t 7 4
bold solid line is the unconstrained trajectory, the dotted ling
is the saturated trajectory, the dashed line is the antiwinduf
response with the method of [13], the dash-dotted line is ou
static antiwindup response, and the thin solid line is our plant
order antiwindup response. The trajectories of this antiwindup
closed-loop system designed using the pitch angle performang
output, particularly with plant-order antiwindup, are highly de-
sirable and are a marked improvement over the scheme pr
posed in [13].

Example 2 (An Experimental ExampleJhe cart-spring-
pendulum system shown in Figs. 8 and 9 (which is available
at the Control and Computation Laboratory at the University
of California, Santa Barbara) consists of a cart restricted t
motion on a straight and level track which is attached via ¢
spring to a fixed wall. A pendulum is suspended from the car
by a hinge so as to be constrained to the vertical plane define
by the track. The cart is equipped with a DC motor that exerts i
torque to a small toothed wheel which, in turn, applies a force
on the cart. The system will be disturbed by a sharp tap on th
pendulum that comes from a human hand. For the purpose of
deriving a model, the experimental system will be consider&§- 8- Damped mass-spring-pendulum system in Example 2.

to be composed of a massless spring attached to a frictionless ] ) )
cart from which a slender rod freely hangs. the DC motor]—6, 6] Volts). The disturbance is a force in the

The output of the system is the positiprof the cart, in me- plane of motion orthogonal to the pendulum of lengthand

ters, relative to the spring’s equilibrium point and the angul&Cts at a distance dft/3)! from the cart-pendulum hinge. A
positiond of the pendulum, in radians, relative to the vertica?onlinear model of the system can be derived by applying stan-

both positions are measured with optical encoders. The ph§&rd Euler-Lagrange ;echr_ﬂque_s. Moreover, defining the plant
ical inputs of the system are the voltageapplied to the ar- State as;, := [p p 6 01", alinearized model around the origin
mature of the dc motor, in Volts, and a disturbance fargén 1S given by (1) and

Newtons. The force from the motgt, in Newtons, is modeled 0 1 0 0
asf = kiu — kop. The operating range of the control input —-330.46 —-12.15 -—2.44 0
is constrained by the range of the D/A converfer;, 5] Volts Ap = 0 0 0 1
(which, incidentally, nearly covers the entire operating range of —812.61 —29.87 —-30.10 0

| 14339 —55.258 —0.10926 —7.6946 0.01282 0.30214 14.406 —55.168 —0.97438 —0.019895 T

A= —76.926  528.52 2.4325 5.9347 0.54967 0.69361 —76.628 527.19 —0.13474 —0.76157



GRIMM et al: ANTIWINDUP FOR STABLE LINEAR SYSTEMS WITH INPUT SATURATION 1519

{1 taps, however, give rise to undesirable closed-loop behavior,
i.e., the settling time is severely deteriorated. In Fig. 9, the

6 (radians)
o

\/

bold solid curve represents the simulated (ideal) unconstrained
1 response, the dash—dotted curve represents the simulation of

the saturated response and the thin solid curve represents the

1 corresponding experimentThe noticeable mismatch between
the thin solid and the dash-dotted curves is cause by unmodeled

p (meters)

effects of the experimental device: mainly backlash and stiction
affecting the movement of the cart on the track. Besides these

unmodeled phenomena (which cause significant differences,
especially on the tails of the responses), the fourth order model

u (volts)
o

_5F -

represents sufficiently well the dynamics of our experimental
system.

Based on the antiwindup construction proposed in Proce-
dure 1, the undesired behavior of Fig. 9 can be mitigated by

time (seconds)

augmenting the experimental control system according to the
diagram in Fig. 3. To determine an optimal selection of the an-

Fig. 9. Example 2. Response to the larger pendulum tap. Simulated

unconstrained response (bold solid); simulated
(dash-dotted); experimental saturated response (thin solid).

r 0 0
2.71762 0
By = 0 Bpw = 0
L 6.682 68 15.61
[1 0 0 0 0
Cp,y: 0 0 1 0:| DP,!IUZ|:0:|
[0
Dy yw = 0}

where 4, is Hurwitz.

Suppose the system is allowed to come to rest before it Smpensation matrices are obta

saturated

ﬁygindup compensator matrices we first choose a performance
outputz. By inspecting Fig. 9, we see that for the larger pen-
dulumtaps, the pendulum swings wildly causing the cartto chase
after the pendulum, almost in vain. To reduce quickly the mag-
nitude off, we choose the matrices related to the performance
outputz as follows:Cp . = [0 0 1 0], D} .o, = 0,D,, .., = 0.

A first antiwindup design attempt is carried out by selecting
k = 0 to explore feasibility of static antiwindup compensation.
Unfortunately, for this system, the associated LMIs (12) in
Proposition 1 are unfeasibie As a further step, we move to
dynamic antiwindup compensation of order= n,, which,
based on the asymptotic stability of the plant, is guaranteed
to be feasible by Theorem 3. To construct this compensator,
Procedure 1 is applied with., = n, and the following
ined, which guarantee a per-

respo

disturbed and we are interested in the response of the systemgyﬁ]ance level ofy = 181.82:
to two test pendulum taps, one smahd one five times larger. o

Suppose further the objective is to return the pendulum and cart - —65.02  198.43 98.11 —66.75
quickly and gently to their equilibrium after the smaller taps and 293.94 —697.09 —347.39 9247.24
gracefully handle the larger taps to the pendulum. Following a1 = 41.17 —98.10 —47.56 55.95
LQG construction, an observer based controller of the form (2) | —121.39 309.97 13831 —131.52
is designed where - 0.0688
—0.2620
K =[64.81 213.12 1242.27 85.82] Ao =| o637
p_[64 2054 —8 —1432 ’ L 0.1559
-8 =280 142 10169 r 41.22 —160.42 —106.41 82.03
—3469.09 8318.57 3423.87 —2388.49
A. == A, — BpuK — LC, B,y = L,C. == —K, A4 ~162.51  386.26 —35.56 71.07
and B, ., D.,, and D.,, are zero matrices of appropriate —4584.37  9490.06 —11350.16 11407.08
dimensions. 587.11  —1687.16  —821.25 632.86
For the simulations reported here, we have used the lin- r—0.0622
earized model of the plant. Indeed, the resulting trajectories are 2.9070
almost the same as the corresponding ones with the nonlinear, — | 0.2338
Euler-Lagrange model, thus confirming the appropriateness of 5.5623
the linear approximation for our operating conditions. For the 0

smaller pendulum tap, the plant input does not saturate and the

unconstrained responselis deemed desirable, both in SImUI‘B"{IQ‘IAIthough a continuous time controller has been designed, it is implemented

and in experiment. The settling time for the pendulum is aprdiscrete time. We allow Quanser Consulting Inc. software, WinCon 3.1, to

proximately 1.5 s and for the cart, it is 3 s. The larger penduluganvert our continuous time controller to discrete time using the Runge—Kutta
fixed-step solver with sampling time 0.0005 s.

3For simulation purposes, the smaller pendulum tap is modeled a constaritUnfeasibility was determined due the inability of the MATLAB LMI

force of 1.588 Newton with duration 0.01 s.

Control Toolbox to find a feasible solution to the LMIs (12).
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-4 where the seiM is compact, convex, and each matrix
is nonsingular. Then there exists a (unique) globally Lipschitz
functionG: R" — R™ such thatF'(G(z)) = z for all z € R™.
"1  Equivalently, F' is a homeomorphism with globally Lipschitz
4 6 8 10 inverse.
‘ Lemma 3: Given two square matriced andV = VT > 0,

if —2V+V D+ DTV < 0thenI — DA is nonsingular for allA
such that the linear map— Az belongs to the sectd®, 1]y .

Lemma 4: Given any symmetric positive-definite matrik,
s 10 the function¢( -) belongs to®y. if and only if the function
Y(ye) == ye — ¢(y.) belongs tody, .

Proof (Sufficiency): Assume ¢(-) belongs to ®y..
Clearly, v¢(-) is globally Lipschitz. Moreover, since
(¢(y) —y, ¢(y))v, < 0forally, then(—y(y),y —¥(y))v, <0
for all y, namely(-) belongs to sectofo, I]y,. Moreover,
time (seconds) sinceJyY(y.) = I — Jp(y.) wheneverJ¢(y.) exists it follows
that (Jy(y), I — J¢(y))y, > 0 for almost ally € R™. Thus

s =

Fig. 10. Example 2. Response to the larger pendulum tap. Simulat g . .
unconstrained response (bold solid); simulated response with antiwind@ ) belongs t@Vs' The necessity can be proven by swapping

(dash-dotted); experimental response with antiwindup (thin solid). the functionsp( - ) and+( - ) in the previous proof. [ ]
The following facts will also be useful for the proof of

=}
N
T

0 (radians)
=)

|

o

N
T

p (meters)

u (volts)
=)

5k

The thin solid curve in Fig. 10 represents the experiment-gheorern_ 1. _ _ _
response of the closed-loop system with dynamic antiwindupFact 1: By noting thaty. andz are linear functions of, ¢,
compensation to the same disturbance that generates the ufi§w, Writing the upcoming (23) in matrix inequality form and

sirable response represented in Fig. 9. Similarly to Fig. 9, tfking its Schur complement [4, p. 7], it can be shown that given

( _ e e . 2
dash—dotted curve represents a simulation of the closed-Idopg= £~ > 0, andV' = u% Pz, where its derivative along the

with the linear plant model, while the bold solid curve repredynamics of the system (8), (9) I8 = 227 P(Az + Byq +
sents a simulation of the unconstrained closed-loop systen@gw)' then

response. A comparison between the thin solid responses in 1

Figs. 10 and 9 illustrates that the insertion of the antiwindup V4 =2tz —ywtw+2r¢" W(y. — q) <0
compensator greatly improves the experimental response to the v

larger pendulum taps, while structurally preserving the desirable V(z,q,w) #0 (23)
performance of the (previously designed) unconstrained caop- . .
troller for the smaller pendulum taps. It should be recognizé*cwl"]anI only if the equation shown at the bottom of the page holds.
that the tails of the simulated responses are quite different fro
the experimental ones because of the unmodeled effects cl(f
mented above. Nevertheless, the plant model is mostly accu
in the operating conditions where the plant input is close to t i
saturation limits. These are the operating conditions of interestl) there exists a scalar> 0 such that

for the antiwindup action, hence a more accurate model of the

plant does not seem to be necessary for the antiwindup desidn.+ ngz —ywTw+ 27" W(y. —q) <0 V(z,q,w) #0

-act 2. By employing theS-procedure [4, p. 24], itis shown
t given any symmetric positive definite matii and (as in
gct 1)V =227 P(Az + Byq + B,w), if

V. PROOF OF THEMAIN RESULT then
A. Proof of Theorem 1 2)
To prove Theorem 1, the following lemmas will be useful. 1 5 T
The proofs of Lemmas 2 and 3 can be carried as in [33]. V+ S ETIwwS 0 (25a)
Lemma 2: Consider a locally Lipschitz functiof: R™ +—
R™ and assume that the Jacobianfosatisfies for all (z,q,w) # 0 such that
JF(z) € M, for almost all z € R™ IW(ye—q) = qTW(Cyz—l—quq—}—Dyww— q) > 0. (25b)
ATP 4+ PA PBy+7CJW PB, cT
BI'P++WC, 1(WDy,+ D! W —-2W) +WD,, DI <o
BTP DLW —~I DT,

OZ qu Dzw _'YI
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In addition, if there exists at least one selectiowhereH (-) isglobally Lipschitz. Since, by Lemma 4, the func-
(z*, ¢*, w*) such that tiony( - ) belongstaby, , then almost everywherd, = J(y.)
is such thatA, I — A)y, > 0. This can be rewritten as
¢ TW(Cyz* + Dyyq* + Dypw* —q*) >0 (26)
—2ATV,A+ VA + ATV, >0 (28)
then item 2) implies item 1).
Fact 3: There exists a selectiofx™, ¢*, w*) that satisfies
(26).

whereA = Jv(y.) almost everywhere. Then, for almostall
the Jacobian off (y.) satisfies

Proof: If there existz*, w* such tha{Cyz* + D, w*] # JH(ye) € {(I = DyyA), A - —2ATV,A
0, then pickg* = ¢[C,x* + D,,,w*] with ¢ sufficiently small to ' LV A ATV, > 0 = JH
satisfy (26). Conversely, &,z + D,,,w = 0forall (z, w), then s s="r
the controllerC is identically zero. In this trivial case, = 0 \yhere the set/’H is compact by the boundedness Afand
for _aII_ times. Namely, since t_he saturation never activates, thgcause the inequality in (28) is nonstrict. The &2t is also
antiwindup problem is nonexistent. From a more system theQsnvex because, by Schur complement, inequality (28) can be
retic viewpoint, in this case the optimal performangés the \yritten as an LMI inA. Furthermore, since the diagonal entries
Lo gain of the open-loop plant, and an antiwindup compensa@fr(loa) are negative definite, ther2V, + V,D + DTV, < 0
that achieves this performance level is the identically zero angﬁd’ by Lemma 3, each matrix in the sEk is nonsingular.
windup compensator. ®  Then, by Lemma 2 there exists a (unique) globally Lipschitz
Prqof of Theorem 1: _ function ¢(-) such thaty. = ((Cyz + Dy,w). Finally, the
NecessityAssume that for a given plant, controller anq iyschitz property of the right-hand side of (9) guarantees the
antiwindup compensator of order.,, well-posedness and gyistence and uniqueness of solutions, thus proving well-posed-
quadratic performance of levglare guaranteed in the sense of,ass of the interconnection between (8) and (9). o
Definition 3. Lemma 4 guarantee¥ - ) belongs to®y,, and
therefore(q,y. — q)v. > 0. Hence, by inequality (7), there B. Proof of Theorems 2 and 4
exists a quadratic Lyapunov function(z) = 2T Pz where
P = PT > 0 such that item 2 in Fact 2 is satisfied with

W =V, andy = 5. Combined with Fact 3, Fact 2 implies , °, LMIs for analysis (10) in Theorem 1, and the LMI (22) in

that there exists a constant> 0 that satisfies (24). Finally, by the final step of Procedure 1. The LMIs (10a) and (22) coincide

F_act 1, (27), shown at the bottor_n of the page, holds. Moreovglrjt are in different unknowns; the LMI (10a) is in the unknown
since all blqck diagonal teri”ns in (27) mus} belnonzero, th%? and the LMI (22) is in the unknowr. Indeed, since the

7 # 0. Defining @ = P~ andU := 77V, and then . system (9) represented by the diagram in Fig. 4 coincides with
She system (6), (15) represented in Fig. 5, the matrices in (9)
can be expressed in terms of the matrices in (6), (15). Within
this equivalence, it is easy to check that the matriggsD,,,,

and D.,, in (9) coincide with those defined in (19¢) and the
remaining matrices in (9) satisfy

A key step in the proof of Theorems 2 and 4 is the connection
between the matrix conditiordC(P, C, n..,7) in Definition

block diagonal matrixdiag(Q,U, I, 1), it follows that there
existsQ = QT > 0andé := 7—! > 0 that satisfy (10a), as
desired.

Sufficiencylf there exist@,~, andé > 0 that satisfy (10),
define P := Q7! andr := §-! and premultiply and
postmultiply (10a) by the symmetric block diagonal matrix A=A, +HTAG, C,=Cyp+ HING,
diag(P,7Vs,I,1). The resulting inequality guarantees (27) C. = C.. + HTAG

becausey > ~. Then, Fact 1 and Fact 2 guarantee that the * =° 3T ! -
functionV (z) = 27 Pz satisfies item 2 in Fact 2 with’ = V. By = Byo + Hi AGy  Dyg = Dygo + Hy AG

Sinceq = 1(y..) andy( - ) belongs tdo, I]y., inequality (25b) D., = D.,o + H{ AG». (29)

is always satisfied by the trajectories of the closed-loop system _ ) )

(1), (2), (5), (6). Hence, since the inequality in (25a) is strict, The following theorem establishes the equivalence between

there exists a small enough> 0 such that inequality (7) in the feasibility of the matrix condition31C(P,C, na,7) in

item 2 of Definition 3 is guaranteed. Definition 4 and the feasibility of the matrix constraints (10)
To show well-posedness in item 1) of Definition 3, rewrite th@nd (22).
interconnection of (8) and the middle equation of (9) as Theorem 5
1) Giventhe plan®P in (1), controllerC in (2), integem v >
H(ye) := ye — Dygth(y.) = Cyz + Dyyw 0 and scalaf, there exist matrice§, A and scalarg, §
ATP 4+ PA PB,+7CTV, rB, CT
BqTP + TVSCy T (—2Vs + Vsqu + ng%) TVSDU“’ D'Zq < 0. (27)
BEP TDng; _’?I DZw

Cz qu Dzw _:YI
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satisfying (10) (with the definitions (19), (29)) ifand only Lemma 6 [23]: Let R, Z € R™*™ be symmetric positive
if the matrix conditionsMC(P, C, n.y, ) are feasible.  definite matrices. Then the two conditions
2) Given a feasible solutiofi?, S, v) to MC(P,C, naw,¥),

_ —1
the matrix@ constructed in (16), (17), (18) guarantees 4 R_l 20
that the LMI (22) in the unknown§A, §, v) is solvable rank[Z — R™'] < naw
and the arising solutioi@, A, 6,~) also satisfies (10) hold if and only ifthere exislV € R™*"=v andM € R™aw X Maw |
[with the definitions (19) and (29)]. with M = MT > 0 such that
, . R N R N17' [z 2
Proof: See Section V-B. [ NT vl Y Nt oml T o

Proof of Theorem 2:The composition of Theorem 1 and ) )
item 1 in Theorem 5 imply Theorem 2. where? denotes matrix entries that we do not care about.

Proof of Theorem 4:Step 1) of Procedure 1 is assumed to Proof of Theorem 5:We first prove the necessity part of

be solvable. Steps 2) and 3) are constructive. For Step 4), {ifn 1. According to the definitions (19), (20), (21), and (29),

matrices (21) can always be constructed based on the matriged®) coincides with (22) as shown in (33) at the bottom of
computed at the preceding steps. Moreover, by item 2) in THB€ Page. We will apply Lemma 5 to inequality (33) [which

orem 5, the matrix? constructed in Step 2 guarantees that tHePincides with (10a)] to show that there exists a feasible
LMI (22) is solvable forA and any feasible solutiopt, §,7) Solution (@, A,v,é) to (10) if and only if the conditions

to the LMI (22) is such thatQ, A, é,y) satisfies (10). Hence, MC(P,C,naw,7) in Definition 1 are feasible. In particular,

by Theorem 1, the antiwindup closed-loop system (8), (9) cot€ will show that (31a) is equivalent to (11a) and that (31b) is

responding ta\ is well-posed and guarantees quadratic perfofduivalent to (11b), that the coupling between (11a) and (11b)

mance of levef;. o through¥ can be rewritten as (11e), (11f).

The following lemmas, proven in [8], [12] and [23], respec- Condition (11a): According to (19b), (21b) and the
tively, will be useful for the proof of Theorem 5. exphcn expressions for the matrices in (15 can be

Lemma 5 (Projection Lemma [8, Lemma 3.1]Biven a sym- written as (34), shown ?t the bottom of the page, v;/here
metric matrix?U € R™*™ and two matricess, H of column Ayp = (I = Dy yuDey)™ andAye := (I = DeyDp,yu)

dimensionm, consider the problem of finding some matrix are well defined (namely the matrices in parentheses are
of compatible dimensions such that invertible) by the well-posedness of the unconstrained inter-

connection. According to this special structure, a matrix that
spans the null space df is

U+ GTATH + HTAG < 0. (30) -
I,, 0 0 -B,, 0 0
_ Wg=1]0 00 0 I,., 0| . (35
Denote byiWs, Wy any matrices whose columns form bases of 0 0 0 —-D 0 I
the null space ofs and H, respectively. Then (30) is solvable o "
for A if and only if Indeed, by the assumption of well-posedness of the uncon-
strained closed-loop system,,. is full rank, hence, according
- to the (34), the dimension of the null spacekbfis necessarily
Wy¥Wg <0 (31a) np +n, + 1y, Moreover, the rank ofVy is n, +n, +n,, and
WEIWe < 0. (31b) it can be verified by computation th&iWg = 0.
QAT + AQ B, U + QCT B, QCT
UBqT +CyQ Dy U+ UD,fq —2U Dy UDZTq
Bg D;w _71 DZU)
CZQ quU Dzw _’yI

HTAGLQ + QGTATH, HTAGSU + QGTATH, 0 QGTATH,

_ug HIAG1Q +UGYATH, HIAGU +UGYATH, 0 UGYATH;

0 0 0 0
HTAG1Q HTAG,U 0 0
=V +H'AG+G"ATH <. (33)
0 0 In.. 0 0 0
H= 0 I, 0 0 0 0 (34)
T T T T T T T T
Ayan,u Dp,yuAypB(‘,y 0 Ay(’ 0 Ay(’Dp,zu
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Assume that, according to (18), the maif)xs partitionedas  Conditions (11e) and (11f)SinceP = Q~', andS = P,
then from the partitions o and@ we have

Q= [ Ko 1
“INT M . R N -1 _ . S Py
] Q_[NT M]>0 and @ _P_{PS Poy
where . :
i which can be rewritten as follows:
R= [ﬁ;l 212 : BONT o [RONTT[ST Pul g
12 M2z ] NT M NT M T PL Pl

and (21a) with (19a), (19c). After some computations it follows

that WEUWg < 0 coincides with the inequality in (11a), as STT—R'>0 (39a)
desired. rank[S™! — R < ngy. (39b)
Condition (11b): According to (21c), the matrixs can be

factored as follows: Premultiplying and postmultiplying the matrices in (39b) by

S andR, respectively and performing a Cholesky factorization

G=GoT=[G1Q G,U 0 0] (see, e.g., [28, p. 195],) on (39a), we get Conditions (11e) and
— 1[G Gy 0 0]diag(Q,U,1,1) (111), thus completing the proof of the necessity part of item

iy ~ A 1). To prove the sufficiency in item 1), the aforementioned rea-

Go T soning can be reversed. In particular, conditions (11e) and (11f)

where Go € ROmtn)x(ndn4n.+n.) and T e imply (39), which by Lemma 6 imply the existenceldf, IV sat-
R(m+nutnetn)x(ntnutn.+nu)  Since T s invertible isfying (38).. Finally, (11a)and (11b) holq wi_thg 9, hencg, by
(indeed,Q > 0 andU > 0 by assumption), we can write Lemma 5, inequality (30) holds too. This, in turn, implies that
(10) is solvable.
qu;WG - WC,T;T T T ' TWs = Wgo IWe, Finally, we prove item 2) of the theorem. Since (22) coincides
Y with (10) with the selection fo€ (16)—(18), then provided the

matrix () satisfies expression (38), the proof of the sufficiency
whereWg,, spans the null space 6f, and, according to the of item 1) can be followed verbatim to show that (22) is solvable
definitionsP = Q= andU = W~ (36) shown at the bottom with (16)—(18). To show that the construction (16)—(18) €pr
of the page holds. Based on (19b), we can write explicitly tratisfies (38), note that by the formulae for the inversion of block
entries ofGo as matrices [31, p. 23], the upper left block Bfneeds to satisfy

00 I,, 0 00 Pu=S"'=R'+R'N(M - NTRT'N)"'NTR™!
00 0 I, 0 0}

3 Wao

Go=1[Gy Gy 0 0]=
which, when premultiplied and postmultiplied B/and substi-
Hence, a matrix Wao € tuting the selection (17) fab/, becomes

(P +7eFnaw 10+ 410 ) X (N +e 2+,
R . that spans the null R+ NNT = RS 'R
space ofGy is

which, by (16), is always satisfied. °
L, 0 00 0 017" v (19) Y
_ |0 L 00 0 0 VI. CONCLUSION
Waoi=1 4 0 0 0 I,. 0 (37) L .
0 0 00 0 I, The problem of synthesizing fixed-order antiwindup com-
_ N . pensators which meet afy, performance bound has been ad-
Using the partition of the matrix dressed. The main results have demonstrated how a Lyapunov
formulation of this problem can be expressed as a nonconvex
p=|ty Do imizati bl hich closel bles th f
= |PL P optimization problem which closely resembles the LMI for-

mulation of H., controller synthesis. For certain antiwindup
we can compute explicitly the inequality (31b) based on tleompensator state dimensions, the optimization problem is ac-
definitions (36) and (37) and substituting (19a) and (19¢)ially convex and hence can be solved using standard methods,
into the entries ofU. After some computations it follows which allow the construction of an optimal compensator that
that WX WW¢ < 0 coincides with the inequality in (11b), asachieves a maximum performance level globally, via convex

desired. optimization.
ATP+ PA, PB4+ CJW PB, CT,
T T T
T By P+WCyo —2W +WDygo+ DyyoW WDy D3 . (36)
BTP Dy,W —~I DT,

Ozo quo Dzw —’yI
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Abstract

In this paper, we present LMI-based synthesis tools for regional stability and performance of linear anti-windup compensators for linear
control systems. We consider both static and dynamic compensators. Algorithms are developed that minimize the upper bound on the regional
%5 gain for exogenous inputs with > norm bounded by a given value, and that minimize this upper bound with a guaranteed reachable
set or domain of attraction. Based on the structure of the optimization problems, it is shown that for systems whose plants have poles in the
closed left-half plane, plant-order dynamic anti-windup can achieve semiglobal exponential stability and finite > gain for exogenous inputs
with %> norm bounded by any finite value. The problems are studied in a general setting where the only requirement on the linear control
system is well-posedness and internal stability. The effectiveness of the proposed techniques is illustrated with an example.
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1. Introduction

Anti-windup compensators are intended to maintain the
performance of a linear control system in the local operat-
ing range, while guaranteeing global stability or minimizing
the degradation of the global performance in the presence of
actuator saturation. Earlier anti-windup compensators were
constructed heuristically from experience and simulations
(e.g., Lozier, 1956). Since the early 1990s, systematic approa-
ches have been proposed, for instance, the reference/command
governor scheme (e.g., Angeli & Mosca, 1999; Gilbert &

* This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Alessandro
Astolfi under the direction of Editor Hassan Khalil. This work was supported
in part by AFOSR Grant number F49620-03-1-0203, NSF under Grants ECS-
9988813 and ECS-0324679, ECS-0621651, by ENEA-Euratom and MIUR
under PRIN and FIRB projects.

* Corresponding author. Tel.: +39 06 72597429; fax: +39 06 72597460.

E-mail addresses: tingshu@gmail.com (T. Hu), teel @ece.ucsb.edu
(A.R. Teel), zack@disp.uniroma2.it (L. Zaccarian).

0005-1098/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2007.06.003

Kolmanovsky, 1999; Shamma, 2000), the approaches based
on Hy, optimal control (e.g., Crawshaw & Vinnicombe, 2002;
Edwards & Postlethwaite, 1999; Miyamoto & Vinnicombe,
1996), and the linear matrix inequality (LMI) based techniques,
(e.g., Cao, Lin, & Ward, 2002; Gomes da Silva & Tarbouriech,
2005; Grimm et al., 2003; Grimm, Teel, & Zaccarian, 2004;
Marcopoli & Phillips, 1996; Mulder, Kothare, & Morari, 2001;
Zaccarian & Teel, 2002). For more comprehensive overviews
of modern anti-windup approaches, see the works in Turner
and Zaccarian (2006), Glattfelder, Ohta, Mosca, and Weiland
(2000), and Kothare, Campo, Morari, and Nett (1994).
Among the LMI-based techniques, Mulder et al. (2001)
studied the general case where the controller is dynamic, the
exogenous input directly enters the actuator and there is an im-
portant correction term in the output equation of the controller.
In Mulder et al. (2001), static anti-windup compensators were
constructed for global stabilization and reduced #» gain per-
formance. These synthesis problems were first cast as convex
optimization problems with LMI constraints for the general
case. The recent work of Grimm et al. (2003) reached further by
constructing dynamic anti-windup compensators for reduced
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global ¥» gain via LMI optimization. In addition to showing
the advantage of dynamic anti-windup over static anti-windup
by numerical examples, Grimm et al. (2003) justified the
original intention of introducing anti-windup compensation
through rigorous theoretical analysis. It was concluded that,
for a configuration with an exponentially stable plant and
a stabilizing linear controller, the global %> gain can al-
ways be made finite by designing the dynamic anti-windup
compensator. This conclusion promises global stability be-
fore the anti-windup compensator is constructed, even before
the linear controller is designed, thus giving full confi-
dence in designing a linear controller for the best local
performance.

While a finite global %> gain gives a guaranteed global
closed-loop performance, it might be conservative for prac-
tical situations where the %> norm of the exogenous input
is bounded below a known value. On the other hand, for
plants which are not exponentially stable, the global #» gain
does not exist and it is necessary to determine the %> gain
for a class of norm-bounded inputs. These situations moti-
vated us to estimate the nonlinear %> gain for general linear
saturated systems with anti-windup augmentation and to
design an anti-windup compensator to minimize the regional
¥ gain.

In our recent work, Hu, Teel, and Zaccarian (2006), we
developed regional analysis tools for characterization of the
nonlinear %> gain and the reachable set for general saturated
systems. The regional analysis results were based on two forms
of parameterized differential inclusions: the polytopic differ-
ential inclusion and the norm-bounded differential inclusion
(NDI). The parameter in each inclusion reflects the regional
property and can be incorporated into the LMI-based optimiza-
tion problems.

In this paper, we propose design methods for the construc-
tion of dynamic/static anti-windup compensators to optimize
the regional performance evaluated in Hu et al. (2006) via the
NDI description. The only assumptions on the original con-
trol systems are well-posedness and local stability. Our design
methods will be theoretically justified via some semiglobal re-
sults for control systems whose plants are not exponentially
unstable.

The paper is organized as follows. Section 2 describes the
design problems and recalls some recent results on regional per-
formance analysis. Section 3 addresses the three design prob-
lems and provides feasibility conditions for the existence of
the respective solutions. Provided the corresponding feasibil-
ity conditions are satisfied, the anti-windup compensator syn-
thesis are carried out following the procedure in Section 4.
Section 5 illustrates the results of the paper through a numerical
example.

Notation. Given a square matrix X we denote He X :=
X + XT. For P = PT>0, denote &(P) := {x : xTPx<1).
We call a linear system “marginally stable/unstable” if it
has poles on the imaginary axis but not in the open right
half plane.

2. Problem statement and preliminary results
2.1. Anti-windup configuration and design objectives

Consider a linear plant,

¥ = Cp.yXp + Dpyutt + Dp yuw, (1)

Xp = Apxp + Bpuu + By pw,
P
2= Cpxp + Dp zytt + Dp zyw,

where xp, € R is the state, u € R" the control input, w € R"v
the exogenous input (possibly containing disturbance, reference
and measurement noise), y € R"» the measurement output and
z € R the performance output. Assume that a linear controller
is designed,

(g{xC=Acxc+Bc,yy—l—Bc,ww—i—vl, @)

Ve = Cexe + Dc,yy + D¢ yw + v2,

where x. € R" is the controller state and y. € R"* is the con-
troller output, v; and vy will be used for anti-windup augmen-
tation. In the absence of actuator saturation, the unconstrained
closed-loop is formed by setting

u=y,, vi=0, wvp=0. 3)

Throughout the paper we assume the following.

Assumption 1. The unconstrained closed-loop system (1)—(3)
is well posed and internally stable.

In the presence of actuator saturation, the relation between
u and y. is described as u = sat(y.), where sat(-) : R" — R™
is the symmetric decentralized saturation function with its ith
component depending only on the ith input component y.; as
follows u; := sign(ye;) min{|ye;|, u;i}, i =1, ..., n,.

To minimize performance degradation caused by saturation,
the closed-loop system can be augmented with the following
anti-windup compensator:

- | Xaw = AawXaw + Baw(sat(yc) — ye),
J?/W aw aw-vaw aw 4
{ v = CawXaw + Daw(sat(yc) — ye), @

where v = [vlT va 1T is used as the anti-windup correction term
in (2), and the unconstrained interconnection (3) is replaced by

u = sat(yc). &)

The resulting nonlinear closed-loop (1), (2), (4), (5) is de-
picted in Fig. 1 and will be denoted anti-windup closed-loop
henceforth.

wl L] .

u P Y

C Ye sat(-) i
a (T4

eyt

Fig. 1. The anti-windup closed-loop system.

ayl
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The objective of this paper is to address the following
synthesis problems:

Problem S1. Consider the plant (1), the controller (2) and a
bound s on ||w||2. Design an anti-windup compensator (4) such
that the relation

lzll2<yllwla, Yw such that |lw]><s, x(0)=0 (6)

is satisfied with a minimal 7.

Problem S2. Consider the plant (1), the controller (2) and a
bound s on ||w|2. Given a desired reachable set %, C R".
Design an anti-windup compensator (4) such that with x (0)=0
and ||wll2<s, we have x,(t) € R, for all t >0 while (6) is
satisfied with a minimal 7.

Problem S3. Consider the plant (1), the controller (2) and
a bound s on ||wl|z. Given a desired stability region &, C
R™. Design an anti-windup compensator such that the anti-
windup closed-loop system is exponentially stable with stability
region including &, in the plant directions, namely for every
xp(0) € S, there exist x.(0) € R, xay(0) € R"™ to make
lim;—, o x () = 0 while (6) is satisfied with a minimal .

2.2. Preliminary results on performance analysis

In this section, we summarize the analysis results from
Gomes da Silva and Tarbouriech (2005) and Hu et al. (2006)
derived from a modified sector condition satisfied by the dead-
zone function dz(y.) := y. —sat(y.). In particular, for the func-
tion dz(-), given any r € {r : —u; <r;<u;, Vi=1,...,ny},
the inequality 2dz(ye)TU ™! (sat(y.) 4+ ) >0 holds for any pos-
itive definite diagonal matrix U € R™*"«_ From this fact, LMI
conditions can be directly obtained when characterizing the
directional derivative of a quadratic Lyapunov function along
the flow equation of the saturated system. To this aim, the
anti-windup closed-loop system of Fig. 1 can be represented
in the following compact form:

X = Ax + Bydz(yc) + Byw,
Ye = Cyx + Dygdz(yc) + Dyww,

7= Cyx + Dyydz(yc) + Dyw, (7)
where x = [xg xCT xaTW]T € R", n 1= np + n¢ + nay and,

by Assumption 1, the matrices appearing in (7) are uniquely
determined from the matrices for the plant, the controller and
the anti-windup in (1), (2), (4).

Proposition 1. Given Q € R™", Q = QT >0. Consider
system (7).

1. If there exist Y € R"™*" and a diagonal U > 0 satisfying
(Y; denotes the ith row of Y)

/s> Y
: >0, i=1,...,ny 3
y' 0

B,U

_U+quU]<o, ©

AQ
He[CyQ—Y

then the origin of system (7) is exponentially stable with
stability region containing the set EW(s2o)™h.

2. Given s > 0. If there exist Y € R">*" and a diagonal U >0

satisfying (8) and

AQ B,U By,

He CyQ -Y —U + quU Dwa <0, (10)
0 0 —=
2

then for x(0) =0 and ||w||2 < s, we have x(t) € o(@((szQ)_l)
forall t >0.

3. Given y,s > 0. If there exist Y € R"™*" and a diagonal

U > 0 satisfying (8) and

AQ B,U By, O
C,0—Y —U+DyU Dy, 0
He| o 0 _g 0 | <o, an
,VZ
C,0 D.,U Doy —51

then for x(0) =0 and |w(2<s, lIzll2 <yllwl2.

The three items in Proposition 1 can be, respectively, used
for the estimation of the domain of attraction, of the reachable
set and of the nonlinear .#’» gain.

3. Regional anti-windup synthesis: feasibility

In this section, we present a set of feasibility conditions for
solving Problems S1-S3. As with the global results in Grimm
et al. (2003), the regional results would involve nonconvex con-
ditions for a generic order of the anti-windup compensator but
reduce to convex conditions when the anti-windup compensator
is static or of the same order as that of the plant.

To present the synthesis results, we pull out the anti-windup
dynamics (4) from (7), as in the block diagram of Fig. 2. The
resulting dynamics for the block 7 is

Xol = AcaXa + Bcl,ww + Bcl,qq + Bcl,vU:
Hyz= Cel zXcl + Bel zww + Bcl,zqq + Bel 2oV, (12)
Ye = Cc],yxcl + Bcl,yww + Bcl,yqq + Bcl,yle
where ¢ := dz(y.) and x| = [xg xCT 1T and all the matrices
are determined by those of the plant (1) and the controller (2).

3.1. Optimal ¥»> gain for norm-bounded inputs

The following theorem establishes feasibility conditions cor-
responding to Problem S1.

Theorem 1. Consider the plant (1) and the controller (2) sat-
isfying Assumption 1. Assume that xp(0) = 0, x.(0) = 0 and
lwllz <s:

(1) an optimal plant-order anti-windup compensator solving
Problem S1 can be constructed based on the optimal
solution (R11, S, Z, ) to the following LMI-optimization
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AW ”q nyc
[ =]

Fig. 2. Compact closed-loop representation separating out the anti-windup
dynamics.

problem in the variables Ry = RlT1 >0, S =58T =
S S
ST S»
straints are feasible:

]>0, 72 >0,Z, whenever the following con-

min 92, subject to (13a)
Z,R11,5,7%
ApRi1 + BpuZ Bp,w 0
He 0 —1/2 0 <0, (13b)
Cp,lel + Dp,zuZ Dp,zw _Vzl/z
Ac]S Bcl,w 0
He 0 —1/2 0 <0, (13¢)
CazS Dezw —721/2
Rll —511>0, (13d)
=2/,.2
us/s Z; .
|: lZlT Rlll:| >0, i=1,...,ny, (13e)

where Z; denotes the ith row of Z;

(2) an optimal static anti-windup compensator solving Prob-
lem S1 can be constructed based on the optimal solution
(R, Z,y?) to the following LMI-optimization problem in
the variables R = RT := [QIT] ﬁg] >0, 2 >0, Z, when-

12
ever the following constraints are feasible:

min y2, subject to (14a)

Z,R,y?

(13b), (13e) (14b)
AclR Bcl,w 0

He 0 —1/2 0 <0. (14¢)
Ccl,zR Dcl,zw _y2/2

Proof. The proof is adapted from the proof of Theorem 2 and
Proposition 2 in Grimm et al. (2003) with n,y = np. To avoid
overlap, we will outline the main idea for the case naw = n,
and point out the differences between the situation in this paper
and that in Grimm et al. (2003).

The proof is carried out by establishing that conditions
(13b)—(13d) ensure the feasibility of (11) and (13e) ensures
the feasibility of (8).

Feasibility of (11): Let ¥, H and G be formed as in Grimm
et al. (2003, p. 1516) and Y be the same variable as in (11). Let

0 000
. l-r 000 _[Aw  Baw
Fr=Hel v 9 0 ol A_[caw Daw]’
0 000

where the blocks in Wy have the same dimensions as those in
(11). Similar to the computation in Grimm et al. (2003), it can

be verified that the left-hand side of (11) coincides with the
following matrix:

S=VY+Y¥y +G'ATH + HTAG. (15)

Using Lemma 5 in Grimm et al. (2003) (projection lemma),
the existence of A satisfying @ <0 is equivalent to the feasi-
bility of

WE(P + Py)Wy <0, (16)
WL + Py)We <0, (17)

where Wg, Wy can be any matrices whose columns form the
bases of the null space of G and H.
A special Wy constructed in Grimm et al. (2003) is

L, 0 0 =B, 0 o077
Wﬂz[o 00 0 I 0} ,
0 00 =Dy O Iy,

where the first 3 x 3 blocks add up to a total dimension of
(np +nw +nz) x n. Assume that Q is partitioned as

| R N _|Ru R
B I

where R € RUpH1)x0ptne) "R e > Tt can be verified
after tedious calculations that

WE(Y + Py)Wy
ApRi1 +ByuZ  Bpw O
=He 0 -12 0 |,

Cp,lel+Dp,zuZ Dy 7y _72/2

Iy,
where Z=Y |0 € R,
0
A special Wg is also given in Grimm et al. (2003) as Wg =

T~ '"Wg, with T = diag{Q, U, I, I} and

L,y 0 00 0 0
o 5, 00 0 o0
Weo=119 0 00 1, 0
0 0 00 I,

If we let P = Q~!, and partition P as
S71 P
P=
[ PL Py
with § € RwHe)xptne) it can be verified that Wi (¥ +
Yy)Ws <0 is equivalent to (13c).

Note that (13b) and (13c) are stated in terms of Ry; and S,
which are constrained by

R N s Py | .
(5 N[ f]—ormr )
For the case where the order of the anti-windup equals to the

plant order, (19) is satisfied if R1; —S11 > 0. For the static case,
it is satisfied if R = S.
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Feasibility of (8): Assume that (13e) is satisfied and define
Kpi = ZiRl_ll. Then by Schur complement,

ﬁz 15T ﬁz T
ogs—;—zl»R;, Z =S—§—Kp,-R”Kp,.
—_—’2 K, 0 0]10[K ooT—_”—f2 Y, 0 lyT
—SZ_[pi 10[Kpi ]—Sz_iQ s

where, according to the selection in step 4 of Procedure 1,
Yi=[Z; Z,-Rl_llRlz ZiR1_11 N1]. Finally, by Schur complement,
the last inequality above transforms into (8). [J

For a system with an exponentially unstable plant, it is clear
that there exists a norm bounded w such that ||z]|» is unbounded
and thus (13) is feasible only for s bounded by a certain 5. On
the other hand, if Ap is Hurwitz, then there exists a selection
(R11, S, Z, yz) with Z =0 satisfying the LMIs in (13) for all s
(this solution corresponds to the global construction proposed
in Grimm et al., 2003).The critical case where A, has eigen-
values on the imaginary axis and in the left half plane was not
considered in Grimm et al. (2003) and can be addressed by the
following proposition.

Proposition 2. Consider the plant (1) and the controller (2)
satisfying Assumption 1. Suppose that the plant is not ex-
ponentially unstable. Then for each s >0, the constraints
((13a)—(13d)) are feasible with a finite 7.

Proof. The following lemma is adapted from Teel (1995,
Lemma 3.1) for the purposes of this proof.

Lemma 1. Assume that A, has eigenvalues with nonpositive
real part and (Ap, By ) is stabilizable. Then there exists yy >0
such that for any k > 0, there exists Ri] = RIT1 > k1 satisfying

7 T
ApRi1 — EBP’“BPJA Bp.w

I
0 _z
2

He <0. (20)

Since the linear closed-loop system is exponentially stable,
we can pick § = ST > 0 satisfying

Acls Bcl,w
He 0 1 | <O. (21)
2
Let Z = —(y(z) /2)Bg ,- Then by Lemma 1, for any k > 0, there
exists Ry = R]| > kI satisfying
ApRi1 + BpuZ Bpy
He 0 I | <O0. (22)
2

Therefore, for any s > 0, we can choose Rp; sufficiently large
satisfying (22), Ry — S11 >0 and
2
[—2 Zl}>o i=1,....n (23)
Ky =Y, =1,...,ny.
Z;r Ry
With Ry and Z fixed this way, we can determine a sufficiently
large y satisfying both (13b) and (13c). O

3.2. Optimal AW with guaranteed reachable set

In this section, we augment the synthesis problem of the
previous section with the extra requirement that given a bound
s on the %> norm of w, the plant state does not exit a given
desirable set %, C R"p. We first consider

Ry =ERTY) = {xp - x) Ry <1}, (24)
where R, = Rg > 0.

Theorem 2. Consider the plant (1) and the controller (2)
satisfying Assumption 1. Assume that xp(0) = 0, x.(0) =0
and ||w|l2 <s. Then an optimal plant-order anti-windup com-
pensator solving Problem S2 can be constructed based on
the optimal solution (Rii, S, Z,yz) to the following LMI-
optimization problem in the variables R11 = RIT1 >0,5=5T:=

S Si2
S, S
straints are feasible:

]>O, y>0,Z, whenever the corresponding con-

min yz, subject to

Z,S,R[],",’2
(13b), (13c), (13d), (13e), (25a)
s?Ri1 < Ry. (25b)

An optimal static anti-windup compensator solving Problem
S2 can be constructed if the problem (14) with the additional
constraint s*Ry; < Ry has a solution.

Proof. The proof easily follows from that of Theorem 1
by observing that if (11) is satisfied, then by Proposition 1
the reachable set for the state of the plant is bounded by
S(*Ri7H. O

The main idea behind the results of Theorem 2 relies on
the fact that if (25a) is satisfied, then there exists an anti-
windup compensator such that the reachable set is bounded by
&E((s2R11)~"). Moreover, the constraint (25b) implies that this
set is inside the desired reachability set given by (24), namely
that £((s*Ri1)~") € £(RyD).

Based on Theorem 2, we can also formulate optimization
problems to minimize the desirable reachable set #,, under the
constraints (25a) and (25b), with a guaranteed ¥, gain y (or
without considering the ¥5 gain). The quantity to be minimized
can be the trace of R}, or the determinant of Rj,.

We may also take %, as the following unbounded set:

Pp(@) = {xp 1 |Cx| <},

where C € R is a given row vector. Then &((s2R11)~!) C
Rp (o) if and only if CRCT <oc2/s2. Hence, if our objective
is to minimize the maximum value of a particular output Cxp,
we may formulate the following optimization problem:

min fx2, subject to

Z,S,Rll,az
(13b), (13c), (13d), (13e), (26a)
CRiCT <o?/s?, (26b)
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where a desirable #» gain can be incorporated in (26a). If there
is no consideration for a desirable ¥, gain, then the matrices in
(13b) and (13c) can be simplified by removing the third block
row and the third block column.

3.3. Optimal AW with guaranteed domain of attraction

We now augment the synthesis problem of Section 3.1 for
the purpose of solving Problem S3 with a guaranteed domain
of attraction in terms of the state of the plant:

Sp=6S = {xp 1 xy Sy xp <1}, 27
where §p = Sg > 0.

Theorem 3. Consider the plant (1) and the controller (2)
satisfying Assumption 1. An optimal plant-order anti-windup
compensator solving Problem S3 can be constructed based
on the optimal solution (R11, S, Z, yz) to the following LMI-
optimization problem in the variables R = RlT1 >0,5=5T:=

S Si2
ST S»
straints are feasible:

]>0, y>0, Z, whenever the corresponding con-

min yz, subject to

Z,S,R11.y?
(13b), (13c), (13d), (13e), (28a)
s?Ri1=Sp. (28b)

An optimal static anti-windup compensator solving Problem
S3 can be constructed if the problem (14) with an additonal
constraint s*Ry; > Sp has a solution.

Proof. The proof easily follows from that of Theorem 1
by observing that if (11) is satisfied, then for each x,(0) €
E((s2R11)™ 1), there exist xc(0) and x,y(0) such that x(0) €
E(s20)7 ") and by Proposition 1, we have the desired expo-
nential stability result. [J

Based on Theorem 3, we can formulate various optimization
problems to maximize the estimate of the domain of attraction
(with respect to different measures of set size) with a guaranteed
%> gain (or without considering the %> gain).

If the plant is exponentially stable, then global asymptotic
stability by dynamic anti-windup compensation is guaranteed
by the finite global ¥, gain (Grimm et al., 2003). If the plant
is exponentially unstable, then only regional stability can be
obtained. For a plant that is marginally stable/unstable, the
following proposition ensures semi-global stabilization.

Proposition 3. Consider the plant (1) and the controller (2)
satisfying Assumption 1. Suppose that the plant is not exponen-
tially unstable. Then, for any finite S, and for any s >0, (28a)
and (28b) are feasible.

Proof. The proof follows the same arguments as the proof of
Proposition 2. [

4. Regional anti-windup synthesis: construction

In this section, we provide a constructive algorithm for de-
termining the matrices of a plant-order dynamic anti-windup
compensator. The construction of a static compensator is much
simpler and will be suggested in square brackets.

The algorithm follows from the proof of Theorems 1-3. It is
based on the solution (R;y, S, Z, yz) [respectively, (R, Z, yz)]
to the plant-order [respectively, static] anti-windup feasibil-
ity conditions. Note that the construction of the anti-windup
matrices is the same for all the optimization problems andd the
algorithm is similar to the ones reported in Grimm et al. (2003)
(except for the use of the variable Z). Note that by the expo-
nential stability established in Theorem 3 and since the x,y, dy-
namics in (4) are driven by dz(y.), the matrix A,y determined
in the next procedure will be necessarily Hurwitz. This can also
be deduced from the structure of the arising closed-loop matrix
given in Hu, Teel, and Zaccarian (2005, Eq. (9a)).

Procedure 1 (Anti-windup synthesis). Step 1: Solve the feasi-
bility LMIs: Find a solution (Ry1, S, Z, yz) [for the static case,
(R, Z,y*)] to the feasibility LMIs listed in Section 3.

Step 2: Construct the matrix Q: Define R := [1;%1 g;;] and
12

let N € RUF7)XMaw e a solution of the following equation:
RST'R—R=NNT. (29)

Since R and S are invertible and by the feasibility conditions,
RST'R— R is positive semidefinite and of rank n,y. Hence
there always exists a matrix N satisfying Eq. (29). Let M =
I+ NTR™!N and

[rR N
Q._[NT M]. (30)

(For the static case, let Q = R.)

Step 3: Build necessary matrices: Construct the matrices
AO e Rnxn’ By € Rnxnu, CyO c Rnuxn’ quO c Rnuxnu’
Co € R, D g0 € R'=*", By, € R™", D, € R*>"w
and Dy, € R">*"™ as
[ A('I 0 B(:l ,\q Bt] ,w —‘

00 O 0
C(‘l Y ODxl ,Yq. D(:l ,Yyw
Cr‘LZOD(-l.qu(‘l,zw

AO Bq() B'w
Cy() quO Dyw =
Cz() quO Dzw

(For the static case, define the matrices above by removing the
second block row and block column of zeros from the right-
hand side of the above equation.)

Step 4: Anti-windup compensator LMI: Let m = n + n, +
nw + n;. Based on Steps 2 and 3, construct the matrices H €
ROtawFr0)xm o e RMXM and Gy € RUMaw 1) Xm a9 follows:

AoQ ByU-Y' B, QCT}0
Cy0Q DygoU—U Dy, UDL,
_ I
Yr=He| o 0 -1 DL |
”/2
0 0 0o -
2
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0 I..| 0 o] 0
H= T T T
BCL?} 0 Dcl,yv 0 Dcl,zv
NT M|0|0]0
Gy = ;
0 0[7I|0]0

where Y € RwX0ptietna) o defined as Y =

[Z ZRII] Rin ZR;II N1] (where Nj is the upper block of the
matrix N) [For the static case, define Y := [Z ZRl_llRlz]].
Finally, solve the LMI

Yr+GLuALH + H Ay Gy <0, (31)

in the unknowns Ay € R ) X(awtm) and U e R,
U > 0 diagonal, and compute the matrices of the anti-windup
compensator (4) as follows:

Agw  Baw | _ I 0
|:Caw Dawi| - AU |:0 U—l ] : (32)

(For the static case, compute the static anti-windup gain as
Daw = AgU~).

5. An example

We adopt Example 2 from Grimm et al. (2003). The plant is
a cart-spring-pendulum system with one control input, one
disturbance input, four states and one measurement output.
The plant state is x, =[p p 0 0], where p is the horizontal
displacement of the cart and 0 is the angle of the pendulum.
The plant and controller parameters can be found in Grimm
et al. (2003). For this example, the closed-loop system without
anti-windup compensation is not globally stable. Also, there
exists no static anti-windup compensation to make the global
%5 gain bounded. With dynamic anti-windup augmentation,
an upper bound for the achievable global ¥, gain is found to
be 181.1424.

The achievable %, gain for every s > 0 by using plant-order
anti-windup can be determined with the algorithm based on
Theorem 1. By choosing different s over (0, 00), the achiev-
able performance can be obtained as a function of s. Fig. 3
plot this achievable performance in solid curve. For com-
parison, we also plot the achievable performance by using
static anti-windup, which is the dashed-dotted curve in Fig. 3.
Also plotted in Fig. 3 (dashed) is the upper bound for the
nonlinear %, gain under a particular plant-order anti-windup
compensator.

Next, we use algorithm (26) to determine an achievable upper
bound on the displacement of the cart x,1 (by plant-order anti-
windup) for a given norm bound s on ||w||. For this purpose, we
choose C =[1 0 0 0]. The relation between s and the achiev-
able bound « is plotted in Fig. 4. If we take C =[0 0 1 0],
then an achievable upper bound on the angle of the pendulum
Xp3 can be obtained.
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Fig. 3. Achievable nonlinear ¥, gains.
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Fig. 4. Achievable bounds on xpj.
6. Conclusions

This paper provided LMI-based tools for the construction of
anti-windup compensators for general saturated linear control
systems, where the only assumption on the closed-loop system
is well-posedness and local stability. The design objectives are
to optimize a few regional performance measures. Solutions to
the problems have been presented through a set of convex op-
timization procedures based on LMI constraints. Furthermore,
two semiglobal results have been established for the special
case where the plant is marginally stable/unstable. An example
has been given to illustrate the proposed tools.
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Stability and Performance for Saturated Systems via
Quadratic and Nonquadratic Lyapunov Functions

Tingshu Hu, Andrew R. Teel, Fellow, IEEE, and Luca Zaccarian

Abstract—In this paper, we develop a systematic Lyapunov ap-
proach to the regional stability and performance analysis of sat-
urated systems in a general feedback configuration. The only as-
sumptions we make about the system are well-posedness of the al-
gebraic loop and local stability. Problems to be considered include
the estimation of the domain of attraction, the reachable set under
a class of bounded energy disturbances and the nonlinear £ gain.
The regional analysis is established through an effective treatment
of the algebraic loop and the saturation/deadzone function. This
treatment yields two forms of differential inclusions, a polytopic
differential inclusion (PDI) and a norm-bounded differential in-
clusion (NDI) that contain the original system. Adjustable param-
eters are incorporated into the differential inclusions to reflect the
regional property. The main idea behind the regional analysis is to
ensure that the state remain inside the level set of a certain Lya-
punov function where the PDI or the NDI is valid. With quadratic
Lyapunov functions, conditions for stability and performances are
derived as linear matrix inequalities (LMIs). To obtain less conser-
vative conditions, we use a pair of conjugate non-quadratic Lya-
punov functions, the convex hull quadratic function and the max
quadratic function. These functions yield bilinear matrix inequali-
ties (BMIs) as conditions for stability and guaranteed performance
level. The BMI conditions cover the corresponding LMI conditions
as special cases, hence the BMI results are guaranteed to be as good
as the LMI results. In most examples, the BMI results are signifi-
cantly better than the LMI results.

Index Terms—Deadzone, domain of attraction, Lyapunov func-
tions, nonlinear £ gain, reachable set, saturation.

I. INTRODUCTION
A. Background

ATURATION is an ubiquitous nonlinearity in engineering

systems and is the most studied in the literature as com-
pared with other types of nonlinearities. Intensified efforts
have been devoted to control systems with saturation since the
earlier 1990s due to a few notable breakthroughs (see, e.g.,
[36], [46], and [48]). Saturation exists in different parts of a
control system, such as the actuator, the sensor, the controller
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and components within the plant. Most research has been
devoted to addressing actuator saturation, which involves fun-
damental control problems such as constrained controllability
and global/semi-global stabilization. These problems have been
discussed in great depth, e.g., in [22], [36], [45], [46], [48],
and [49] (among which, [22] considers exponentially unstable
systems). Another significant problem arising from actuator
saturation is anti-windup compensation, which has attracted
tremendous attention over the past decade (see, e.g., [4]-[6],
[81-[101, [12], [16]-{18], [28], [34], [35], [39]-[41], [47], [501,
[52], and [54]).

The approach that is adopted in most of the recent literature to
address saturated systems can be categorized as a Lyapunov ap-
proach. In this approach, some quantitative measures of stability
and performance, such as the size of the domain of attraction,
the convergence rate, and the £, gain, are characterized by using
Lyapunov functions or storage functions. Then the design pa-
rameters (e.g., of a controller or of an antiwindup compensator)
are incorporated into an optimization problem to optimize these
quantitative measures for the closed-loop system. This approach
is mostly fueled by the numerical success in solving convex op-
timization problems with linear matrix inequalities (LMIs) (e.g.,
see [2]). This is a general approach which can be applied to
deal with systems with saturation and deadzone occurring at dif-
ferent locations. The first papers that use LMI-based methods
to deal with saturated systems include [21], [35], [42], where
[21], [42] consider state feedback design and [35] analyzes an-
tiwindup systems. Since then, extensive LMI-based algorithms
have been developed for analysis and design of saturated sys-
tems (see, e.g., [4]-[6], [10], [13], [16]-[18], [22], [25], [26],
[39], [40], [47], and [54].)

There are mainly two steps involved in the Lyapunov ap-
proach. The first step is to include the saturation function or
the deadzone function in a sector so that the original system
can be cast into the general framework of absolute stability, or
can be described with a linear differential inclusion (LDI). The
second step applies available tools from absolute stability theory
or from general Lyapunov approaches for LDIs, such as the
circle criterion or the LMI characterizations of stability and per-
formance in [2]. Roughly speaking, all the analysis tools used
in the aforementioned works are obtained by applying quadratic
Lyapunov/storage functions to the LDIs except that [39] used a
piecewise quadratic function.

Because of the two-step framework, the effectiveness of
a particular method depends on how the original system is
transformed into LDIs and what kind of analysis tools for LDIs
are used. In many works involving anti-windup compensa-
tion, global sectors are used to describe saturation/deadzone
functions. It is well known that a global sector can be very

0018-9286/$20.00 © 2006 IEEE
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conservative for regional analysis and can only be applied when
the closed-loop system is globally stable or to detect global
stability. In some other works, regional LDI descriptions (some
based on local sectors) are derived to reduce the conservatism
(see, e.g., [4], [5], [101, [13], [21], [25], [26], [35], and [42]).
Along this direction, the regional LDI description introduced
in [25], [26] has proved very effective and easy to manipulate.
It has been used successfully for different configurations or for
different purposes in [4], [5], [10], [13], [27], [28].

With an effective regional LDI description, there is yet more
potential to be explored in the second step about the analysis
of LDIs. It is now generally accepted that quadratic Lyapunov
functions can be very conservative even for stability analysis of
LDIs (see, e.g., [7], [11], [32], and [55]). For this reason, con-
siderable attention has been paid to the construction and devel-
opment of non-quadratic Lyapunov functions (e.g., see [1], [3],
[71, [32], [33], [38], [53], and [55]).

Recently, a pair of conjugate Lyapunov functions have
demonstrated great potential in the analysis of LDIs and sat-
urated linear systems [14], [15], [23], [27]. One is called the
convex hull quadratic function since its level set is the convex
hull of a family of ellipsoids. The other is called max quadratic
function since it is obtained by taking pointwise maximum over
a family of quadratic functions and its level set is the inter-
section of a family of ellipsoids. Some conjugate relationships
about these two functions were established in [14], [15]. Since
these functions are natural extensions of quadratic functions,
they can also be used to perform quantitative performance
analysis beyond stability, such as to estimate the Lo gain, and
the reachable set, for LDIs. A handful of dual bilinear matrix
inequalities (BMIs) have been derived for these purposes in
[14]. As compared with the corresponding LMIs resulting
from quadratic Lyapunov functions, these BMIs contain extra
degrees of freedom in the bilinear terms, which are injected
through the nonquadratic functions. Experience with low order
systems shows that these BMIs can be solved effectively with
the path-following method in [20]. Although it is possible that
numerical difficulties may arise for higher order systems, the
great potential of these nonquadratic Lyapunov functions has
been demonstrated in [14], [15], [27] through a set of numerical
examples.

B. Problem Formulation

With the recent developments and effective tools mentioned
in the previous section, we are now able to address more ef-
fectively some stability and performance problems for systems
with saturation/deadzone in the following general form:

= Az + Byg+ Byw
Cyx + Dyeq + Dyyw
C.z+ D.qq+ D.yyw
= dz(y)

where x € R™, ¢,y € R™, w € R", z € RP. The deadzone
function dz(-) : R™ — R™ is defined as dz(y) := y — sat(y),
for all y € R™, where sat(-) is a vector saturation function

ey

QN e &
Il
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Fig. 1. Compact representation of a system with saturation/deadzone.

with the saturation levels given by a vector & € R™, 4; > 0,
1 = 1,2,...,m. In particular

Uiy Ui 2 Uy, Sat(ul)
sat(u;) = Ui, U € [—Uy, Uy, sat(u) = :
_ﬂ"ia U; S _ﬂ'L Sat(um)

In this paper, we consider symmetric saturation functions.!
System (1) can be graphically depicted in block diagram form
as in Fig. 1, where w is the exogenous input or disturbance
and z is the output whose performance is under consideration.
Many linear systems with saturation/deadzone components can
be transformed into the aforementioned general form through a
loop transformation. This general form has been used to study
antiwindup systems in [16], [35], [40], [54]. When D,, = O,
the system does not contain an algebraic loop, which can sim-
plify the analysis and implementation. However, it was shown
in [40] that the algebraic loop can be purposely introduced into
the antiwindup configuration to reduce the global L5 gain. The
importance of the parameter D,,, will also be illustrated in ex-
amples at the end of this paper.

We note that most of the previous works imposed various
assumptions on the system, such as exponential stability of the
original open-loop plant in an antiwindup configuration (e.g.,
[16], [40], and [54]). In these works, the global sector [0, 7] is
used to describe the deadzone function. In some other works
such as [4]-[6], [10], [13], [25]-[27], and [47] (among which
[6] and [13] study the L5 gain), regional LDI descriptions are
used to reduce the conservatism. In these works, the algebraic
loop is absent (D,, = 0) and the disturbance (in [6] and [13])
does not enter the deadzone function, i.e., Dy,, = 0.In [31], the
algebraic loop has a special structure, namely, D, is diagonal.

A recent attempt was made in [52] to perform regional anal-
ysis on the general form without the assumption on stability of
the open-loop plant. The main idea, which had also been sug-
gested in some other works, was to use a smaller sector [0, K]
with K < [ to bound the deadzone function. However, this idea
would not work on the general form if D,,, # 0. As can be seen
from the second equation in (1), y is not necessarily bounded in
L norm when w is only bounded in the £, norm. Hence, there
exists no K < I to bound the deadzone function even at x = 0.
After all, as commented in [25] and [27], even in the absence of
w, this kind of sector description is not only hard to manipulate,
but also has a much restricted degree of freedom as compared
with the regional LDI description initiated in [25] and [26].

In this paper, we will extend the regional LDI description
in [25] and [26] to deal with the general situation where

I Asymmetric saturations can be treated with the methods developed here with
some level of conservativeness by taking @; as the minimum absolute value of
the negative and positive saturation levels.
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Dyy, Dy # 0, and to address both stability and performance
issues.

The only assumptions that we will make about the system (1)
is its local stability (A is Hurwitz) and the well-posedness of the
algebraic loop, which will be made precise in Section II. These
were also the only assumptions made in [28] and they are clearly
basic requirements for the system to be functional.

The objective of this paper is to carry out a systematic and
comprehensive analysis of system (1) by using quadratic and
nonquadratic Lyapunov functions. The following problems will
be addressed.

1) Estimation of the domain of attraction (in the absence of
w) by using invariant ellipsoids or invariant level sets of
the nonquadratic Lyapunov functions.

2) With a given bound on the £5 norm of w, i.e, ||w]js < s
for a given s, we would like to determine a set S as small
as possible so that under the condition z(0) = 0, we have
x(t) € S for all ¢. This set S will be considered as an
estimate of the reachable set.

3) With ||w||2 < s for a given s, we would like to determine
a number v > 0 as small as possible, so that under the
condition z(0) = 0, we have ||z||2 < 7||w||2. Performing
this analysis for each s € (0, 00), we obtain an estimate of
the nonlinear £, gain.

To address these problems systematically, we will first pro-
vide an effective treatment of the algebraic loop and the dead-
zone function in Section II. In particular, the necessary and suffi-
cient condition for the well-posedness of the algebraic loop will
be made explicit. Moreover, we will derive two forms of dif-
ferential inclusions to describe the original system (1). The first
one is a polytopic differential inclusion (PDI) involving a cer-
tain adjustable parameter or nonlinear function. This parameter
or nonlinear function offers extra degrees of freedom associated
with a local region under consideration. It will be optimized in
conjunction with the Lyapunov functions in the final analysis
problems. The second differential inclusion is a norm-bounded
differential inclusion (NDI) which is derived from the PDI. The
NDI is more conservative than the PDI but may be more numer-
ically tractable for some cases.

In Section II1, we will apply quadratic Lyapunov functions via
the PDI and the NDI to characterize stability and performance
of the original system (1). We note that quadratic functions have
been used for these purposes in [4]-[6], [10], [13], [25], [26],
[47] under the assumption that Dy, = 0 and D,,, = 0. In
Section IV, we apply the convex hull quadratic function and
the max quadratic function respectively via the PDI (It turns
out that when these nonquadratics are applied to the NDI, they
produce the same results as the quadratics). In Section V, we
use a numerical example to demonstrate the effectiveness of this
paper’s results and the relationship between them. Section VI
concludes this paper.

Notation:

— | |oo: For u € R™, |t]oo := max; |u;].

— ||+ llo: Foru € Lo, [Jull == (% uT (#)u(t)dt) >,

— I[k1, ko]: For two integers ki, ko, k1 < ko, I[k1, ko] =
{k1, k1 + 1,00 ko).

—sat(-): The symmetric saturation function with implicit
saturation level given by u € R™.
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—U := diag{iiy,. .., Uy} where #; > 0 is the saturation
level for the ith component of sat(-).
— dz(w): The deadzone function, dz(u) := u — sat(u).
— coS: The convex hull of a set S.
— K: The set of diagonal matrices with O or 1 at each diagonal
element.
— HeX: For a square matrix X, HeX := X + XT,
—&(P):For P e R*", P =PT >0,8(P) :={x e R":
2T Px < 1}
—L(H): For H €
{x €ER™: |Hzls < 1}.
About the relationship between £(P) and L(U~'H), for a
given s > 0, we have (see, e.g., [25]),

X
Rm n’

L(H) =

sE(P) C LU H) < [ = Hf] >0V (2
A P

where Hy is the /th row of H and 1y, is the /th diagonal element
of U.

II. TWO FORMS OF PARAMETERIZED DIFFERENTIAL
INCLUSIONS

Algebraic loops in linear systems can be easily solved (if they
are well-posed). For system (1), the presence of the deadzone
function makes the algebraic loop much harder to deal with.
Theoretically, an explicit solution can be derived as a piece-
wise affine function, in terms of both x and w, by partitioning
the vector space R™ into 3" polytopic regions (see Remark 1).
However, the complexity of the partition even for m = 2 or
3 makes the solution almost impossible to manipulate. In this
paper, we would like to use convex sets to bound all the pos-
sible solutions. By doing that, we obtain differential inclusion
descriptions for the original system (1) and make it more ap-
proachable with Lyapunov methods.

Recall that the deadzone function belongs to the [0, 7] sector,
i.e., for each y there exists a diagonal A € R™*" satisfying
0 < A < I anddz(y) = Ay. Let K be the set of diagonal
matrices whose diagonal elements are either 1 or 0. Then cokC
is the set of diagonal A satisfying 0 < A < [. There are 2™
matrices in K and we number them as K;,i = 1,2,...,2™.
Then, we have K = {K; : i € I[1,2™]} and

dz(y) € co{ K,y : i € I[1,2™]}.

This relation holds for all y € R™ but could be conservative over
alocal region where the system operates. In [25], [26], a flexible
description was introduced for dealing with the saturated state
feedback sat(F'z). This description can be easily adapted for
the deadzone function. The main idea behind this description is
the following simple fact.

Fact 1: Suppose v; € [—1;, ;] (with 4; being the ith satu-
ration level). For any u; € R, we have sat(u;) € co{u;,v;},
ie., sat(u;) = ou; + (1 — 6)v; for some § € [0,1], and
dz(u;) € co{0,u; — v;}, ie., dz(u;) = 6(u; — v;) for some
6 € [0,1].

This simple fact has also been used in [13] to analyze the
nonlinear £, gain for a special case of (1), where D4, Dy,
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D., and D, are all zero. For the general case where D,, may
be nonzero, we have the following algebraic loop:

y = Cyz + Dy,dz(y) + Dyww. 3)

This algebraic loop is said to be well-posed if there exists a
unique solution y for each Cyyx + D, w. A sufficient condition
for the algebraic loop to be well-posed is the existence of a diag-
onal matrix W > 0 such that 2W — D, W — W D[ > 0 (see,
e.g., [16], [44]). In the following claim, whose proof is reported
in [30], we give a precise characterization of the well-posedness
of the algebraic loop.

Claim 1: Assume that ¢ is the deadzone function or the satu-
ration function. Then y = D¢(y) + v has a unique solution for
every v € R™ if and only if det(I — DA) # 0 forall A € coK.

Remark 1: 1f the algebraic loop y = D¢(y)+w is well-posed,
then the solution y is a piecewise affine function of v with 3™
polytopic regions. To understand this, consider the function g:
y — v =1y — D¢(y). It is piecewise affine with 3™ polytopic
partitions. If there is a unique solution y for each v, then each
polytope in the domain of g is uniquely and affinely mapped to
a polytope in the range of g. Hence, the inverse function of g,
i.e., the solution of the algebraic loop, is also piecewise affine,
with partition corresponding to that of the original g. o

Based on Claim 1, we have the following criterion for the
well-posedness of the algebraic loop (the proof can be found in
[30D).

Claim 2: The algebraic loop (3) is well-posed if and only if
the values of det(I — D, K;), % € I[1,2™], are all nonzero and
have the same sign. In this case, we have

{(I-AD,)™'A: A€ cok}
Cco{(I — K;Dyy) 'K; : i € I[1,2™]}.  (4)
The well-posedness condition in Claim 2 can be easily veri-
fied. The relation (4) will be used to bound the solution of the
algebraic loop with a polytope.

Throughout this paper, we assume that this well-posedness
condition is satisfied. For i € I[1,2™], denote

T, =(I — KiDy,) 'K;
A=A+ B/1;Cy B; =By + BJI;Dy,
C,=C, + DZqT,'Oy D;,=D.,,+ quTiDyw- 5)

Proposition 1: Let h : R™ — R™ be a given map and let
h¢ be the ¢th component of /. Consider system (1). If z € R™
satisfies |h¢(z)| < 4y for all £ € I[1,m], then

& Aix + Byw — BTih(z) | . m
{z] ECO{[Cix—}—Diw—D;Tih(x)] Hiell2 ]}
(6)

Proof: Since |h(x)| < u, for all £ € I[1,m], by Fact 1,
we have
q = da(y) = Ay = h(z))

for some A € coK. Recalling y = Cyx + Dyqq + Dy, w, we
obtain ¢ = A(Cyz + Dyqq + Dyww — h(z)). It follows that
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q= (I —ADy,) 'A(Cyz + Dy,w — h(z)). By (4) and (5),
we have

q € co{T;(Cyx + Dyyw — h(x)) : i € I[1,2™]}.  (7)
Applying this relation to the first and the third equations in (1),
we obtain (6). O

By taking h(x) = 0 in (6), we obtain a polytopic linear dif-
ferential inclusion (PLDI) representation which holds globally
for the original system (1). A nonzero term h(x) is used to in-
ject additional degrees of freedom in some subset of the state
space to reduce conservatism in regional analysis. When we
use quadratic Lyapunov functions, we will choose h(z) = Hx
where H can be used as an optimizing parameter. When we use
nonquadratic Lyapunov functions, a nonlinear h(z) is more ef-
fective in general.

The PDI (6) involves 2™ vertices. This may present numerical
difficulties when m is large (e.g., m > 6) and the order of the
system is high. To reduce this computational burden, we may
use a more conservative description; namely, to approximate the
system (1) we may use an NDI, which is based on the following
result, whose proof is in [30].

Claim 3: Let M be a positive diagonal matrix. Suppose that

2l — M~'Dy,M — MD] M~' = §?
where S is symmetric and nonsingular. Then
co{(I — K;Dyy) 'K, : i € I[1,2™]}
C{M(S?+stas HM (e <1} (8)

where ||€2]| is the spectral norm of (2 (namely its largest singular
value). Furthermore, each vertex of the left-hand side is on the
boundary of the righthand side.

Proposition 2: Assume that there exist a diagonal M > 0
and a symmetric nonsingular S such that

§*=2I— M 'DyM — MDI M.

Let H € R™*™ be given. For 2 € R™*™, define

Ao Ba] [A Ba

CQ DQ T Cz Dzw
+ [I%J M(S2+S5tQS HYM[Cy—H Dyy].
Consider system (1). If € R™ satisfies |U "' Hz|~, < 1, then

HE B I RCE T

Proposition 2 can be proved like Proposition 1 by
applying Claim 3 to (7) with h(z) = Haz [note that
T,=0- Kiqu)*lKi)]. Then, we obtain

ge {M(S™*+S57tQs™1)
M=H(Cy = H)z + Dyyw) = Q] < 1}
Applying this to the original system (1), we obtain (9). We call

(9) the NDI for (1). If m = 1, then the two sets in (8) are the
same and the NDI is the same as the PDI. If m > 1, generally
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the NDI strictly contains the PDI. We also note that to obtain
the NDI, there must exist a positive diagonal matrix M such
that 27 — Mlequ - MDZﬂqul > 0, which is a stronger
requirement than well-posedness.

III. ANALYSIS WITH QUADRATIC LYAPUNOV FUNCTIONS

A. Some General Results for Linear Differential Inclusions

In [2], extensive results were established for stability and per-
formance analysis of LDIs by using quadratic Lyapunov func-
tions. Consider the LDI

He{[é g] M[é g}ﬂ’} (10)

where ® is a given convex set of matrices. The following lemma
can be established like in the corresponding results in [2] by
extending a polytopic ® to a general ®.

Lemma 1: Given P = PT > 0,y > 0,1let V(z) = 2T Pz
and denote by V (x, w) the derivative of V' in any of the direc-
tions of the right-hand side of (10). The following holds.

1) V(z,w) < 0forallz € R"\ {0} and w = 0, if

ATP £ PA <0 VAG{[I O]XH :Xecp}.

2) V(z,w) < wTw forall z € R, w € R", if

o -1

He {PA PB
2

B
V[A Ble{[I 0]X:X e d}.
3) V(z,w)+ (1/9*)27z < wTw forall z € R*,w € R", if

PA PB 0 Y B
He| 0 -2 0 |<ov €d. (11
. C D
c D -7

2

The condition in item 1) guarantees that the ellipsoid £(P)
is contractively invariant in the absence of w. It will be used
for the estimation of the domain of attraction. The condition
in item 2 guarantees that if ||w||s < s, then under the initial
condition z(0) = 0, we will have z(t) € s&(P) forall t > 0.
This will be used to determine the reachable set under a class of
bounded energy disturbances. Item 3) gives a condition for «y to
be a bound for the £y gain, i.e., ||z|]2 < ~||lw||2 for all w and
2(0) = 0. The result in item 3) can also be found, e.g., in [19].
For the case where @ is a polytope, we only need to verify the
conditions at its vertices.

Combining Lemma 1 with the two differential inclusion de-
scriptions, we will obtain different methods for the analysis of
the original system (1). The crucial point is to guarantee that the
PDI (6) [or the NDI (9)] is valid for all time under the class of
disturbances and the set of initial 2:(0)’s under consideration.
We are mainly concerned about the existence of a matrix H,
such that U Hxz(t)|o < 1,ie., z(t) € LUTTH), for all t.
To ensure this property, we are going to construct a quadratic
function V(z) = 2T Pz, P = PT > 0, and use Lemma 1 to
guarantee that z(¢) € s€(P) C L(U~'H) forall ¢ > 0.
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B. Analysis Based on the Polytopic Differential Inclusion
When h(xz) = Hz, the PDI (6) can be written as

T A, - BqTiH Bz x| . . m
[z} € co{{ci _D.,T.H Di:| [w} 1i e I1,2 ]}
(12)
which corresponds to (10) with

. ([A-BLH B . om
(I)_CO{[CZ-—DZQTiH Di].LGI[1,2 ]}

We will restrict our attention to a certain ellipsoid s&€ (P). For
the purpose of presenting the results in terms of LMIs, we state
the results using Q = P! and Y = HQ. To apply the PDI
description within the ellipsoid s€(P) = s€(Q 1), we need to
ensure that s€(P) C L(U1H) so that [U 'Hz|. < 1 (ie.,
|he(z)| < @ for all £) for all x € s&€(P), which is equivalent
to [recall from (2)]

noom,

2 >0 VLelll,m
FE o
Whe_re Hy is the /th row of H and 1y is the /th diagonal element
of U. Multiplying on the left and the right by diag{1, Q}, we
obtain the equivalent condition

[— 3}20 Vie I, m] (13)

}/ZT
Theorem 1: Given Q € R™", Q = QT > 0. Let V(x) =
2T Q~'x. Consider system (1).
1) If there exists Y € R™*"™ satisfying (13) with s = 1 and

QAT + A;,Q—YTTI Bl — B,T\Y <0 Vi€ I[1,2™] (14)

then V(z,w) < 0 forallz € £(Q") \ {0} and w = 0,
i.e., £(Q™1) is a contractively invariant ellipsoid.
2) Let s > 0. If there exists Y € R™*" satisfying (13) and

e AiQ_OBqTiY B} <0 Vielll,2™]
~3

H 15)

then V(z,w) < wTw forall z € s€(Q~"),w € R". If
2(0) = 0 and |Jw|]2 < s, then z(t) € s£(Q™1!) for all
t > 0.

3) Let~,s > 0.1If there exists Y € R™*" satisfying (13) and

AiQ-B/ Y B; 0
He 0 -2 0 | <o
CzQ - qunY Dz
Vielll,2™]

wlw for all z €

<
= 0 and ||w|]2 < s, then

(16)

then V(z,w) + (1/~2)zTz
sE(Q Y, w € R".If z(0)
I2ll2 < yllwlla-
Proof: Let P=Q 'and H = YP.

1) If we multiply (14) on the left and the right by P, we obtain
(Ai—BqT,L'H)TP—{—P(Ai—BqTiH) <0 Vie I[l,2m].
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Applying item 1) of Lemma 1 to the LDI (12), this guar-
antees that V(z,w) < 0 forall z € R™ \ {0} and w = 0
for (12). Because of (13) with s = 1, we have £(Q ) C
LU'H),ie., [U'Hz|o < 1forall z € E(P). By
Proposition 1, system (1) satisfies (12) forallz € £(Q~1).
Hence, for system (1), we also have V(a:, w) < 0 for all
v € £@Q )\ {0},

2) If we multiply (15) on the left and the right by diag{ P, I},
we obtain

PA;, - PB/T;H PB;

He 0 —é

<0 Viel1,2m).

By item 2) of Lemma 1, this ensures that V (2, w) < wTw
for all  and w for (12). Also, the condition (13) ensures
that s€(Q~1) C L(U~'H) and hence (12) is valid within
sE(Q™1). Therefore, we have V(z,w) < wTw for all
r € s£(Q71),w € R for system (1). If (0) = 0 and
lw||2 < s, then by integrating both sides of V' < wTw,
we have V(z(t)) < s2,ie., z(t) € s€(Q™1) forall ¢ > 0.

3) We note that (16) implies (15). So by item 2), it is ensured
that x(t) € s£(Q!) forall ¢ > 0 if 2(0) = 0 and
|lw||2 < s. Hence, the LDI (12) is valid for system (1) for
all [|w]|2 < s and 2(0) = 0. If we multiply (16) on the left
and the right by diag{P, I, I}, we obtain

PA;— PB,T;H PB; 0
He 0 _% 0‘ <0
C;-D.,,iH D; -3

for all i+ € I[1,2™]. By Lemma 1, this ensures that
V(z,w) + (1/42)2Tz < wTw for all z € R",w € R"
for system (12). For system (1), the inequality holds for
allz € s€(Q~') and w € R". By integrating both sides
of the inequality, we have ||z|]|l2 < ~|lw|]2 as long as
||lw||2 < s and 2:(0) = 0.

It can be verified that for the special case where D, = 0,
Dy, =0,D,, = 0and D, = 0, items 1) and 3) reduce
to the corresponding results in [25] and [13], respectively. The
three parts in Theorem 1 can be respectively used to estimate
the domain of attraction, the reachable set and the nonlinear £-
gain for system (1). For these purposes, we may formulate cor-
responding optimization problems with linear matrix inequality
(LMI) constraints. For the estimation of the nonlinear £, gain,
we need to minimize +y for a selection of s over [0, 00).

1) Problem 1: Estimation of the Domain of Attraction: For
the purpose of enlarging the estimation of the domain of attraction,
we may choose a shape reference set X i (see, e.g.,[22],[25], and
[26]) and maximize a scaling a > 0 such that « X C £(Q™1),
with @ satisfying (13) and (14). The optimizing parameters are
Q@ and Y. When Xy is a polygon or an ellipsoid, the resulting
optimization problem has an LMI formulation.

2) Problem 2: Estimation of the Reachable Set: Under the
condition (13) and (15), an estimate of the reachable set is given
by s€(Q™1). Since smaller (or tighter) estimates are desirable,
we may formulate an optimization problem to minimize the size
of s€(Q~1). There are different measures of size for ellipsoids,
such as the trace of () and the determinant of (), among which
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the trace of () is a convex measure and is much easier to handle.
In a practical situation, we may be interested in knowing the
size of a certain state or an output during the operation of the
system. For instance, given a row vector C € R1*" we would
like to estimate the maximal value of |Cz(t)| forall ¢ > 0. Since
z(t) € s€(Q~1), the maximal value of |Cz(t)] is less than

a = (max{zTCTCx : 27 (s*Q)'x < 1})Y/2

Given o > 0. Consider the set £(CTC/a?) = {x
2TCTCx < o?} = {z : |Cxz| < a}. It is the region be-
tween the two hyperplanes Cz = « and Cz = —«. It can
also be considered as a degenerated ellipsoid corresponding to
a positive semidefinite matrix CTC. Hence we have @ > &
if and only if £((s?’Q)™') C £(CTC/a?), which is equiva-
lent to CTC/a? < (s2Q)7L. Thus, @ = min{a : CTC <
@?(s2Q)~1}. Note that CTC < a?(s2Q)! is equivalent to

QY2CTCQY? < o?/s*I and to CQCT < o?/s?, we have

o
a= min{a :CQCT < —}

52
To minimize @&, we can minimize o? satisfying the linear (in
Q and o?) constraint CQCT < a?/s? with @ satisfying (13)
and (15). With « determined this way, we have |Cz(t)| < «
for all ¢ > 0. We may choose different C"’s, such as C;,7 =
1,2,..., N, and obtain a bound «; on |C;xz(t)| for each i. The
polytope formed as {z € R" : |Ciz| < ay,i=1,...,N} will
also be an estimate of the reachable set.

3) Problem 3: Estimation of the Nonlinear Lo Gain: The
problem of minimizing a bound on the £, gain follows directly
from item 3 of Theorem 1 by minimizing -y along with param-
eters () and Y satisfying (13) and (16). For each s > 0, denote
v*(s) as the minimal ~, then we have

[12ll2 < v*(lwll2)l|wll2

for all w. In other words, v*(s) serves as an estimate for the
nonlinear £ gain.

C. Analysis Based on the Norm-Bounded Differential Inclusion

For easy reference, the NDI description for (1) is repeated as
follows. If |[U~'Hz|~, < 1, then

o Eelen L] s

AQ BQ _ A B'w

OQ DQ a Cz DZ’w

+ L%J MS™HI+Q)S™*M~[C,— H D,,] (18)
and M > 0 is diagonal, S is symmetric and nonsingular such
that S2 = 2] — Mlequ — MDZ"qul.

The next lemma will be used to handle the norm-bounded
differential inclusion (17).

Lemma 2: Given X, Y, Z, S of compatible dimensions,

where S is symmetric and nonsingular. If

Z X

He[ 2}50
v <%

7)

19)
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then He(Z + XS~' (I +Q)S~'Y) <0 V[Q| < 1.
This lemma follows directly using Schur complements and
from MQN + NTQTMT < MM7T + NTN forall ||Q]] < 1.
Theorem 2: Given Q € R™", Q = QT > 0. Let V(z) =
2TQ~1z. Consider system (1).
1) If there exist Y € R"*"™ and a diagonal U > 0 satisfying
(13) with s = 1 and

me [ AQ B,U

lo,0-y —U+D,U| <Y

(20)

then £(Q~1!) is a contractively invariant ellipsoid.
2) Given s > 0, if there exist Y € R™*™ and a diagonal
U > 0 satisfying (13) and

AQ B, B,U
He 0 -1 0 <0 (2D
c,Q-Y Dy, -U+D,U

then V(z,w) < w’w forall z € s€(Q~"),w € R". If
2(0) = 0 and ||w|]z < s, then z(t) € sE(Q1!) for all
t > 0.

3) Given v, s > 0, if there exist Y € R™*" and a diagonal
U > 0 satisfying (13) and

AQ B, 0 B,U
0 - 0
He = <0 (22)
CzQ D.., _VT DZQU
C,Q-Y Dy, 0 —U+D,U

wTw for all z €

then V(z,w) + (1/7%)2Tz <
= 0 and ||w||2 < s, then

sE(Q7Y),w € R™. If z(0)

122 < yllwlla-

Proof: The procedure is very similar to the proof of The-
orem 1 except we need to establish that the conditions (20)—(22)
imply the respective conditions in Lemma 1 for the NDI (17).
This is a little more complicated than the counterpart for The-
orem 1.

Here, we only show that (22) guarantees (11) when the differ-
ential inclusion (10) is specified to (17). The other correspon-
dences in items 1) and 2) are similar and simpler. For system
(17), the condition (11) in Lemma 1 can be written as

PAg PBqg 0
He| 0 -3 0 | <0 V|o<1 (3
2
Co Do -3
From (18), we have
PAq PBg 0 PA = PBy 0
o L o |=[° -z 0
~2 .
CQ DQ - /21 CZ DZ'U/' - ’Y;I
PB,
v 0 | MSTI+Q)SsMTY[C,~H D,. 0].
D

zq
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By Lemma 2, to guarantee (23), it suffices to have

PA PB, 0 PBM
0 -1 0 0
: <
He C. D., -2 pom|=?
2
M~YCy,—H) M™D,, 0 -
(24)

Multiplying on the left and the right by diag{Q,I,I, M},
noticing that He(—5$2/2) = He(—I+M *D,,M),Q = P~ 1,
Y = HQ, (24) is equivalent to

AQ By, 0 BqM2
0 - 0 0
He 27 9 S 0
CZQ Dzw - ’yz quM
CyQ =Y Dy 0 —M? + quM2
which is (22) with U = M?2. O

Remark 2: 1f we take Y = 0 in (22), then the inequality re-
duces to [16, eq. (10a)] (with some permutation). A nonzero pa-
rameter Y introduces additional degrees of freedom for regional
analysis and makes the results applicable to the case where the
system wrapped around the saturation is not globally exponen-
tially stable. o

As with Theorem 1, different optimization problems with
LMI constraints can be formulated for stability and performance
analysis of the original system (1) based on the three parts of
Theorem 2. Since the NDI is a more conservative description
than the PDI and since Theorems 1 and 2 are developed from
the same framework, it is easy to see that the analysis results
from using Theorem 2 are more conservative than those from
using Theorem 1. Actually, even for the special case m = 1
for which the NDI and PDI descriptions are the same, Theorem
2 could still be more conservative than Theorem 1 because of
using Lemma 2 to derive (24). The advantage of Theorem 2 is
that the conditions involve fewer LMIs (but of larger size, i.e.,
+m more than those in Theorem 1).

We should note that the results in Theorem 2 were estab-
lished in [28] through the S-procedure. The approach taken in
this paper helps us to understand the relationship between the
results based on two different types of differential inclusions.

IV. ANALYSIS WITH NONQUADRATIC LYAPUNOV FUNCTIONS

In this section, we will use a pair of conjugate functions,
the convex hull quadratic function and the max quadratic func-
tion to perform stability and performance analysis of system
(1). For the PDI (6), significant improvement may be achieved
with these nonquadratic functions. However, for the NDI (9),
there is no advantage in using these nonquadratic functions over
quadratic functions. As a matter of fact, this result also applies
to any norm-bounded linear differential inclusion (NLDI) (see
Remark 5). We first review some results about this pair of con-
jugate functions.

A. The Max Quadratic Function and the Convex Hull
Quadratic Function

Given a family of positive—definite matrices P; € R"*",
P = PJT > 0, j € I[1, J], the pointwise maximum quadratic
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function is defined as

Vinax(2) := max{zT Pjz : j € I[1,J]}. (25)
Given Q; € R™*™, Q; = Q]T > 0,5 € I[1,J]. Let
Ii={yeR: y+7+ -+ =120}
the convex hull quadratic function is defined as
—1
J

Ve(z) := minzT Q; . 26
(z) min @ ]Z:l%QJ T (26)

For simplicity, we say that V. is composed from @;’s. It was

shown in [15] that (1/2)Vax is conjugate to (1/2)V. if Q; =

P; for each j € I[1, J]. It is evident that V. and Vy,.x are ho-

mogeneous of degree 2, i.e., Ve(ax) = a?V,(), Vinax(az) =

% Vinax (). Also established in [15], [23] are that V., is convex

and continuously differentiable and that V. is strictly convex.
The 1-level set of V.« and that of V, are, respectively

LVmax = {LIZ eER™: Vmax(a:) < 1}
Ly, ={xeR": V.(z)<1}.
Since Vinax and V.. are homogeneous of degree 2, we have
sLy, . = {a: ER": Viax(z) < 32}
sLy, = {a: eER": V.(z) < 32}.
It is easy to see that Ly, __ is the intersection of the ellipsoids

E(P;)’s. In [23], It was established that Ly, is the convex hull
of the ellipsoids E(Qj_l)’s, ie.,

J
Ly, = Z’ijj Ty € S(Qj_l)?v el
j=1

For a compact convex set S, a point z € S is called an ex-
treme point if it cannot be represented as the convex combina-
tion of any other points in S. Clearly an extreme point must be-
long to the boundary of S (denoted as 9.5). For a strictly convex
set, such as Ly,___, every boundary point is an extreme point. In
what follows, we characterize the set of extreme points of Ly, .
Since Ly, is the convex hull of £ (Q]-_l)’s, an extreme point
must be on the boundaries of both Ly, and £ (Q;l) for some
jelI,Jdfz € dLy, \ U‘jjzlé’(Q;l), then  must be the
convex combination of at least two points from U7_, & (Q;l)
and thus not an extreme point of Ly, ). Denote

Ej :=0Ly, N 9E(Q; ")
={zeR": V. (z)= :ETQ;IQT =1}.

Then, szl E; contains all the extreme points of Ly, . The exact
description of F; is given as follows (see [30] for the proof).
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Lemma 3: For each j € I[1,J], define F; = {z € R" :
277N (Qr — Q))Q7 e < 0 Vk € I[1,J]}. Then E; =
8LVC n Fj.

It is clear that aF; = F} for any « > 0. Since Ly, is
convex and contains the origin in its interior, we have Ly, =
Useo,1) 6(9Lv, ). It follows from Lemma 3 that s ¢ o 4 O£ =
Ly N Fj.

The following lemma combines some results from [23] and
[24].

Lemma 4: For a given ¢ € R™, let v* € I" be an optimal y
such that

-1 -1

J J
T : T
2y [ D vQi | wo= min 7o > Q| mo = Ve(wo).
=1 =1

For simplicity and without loss of generality, assume that 77 >
0 for j € I[1, Jo] and vj = O for j € I[Jo + 1, J]. Denote

Jo
Qo=> Qi z;=Q;Qy =0,

i=1

Then, V,(z;) = VC(J:EO) and v; € V.(20)Y/2F;, j € I[1, Jo).
Moreover, zg = Z]-‘]:l vjx;, and

VVe(wo) = VVe(aj) = 2Q5 'wj = 2Q5 w0, j € I[L, Jo]

where VV,(x) denotes the gradient of V at x.

The following lemma is adapted from a result of [27] to the
slightly different definition of V. and V},,,« (the two functions in
[27] have the coefficient 1/2 and the saturation levels in U are
also included here).

Lemma 5: [27]Let H € R™*™, U € R™X™ be positive—def-
inite diagonal and denote the /th row of H by H; and the ¢-th
diagonal element of U by ;. We have

1) Ly, € L(U~'H) if and only if (1/@,)H} € Ly, for

all £ € I[1,m];
2) Ly,,, C L(U~'H) if and only if (1/u,)H} € Ly, for
all £ € I[1,m].

B. Analysis With Convex Hull Quadratic Functions

In this section, we apply the convex hull quadratic function
to the analysis of system (1) through the polytopic differential
inclusion (6), which is repeated as follows for easy reference:

T Ajx 4+ Byw — B Tih(x) | . m
[z} eco{{Cﬂ—i—Diw—D;}qﬂh(:p)} cieT[l,2 ]}
27

This PDI is a valid description for (1) as long as |[U~1h(z)]o <
1. We will restrict our attention to a level set sLy,, where
U h(z)|ee < 1 forall z € sLy.. As with the case of
using quadratic functions, the crucial point is to guarantee that
z(t) € sLy, under the class of norm-bounded w and the set of
initial states under consideration.

It may appear that choosing h(z) as a linear function Hz
within sLy, should lead to simpler results than choosing it as
a nonlinear function. However, it turns out that a nonlinear h(z)
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not only reduces conservatism but also leads to cleaner and nu-
merically more tractable results. As expected, the derivation of
the results is more involved than the former cases in Section III
because of the nonquadratic Lyapunov function and the non-
linear function h(z). For this reason, we present the results sep-
arately for the estimation of the domain of attraction, the reach-
able set and the £, gain. Based on technical considerations, we
first present the result about the reachable set.

Theorem 3: (Reachable set by L;-norm-bounded inputs)
Given Q; = Q;‘»F > 0,5 € I[1,.J], let V. be composed from
Q;’s as in (26). Given s > 0. System (1) with z(0) = 0
satisfies (¢t) € sLy, for all ¢ > 0 and for all w such that
lwl]2 < sif there exist Y; € R™*™ and A;jx > 0,4 € I[1,2™],
j,k € I[1,J] such that

7
0 A;Q; — BTiY; 4+ > \iji(Qj — Qr)  B;
€ k=1

<0
0 -3
Vie I[1,27],5 € I[1,J] (28)
[YT Yie| >0 VeeIt,m)je1]1,J] 29)
7, J

where Y; ¢ is the /th row of Y.
Proof: We will prove the theorem by showing that for all
z € sLy, and w € R”, we have V,(z,w) < wlw, where
V.(z, w) is the time derivative of V, in the direction of the right-
hand side of (1), which depends on z and w.
Let P; = Q; ', H; = Y;Q; . Multiplying (28) on the left
and the right by diag{P;, I}, we have

J
Pj(A; —BqTiHijZ AijiPj(Q—Qr)P;  P;B;
=1

He <0.
o .
This implies that for all ¢ € I]1,2™], j € I[1, J]
ZQZTPJ'(AZ‘J} + Byw— B,T;H;x) — wTw
7
<2 Nijea" P(Qr—Q;) Pz Yz € R, w € R™.  (30)
k=1

Given j € I[1,J] and any § > 0. Consider z € 6E;. By
Lemma 3, we have

J
Z /\ijkaTPj(Qk — QJ)P].Z‘ S 0.
k=1

It follows from (30) that

20" Pj(Aiz + Byw — B,T;Hjz) —w"w <0

Vo edE;,weR", 6>0. (1)

(In view of (27) and (29), this actually shows that VC(:C w) <
wTw for all z € s(Ly. N E;), recalling from Lemma 4 that
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VV.(z) = 2P;x for x € E;. More explanation can be seen
later). We proceed to show that Vc(a:, w) < wTw holds for all
x € sLy, by exploiting the properties of V..

Now, consider z¢ € sLy,. Then V,(z) = 62 for some § €
(0, s]. By Lemma 4, there exist z; € 6E;,v; > 0, j € I[1, Jo]
with Jo < J such that Y7 7; = 1and zo = Y.7%, vju; (we
note that the indexes j can always be reordered to make this true
for each zq). Let

Jo Jo
Qo=> 7%Q; Yo=Y Y, Ho=YoQ;'. (32
j=1 j=1

Then, we also have 2 Q5 zg = V(o) = 62 and

VVe(wo) = 2Q5 ' mo = 2Q7 ', jell,Jo]. (33)
Applying convex combination to the inequalities in (29), we

have

I~
=t

|

Sap

YM]>0 [ o Hog
s ’ > Rt _’
[YOTZ Qo g:e Qo !

By (2), this implies that s€(Qy") € L(U~'Ho). Since
23 Qy ey = 62 < 5%, we have |[U~" Hozo| < 1. Thus, (27) is
valid at zg with h(z¢) = Hozo. Hence, we have

}ZOVKEI[I,m].

B|p=zy € cO{A;xo+Bjw—B,T;Hozo: i € I[1,2™]}. (34)

and
‘./c(a’,()a w)
€ co{(VV.(x0))F (Ajwo+Biw—B,T;Howo) : i € I[1,2™]}.
(35)
Recalling that
Jo
xro = Z’intj, T; € 6Ej
j=1
VVo(wo) =2Qq 'm0 = 2Q7 'z; = 2Pjx;. (36)

Applying (31) to z; and replacing 2z P; with (VVe(z0))", we
obtain

(VVi(z0)) T (Aszj+Biw—B,T;Hjz ;) —wlw<0VYw € R".

By the definition of Qg, Hg and Yy in (32), G7
Jo
Hozo = YoQp'wo = | D% | Qo'zo  (38)
j=1
and, from (33), we have
Hjz; =Y;Q7'w; =Y;Q5'wo, eIl Jo]. (39
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Combining (36), (38), and (39), and noting that v; +v2 + - - - +
V7, = 1, we have

A;xo + Biw — BqTZ‘Hoxo

Jo Jo Jo
= > iz + Y vBiw— BTy 705 o

Jj=1 j=1 7=1
Jo

= Z%’(Aiﬂ?j + Byw — B,T;Hjx;) Yw € R"(40)
j=1

Note that this is satisfied for all ¢ € I[1,2™]. It follows from
(37) that for each ¢ € I[1,2™] and w € R",

(VV(20) " (Asjzo + Biw — B,T;Hyxo) — wlw
Jo
= Z ’yj[(VVC(wO))T(Aixj + B;w — BqTiHjxj)—wTw]
i=1
<0.

By (35), we obtain V, (2o, w) — wTw < 0 for all w € R". Note
that x is an arbitrary point in sLy;, .

Hence, we have that V,.(z,w) < w”w for all z € sLy, and
w € R". Now, suppose z(0) = 0 and ||w||3 < s?. Then, for
any to > 0, as long as z(t) € sLy, forall t € (0,t)), we
have V.(z(to)) < [,° wT (T)w(r)dr < s% ie., x(to) € sLy, .
On the other hand, if there exists to > 0 such that V.(z(t)) <
s2 forall t € (0,t0) and V.(z(to)) = s? then we must have
S w" (r)w(r)dr = 0 and Ve(x(t), w(t)) < 0 for almost all
t > to. Hence, V.(z(t)) < s? for all t > to. Therefore, we
conclude that z(t) € sLy, forall ¢ > 0. O

Remark 3: (Optimization issues) With conditions (28) and
(29), we may formulate an optimization problem to minimize
the estimate of the reachable set as with the quadratic function
case. We observe that (28) is a bilinear matrix inequality (BMI)
which contains some bilinear terms as the product of a full ma-
trix and a scalar at the (1,1) block of the left-hand side matrix.
Similar bilinear terms are contained in the matrix inequalities
in [14], [15], and [27] for stability and performance analysis
of linear differential/difference inclusions. A direct method to
solve BMI problems is to alternatively fix one set of parameters
and optimize the other set. In [14], [15], and [27], we adopted the
path-following method from [20] and our experience with a set
of numerical examples shows that the path-following method is
much more effective than the straightforward iterative method.
We actually implemented a two-step algorithm which combines
the path-following method and the direct iterative method. The
first step uses the path-following method to update all the param-
eters at the same time. The second step fixes A;j;’s and solves
the resulting LMI problem which includes () ;’s and Y;’s as vari-
ables. This two-step method proves very effective on the BMI
problems in [14], [15], and [27], and also works well on the ex-
ample in Section V. We also see that if we take @; = @ and
Y; =Y forall 7, then the bilinear terms vanish and the condi-
tions reduce to the LMIs in (13) and (15). In our computation,
we first solve the resulting optimization problem with LMI con-
straints and then use the optimal @Q* and Y™ to start the two-step
algorithm, with @; = Q* and Y; = Y* for all j and A;;, > 0
randomly chosen. This approach also proves effective for the
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problems of estimating the £, gain and the domain of attrac-
tion, which will be addressed in Theorems 4 and 5.

Although there is no guarantee that the global optimal solu-
tion can be located, the convergence of the algorithms is satis-
factory. Furthermore, since the initial value of the optimizing
parameters can be inherited from the optimal solution obtained
with quadratic functions, the algorithms ensure that the results
are at least as good as those from using quadratic functions in
Theorem 1. The aforementioned discussion also applies to the
optimization problems resulting from Theorems 4 and 5. )

Remark 4: (About the nonlinear function h(x)): From
the proof of Theorem 3, we see that a nonlinear function
h(zo) = Ho(zo)zo is constructed from @;’s and Y;’s so that
|U=YHy(wo)wo| < 1 forall 7y € sLy. [see (32) where H
is constructed and the subsequent discussion up to (34)]. This
makes the proof more complicated than with a linear function
Hzx but the result turns out to be cleaner and more easily
tractable numerically. If we attempt to use a linear function
h(z) = Hz such that U 'Hz|, < 1forallz € sLy., we
would have Y; in (28) replaced with HQ; and Y;, in (29)
replaced with H,();. When we formulate an optimization
problem to estimate the reachable set by taking H and @Q;’s
as optimizing parameters, this would result in more complex
BMI terms including H Q); which may cause difficulties in the
algorithms, such as slow convergence or getting stuck easily at
a local solution. o

Remark 5: (Discussion about results based on NDIs): With
similar developments as in the proof of Theorem 3, we can ob-
tain a corresponding condition by using the norm-bounded dif-
ferential inclusion (9) instead of using the PDI (6). The resulting
condition involves the existence of Y;’s, A;, > 0, and a diag-
onal U > O satisfying (29) and

J
AQ;j + X Aik(Qj — Qr)  Bu B,U
He k=1 s <0
0 -3 0
C,Q;-Y; D,, -U+D,U
Yy J Yy yq (41)

for all j € I[1, J]. The bilinear terms in the first block seem to
inject extra degrees of freedom as compared with (21) in The-
orem 2 but they actually wouldn’t help to reduce the conser-
vatism. In other words, (41) implies the existence of a () satis-
fying (21). To see this, we form a matrix

— J -
-2 M A2 Ast
k=2
J
A2 - > A Ag2
U = k=1,k#2
J-1

Alg A2y - > AJk

L k=1 _

Then W is a Metzler matrix. Since the sum of each column of ¥
is 0, the eigenvalue with the maximal real part is 0. Hence there
exists a vector ¢ # 0 with ¢; > 0 such that ¢ = 0 (e.g., see
[37]) and in particular we assume Z}]=1 ¢j = 1(Ge,cel)
If we let Q = Z}]=1 ¢jQj,and Y = Z‘J.]:I ¢;Y;, then Q) and
Y will satisfy (21) and (13). Furthermore, s€(Q) C sLy, is
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a smaller estimate of the reachable set. This means that with
the NDI description, using the convex hull quadratic Lyapunov
function offers no advantage to using the quadratic Lyapunov
function. The same situation occurs for the estimation of the
Lo gain or the domain of attraction, or, when applying a max
quadratic function to NDIs.

For the special case where H = 0, the regional NDI (9) be-
comes a global NLDI. Thus we can conclude that for any NLDI,
the convex hull quadratic function or the max quadratic func-
tion offers no advantage over quadratic functions when these
stability and performance issues are concerned. o

We next address the problems of estimating the Lo gain and
the domain of attraction.

Theorem 4: (Lo gain for norm-bounded w): Given @; =
Q;‘-F > 0,7 € I[1,J], let V.. be composed from @Q;’s as in (26).
Consider system (1). Given s, v > 0. If there exist Y; € R™*"
and \;j;, > 0,0 € I[1,2™], 4, k € I[1, J] such that

J
AiQj— BJTiY; + k; Aije(Q; = Qr) Bi 0
He 0 _% 0 <0
CiQ; = D=y TY; D =%t
Vie I[1,2™],j€ I[1,J]
(42)

o Yﬂ}>o Ve e I[1,m],
5 o ,m],j € I[1,J]
|:Y]T/ Qj

(43)

then for all w such that ||w||s < s and £(0) = 0, we have
12]l2 < ~llwll2.

Proof: We will prove the theorem by showing that for all
z € sLy, andw € R”, V,(z,w) + (1/42)z%2 < wlw. Since
(42) implies (28), by Theorem 3, we have z(t) € sLy. for all
t and for all |Jw|]2 < s, 2(0) = 0. Also, all the relationships
established in the proof of Theorem 3 are true under the condi-
tions of the current theorem.

Let P; = Q7' H; = Y;Q; ' and

J
Wij = PiAi = PiBTiH; + ) Niji Pi(Qj— Qi) P
k=1

Multiplying (42) on the left and the right by diag{P;, I, I}, we
have

Wi P;B; 0
He 0 -5 0 | <o
Ci—D.,T;H; D; -2}t
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By Schur complements, this is equivalent to

He {Wg“j Pi?&
2
1 C;,— D, ,T,H;)T
+$ [( D? 2 ] [Ci — D T;H; D;]<0. (44)
Denote

fij(w,w) = Az + Bjw — ByT;Hjx
gij(w,w) =Ciz + Djw — D, T;H;x.

Then (44) implies that for all z € R*, w € R",

1
22" P; fij(z, w) + ?g?j(x-/w)gij(m,w) —wlw
J
S 2 Z )\ijkaPj(Qk—Qj)PjLE. (45)
k=1

Consider z € 6E; for 6 > 0. Like in the proof of Theorem
3, we have

J
> XijraT Pi(Qr — Q) Pix < 0Va € §Ej,w € R",6 > 0.
k=1

It follows from (45) that
1
22" P; fij(z, w) + ?g?j(x-/w)gij(m,w) —w'w <0,

Vo e dlE;,weR",6>0. (46)

We note that this is true for all ¢ € I[1,2™] and j € I[1, J].
Now, consider zg € sLy.. Then V.(zg) = 62 for some
6 € (0,s]. Like in the proof of Theorem 3, there exist z; €
8Ej.~; > 0,j € I[1,.Jo] such that 37° 7, = 1 and o =
Z}]O:1 vjz;. Let Hy, Qo, Yo be defined as in (32). Then, we also
have |U~'Hgxzo| < 1. Applying Proposition 1 at x¢, we have

T A;xo + Biw — BqT,;H():EO . m
[2} eco{{Cixo—%Dq:w—quTiHoxo cieI[1,2m] 5.

Let
fio(wo, w) = Ajxg + Bsw — ByT; Hoxg
gio(a:o,w) =Ciz9 + D;w — quTiHoiljo.

Then, see (47), as shown at the bottom of the page.
Since 2] P; = 2:7Q5t = (VVa(o))T [see (33)], ap-
plying (46) at x;, we obtain

1
(VVe(z0))T fij(zj,w) + ﬁlgij(ﬂvj,w)l2 —wlw <0
VYweR", i€ I[1,2™].

. 1 1
Ve(zo,w) + 'y_ZTZ —wTw < max{(VVc(a:g))Tfio(xo,w)+?|gi0(x07w)|2—wT'w (i€ I1,2™]}

2

(47
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Like in (40), we have

fLO Zo, W

Zry]ftj zj,w)
Z'—V]gz] Zj,w

on Zo, w

It follows that

1
(VVe(20))" fio(wo, w) + ¥|gi0(x0>w)|2 —w'w <0

and from (47)

. (48)

Vc(a:o,w) + ,YLZTZ —wTw <0
which is satisfied for all g € sLy, and w € R". Since z(0) =
0, (t) € sLy, for all ¢t and for all |w|]2 < s, integrating
both sides of (48), we have ||z||3 < +?||wl||3. This completes
the proof. O

Theorem 5: (Estimation of the domain of attraction): Given
Q; = Q? > 0,7 € I[1, ], let V. be composed from @);’s as
in (26). Consider system (1) with w = 0. We have Vc(a:) <0
for all z € Ly, \ {0} if there exist A;;x > 0,Y; € R™*" 4 €
I[1,2™],4,k € I[1,J] such that

J
He(AiQj = ByT,Y+ ) Xiji(Q5—Qx)) <0
k=1
VieI[1,2™],5 €I[l,J]
[ L YN} >0 Yeellm)jelllJ].
Yie Qi]~ '

Proof: The proof can be adapted from the proof of The-
orem 3 by assuming that B; = 0. Then, with the same proce-
dure, it can be shown that V.(z) < 0 forall z € Ly, \ {0}. O

Remark 6: Note that the condition in Theorem 5 is similar to
(but less conservative than) that of [27, Th. 4], which is devel-
oped for a special case without algebraic loops. Similar numer-
ical complexity can be expected. o

C. Analysis With Max Quadratic Functions

The max quadratic function is not differentiable everywhere.
Following the definition of [43, p. 215], a subgradient of a
convex function f : R® — R at zq is a vector v € R™ such that

(@) = f(w0) 2 v" (w — wo) Y €R" (49)
and the subdifferential, denoted as Jf(z) (not to be confused
as the boundary of a set) , is the set of all subgradient at z.
The function f(x) is differentiable at ¢ if and only if 9 f(zo)
is single valued. We use OV ,,ax () to denote the sub-differential

of Viyax at x.
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Lemma 6: Consider ¢y € R™. Suppose that there exists Jy €
I[1, ] such that Vipax(z0) = xf Pjzo for j € I[1,.Jo] and
Vinax(%0) > xf Pjaq for j > Jy. Then

1) 8Vmax($0) = CO{ZPJ'QJ(] 1 J € I[I,J()]};

2) for a vector ( € R", the directional derivative of V., at

xo along ( is
lim Vmax(xO + tC) max(xO) _

t—0+ t

{€"¢}

fean“ (zo)
Proof: See [30]. O

For simplicity and with some abuse of notation, for = given
by (1), denote

{¢"a}
{¢T(Az + Byq + B,w)}.

Vmax(:v w):=  max

€N Vmax (¢)

= max
€N Vmax (x)

Then, by Lemma 6, with ( = &, V.« is decreasing along  if
and only if Vmax(a:, w) < 0.

Theorem 6: (Reachable set by bounded inputs) Given PP; =
Pl > 0,5 € I[1,J], let Vipax be the max quadratic function
formed by P;’s as in (25). Given s > 0. System (1) with z(0) =
0 satisfies 2:(t) € sLy;,,, forall ¢ > 0 and for all w such that
w2 < s if there exist H € R™*™, A\;jx > 0, agj > 0,5,k €
I[1,J],i € I[1,2™], € € I[1,m], such that 37_; ap; = 1, and

J
PyA;—PB,TiH+ S \iju(Pj—Py)  P;B;
k=1

He <0
0 -

VieI[1,2™],5 €I[1,J]
(50)

J >0Vl elll,m].

HZT > P [ ]

=1

(51)

Proof: By the definition of V,, condition (51) implies that
Ve((s/te)He) < 1forall € I[1,m]. By Lemma 5, this implies
that Ly, C L(sU™'H) = (1/s)C(U~'H), i.e., sLv,,. C
LU H). Hence, U™ Hz|ow < 1forall z € sLVnnx "By
Proposition 1, we have

T € co {Aﬂ?-l—Biw—BqTiH.Z‘ 1 € I[l Qm]} Vi € sLy

max *

On the other hand, it can be verified that (50) implies that

ExTPj(Aix + Byw — B,T;Hz) — wlw
J
<2 Aira” (P = Pz (52)
k=1

forall j € I[1,.J],i € I[1,2™]. The state—space of z can be
partitioned as the following subsets:

={zeR" : 2T(P,—P;))z <0,k € I[1,J]}, j € I[1,J].
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If 2 € S; \ UggSk, then Viax(z) = z7Pjz and
OVmax(¥) = 2P If x € n72,8; \ U/, .S, then
Viax(z) = 2T Pjz,j € I[1, Jo] and OVipax(z) = co{2P;jz :
J € I[1, Jo]}.

We first consider z € S; \ Upx;Sk. Then

J
> Xira (P = Pj)a <0 (53)
k=1

and

Vmax(xa w) - wTw

< 24T P;(A;x + B;w — B, T, Hz) — wTw).
—,iel,r[lf%m](f” i(Aiz + Biw — ByTiHz) — w' w)

If o € N2, S; \ UJ_; 1. then (53) is satisfied for all j €
I[1, .Jy] and we have

Vmax(x, w) — wTw

< max max
JEI,Joli€T[1,2™]

(227 Pj(Ajz+Bjw—B,T;Hz) —ww).

It follows from (52) and (53) that Vmax(a:, w) —wlw < 0. The
remaining part of the proof is similar to the proof of Theorem
3. (]

The following results can be proven similarly to Theorem 6
(see [30] for proofs).

Theorem 7: ( Lo gain for norm-bounded w) Given P; =
P]»T > 0,5 € I[1,J]. Consider system (1) and s,y > 0. If
there exist H € R™*™, X\jjr > 0, ag; > 0, j, k € I[1,J],
i € I[1,2™], £ € I[1,m], such that ijl ag; = 1and

J
Pj(A; = ByT;H)+ 3> Xiji(Pj — P) PjB; 0
k=1
He 0 _é 0 SO
C; = Dy TH D -2t
VieI[1,2m],5 €lfl,J]
(54)

S
I~

H,

w
&

J >0 VLelll,m
HE Y ouiPy | ~ [t
j=1

(55)

then for all w such that ||w|s < s and 2:(0) = 0, we have
lzll> < Allw]ls

Theorem 8: (Estimation of the domain of attraction): Given
P; = P]-T. > 0,5 € I[1,J]. Consider system (1) with w = 0.
We have Vipax(2,0) < 0 forall x € Ly, \ {0} if there exist
H ¢ Rm*n, )\ijk >0, Qg > 0,5,k € I[I,J],i S I[l,2m],
£ € I[1,m], such that Z;’:l agj = 1and

J
He (Pqu; — PiB,TH +Y /\ijk(Pj—Pk)) <0
k=1

Vie I[1,27),j €, 1[1,J]

a? H,

(56)

>0 Veel[l,m]. (57)

J
T
H Zl ;P
]:
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As compared with the counterpart results from using convex
hull quadratic functions, the conditions (50), (54), and (56) in
Theorems 6-8 appear to be less tractable because of the bilinear
term PP; B,T; H in the first blocks of the matrices. Also, the same
H for all P;’s seems to offer fewer degrees of freedom as com-
pared with different Y;’s for different Q;’s in Theorems 3-5.
However, numerical examples show that Theorems 6-8 may
produce better results in some cases.

V. EXAMPLES

1) Example 1: Consider system (1) with the following pa-
rameters:

A B, B,
C’.‘I qu Dyw
Cz qu Dzw

ro 0 -1 1 0 0 17

1 0 -2 0 1 1 0

0 1 -3 1 -1 1 1

=1 0 1 -3 -1 1 -1

0 1 0 -2 —4 0 1

0 1 0 1 0 -1 0

LO O 1 0 1 0 -1

The well-posedness of the system is easily verified through
Claim 2. We use the four methods in Theorems 1, 2, 4, and
7 to estimate the nonlinear £, gain. The resulting estimates
are plotted in Fig. 2, where the dotted curve is from applying
quadratics via NDI (Theorem 2 ), the dashed—dotted one is from
applying quadratics via PDI (Theorem 1 ), the dashed one is
from applying max quadratics (with .J = 2) via PDI (Theorem
7) and the solid one is from applying convex hull quadratics
(J = 2) via PDI (Theorem 4). Each of the four curves tends to
a constant value as ||wl|2 goes to infinity. This constant value
will be an estimate of the global £, gain. As expected, applying
quadratics via PDI always leads to better results than applying
quadratics via NDI, and applying one of the two nonquadratics
always leads to better results than applying quadratics. How-
ever, the relationship between the results from applying the two
nonquadratic functions is not definite. The situation exhibited
in Fig. 2 can be reversed if we change the parameters of the
system. In what follows, we present several scenarios through
some adjustments of the parameters.

2) Case 2: 1If we change Dy, to Dy, = 93 _4

(well-posedness ensured), then the global L5 gain by using qua-
dratics via NDI is unbounded (or, global stability is not con-
firmed), while that by using quadratics via PDI is 170.1473. By
using max quadratics and convex hull quadratics, the global £,
gains are, respectively, 20.7833 and 19.3307.

3) Case 3: If we change D, to D,q = :3
posedness ensured), then the global £, gain by using quadratics
via either NDI or PDI is unbounded. By using max quadratics
and convex hull quadratics, the global L+ gains are, respectively,
42.3354 and 31.6731.

-3 —13]

-2
_ 4] (well-
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35-
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Fig. 2. Different estimates of the nonlinear £, gain: Case 1.

The above two situations also show how the stability and per-
formance results by the same method can be affected by the pa-
rameter D,, which describes the algebraic loop. As discussed
in [40], this parameter is one of the two key design parameters
in static anti-windup synthesis and can have a dramatic impact
on antiwindup performance.

Due to space limitation, we will not present computational
results about the estimation of the domain of attraction or the
estimation of the reachable set. Interested readers are referred
to [27] for some numerical results. From the different situations
exhibited through the Lo gain, it is not hard to infer that the
difference among the estimations by using quadratics/non-qua-
dratics via NDI/PDI can be made arbitrarily large through ad-
justing the four elements of D, . For instance, Case 2 suggests
that the estimate of the domain of attraction by using quadratics
via NDI is bounded while that by using quadratics via PDI is the
whole state space. Case 3 suggests that the domain of attraction
estimated by nonquadratic functions is the whole state space
while that by quadratics (via PDI or NDI) is bounded. On the
other hand, the estimate of the reachable set by nonquadratics
can be bounded while that by quadratics is not.

We should remark that for this particular example, the algo-
rithm for applying convex hull quadratics converges very well
for all the values of s that we considered in our numerical com-
putation, even under different parameter changes. The algorithm
for applying max quadratics generally converges well but for
some values of s it showed some difficulties where we needed
to stop the algorithm and restart it from different initial values of
Aijr which are randomly generated. In any case, improvement
is expected from the nonquadratic functions.

4) Example 2: We adopt Example 2 from [16]. The plant
is a cart-spring-pendulum system with one control input, one
disturbance input, four states and one measurement output. The
plant and controller parameters can be found in [16]. For this
example, the closed-loop system without antiwindup compen-
sation is not globally stable. Also, there exists no static an-
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tiwindup compensation to make the global £, gain bounded.
With dynamic anti-windup augmentation, an upper bound for
the achievable global L9 gain is found to be 181.1424 (by using
quadratic Lyapunov functions). When this achievable gain is ap-
proached, some parameters of the antiwindup compensator will
approach infinity. To make the parameters within a reasonable
range, we have to allow a slightly larger global £L- gain. A partic-
ular dynamic antiwindup compensator is given as follows, with
notation adopted from [16]:

Ay As
A A4]

r—10.04 —8.67 5.95 —34.81 625.3 1]
16.78 —0.0077 —50.52 33.4 214.6
27.26 12.9 —-176.84 —20.2 1534

6.8 9.56 —54.1 —-35 410
= 157 -10 —148 105 1467
3209 —1315 1458 6281 3452
972 —763 1102 —196 —6949
74719  —50878 27569 —10528 24840
L —1152 —367 5992 387 —54618 |

When quadratic Lyapunov functions are used via the PDI, the
estimated global £, gain is 182.3080. When V., (with J = 2)
is used via the PDI, a slightly smaller estimate is given as 181.
2326. For other values of bound on ||w||2, the improvement by
using V. is also small. However, if we change some parameters
of the system, the difference between estimates by quadratics
and nonquadratics can be arbitrarily large.

For this particular system, we have D,, = A4(5). Hence, the
algebraic loop is directly affected by A4(5). Suppose that we
change A4(5) from —54618 to —52618. Two estimates of the
nonlinear £, gain are plotted in Fig. 3, where the dashed curve
corresponds to the estimate obtained by applying quadratic
functions and the solid one to that obtained by applying V.
(with J 2), both via PDI description. Also plotted as a
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Fig. 3. Different estimates of £ gain under parameter perturbation.

dashed—dotted curve is the estimate obtained by using V. when
A4(5) = —54618. The above computational results suggest that
nonquadratic functions may also have advantage for analyzing
robust performance under parameter perturbations. This will
motivate further research problems.

The order of the closed-loop system for this example is 12,
including the state of the plant, the controller and the dynamic
antiwindup compensator. The BMI problem for V. with J =
2 involves 189 variables (the two matrices (1 and Qo for V,
contain 156 variables). It takes about 2 h to generate the solid
curve (a connection of 18 points). The smoothness of the curve
suggests the uniformity of the convergence to some optimal or
suboptimal solutions, considering that the algorithm was run
only once for each value of ||w]||2 and the initial values of A, ;s
were chosen randomly.

VI. CONCLUSION

For a general system with saturation or deadzone compo-
nents, regional stability and performance analysis relies on
an effective regional treatment of the algebraic loop and the
deadzone function. This paper provides such a treatment which
yields two forms of parameterized differential inclusions. Ap-
plying available tools based on quadratic Lyapunov functions
to these differential inclusions, we obtained conditions for sta-
bility and performance in the form of LMIs. These conditions
are easily tractable but could be conservative in view of the
quadratic Lyapunov functions applied. Further improvement
relies on using non-quadratic Lyapunov functions. We explored
a pair of conjugate Lyapunov functions in this paper and
reduced the conservatism of the conditions with a series of
BMI conditions. Numerical experience shows that these BMI
conditions can be effectively solved with the path following
method. Although there is no guarantee that the global optimal
solutions will be obtained, the great potential of these non-
quadratic Lyapunov functions has been revealed by numerical

10

examples. The effectiveness demonstrated through these ex-
amples motivates further investigation on these nonquadratic
Lyapunov functions and the development of more efficient
algorithms to handle them for more complicated situations.
This paper’s results lay foundations for the design of saturated
controllers and for the design of anti-windup compensators.
Preliminary results have been obtained in [29] for regional dy-
namic anti-windup design which is based on the analysis result
by applying quadratic functions via NDI. The analysis results
based on PDI and nonquadratic functions can be applied for
design purposes by incorporating controller design parameters
into the existing optimization problem. In this regard, main
efforts will be devoted to making the optimization problems
more tractable through careful algebraic manipulation and
appropriate parameter transformations.
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1. Introduction

Saturation is a common nonlinear phenomenon in engineering
systems. It exists in different parts of control systems, such as the
actuators and/or the sensors, due to the capacity limits of those
physical components. Among saturation occurring at different
locations, of special interest is actuator saturation, which has been
widely studied since the 1950s, with significant advancement over
the last decade.

Among the recent literature within this context, one important
approach used for analysis and synthesis is the Lyapunov approach.
Generally, as indicated in [1], the Lyapunov approach consists of
two steps. In the first step, the saturation or the deadzone functions
are bounded with proper global or regional sectors. In the second
step, the system satisfying the sector conditions is analyzed with
various Lyapunov functions. The Lyapunov approach has been used
to establish quantitative measures of stability and performances,
such as the size of the domain of attraction, the convergence rate,
and the nonlinear £, gain. In light of the available numerical
tools to solve convex optimization problems, these analysis and
synthesis problems are usually cast into linear matrix inequalities

* Corresponding author. Tel.: +39 06 7259 7432; fax: +39 06 7259 7460.
E-mail address: zack@disp.uniromaz2.it (L. Zaccarian).

0167-6911/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2009.01.003

(LMlIs), which can be solved numerically with little difficulty (see
e.g., [3,2,4-11)).

With the global or regional sector conditions, there is a great
potential to be explored in the second step for choosing effective
and tractable Lyapunov functions. In most existing literature
for systems with saturation/deadzone, the quadratic Lyapunov
function has been used to cast various analysis and design
problems into the LMI framework. Due to the conservatism that
may arise from quadratic functions, some recent efforts have been
made toward the construction and application of nonquadratic
Lyapunov functions that may lead to LMIs or bilinear matrix
inequalities (BMIs) (see, e.g., [4,1,6,12,13].)

In [4,6] (for earlier works, see e.g., [14,15]), a Lure-Postnikov
type Lyapunov function is used. In [6], robust stability and
performance are addressed for the direct design of a static
full-state feedback and a dynamic output feedback controller,
while [4] focuses on enlarging the domain of attraction by
using a static anti-windup compensator. The type of piecewise
quadratic functions introduced in [16] was applied for the design
of anti-windup controllers in [13]. Piecewise quadratic Lyapunov
functions also appear in model predictive control (MPC) for
constrained linear systems (see [17]), the analysis of which has
been linked to saturated systems with algebraic loops in [8].
Some recent publications, e.g., [18,1,19,10], provided novel ideas
in constructing Lyapunov functions for saturated systems. By
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relying on a regional sector condition, [1] considers two different
differential inclusions, the norm-bounded differential inclusion
(NDI) and the polytopic differential inclusion (PDI), to describe
systems with saturation/deadzone. In [1], both quadratic and non-
quadratic Lyapunov functions are used to analyze the system
stability and performances.

In this paper, we consider systems with saturation and/or dead-
zone in a general configuration which allows for algebraic loops
including saturation/deadzone and exogenous input/disturbances.
The problems to be considered include the estimation of the do-
main of attraction, the reachable set under a class of disturbances
with bounded energy and the nonlinear £, gain.

Motivated by the Lure-Postnikov type Lyapunov function,
we develop a novel piecewise quadratic function which effec-
tively incorporates the structure of the saturation/deadzone non-
linearity. This piecewise quadratic function generalizes the tra-
ditional Lure-Postnikov type with additional design parame-
ters but is as easily tractable. All the analysis problems will
be converted into optimization problems with LMI/BMI con-
straints. This is achieved by capturing the properties of sat-
uration/deadzone and the algebraic loop with several sector-
like conditions. As compared to existing papers that use the
Lure-Postnikov type function, we address a general system con-
figuration which allows for algebraic loops including satura-
tion/deadzone and exogenous inputs/disturbances. As compared
to results based on the type of piecewise quadratic function
introduced in [16], we do not require the explicit solution of
the algebraic loop, which could be very involved, if possible,
for systems with two or more saturated components, or with
exogenous disturbances entering the saturated components. As
compared to the non-quadratic Lyapunov functions in [1], the
piecewise quadratic function directly incorporates the structure of
saturation/deadzone. In a nutshell, what we address here is the
problem of stability and performance analysis for linear systems
involving (multiple) saturations and deadzones, which can all be
reduced to the general block diagram in [1, Figure 1], where the
block # is linear. What we provide in this paper is a Lyapuonv-
based tool which reduces the conservativeness as compared to the
classical absolute stability results and also as compared to the re-
sults arising from the use of the nonquadratic Lyapunov functions
in[1]. We will use a numerical example to compare the results from
this paper’s method and those from [1] in Section 5.

This paper is organized as follows. In Section 2, we provide
a general description of the system and define the piecewise
quadratic Lyapunov function. Some sector or sector-like conditions
are presented in this section to describe the properties of the dead-
zone and the algebraic-loop. In Section 3, the piecewise quadratic
Lyapunov function is used to establish matrix conditions for global
stability and performances. Section 4 performs respective regional
analysis. In Section 5, two numerical examples are used to show
the effectiveness of this paper’s approach and the great potential
of the piecewise quadratic Lyapunov function.

Notation. For u € R', we denote |u| := VuTu, [u|oo := max; |u;l;
foru € Lo, flullz = (fy° u"(®)u(t)de)!/2. For a matrix A €
R, |A| := maxp= |Ax| for x € R'. For a square matrix X,
HeX :=X +X".ForQ = Q" > 0, denote £(Q) := {x : xTQx < 1}.

2. System description and the Lyapunov function

2.1. System description

Generally, a system with saturation or deadzone can be
described with the following compact form:

x = Ax + Byq + B,w

y=Gx+Dyq+ Dy, w 1)
Z = GXx+ Dyq + Dyw

q = dz(y)

H

where x € R" is the state,y € R™ contains all the variables affected
by saturation/deadzone, w € R’ is the exogenous input such as
the references and disturbances, and z € RP is the performance
output. dz(-) : R™ — R™ is the deadzone function defined as
dz(y) := y — sat(y) where sat(-) : R™ — R™ is the symmetric
saturation function having saturation levels uq,...,u, > 0.
The i-th component of sat(y), i.e., saty(-) depends on the i-th
input component y; via satg, (V) max{ﬁ" i Denote U =
Vo
diaglily, fly, . . . , fip]- ’
When Dy, # 0, a nonlinear algebraic loop is imposed by the
second equation in (1) as

¥ = Gx + Dygdz(y) + Dy, w. (2)

This algebraic loop is said to be well-posed if y is uniquely
determined from x and w from this equation. A necessary and
sufficient condition for the well-posedness is given in [1]. A
sufficient condition, which may be more convenient for deriving
matrix conditions in some cases, is that there exists a diagonal
matrix X > 0 satisfying 2X — DyeX — XDJT,q > 0 (see, e.g., [7,11]).

This general system description has been used to study anti-
windup systems in [2,5,13,7]. Many linear systems with satura-
tion/deadzone components can be transformed into (1) through a
loop transformation. In most literature, various assumptions are
made on the general configuration (1), such as, the absence of the
algebraic loop (Dy; = 0) and the disturbance not entering the al-
gebraic loop (Dy,, = 0). These assumptions simplify the analysis
and design of the system but can be restrictive under certain sit-
uations. For example, it was shown in some works, such as [7,1],
that the algebraic loop can be purposely introduced into the anti-
windup configuration to reduce the global £, gain. We will further
address this point in Section 5.

2.2. Some sector-like conditions for the deadzone and algebraic-loop

In this section, we review two sector conditions that have been
used/derived by previous papers (e.g., [20,5]), and introduce three
sector-like conditions that will be useful in this paper.

Fact 1. For every diagonal matrix A € R, A > 0, dz(-) satisfies

dz(v)"A{v — dz(v)} > 0, Vv eR. (3)
The above inequality is referred to as the global sector condition
for the deadzone function, or, simply, dz(-) € [0, I]. This
global sector condition might be conservative for examining the
performance over a local region. The following regional sector
condition was used in earlier papers, e.g., [20,5].

Fact 2. Givenr € R"suchthat —u; <r1; <u;, ,VYi=1,...,m,the
following inequality holds for any diagonal matrix A € R™™ A > 0:
dz(v)"A{v — dz(v) —r} =0, Vv eR™ (4)

Next we introduce several sector-like conditions that describe
the properties of the algebraic-loop with deadzone. As mentioned
in[1],if the algebraicloopy = C,x+Dyqdz(y)+D,,, w is well-posed,
then y is a piecewise linear function of x and w. This piecewise
linear function can be very involved for m > 2 and may not be
usable in the presence of w. Instead of solving the algebraic loop,
we examine some properties that will be useful for the analysis.

Since the algebraic loop allows for possibly unknown exoge-
nous inputs, we introduce an estimate of the solution of the alge-
braic loop through the equation u = C,x + Dyqdz(u) and examines
the relationship between u and y.
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Fact 3. According to the non-decreasing properties of saturation and

deadzone functions, the following inequality holds for every diagonal

matrix A € R™™ A > 0:

{dz(vq) — dz(vy)}T A{sat(vy) — sat(vy)} > 0, Vvq, v, € R™. (5)
Substituting vq, v, with u and y, respectively, and using

sat(u) = u — dz(u), we obtain

{dz(u) — dz(y)} A{(Dyq — dz(u) + (I — Dyy)dz(y)
+Dy,w} >0 (6)

for all u, y satisfying the respective algebraic-loop.

The last conditions are derived to describe the properties of
the time derivatives of u and dz(u), wherever they exist. For
convenience, denote 1 = du/dt and ¢(x, w) = d(dz(u))/dt. It
is easy to see that

_ 0, ifjul < uj,
¢i(x, w) - {ai’ 1f|ul| > ﬂi- (7)

Note that ¢;(x, w) may not exist where u; = =+u;. Consequently,
we have

Fact 4. For every diagonal matrix A € R™ ™, the following equalities
hold almost everywhere:

x, w) Al — p(x, w)} = 0, (8)
dzw)TA{t — ¢(x, w)} =0, (9)

where, by definition of u, ¢(x, w) and (1), it = CG,Ax + CyB,dz(y) +
GByw + Dygp(x, w).

2.3. Piecewise quadratic Lyapunov functions

Define £(x) = [x dz(u(x))T]T. Consider a novel Lyapunov
function candidate as follows:

V(x) = §(X)'PEX) (10)

where P = PT > 0. It is clear that V is positive definite and
radially unbounded. If the algebraic loop u = Dy,dz(u) + v is
well-posed, then the solution u is a piecewise affine function of
v (see [1], Remark 1 for details). Hence V is piecewise quadratic
in x and is differentiable almost everywhere. The idea of defining
the Lyapunov function as a quadratic function involving the
(nonlinear) vector & is new and the resulting Lyapunov function
directly inherits in an implicit way, the piecewise affine structure
of the nonlinearity acting on the system with saturation/deadzone.
This nonlinearity is the solution of the algebraic loop in Eq. (2).
As compared to the piecewise quadratic function in [1], which is
the pointwise maximum of several quadratics, the function in this
paper utilizes the structure of the nonlinear algebraic loop. Instead
of relying on the explicit solution to the algebraic loop, as done
in [13], we will use the sector-like conditions to derive matrix
conditions for stability and performances.

The Lyapunov function in (10) is inspired by the Lure-Postnikov
type Lyapunov function in [6,4], where the Lure-Postnikov type
Lyapunov function is defined as

Vix) = XTQX +2 Z /m dz(o)W;do (11)
i=1 70

where Q = QT > 0, W > 0is a diagonal matrix and = Kx is a
certain control input. In this paper, instead of choosing n explicitly
as n = Kx (as in [6,4]), we allow it to be dependant on x in a more
complicated way, in particular, we let n = u, where u satisfies
u = Gyx + Dygdz(u).

In what follows, we establish a connection between the function
V, in (11) and the function V in (10) and see how V] is generalized
to V. First we observe that

Z/Ui dz(o)do = dz(u;)?. (12)
0

The above equality can be easily checked by considering two cases
(Assume u; > 0 for simplicity): u; < u; and u; > u;, where u; is the
saturation level for the ith component of sat(-). In the first case,
clearly both sides are zero. In the second case, the integral should
be 2 fﬁ’:(a —ip)do = (u; — ;) = dz(u)?.

By (12) and letting = u, we have Vi(x) = x'Qx +
dz(u)™Wdz(u), which is a special case of V when P is a block
diagonal matrix. In other words, V is generalized from V; by adding
cross terms in the form of X"Ndz(u) + dz(u)"NTx and allows W to
be non-diagonal. This clearly gives extra degree of freedom in the
resulting optimization problems and will lead to less conservative
results.

Before proceeding to analyzing the system with the piecewise
quadratic function V, we need to address one more concern. Here
we note that V| is differentiable everywhere but V is generally
not. In what follows, we will see that we only need to examine
the time derivative of V where it is differentiable, which is almost
everywhere in the state space.

Denote the time-derivative of V as V, wherever it exists.
Suppose V is differentiable at x, then V =< V), f(x, w) >,
where VV (x) is the gradient of V at x and f is the right-hand side
of the first equation in (1). Since V is piecewise quadratic, V is well-
defined for almost all x € R™. If V < «(x, w) for almost all x € R"
and all w € R', and « is continuous, then the time derivative of the
function t — V(x(t)), which is defined for almost all ¢, is upper
bounded by a(x(t), w(t)) for almost all t (see e.g., [9, p. 99-100]).

For a well-posed algebraic loop u = C,x 4 Dyqdz(u), the signal
u(x) can be represented as u(x) = (I — qu)“ny + b(x), where
b(x) = (I — Dyy)~'Dy, sat(u) is a globally bounded function,
i.e,, there exists & > 0 such that |b(x)| < 6 for all x. It can be
verified that there always exists some k > 0 such that |u| < k|x|.

Consider the following two cases: In the case |U_1ny|oo < 1,
the algebraic loop gives u = C — yz and |u| < |G||x|; and in

the case |ﬁfl(fyx|Oo > 1, Ju| < |(I — Dy)~'Gl|x| + 6]x| where

0= 9|U_1Cy|.Thus |dz(u)| < k|x| for some k > 0, and it follows
that aq|x| < |E(X)| < ay|x| for some a1, ap > 0. Therefore, there
exist 8; > 0and B, > 0 such that B;|x|> < V(x) < Bylx|>. If
there exists ¢ > 0 such that V < —eg|x|? for almost all x and for
w = 0then the origin is globally exponentially stable when w = 0,
i.e., there exists k > 0 and A > 0 such that, for all x(0) € R", the
solutions of (1) with w = 0 satisfy

|x(t)| < k|x(0)| exp(—At) Vt=>D0. (13)

If the bound V < —¢|x|2 only holds on a forward invariant set &
containing a neighborhood of the origin, then the origin is locally
exponentially stable and the bound (13) can be asserted for all
solutions starting in &. In such a situation, we will say that the
origin is locally exponentially stable from &.

3. Global analysis

To facilitate the presentation of the main results, we define a
list of matrices that will be used to form matrix inequalities as
conditions for stability and performances. These matrices will be
used for both global analysis in this section and regional analysis
in the next section.
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Denote I, as the identity matrix of dimension m, and O, as
the m x n zero matrix. For P € R"+™x®+m and diagonal matrices
A e R™Mi=1,...,5,denote

T . |A 0 O B; B,
v o= [In+m 0(n+m)><(2m+r)] P |:O 0 Iy 61 5:| ;

¥ = [Omx(n+2m) I Omxr]TAl
X [Cy 0 0 qu - Im Dyw] 5

¥, = [Omxn Iy 0m><(2m+r)]TA2[Cy qu_lm 0 0 0]§

- T

U; = [Omxn —In Omxm Im Omxr] Az (14)
x [0 I=Dy 0 Dyy—In Dyul;

- T

v, = [Omx(n+m) I 0m><(m+r)] Ayg
x [GA 0 Dy—In GB; GBy];

- T

l1/5 = [Omxn Im Omx(2m+r)] AS
X [CyA 0 qu - Im Cqu Cwa] )

- T

Vs == [Orx(n+3m) Ir] s

and

- 5 - -

U=w T G+ ). (15)

i=1

We see that the matrix ¥ is linear in P and A;'s. From the structure
of the matrices, we also see that &, ¥;,i = 1, 2, 3, 4, 5 and ¥ can
be partitioned into 5 by 5 blocks, where the row/column partition
is [n, m, m, m, r]. It should be noted that the second diagonal block
of W is (Ay + A3)(Dyq — In) + (Dyq — I)"(A, + Aj3). If this block
is negative definite for certain A,, A3 > 0, then the algebraic-loop
is well-posed.

Theorem 1. Consider the system (1).

1. (Exponential stability) If there exist a matrix P ¢ R™mx*+m)

P = P" > 0 and diagonal matrices A; € R™™, i =1,...,5,
Ai=(1,2,3) > 0, satisfying the LMI,
!
[In+3m 0(n+3m)><r] v |:0 mt3m ] <0, (16)
rx(n+3m)

then for the Lyapunov function V(x) = &(x)TP£(x), there exists
& > 0such that V. < —g|x|? for almost all x € R" and w = O.
Thus, the origin of the system (1) is globally exponentially stable.

2. (Reachable region) If there exist a matrix P € RO+mx@+m p —
PT > 0 and diagonal matrices A; € R™™, i = 1,...,5,
Aj=(1,2,3y > 0satisfying the LMI,

U — YW <0 (17)

then V < w"w for almost all x € R" and all w € R". If x(0) = 0
and ||wl|, < s, then &£(x(t)) € &(P/s®) forallt > 0.
3. (Global £, gain) If there exist a matrix P € ROT™x@+m p —

PT > 0 and diagonal matrices A; € R™™, i = 1,...,5,
Ai={1,2,3y > 0satisfying the LMI,
& — By 3] x

<0 18

[[CZ 0 0 Dy D] —yl (18)

then V + %ZTZ < yw'w for almost all x € R" and all w € R".
If x(0) = 0, then ||z, < y||lwll2, i.e., the global £, gain of (1) is
bounded by y.

Proof. First, for each problem, the well-posedness of the algebraic
is guaranteed since the second diagonal block in the matrix ¥ is
negative definite. Let { = [x" dz(w)' ¢(x, w)" dz(y)' w]T.

Recall that ¢(x, w) is defined as the time derivative of dz(u).
Thus,

: X A 0 0 B; B,
s:Lﬁ(x,w)]:[o 01 0 o]é“- (19)

For x such that the time-derivative of dz(u) exists, we have
V(X)) =§'PE+ETPE = TWe +¢TUTE (20)
where ¥ is defined in (14).

Next, we interpret the sector or sector-like conditions in
Facts 1-4 with the following inequalities:

JTW+ehHhe =0, i=1,...,5 (21)

where A;—; 33 > 0. This is explained as follows. By substituting
v with y (or u) in (3), and A with Ay (or A,), we obtain the
inequalities for i = 1 (ori = 2). Similarly, (21) withi = 3 is
obtained by substituting v; and v, with u and y, and A with A;
(see (6)). The inequalities for i = 4, 5 can be obtained by replacing
Ain(8)and (9) with A4 and As respectively.

1. To examine the exponential stability, we set w = 0. The
inequality (16) implies that for all £ # 0, w = 0,

5
;T(w+wT+Z(lI/,-+if,-T)>;<o.

i=1

It follows from (20) and (21) that V(x) < 0 for almost all x # 0.
Thus exponential stability is guaranteed. .

2. To examine the reachable region, we note that V — w'w =
T + T — W), Following the same procedure as for
exponential stability, the LMI in (17) implies that vV < w'w for
almost all x, w. Integrating both sides with V(0) = 0, we have
V() < |lw|3 < s?forallt > 0,ie, &(x(t)) € &(P/s*) for
allt > 0.

3. For the global .£, gain, we note that

. 1 R
v+ ;sz —yw'w ='W+ ¥ — y WY )¢

e o o by D:]'[C 0 0 Dy Dl e

4

By Schur complement and using (21), the LMl in (18) ensures that
V+ %sz — ywTw < 0 for almost all x, w. Integrating both sides,

we obtain ||z||; < y||w]|l2 under initial conditionx(0) = 0. ©

4. Regional analysis

For systems that are not globally exponentially stable, we need
to perform regional analysis to evaluate the domain of attraction
or a set of initial conditions that would not be driven unbounded
by the disturbance. Even for a globally stable system, regional
analysis can be used to reduce the conservatism when the system
operates within a bounded region, or the energy of the disturbance
is bounded by a certain value. Furthermore, we would like to
examine the nonlinear relationship between the output energy and
the input energy. This will be studied under the term “Nonlinear
£, gain”.

When a system operates in a bounded region, in particular,
when £(x) is bounded, we can find a matrix H such that
|U_1H$(x)|Oc < 1|. Let r = HEX). Then |r;] < u; and we
can use this r in the regional sector condition (4). Because there
are infinitely many H satisfying the condition, we can take it as
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an additional variable for optimization, so that the conservatism
is reduced to the maximal extent. For a given matrix H, define
L(H) = { € R™™ U HE®W)|oo < 1},

The main idea in regional analysis is to ensure an invariant set,
possibly in the presence of disturbance, such as &(P/s?) = {£ €
RYM é(x)Ts%{-‘(x) < 1}, so that £(x(t)) € &(P/s®) for all
t > 0. Then use a matrix H satisfying the set inclusion condition
&(P/s?*) C £(H). Under these conditions, we can incorporate
the term r = HE&(x) into (4) to reduce the conservatism.
Since all these conditions (set invariance, set inclusion, and the
sector condition) are related, they will be imposed together. As a
result, an optimization problem can be formulated to reduce the
conservatism with P, H and other matrices as joint optimizing
variables.

In what follows, we interpret the condition &(P/s?) C £(H)
with matrix inequalities.

Lemma 1 (See, e.g, [5]). Let s > 0. For Hy, H, € R™ ™ gnd
P e RHmx(+m) “e(p /52y C £(Hy) N L£(Hy) if and only if

52 /2

up/s* Hy =

[ / P}Zo, vi=1,2,...,m (22a)

=2 /.2

[uz/s Hzl]zo, Vi=1,2,....m (22b)
* P

where Hy;, Hy are the I-th row of Hy, H,, respectively.

To facilitate the presentation of Theorem 2, for Hi, H,
e R™M+M AL A, € R™™ we denote

21 = [Onxusam Inm Omxr] Ai[Hi 0 0 0 0];

25 = [Omsn Im Omxemin] 42[H2 0 0 0 0],
Q=021+ 2.

These matrices will be used to impose the regional sector condition

(4).

Theorem 2. Consider system (1).

1. (Exponential stability) If there exist matrices P € RM®Tmx*+m)
P = PT > 0, Hy,H, € R™®M satisfying (22) withs = 1,
and diagonal matrices A; € R™™, i=1,...,5, Aiz12,33 > 0
satisfying

= o o I
[ln+3m 0(n+3m)><r] (l[/ -2 - QT) |:0r><n(+n3+n;m)

} <0, (23)

then for V(x) = &(x)"P&(x), there exists ¢ > 0 such that V <
—e&|x|? for almost all £ (x) € &(P)\{0} and w = 0. Thus, the origin
of the system (1) is locally exponentially stable. If £ (x(0)) € &(P),
then £(x(t)) € &(P) forallt > 0 and lim;_, » x(t) = 0.

2. (Reachable region) Let s > 0. If there exist matrices P €
ROFmxmtm) “p — pT > 0, Hy, H, € R™ @M satisfying (22),

and diagonal matrices A; € R™™, i=1,...,5, Ai=z1,23y > 0
satisfying
-2 -2" -y <0 (24)

then V- < ww for almost all £(x) € €(P/s?) and all w € R". If
£(x(0)) = 0and ||wl|; < s, then &(x(t)) € &(P/s?) forallt > 0.
3. (Regional £, gain) Let s > 0. If there exist matrices P €
RO+mx@+m) - p — pT > 0, H; and H, satisfying (22), diagonal
matrices A; € R™™, i=1,...,5, Ai(1,2,3 > 0satisfying
-2 Q" -yl
[[cz 0 0 Dy D] —yi] =° (25)
then V + %sz < ywTw for almost all £(x) € &(P/s?) and all
w € RVIf £(x(0)) = 0and [wl; < s, then |z]}y < y[lw]2.

Proof. From Lemma 1, if the LMI (22)is satisfied, then forall £ (x) €
E(P/s?), E(x) € L(Hy) N L(Hy). Letr = Hi£(x), then |r;] < ©;
for each i. The sector condition (4) with A = Ay and v = u can
be written as ¢T[¥; — £2¢]¢ > 0. Similarly, let r = H,&(x), and
apply the sector condition (4) with A = A; and v = y, we have
"W, — 2,1¢ > 0.

The rest part of the proof is similar to that for Theorem 1 by
replacing ¥, ¥, with ¥; — £, and ¥, — £2,, respectively. Here
we note that the regional sector condition is satisfied for all t > 0
under respective condition for each problem. This is because that
the matrix inequalities ensure that £ (x(t)) € &(P/s?) forallt > 0.

©)

Remark 1. When s — oo, the LMI (22) enforces H, H, — 0,
and the results in (23)-(25) will converge to the global results in
Theorem 1.

Remark 2. In Theorem 2, the inequalities (23)-(25) are not convex
due to the bilinear terms A;H;, A,H, in £2. Each of them cannot be
combined into one matrix variable because the constraint (22) also
involves Hy, H,.

From Theorem 2, different optimization problems can be
formulated to maximize the estimation of the domain of attraction,
to minimize the reachable region, or to minimize a bound on the
regional £, gain. Combining the bound on the regional .£; gain for
all s > 0, where s is the bound on the input energy, we can obtain
a curve as the bound for the nonlinear £, gain. Here we would
like focus our discussion on the nonlinear £, gain since the other
problems are similar or relatively simpler.

The nonlinear (or regional) £, gain has also been addressed in
our earlier papers [5,1]. In [5], the problem is to design an anti-
windup compensator so that the regional £, gain is minimized
for a given s > 0. Since the quadratic Lyapunov function is used,
the optimization problem turns out to be convex. The paper [1]
uses quadratic functions and two types of nonquadratic Lyapunov
functions to estimate the regional £, gain. When nonquadratic
Lyapunov functions are used, the optimization problems involve
some bilinear matrix inequalities.

There are different algorithms to deal with optimization
problems with BMI constraints, such as direct iteration, the path-
following method and a combination of these as used in [1]. For
the optimization problem in this paper, the direct iteration method
works very well. The detailed procedure is given next.

Procedure 1. We choose a sequence ofs; < s, < ---
where N is some positive integer.

< SN—1 < SN

Step 1. Initial step. Selecti = 1 and s = s;. An initial value of
the optimizing parameters can be inherited from the optimal
solution obtained with quadratic functions (see the convex
results from the regional analysis in [1]). For example, we let
H{ = H, = [H, 0] where H, is the optimal solution from the
quadratic approach in [1]). Go to step 2.

Step 2. Optimization with fixed Hy, H,. With s = s; and fixed
H1, H, from the previous step, we minimize y under constraints
(22) and (25), which are LMIs in P and A;’s.

Step 3. Optimization with fixed A1, A,. With s = s; and
fixed A7, A, from the previous step, we minimize y under
constraints (22) and (25), which are LMIs in P, H{, H, and
A;, i = 3, 4, 5. If the difference between y obtained in this step
and that from the previous iteration is greater than the desired
accuracy, return to step 2. Otherwise go to step 4.

Step 4. Initial estimation for s;11.1fi = N, then finish. Otherwise
seti = i+ 1and select the optimal values of H, H, from step 3
and go to step 2.
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Fig. 1. Different estimates of the nonlinear £, gain for Example 1.
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Fig. 2. Different estimates of the nonlinear £ gain for Example 2.

Although there is no guarantee that a global optimal solution
will be obtained, the algorithm in Procedure 1 has shown to work
well in many example studies. Perhaps one important property
of the algorithm is that since the initial value of the optimizing
parameters can be inherited from the optimal solution obtained
with quadratic functions, the algorithm ensures that the results are
at least as good as those from using quadratic functions in [1].

5. Examples

Example 1. Consider the cart-spring-pendulum system used in[2].

In [2], the synthesis leads to a dynamic anti-windup compensator
based on an unconstrained LQG controller, which generates desir-
able responses under a certain saturation condition. We adopted
the parameters of the closed-loop system from [2] for the follow-
ing analysis.

When quadratic Lyapunov function is used, the estimated
global £, gain is 431.01. If Lure-type Lyapunov function in (11) is
used, the global £, gain is found to be 203.24. When the piecewise
quadratic function in (10) is used to solve the optimization problem
based on Theorem 1, the global £, gain is 181.142. The bounds
for the nonlinear £, gain are plotted in Fig. 1, where the dashed
curve is from applying quadratics, the dash-dotted is from applying
Lure-type Lyapunov function, and the solid one is from this paper’s
piecewise quadratic function.

Example 2. This example is adopted from Example 1 in [1]. The
system parameters can be found in [1]. We use the result in
Theorem 2 to estimate the nonlinear .£; gain. The bounds on the
nonlinear £, gain are plotted in Fig. 2, where the dashed curve
is from applying quadratics and the solid one is from this paper’s
piecewise quadratics. Each of the two curves tends to a constant
value as ||w||, goes to infinity. This constant value is an estimate

10' 10
fiwil,

Fig. 3. Different estimates of the nonlinear £, gain.

of the global £, gain, which coincides with the value as shown in
Table 1.

In this table, we present several scenarios through adjustments
of the algebraic loop parameter Dy, and compare the estimates of
global £, gains obtained from Theorem 1 with those obtained from
other methods in the literature. Note that the convex hull quadratic
function and the max quadratic functionin [ 1] are composed of two
quadratic functions. Moreover, the quadratic estimates in Table 1
are computed by using two different differential inclusions in [1]:
PDI and NDI, respectively. For the readers’ convenience, we report
the explicit functions from [1] at the bottom of Table 1. From the
comparison, we observe that the piecewise quadratic Lyapunov
approach in Theorem 1 always gives a better estimate than other
approaches. Even in the case that quadratic Lyapunov approach
and Lure-type Lyapunov approach cannot give a finite estimate of

the global £, gain, our approach gives a satisfactory finite estimate.

If we change D, to D,, = [:g :431 ,
quadratic Lyapunov approach in this paper and all other Lyapunov
approaches mentioned in the table cannot give a finite global £,
gain (or, global exponential stability is not confirmed). Fig. 3 shows
the estimated nonlinear £, gain, where the solid curve is from
applying the piecewise quadratic Lyapunov approach based on
Theorem 2, and the dash-dotted one is from quadratic functions.
Both curves diverge to infinity as the bound s on ||w]|, goes to
infinity. Nevertheless, we observe that the solid curve diverges at
a much slower rate than the dash-dotted one, and for large enough
value of ||w]|,, the piecewise Lyapunov approach still gives finite
estimates of .£, gain while the quadratic ones cannot.

The above example also shows how the stability and perfor-
mance results by the same method can be affected by the param-
eter Dy, which describes the algebraic loop. This is also discussed
in [7,1]. From the different situations illustrated by the different
£, gains, it is clear that the piecewise quadratic approach never
does worse than the quadratic ones (such as [2,5,1]) and the Lure-
type Lyapunov approach. In some cases, the £, gain obtained from
the piecewise Lyapunov approach is smaller than that obtained
from the quadratic and non-quadratic approaches in [1]. These
two numerical examples show the great potential of the piecewise
quadratic Lyapunov approach in the analysis and synthesis of sat-
urated systems.

the piecewise

6. Conclusions

In this paper, a Lyapunov approach based on piecewise
quadratic functions is developed to analyze the global and
regional stability and performances for a general linear system
with saturation or deadzone functions. This analysis relies on
an effective treatment of the algebraic loop with exogenous
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Table 1
Global £, gain estimates for different Lyapunov functions.

Lyapunov function Dy = [:; :‘11]

EE

Piecewise quadratic in (10) 15.13
Convex hull quadratic?® in [1] 17.06
Max quadratic® in [1] 17.37
Quadratic® via PDI in [1] 38.96
Lure-Postnikov type in (11) 46.96
Quadratic® via NDI in [2,1] 46.96

17.19 25.86

19.33 31.67

20.78 42.34
170.15 0
o0 ]
00 0

2 Corresponds to Ve (x) == MiNgy,4yy=1.p;,>0) X' (¥1Q1 + ¥2Q2) 7'x, with Qo = Q], > 0.

> Corresponds to Ving (x) := max{x"P1x, x'P,x}, with P ; = P, > 0.
¢ Corresponds to Vg (x) = x"Px, with P = PT > 0.

inputs. Applying some existing sector conditions and some newly
derived sector-like conditions, we obtain global conditions for
stability and performance in the form of LMIs. Corresponding
regional conditions are converted into BMIs. Numerical experience
shows that the BMI conditions can be effectively solved with an
iterative algorithm provided in Procedure 1. The great potential
of the proposed piecewise quadratic Lyapunov function has been
revealed by numerical examples.
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Control of saturated linear plants via output
feedback containing an internal deadzone loop

Dan Dai, Tingshu Hu, Andrew R. Teel and Luca Zaccarian

Abstract—In this paper we address a LMI-based optimiza-
tion method for designing output feedback control laws to
achieve regional performance and stability of linear control
systems with input saturation. Algorithms are developed for
minimizing the upper bound on the regional £, gain for
exogenous inputs with £> norm bounded by a given value, and
for minimizing this upper bound with a guaranteed reachable
set or domain of attraction. Based on the structure of the
optimization problems, using the projection lemma, the output
feedback controller synthesis is cast as a convex optimization
over linear matrix inequalities. The problems are studied in a
general setting where the only requirement on the linear plant
is detectability and stabilizability.

keywords: output feedback control, input saturation, Lo
gain, reachable set, domain of attraction, LMIs

I. INTRODUCTION

The behavior of linear, time-invariant (LTI) systems sub-
ject to actuator saturation has been extensively studied over
the past several decades. More recently, some systematic
design procedures based on rigorous theoretical analysis
have been proposed through various framework. Most of
the research efforts geared toward the constructive linear or
nonlinear control for saturated plants can be divided into two
main strands.

In the first one, called anti-windup design, a pre-designed
controller is given, so that its closed-loop with the plant with-
out input saturation is well behaved (at least asymptotically
stable but possibly inducing desirable unconstrained closed-
loop performance). Given the predesigned controller, anti-
windup design addresses the controller augmentation prob-
lem aimed at maintaining the predesigned controller behavior
before saturation and introducing suitable modifications after
saturation so that global (or regional) asymptotic stability
is guaranteed (local asymptotic stability already holds by
the properties of the saturation nonlinearity). Anti-windup
research has been largely discussed and many constructive
design algorithms have been formally proved to induce
suitable stability and performance properties. Many of these
constructive approaches (see, e.g., [4], [5], [8], [9], [10], [11],
[12], [19], [23], [30]) rely on convex optimization techniques
and provide Linear Matrix Inequalities (LMIs) [2] for the
anti-windup compensator design.

The second research strand, can be called “direct design”,
to resemble the fact that saturation is directly accounted for in
the controller design and that no specification or constraint is
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imposed on the behavior of the closed-loop for small signals.
Direct designs for saturated systems range from the well-
known Model Predictive Control (MPC) techniques [20],
especially suitable for discrete-time systems) to sophisticated
nonlinear control laws which are able to guarantee global
asymptotic stability for all linear saturated and globally
stabilizable plants (see, e.g., the scheduled Riccati approach
in [21] and the nested saturations of [25], [27]). Several LMI-
based methods for direct controller design for linear plants
with input saturation have also been proposed (see, e.g., [6],
[18], [22], [24]). It is not our scope to mention here all the
extensive literature on direct design for saturated systems, but
it is worth mentioning that several constructive methods are
available that differ in simplicity, effectiveness and formality.

Compared to anti-windup control, direct design is a sim-
pler task to accomplish, because there’s no constraint on the
closed-loop behavior for small signals, therefore, the designer
has full freedom in the selection of the controller dynamics.
Anti-windup design, on the other hand, allows to guarantee
that a certain prescribed unconstrained performance is met
by the closed-loop as long as the saturation limits are not
exceeded (this performance often consists in some linear
performance measure when a linear plant+controller pair is
under consideration) and that this performance is gradually
deteriorated as signals grow larger and larger outside the
saturation limits.

In this paper, we will propose a synthesis method for the
construction of output feedback controllers with an internal
deadzone loop. This type of structure corresponds to the
typical framework used since the 1980’s for the design of
control systems for saturated plants. See for example the
work in [28], [3], [29], [13], [26], [6] and other references
in [1]. In our approach we will use the same tools used in our
recent papers [17] for static anti-windup design, and we will
recast the underlying optimization problem for the selection
of all the controller matrices (whereas in [17] only the static
anti-windup gain was selected and the underlying linear
controller matrices were fixed). This approach parallels the
approach proposed in [22] where classical sector conditions
were used and extra assumptions on the direct input-output
link of the plant were enforced. A similar assumption was
also made in the recent paper [7] which uses similar tools to
ours to address both magnitude and rate saturation problems
in a compensation scheme with lesser degrees of freedom
than ours. Here we use the regional analysis tool adopted in
[17], and we extend the general output feedback synthesis
to characterize the regional £, gain and reachable set for
a class of norm bounded disturbance inputs, as well as the
estimate of domain of attraction. The overall synthesis is cast
as an optimization over LMIs, and under a detectability and
stabilizability condition on the plant, the proposed design
procedure will always lead to regionally stabilizing con-
trollers if the plant is exponentially unstable, to semi-global
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results if the plant is non-exponentially unstable, and to
global results if the plant is already exponentially stable. An
interesting advantage of the approach proposed here is that
due to the type of transformation that we use, it is possible
to derive system theoretic interpretation of the feasibility
conditions for the controller design (such as stabilizability
and detectability of the pant). This result is novel and was
not previously observed in [22].

The paper is organized as follows: In Section II we
formulate three problems that will be addressed in the paper;
in Section III we state the LMI-based main conditions for
output feedback controller synthesis and the procedure for
the controller construction; in Section IV we give the feasible
solutions for the problems we presented in Section II; in
Section V we illustrate the proposed constructions on a
simulation example.

Notation For compact presentation of matrices, given a
square matrix X we denote HeX := X + X7, For P =
PT >0, we denote £(P) := {z: TPz <1}

II. PROBLEM STATEMENT

Consider a linear saturated plant,

&p = Apxp + Bpusat(ye) + Bpww
P y = Cpyxp + Dp yusat(ye) + Dp yww (1
z=Cp Ty + Dp sysat(ye) + Dp W
where z, € R™» is the plant state, y. € R"* is the control
input subject to saturation, w € R™» is the exogenous input
(possibly containing disturbance, reference and measurement
noise), y € R™ is the measurement output and z € R"= is
the performance output.
The goal of this paper is the synthesis of a plant-order
linear output feedback controller with internal deadzone
loops:

c Te = Acxce+ ch + Eldz(yc) )
Ye = Ceoze + Dcy + E2dz(yc)7

where z. € R"¢ (with n. = n,) is the controller state,
Yo € R™ is the controller output and dz(-) : R™» — R is
the deadzone function defined as dz(y.) := y. — sat(y.) for
all y. € R™ with sat(-) : R™ — R™ being the symmetric
saturation function having saturation levels %, ..., @, with
its 4-th component satg,(-) depending on the i-th input
component y.; as follows:

Us, if Yo > uy,
satg, (Yei) = $ Yeis if — 4 < yei < Uy, (3)

The resulting nonlinear closed-loop (1), (2), is depicted in
Figure 1.

The same output feedback controller structure was con-
sidered in [22], where convex synthesis methods for global
(rather than regional, as we consider here) stability and
performance were developed. In [22], it was assumed for
simplicity that D, 4, = 0 (we will remove this assumption
here).

It is well known that linear saturated plants are character-
ized by weak stabilizability conditions. In particular, since
by linearity the controller authority becomes almost zero
for arbitrarily large signals, then global asymptotic stability
can only be guaranteed for plants that are not exponentially
unstable, while global exponential stability can only be
guaranteed if the plant is already exponentially stable. Due to
this fact, global results are never achievable (not even with a

,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1. The linear output feedback control system with deadzone loops.

nonlinear controller) when wanting to exponentially stabilize
plants that are not already exponentially stable. On the
other hand, local and regional results are always achievable
and semiglobal ones are achievable with non-exponentially
unstable plants. The following three regional properties are
then relevant for the controller design addressed here:

Property 1: Given a set S, C R"», the plant (1) is Sp-
regionally exponentially stabilized by controller (2) if the
origin of the closed-loop system (1), (2) is exponentially
stable with domain of attraction including S, x S, (where
S. C R" is a suitable set including the origin).

Property 2: Given a set R, C R" and a number s > 0,
controller (2) guarantees (s, R,)-reachability for the plant
(1) if the response (z,(t),z.(t)), t > 0 of the closed-
loop system (1), (2) starting from the equilibrium point
(z,(0),2.(0)) = (0,0) and with ||w||2 < s, satisfies x,(t) €
R, forall t > 0.

Property 3: Given two numbers s,y > 0, controller (2)
guarantees (s,~y)-regional finite £o gain for the plant (1)
if the performance output response z(t), t > 0 of the
closed-loop system (1), (2) starting from the equilibrium
point (x,(0),z.(0)) = (0,0) and with ||w||2 < s, satisfies
1z]l2 < yllwl[2.

Based on the three properties introduced above, in this
paper we are interested in providing LMI-based design tools
for the synthesis of an output feedback controller of the form
(2) guaranteeing suitable stability, reachability and Lo gain
properties on the corresponding closed-loop. In particular,
we will address the following problems:

Problem 1: Consider the linear plant (1), a bound s on
|lw|l2, a desired reachability region R, and a bound v on
the desired regional L5 gain. Design a linear output feed-
back controller (2) guaranteeing (s, R,,) reachability, (s,~)-
regional finite £, gain and which maximizes the exponential
stability region S,, of the closed-loop (1), (2).

Problem 2: Consider the linear plant (1), a bound s on
lw|l2, a desired stability region S, and a bound < on the
desired regional Lo gain. Design a linear output feedback
controller (2) guaranteeing S, regional exponential stabil-
ity, (s,~y)-regional finite £5 gain and which minimizes the
(s,Rp) reachability region of the closed-loop (1), (2).

Problem 3: Consider the linear plant (1), a bound s on
lw|l2, a desired stability region S, and a desired reacha-
bility region R,. Design a linear output feedback controller
(2) guaranteeing S, regional exponential stability, (s,R;)
reachability and which minimizes the (s,~)-regional finite
Lo gain of the closed-loop (1), (2).

III. LMI-BASED DESIGN

In this section, a set of main feasibility conditions for
solving Problems 1 to 3 will be presented in addition to
giving a constructive procedure to design a state space
representation of the linear output feedback controller (2).
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A. Main feasibility theorem

The results that we will derive are based on the sector
description of the deadzone originally developed in [15],
[14]. The main idea of the description is as follows. For
a scalar saturation function saty(-), if |v| < @ then saty(u)
is between u and v for all v € R. Applying this description
to deal with the saturating actuator in Figure 1, we will have
satg, (y.;) between y.; and H;x as long as |H;x| < u;. Here
z is the combined state in Figure 1 and H; can be any row
vector of appropriate dimensions. It turns out that the choice
of H; can be incorporated into LMI optimization problems.
It should be noted that [6] and [9] exploit the same idea to
deal with saturations and deadzones. In this paper, y. and =
are related to each other in a more general way as mentioned
above, rather than y. = F'z, as in [6], [9].

The following theorem will be used in the following
sections to provide solutions to the problem statements given
in Section II.

Theorem 1: Consider the linear plant (1). If the following
LMI conditions in the unknowns Q11 = Q1T1 >0, P =
Pl >0, >0,Y, € RwX™, K € Rw*w, Ky €
R *"y K3 € R™ X" are feasible:

_ Alel + BPUYP 02 Bpw
He| Cp.Qui+DpouYy —55 Dy | <O (4a)
[ PiAp + KiCpy Pi1Bpy + Ki1Dy yu 0
He K5Cpy Ko Dpyw — 1/2 02 <0
sz + Kdey Dp,zw + KBDp,yw _’YTI
(4b)
Qu I
[ I Py | Y @
i >0 i=1,... 4d
[ Yy Qu |~ P e 4o

(where Y); denotes the 7th row of Y},), then there exists
an output feedback controller of the form (2) and of oder
n, which guarantees the following three properties for the
closed-loop:

1) (s,7) regional finite Lo gain;

2) S, regional exponential stability with S,

E((sQu1) 71

3) (s, R,) reachability region with R, = £((s*Q11)71).
Moreover, given any feasible solution to the LMI constraints
(4), a state-space representation of a controller guaranteeing
these properties can be determined based on the matrices
(@11, P11) by way of the Procedure 1 reported next.

Remark 1: Each of the LMI conditions in (4) has a system
theoretic interpretation:
1) The fist condition (4a) corresponds to a strengthened
stabilizability condition for the plant (1). Indeed, substituting
Y, = K,Q11, (4a) corresponds to the LMI formulation of
the bounded real lemma (see, e.g., [10]) characterizing the
Lo gain from w to z for the plant controlled by a state
feedback law u = K,x,. Therefore, (4a) constrains vy to
be not smaller than the Lo gain of the plant stabilized by
static state feedback. Note however that the corresponding
state feedback gain K, is further constrained by (4d), so
that the open-loop plant Lo gain may be only reduced to a
certain extent when larger values of s make the constraint
(4d) tighter. As s approaches +oo, Y, will approach 0 and
the constraint on -y enforced by (4a) will approach the global

constraint given by the L5 gain of the open-loop plant.

2) The second condition (4b) corresponds to a strengthened
detectability condition for the plant. Indeed, if we had Ky =
0 in the condition above, then the corresponding equation
would mean that (if we take L = P;;' K)) there exist L and
K3 such that the observer with unknown input

= AT+ Ly -9
= Cyl
= Cpadt = K3(y = 9),

K-

w2

for the system

= Ayr+ Bpyw

= Cypr+ Dpyuw
Cp:x + Dy
guarantees gain v from w to the output observation error
(z — Z). The fact above can be checked writing down the
error dynamics e = x — & and imposing that there exists a

disturbance attenuation Lyapunov function V = e” Pje. In
particular, the LMI (4b) corresponds to imposing that:

2¢T P11 (A, + LCyy)e 4 2¢T Pi1(By .y 4+ LDy yu)w

z =

1
+ —QZteTze —wlw <0,
Y
where 2z, = z — Z. o

B. Controller construction

We provide next a constructive algorithm for determining
the matrices of the linear controller whose existence is
established in Theorem 1.

Procedure 1: (Output feedback construction)

Step 1. Solve the feasibility LMIs. Find a solution
(Q11, P11, K1, K2, K3.Y,,~) to the feasibility LMIs
conditions (4).

Step 2. Construct the matrix Q. (see also [11], [16].)
Define the matrices Q11 € R™»*"» and Q15 € R"»*"e,
with n. = n,, as a solution of the following equation:

Q11 P11 Qi1 — Q11 = Q12 Q7. 5
Since ()17 and P;; are invertible and Ql_ll < P
by the feasibility conditions, Q11 P11 Q11 — @11 is
positive definite. Hence there always exists ' a matrix
Q12 satisfying equation (5). Define the matrix Q2 €

R™eXne as
Q2 =1+ Q1, Q1 Qua. (6)
Finally, define the matrix ) € R™*" (n = n, + n.) as
Qu Q12
= . 7
@ { Ql Qo M

Step 3. Controller synthesis LMI. Construct the matrices
U c Rﬁxﬁ’ H c R(nc+7zu)><ﬁ’ G e R(nc—i-nu—&-ny)xﬁ’
and T € R™"™ (0 = nyp + ne + ny + Ny + ny) as

follows:
ApQur ApQa2 —Bp U Bpw 0
0 0 0 0 0
v = _Yp -Y. -U 9 0
0 0 0 -5 0
2
Cp:Q11 Cp:Qr2 —Dp U Dpow —51

"Note that equation (5) always admits infi nite solutions, parametrizing
an infi nite compensators inducing the same performance on the plant.
Understanding how to exploit this degree of freedom for the selection of a
most desirable compensator is subject of future research.
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0 Bp. 17
1 0 0 I 0 0 0
H=|0 I G=|Cp 0 0 Dpyw 0
0 0 0 I 0 0
0 Dp,zu
T = diag{Q, I, 1,1}
where Y, € R"™*" js defined as Y, :=

Y,(Q11) " 'Q12. Then, we define the unknown variable
QU c R(etnu) X (netnutny) gq-
0, — A, B. E\U
V" | C. D. EU
Finally, solve the output feedback controller LMI:
M =He(V +VU,) = He(¥ + H'QuGT) <0 (9)
in the unknowns Qg, and U € R"™*™ U > 0
diagonal.
Step 4. Computation of the controller matrices. From

the matrices U and Qp in Step 3, compute the matrix
Q as

®)

0O L Ac Bc El
@ = {c D. EQ}
= Qpdiag(I,I,UY).

Finally, the controller parameters in €2 can be deter-
mined applying the following transformation:

[ A B. E
o= [CC D, EQ}
I
= Q| —-XDp,uCe X XD, u(l — E»)
0 0
where X := (I + D, D.)" . *

IV. FEASIBILITY OF THE SYNTHESIS PROBLEMS

In this section, the feasibility conditions established in
Theorem 1 will be used to provide conditions for the
solvability of Problems 1 to 3.

A. Feasibility of and solution to Problem 1

We first use the result of Theorem 1 to give a solution
to Problem 1. To this aim, we use the guaranteed Lo
performance and reachability region of items 1 and 3 of
Theorem 1 and maximize the size of the guaranteed stability
region by maximizing the size of the ellipsoid £((s2Q11)7!)
which, according to item 2 of Theorem 1 is an estimate
of the domain of attraction. We state the corollary below
for a generic measure ag(-) of the size of the ellipsoid
E((s*Q11)™Y). This is typically done with respect to some
shape reference of the desired stability region S,,.

Corollary 1: Given s, R, and v, a solution to Problem 1
is given (whenever feasible) by applying Procedure 1 to the
optimal solution of the following maximization problem:

sup aR(E((SQQH)*l)), subject to
Q11,P11,K1,K2,K3,Y,,7?
(4a), (4b), (4c), (4d), (10a)
£(Q/s*) C R, (10b)

The formulation in Corollary 1 can be easily particularized
to the problem of maximizing the volume of £(Qy'/s?)
by selecting in (10) as ar(E((s2Q11)71)) = det(s2Q11).
Alternative easier selections of ap can correspond to max-
imizing the size of a region which has a predefined shape.

For example, when focusing on ellipsoids, one can seek for
stability regions of the type

Sy =E(8,") ={ap : x) (aSp) a, < 13, (11)

where « is a positive scalar such that larger values of «
correspond to larger sets S,,. Then the optimization problem
(10) can be cast as

sup «, subject to
Q117P11,K1,K2,K37Yp7’727a
(4a), (4b), (4c), (4d), (100) (12a)
aS, < s*Q11. (12b)

Similarly, if one takes a polyhedral reference region: S, =
aco{xy, s, ..., oy, }, then constraint (12b) can be replaced
by xpiTQl_llxpi < as?, or equivalently

as? 2l .
e >0, =1,...,np. 13
{ Tpi Qu |~ ! " 13

We finally note that the constraint (10b) on the guaranteed
reachability region can be expressed by way of different
convex (possibly LMI) conditions depending on the shape
of the set R,. Guidelines in this direction are given in the
following section.

Remark 2: Based on Corollary 1, reduced LMI conditions
can be written to only maximize the estimate of the domain
of attraction without any constraint on the other performance
measures:

sup  ar(E((s°Qu1)7")), subject o (14)
Q11,P11,K1,Y)

He[ ApQu1+ BpuY, ] <0
He[ PllAp + chpy } <0
(4c), (4d)

From (14) it is straightforward to conclude that if the
plant is exponentially stable, then global exponential stability
and finite £, gain can be achieved by the proposed output
feedback controller (Y,, = 0 and K; = 0 are sufficient). If
the plant is not exponentially unstable, semiglobal results are
obtainable. > Regional results can always be obtained in the
general case and the size of the maximal feasible domain of
attraction depends on the particular problem. o

B. Feasibility of and solution to Problem 2

We now use the result of Theorem 1 to give a solution
to Problem 2 following similar steps as the ones in the
previous section. When focusing on reachable sets, smaller
estimates are desirable, so that there’s a guaranteed bound on
the size of the state when the system is disturbed by external
inputs. Since by Theorem 1 the reachability region estimate
coincides with the estimate of the domain of attraction,
the goal addressed in Problem 2 is in contrast with the
goal addressed in the previous section. The corresponding
equivalent to Corollary 1 is the following (where ag() is a
measure of the size of the ellipsoid £((s%2Q11)71)):

Corollary 2: Given s, S, and vy, a solution to Problem 2
is given (whenever feasible) by applying Procedure 1 to the
optimal solution to the following minimization problem:

ar(E((s*Q11)™ ), subject to

min
Q11,P11,K1,K2,K3,Y),,v?

(4a), (4D), (4c), (4d),

2The proof of this fact follows the same steps as the proof of [17,
Propositions 1 and 2].

(15a)
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S, C £((s*Q11)™Y) (15b)
Similar to the previous section, the volume of
the reachability set can be minimized by selecting

043(5((826211)_1)) = det(s2Q11) in (15).
Alternative easier selections of a.p correspond to focusing
on ellipsoids when choosing

Ry =E(aR)") ={zp: a] (aRp) 'ay (16)

where R, = Rg > 0, then the optimization problem (15)
becomes

<1},

min
Q11,P11,K1,K2,K3,Y, 72,
(4a), (4b), (4c), (4d), (15b) (17a)
s’°Q11 < aR, (17b)

Similarly, R, can be selected as the following unbounded
set:

«, subject to

Rp(a) ={zp : |Cxyp| < a},
where C € R is a given row vector. Then
E((s’Q11)™1) C Ry(w) if and only if CQ11CT < a?/s?.

If both (17a) and CQ1;CT < a?/s? are enforced to hold in
the LMI optimization, then it follows that |C'z,(t)| < « for
all t if ||wl||o < s. Therefore, if our objective is to minimize
the size of a particular output C'r,, we may formulate the
following optimization problem:

a?, subject to

min
Q11,P11,K1,K2,K3,Y, 72,02
(4a), (4d), (4c), (4d), (15b) (18a)
CQ1CT < a?/s?, (18b)

where the guaranteed £, gain is be incorporated in (4a) and
(4b) and the guaranteed stability set is incorporated in (15b).

Remark 3: 1If there is no interest for a guaranteed Lo gain,
then the problem to minimize the desirable reachable set R,
can be simplified to the feasibility of the LMIs in (4) and
(15b), by removing the second block row and the second
block column of the matrices in (4a) and the third block
ones in (4b). o

C. Feasibility of and solution to Problem 3

Similar to what has been done in the previous two sections
with reference to Problems 1 and 2, we use here Theorem 1
to give a solution to Problem 3.

Corollary 3: Given s, R, and Sp, a solution to Problem 3
is given (whenever feasible) by applying Procedure 1 to the
optimal solution to the following minimization problem:

min 42, subject to
Q11,P11,K1,K2,K3,Yp,7?
(4a), (4b), (4¢), (4d), (192)

S, CE((s*Q11)™ Y C R, (19b)

If we only focus on ellipsoidal reachability and stability

sets so that for two given matrices Sp = Sg > 0 and

R, = Rl > 08, := &(S,") and R}, := £(R,"), then

the optlmlzatlon problem (15) can be cast as the followmg
convex formulation:

min 42, subject to
Qu1,P11,K1,K2,K3,Yp,v?

(4a), (4b), (4c), (4d),
S, <s*Qu < R,

(20a)
(20b)

Alternative shapes for the guaranteed reachability set R,
and for the guaranteed stability region S, can be selected by
following the indications given in the previous two sections.

V. SIMULATION EXAMPLE

We consider the system used in [10], which has one control
input, one disturbance input, four states and one measure-

. . c 1T
ment output. The plant state is x, = [ p p 6 6 ] ,
where p is the horizontal displacement of the cart and 0 is
the angle of the pendulum. The plant parameters are given
in [10]. For each s > 0, the achievable L5 gain by a plant
order output feedback can be determined with the algorithm
based on Theorem 1. If choosing different s over (0, co), the
achievable performance can be obtained as a function of s.
The solid line in Figure 2 reports the achievable Lo
gain by a suitable plant order output feedback controller,
as a function of s. For comparison purposes, we report in
the same figure (dashed line) the Lo gain achievable by a
dynamic anti-windup compensation when using a specific
unconstrained controller (see [16] for details).

200

180

140

120

=100
80
60
401
20+
0= — — = 3 - - 5
10 10 10 10 10 10 10
[wll,
Fig. 2. Achievable nonlinear Lo gains. Proposed output feedback (thin

solid); Dynamic anti-windup (dashed)

In [10], when the cart-spring-pendulum system is subject
to the larger pendulum tap, which is modeled as a constant
force of 7.94.N with duration 0.01s, the closed-loop response
with an LQG controller exhibits undesirable oscillations if
the control input is constrained in the range of the D/A
converter: [-5, +5] Volts. In [10] a dynamic anti-windup
compensator is used to fpreserve the local LQG behavior and
improve the response after saturation. We compare that result
to our direct design. In particular, we use Procedure 1 to
construct an output feedback controller by fixing s = 0.14.
The corresponding optimal L, gain is v = 2.26 and the
controller matrices are

A. B. B ] _
(jc l)c 132 o

—215.1 5.7 1377 —6]3558.8 —3150 |—0.6334
—1781 —1154 —62.5 360.2 |—4123 —3202 | —48.76
—93.8 —53.9 —159.9 21.2|-1048 3788 | —4.44
—4914 —2441 —416.8 735.1| 1492 1290 | —131.6
—74.44 —38.27 —5.93 11.77] 120.6  3.75| —0.999

The thin solid curve in Fig 3 represents the response of
the closed-loop system with our output feedback controller to
the same disturbance that generates the undesirable response
arising from the saturated LQG controller (taken from [10]),
which is represented by the dashed curve in the same figure.
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Fig. 3. Simulated response to the large pendulum tap. Constrained response
with LQG controller (dashed); Response with the linear output feedback
controller (thin solid); Response with the LQG controller and dynamic anti-
windup (dash-dotted).

Moreover, for comparison purposes, the dash-dotted curve
represents the response when using the dynamic compensator
proposed in [10] on top of the LQG controller.

Note that the proposed controller guarantees more desir-
able large signal responses as compared to the anti-windup
closed-loop of [10], indeed our controller is not constrained
to satisfy the small signal specification as in the anti-windup
approach of [10]. On the other hand, it must be recognized
that synthesizing the controller by direct design reduces the
small signal performance (before saturation) of the overall
closed-loop, which can be imposed as an arbitrary linear
performance when using the anti-windup tools as in [10] (or
the more advanced techniques recently proposed in [17]).

VI. CONCLUSIONS

In this paper we proposed a synthesis method for the
construction of a linear output feedback controller with
an internal deadzone loop. By using the regional analysis
tools also employed in [16], an LMI-based method for
the controller synthesis is derived. Different optimization
goals have been considered to optimize the Lo performance
level, the domain of attraction or the reachability region of
the closed-loop. Each optimization goal corresponds to a
different optimization problem to be solved. A simulation
example shows the effectiveness of the proposed controller.
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