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Abstract

The paper deals with the stabilizability of linear plants whose parameters vary with time in a compact set. First, necessary
and sufficient conditions for the existence of a linear gain-scheduled stabilizing compensator are given. Next, it is shown that, if
these conditions are satisfied, any compensator transfer function depending on the plant parameters and internally stabilizing the
closed-loop control system when the plant parameters are constant, can be realized in such a way that the closed-loop asymptotic
stability is guaranteed under arbitrary parameter variations. To this purpose it is shown first that any transfer function that is stable
for all constant parameters values admits a realization that is stable under arbitrary parameter variations (LPV stability). Then,
the Youla–Kucera parametrization is exploited. Precisely, LPV stability can be ensured by taking an LPV stable realization of the
Youla–Kucera parameter. To find one such realization, a reasonably simple and general algorithm based on Lyapunov equations
and Cholesky’s factorization is provided. The result can profitably be used to achieve both pointwise optimality (or pole placement)
and LPV stability. Some potential applications in adaptivecontrol and online tuning are pointed out.

I. I NTRODUCTION

Linear parameter-varying (LPV) systems are a useful generalization of linear time-invariant (LTI) systems not only because
they provide the natural setting for the adaptive (gain-scheduling) control of linear plants whose parameters vary in time, but
also because many nonlinear plants can conveniently be embedded into a linear differential inclusion and, therefore, treated as
LPV systems (see, for instance, Sect. 4.3 in [8] and [24], [15]). In fact, recent surveys have pointed out the importance given
to the LPV framework in the modern control system literature[23], [19].

Nevertheless, the stability analysis of LPV systems is still a challenging subject since most of the classic tools used in the
LTI case are no longer valid. Lyapunov theory is a notable exception. In particular, it has been shown that the stability or
stabilizability of an LPV system is equivalent to the existence of a Lyapunov norm [18], [10], [9], [3], although not a quadratic
one, in general.

It is common practice in the control of LPV systems to determine a family of compensators each of which is suitable for
particular parameter values. However, the systematic stability analysis of this type of design solution is rather recent [25]. Since
the early 90s, many papers have dealt with gain-scheduling stabilization and performance of LPV systems [2], [1], [21],[12].
Most of them exploit quadratic Lyapunov functions, with some exceptions that consider parameter–dependent and polyhedral
Lyapunov functions [11], [4]. A technique based on pole assignment via state feedback has been considered in [22].

The first part of this paper relates the stabilizability of anLPV plant by means of a linear gain-scheduled compensator to
the existence of a polyhedral Lyapunov function. This result exploits a duality property and the separation principle presented
in [4], [6]. It generalizes significantly the results obtained in [4] for LPV systems, where the input and output matriceswere
assumed constant and the stabilizability conditions were only sufficient.

The second part of this paper is concerned with the fundamental problem of finding an LPV stabilizing controller realization
from a parametric compensator transfer function that ensures internal stability for every constant value of the plant parameters.
Indeed, as already suggested in [19], to guarantee stability under parameter variations, the parametric transfer function should
be properly realized but, to these authors’ knowledge, no general conditions have yet been provided concerning the existence
of such a realization. By adapting results from [13] and [6],it is shown that an LPV stabilizing compensator realizationof
any stabilizing parametric compensator transfer functionindeed exists. The main results of the paper are summarized next.

• Necessary and sufficient conditions for LPV stabilizability are provided in terms of bilinear equations that entail the
separation of state estimation and feedback (separation principle).

• It is shown that for any parametric proper rational transferfunction that is stable for any fixed value of the parameters
there exists a realization that is stable under parameter variations.

• This result is applied to the problem of determining a realization of a parametric compensator transfer function for a
parametric plant in such a way that closed–loop LPV stability is guaranteed. Moreover, resorting to the Youla–Kucera
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parametrization in its observer–based version [14], [27],[28], [20], it is proved that LPV stability can be achieved by
taking an LPV stable realization of the Youla–Kucera parameter, which provides a characterization of all LPV stabilizing
compensators.

• Several applications of the suggested technique, such as pointwise optimality with LPV stability, pole placement and
online tuning, are pointed out.

II. PROBLEM STATEMENT

Given a parametric proper rational transfer function

W (s, w) =
N(s, w)

d(s, w)
, w ∈ W , (1)

wherew is a parameter andW a compact set, the state–space representation

ż(t) = F (w) z(t) + G(w)ω(t),
ξ(t) = H(w) z(t) + K(w)ω(t),

(2)

or, more concisely,

Σ(w) =

[

F (w) G(w)
H(w) K(w)

]

, (3)

is a realization ofW (s, w) if

W (s, w) = H(w)[sI − F (w)]−1G(w) + K(w) , ∀w ∈ W . (4)

As long asw ∈ W is constant and (3) is minimal, the following two propertiesare equivalent: (i)d(s, w) is a Hurwitz
polynomial; (ii) the realization (3) is asymptotically stable. Instead, ifw varies in time, the condition thatd(s, w) is a Hurwitz
polynomial for any fixed value ofw is only necessary for (3) to be asymptotically stable. Therefore, the following definition
is opportune.

Definition 2.1: LPV stable realization. Assuming thatd(s, w) is a Hurwitz polynomial for all fixedw ∈ W , the realization
(3) of (1) is LPV stableif

ż(t) = F (w(t)) z(t) (5)

is asymptotically stable for any functionw(t) taking values inW .
As will be shown soon, finding an LPV stable realization, if any, of a transfer function with Hurwitz denominator is very

useful in parametric control design. Consider now a strictly–properLPV plantdescribed by

ẋ(t) = A(w)x(t) + B(w)u(t),
y(t) = C(w)x(t),

(6)

wherex(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, and w ∈ W , with A(·), B(·), C(·) continuous functions ofw andW compact.

Let (1) be the transfer function of a parametric compensatorensuring that theclosed–loopcontrol system for the plant (6) is
internally stable forany constant value ofw.

The following definition will be adopted throughout this paper.
Definition 2.2: LPV stabilizing controller realization. The realization (3) is anLPV stabilizingrealization of the parametric

compensator transfer function (1) if the closed–loop control system with the controller realized as in (3) is asymptotically stable
when the parameterw varies with time according to any arbitrary functionw(t) taking values in the compact setW .

Taking Definition 2.2 into account, the main problem to be solved can be stated as follows.
Problem 2.1:LPV synthesis. Given a plant (6) and a parametric compensator transfer function (1) ensuring internal closed-

loop stability for all constant values ofw ∈ W , find an LPV stabilizing controller realization (3).

A. Motivation

Problem 2.1 is motivated by the fact that the closed-loop LPVsystem may be unstable if the parametric compensator transfer
function is not realized properly. To show this, consider the simple fluid plant represented in Fig. 1. Its (stable) first-order
model is

ẏ(t) = −αy(t) + w(t)u(t), α > 0 (7)

where the state/outputy(t) = h(t) − h̄ is the deviation of the actual levelh(t) in the reservoir from the equilibrium level̄h,
the plant inputu(t) is the valve opening,p(t) is the (measured) pressure in the tank,h1(t) is the level of the fluid in the tank
andw(t) = ρ

√

p(t)/γ + h1(t), with γ denoting the fluid density and withρ constant. Assume that0 < w− ≤ w(t) ≤ w+,
∀t, and that the feedback controller transfer function is

− κ(w)

s + β
, β > 0, (8)
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Fig. 1. Simple fluid–flow plant.

with
κ(w) =

κ0

w
, κ0 > 0 , (9)

to compensate for pressure variations.
Whenw is constant, the feedback control system is internally stable with characteristic polynomial:

d(s) = s2 + (β + α)s + αβ + κ0. (10)

The controller (8) admits the two realizations:

Σ1(w) =

[

−β 1
−κ0/w 0

]

, Σ2(w) =

[

−β −κ0/w
1 0

]

, (11)

yielding, respectively, the closed–loop system matrices:

A1(w) =

[

−α −κ0

1 −β

]

, A2(w) =

[

−α w
−κ0/w −β

]

. (12)

Σ1(w) leads to an asymptotically stable feedback system independently of howw varies with time, whereasΣ2(w) may not.
Indeed, ifα and β are small enough andw varies over a sufficiently large range, the system may be unstable [16]. In [15]
this situation has been attributed to the existence of “hidden coupling terms”. Conditions ensuring that such terms do not exist
have been derived for the case in which the LPV system arises from the linearization of a nonlinear plant (see Theorem 10 in
[19]). It will be shown later that framing the design problemas an LPV gain-scheduling problem avoids this issue.

III. PRELIMINARY RESULTS

This section extends to LPV systems the results obtained in [6] and [13] for linear switching systems. To this purpose, some
stabilizability and quadratic stabilizability conditions will be derived. Either of the following assumptions will be made.

Assumption 1:There exist two positive–definite matricesP andQ, and two matricesU(w) andY (w) dependent on parameter
w such that

PA(w)T + A(w)P + B(w)U(w) + U(w)T B(w)T < 0 , (13)

A(w)T Q + QA(w) + Y (w)C(w) + CT (w)Y (w)T < 0 , (14)

whereA(w), B(w) andC(w) are defined by (6).
Assumption 1 is standard in quadratic stabilizability studies (see, e.g., [2]). WhenB and C are constant, conditions (13)

and (14) correspond to linear matrix inequalities (LMI’s).Unfortunately, quadratic stabilizability is restrictive; conditions that
remove conservatism will be given soon.
To state the second assumption, the following definition is needed.

Definition 3.1: A matrix M(w), continuous function ofw ∈ W , W compact, is of classH1 if there existsτ > 0 such that
‖I + τM(w)‖1 < 1 for all w ∈ W . Similarly, M(w) is of classH∞ if there existsτ > 0 such that‖I + τM(w)‖∞ < 1 for
all w ∈ W .

Remark 3.1:The conditionM ∈ H1, respectively,M ∈ H∞, is equivalent to the fact that the measureµ1, respectively,
µ∞, reported in [5] satisfies the constraintµ1(M) < 1, respectively,µ∞(M) < 1 (see Exercise 16, p. 147, in [5]), which
means that a systems with such anM as the state matrix is LPV stable.

Assumption 2:There exist a full row rankn×µ matrix X , a full column rankν ×n matrix R, as well as anm×µ matrix
U(w), a ν × p matrix L(w) and matricesP (w) ∈ H1 andQ(w) ∈ H∞ dependent onw such that

A(w)X + B(w)U(w) = XP (w) , (15)

RA(w) + L(w)C(w) = Q(w)R . (16)
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The importance of the previous assumptions is illustrated by the following theorem.

Theorem 3.1:The following two conditions are equivalent:

i) the inequalities (13) and (14) of Assumption 1 are satisfied;
ii) the LPV plant (6) isquadraticallystabilizable by means of a compensator of the form (3).

The following two conditions are also equivalent:

iii) the equations (15) and (16) of Assumption 2 are satisfied;
iv) the LPV plant (6) is stabilizable by means of a compensator of the form (3) and the closed–loop system admits a

polyhedralLyapunov function.

Proof: The equivalence of i) and ii) can be proven as in [2] to which the reader is referred. Note only that, if these
conditions are satisfied, the observer–based controller described by

d

dt
x̂(t) = [A(w) + L(w)C(w) + B(w)J(w)]x̂(t) − L(w)y(t), (17)

u(t) = J(w)x̂(t) + v(t), (18)

v(t) = 0, (19)

with J(w) = −BT (w)P andL(w) = −QCT (w), is a quadratically stabilizing compensator1.

To prove that iv) implies iii), assume that a stabilizing compensator exists. The related stable closed–loop system matrix is
[

A(w) + B(w)K(w)C(w) B(w)H(w)
G(w)C(w) F (w)

]

. (20)

Since the system stability implies the existence of a polyhedral Lyapunov function, the following equation holds for some
P (w) ∈ H1 (see [5] for details):

[

A(w) + B(w)K(w)C(w) B(w)H(w)
G(w)C(w) F (w)

] [

X
Z

]

=

[

X
Z

]

P (w) (21)

whose upper block row yields

A(w)X + B(w)K(w)C(w)X + B(w)H(w)Z = A(w)X + B(w)U(w) = XP (w), (22)

whereU(w) = K(w)C(w)X + H(w)Z, which proves (15). The necessity of (16) can be proven in a similar way by duality
[4].

To prove that iii) implies iv), assume that (15) and (16) are satisfied, and consider the compensator of orderν + µ − n
described by

ṙ(t) = Q(w)r(t) − L(w)y(t) + RB(w)u(t), (23)

x̂(t) = Mr(t), (24)

ż(t) = FSF (w)z(t) + GSF (w)x̂(t), (25)

u(t) = HSF (w)z(t) + KSF (w)x̂(t) + v(t), (26)

v(t) = 0, (27)

wherev will be used later1, matrix M is any left inverse ofR, i.e.,

MR = I, (28)

andFSF (w), GSF (w), HSF (w), KSF (w) can be computed from
[

KSF (w) HSF (w)
GSF (w) FSF (w)

]

=

[

U(w)
V (w)

] [

X
Z

]

−1

, (29)

whereZ is any complement ofX that makes the square matrix

[

X
Z

]

invertible and

V (w)
.
= ZP (w). (30)

Letting
s(t)

.
= R x(t) − r(t) (31)

1The reason for introducing the dummy signalv(t) = 0 will become clear later.
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and choosing[xT zT sT ]T as the state vector, after simple manipulations the following closed–loop matrix is obtained:




A(w) + B(w)KSF (w) B(w)HSF (w) −B(w)KSF (w)M
GSF (w) FSF (w) −GSF (w)M

0 0 Q(w)



 . (32)

The LPV system is stable if and only if the diagonal blocks of the block–triangular state matrix (32) are LPV stable (see Part
I of [18]). Now, the upper left diagonal block is LPV stable because it satisfies equation (21), while the lower right block
Q(w(t)) ∈ H∞ is the state matrix of an LPV stable system, according to Remark 3.1.

The conditions of Theorem 3.1 are numerically hard, in general. However, ifA(w) has the polytopic structure:

A(w) =
s

∑

i=1

Aiwi, wi ≥ 0,
s

∑

i=1

wi = 1, (33)

for some integers, andB andC are constant matrices, the algorithms suggested in [7], [5]can profitably be used to compute
X andR.
The following result, taken from [6], will be used later.

Proposition 3.1:Assume that either pair of stabilizability conditions of Theorem 3.1 is satisfied and letW (s, w) be the
transfer function of a compensator ensuring that the closedloop is internally stablefor fixedw. Then,W (s, w) can be realized
in the form (17) – (19) or, respectively, in the form (23) – (27) with (19) (respectively, (27)) replaced by

v(s) = T (s, w)[C(w)x̂(s) − y(s)] = T (s, w) o(s), (34)

whereT (s, w) is a stable transfer function (Youla–Kucera parameter [14], [27]) ando(s) = C(w)x̂(s) − y(s).

The structure of the resulting compensator is shown in Fig.2.

u y

x

o

+

+

+

+
−

+

ν

OBSERVER

PLANT

ESTIM. STATE FEEDBACK

T(s,w)

C(w)

ustab G  (w)SFF  (w)
SF

H  (w) 
SF

K  (w)
SF

M(w)

Q(w) 

0 0

A(w)

B(w)

C(w)

0

−L(w)RB(w)

Fig. 2. Observer-based controller parametrization.

Remark 3.2:The compensator structure represented in Fig. 2 contains a generalized observer as defined in [17], [26]. A
special compensator with this structure is obtained under the assumption of quadratic stabilizability forQ(w) = A(w) +
B(w)K(w) + L(w)C(w), andR = M = I with a merely static estimated–state compensatorK(w).

IV. LPV STABLE REALIZATION OF A PARAMETRIC TRANSFER FUNCTION

In the sequel, we will exploit the fact that the closed-loop system in Fig. 2 is LPV stable if we take an LPV stable realization
of the block denoted byT (s, w). To this aim the following definition is useful.

Definition 4.1: Stable regular parametric (SRP) transfer function. A proper rational transfer functionN(s, w)/d(s, w),
whereN is ap×m polynomial matrix ins, d(s, w) a monic polynomial of degreeν in s, with N andd continuous functions
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of w ∈ W ⊂ R
s with W an assigned compact set, is called astable regular parametric(SRP) transfer function ifd(s, w) is

Hurwitz for all w ∈ W .

It will be proved presently that the next procedure providesan LPV stable realization of an SRP transfer function.

Procedure 4.1:

1) Take any realization{F̃ (w), G̃(w), H̃(w), K̃(w)} of the SRP transfer functionN(s, w)/d(s, w), so that

N(s, w)/d(s, w) = H̃(w)(I − F̃ (w))−1G̃(w) + K̃(w). (35)

whereF (w) is a Hurwitz matrix continuous inw for all w ∈ W .
2) Compute the positive–definite solutionP (w) of the Lyapunov equation:

F̃T (w)P (w) + P (w)F̃ (w) = −I. (36)

3) FactorizeP (w) as
P (w) = RT (w)R(w), (37)

whereR(w) is an upper triangular matrix (Cholesky’s decomposition).
4) Realize the given SRP function according to

ż(t) = F (w)z(t) + G(w)u(t),
y(t) = H(w)z(t) + K(w)u(t),

(38)

whereF (w) = R(w)F̃ (w)R−1(w), G(w) = R(w)G̃(w) H(w) = H̃(w)R−1(w) andK(w) = K̃(w).

The following result holds.

Theorem 4.1:Any SRP transfer function admits an LPV stable realization computable by means of Procedure 4.1.
Proof: Consider an arbitrary SRP transfer functionN(s, w)/d(s, w) and, for any fixedw ∈ W , realize it according to

Procedure 4.1. To prove that this realization remains stable under arbitrary variationsw(t) of w, note that

R−T (w)F̃T (w)RT (w)R(w)R−1(w) + R−T (w)RT (w)R(w)F̃ (w)R−1(w) = −R−T (w)R−1(w). (39)

Therefore
FT (w)I + IF (w) = −P̂−1(w), (40)

whereP̂ (w) = R(w)RT (w) = R(w)[RT (w)R(w)]R(w)−1 is similar toP (w).
By continuity, P̂−1(w) is positive definite and lower bounded, that is,

P̂−1(w) ≥ βI (41)

for some positiveβ, which means thaṫz(t) = F (w) z(t) is quadratically stable since it admits the identity matrixas a Lyapunov
matrix.

Remark 4.1:To avoid confusion, observe that the matrixR(w) cannot the thought of as a state transformation matrix when
w varies with time.

A. Implementation

To make Procedure 4.1 amenable to online implementation, Step 3 uses Cholesky’s factorization rather than the more natural
product of square rootsP 1/2 adopted in [6]. In this way, the number of flops required to findthe LPV stable realization can be
estimated. Precisely, given the realization (35) of orderν, the Lyapunov equation (36) entails solving a set of linear equations
in (ν + 1)ν/2 unknowns, which requires about((ν + 1)ν/2)3/3 flops. Cholesky’s algorithm to findR in (37) requiresν3/3
flops. The determination ofF from FR = RF̃ requires aboutν3 flops. Finally, the computation ofG = RG̃ requiresp×ν2/2
flops and that ofH from RH = H̃ requiresm× ν2/2 flops. All of these operations have to be performed within thesampling
time, which can be accomplished using current technology.

Clearly, simpler solutions are possible in particular cases. For instance, if the Hurwitz denominatord(s, w) of the transfer
function is expressed in the factored form:

d(s, w) =
∏

i

[s + λi(w)]
∏

j

[s2 + 2σj(w)s + σ2
j (w) + ω2

j (w)], (42)

whereλi(w) andσj(w) are positive, the transfer function can be expanded into partial fractions as

N(s, w)

d(s, w)
= D +

∑

i

α̂i

s + λi(w)
+

∑

j

β̂js + γ̂j

s2 + 2σj(w)s + σ2
j (w) + ω2

j (w)
, (43)
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whose numerators coefficientŝαi, β̂j , γ̂j can be computed by solving linear equations. In this case, anLPV stable realization
is provided by

F (w) = block–diag

{

−λi(w),

[

−σj(w) ωj(w)
−ωj(w) −σj(w)

]}

, (44)

G(w) = [ 1 1 . . . [ 0 1 ] [ 0 1 ] . . . ]
T

, (45)

H(w) = [ α1 α2 . . . [ β1 γ1 ] [ β2 γ2 ] . . . ] , (46)

K(w) = D, (47)

whereαi, βj andγj are simply related tôαi, β̂j and γ̂j .

V. PARAMETRIZATION OF ALL LPV STABILIZING COMPENSATOR REALIZATIONS

A. Controller parametrization: the case of LPV stable plants

If the plant to be controlled is LPV stable as in the example illustrated at the end of Section II, the required controller
realization can be structured as in Fig. 3, whereT (s, w) is a stable transfer function (Youla–Kucera parameter).

T(s,w) + −

u

y

y
B(w)A(w)

C(w)

C(w)

B(w)A(w)

0

0

Fig. 3. Structure of an LPV stable plant.

By realizingT (s, w) according to (2), the state–space representation of the closed–loop system becomes:

d

dt
x(t) =A(w)x(t) + B(w)u(t), (48)

d

dt
x̂(t) =A(w)x̂(t) + B(w)u(t), (49)

d

dt
z(t) =F (w)z(t) + G(w)(C(w)x̂(t) − y(t)), (50)

u(t) =H(w)z(t) + K(w)(C(w)x̂(t) − y(t)). (51)

Letting e(t)
.
= x̂(t) − x(t) and choosing[xT (t) zT (t) eT (t)]T as the state vector, the state matrix of the closed–loop system

takes the form:




A(w) B(w)H(w) B(w)K(w)C(w)
0 F (w) G(w)C(w)
0 0 A(w)



 . (52)

Therefore the closed loop is LPV stable as long asF (w(t)) is stable.
Since the structure in Fig. 3 parametrizes all stabilizing compensators (see p. 67 of [20]), when the plant is LPV stable,

Problem 2.1 admits a solution for any stabilizing controller transfer functionW (s, w). According to Fig. 3,W (s, w) can be
written as

W (s, w) = −[I − T (s, w)C(w)(sI − A(w))−1B(w)]−1T (s, w), (53)

so that the Youla–Kucera parameter is

T (s, w) = W (s, w)[C(w)(sI − A(w))−1B(w)W (s, w) + I]−1 (54)

which must be realized properly to ensure LPV stability.
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B. Controller parametrization: the general case

Problem 2.1 can be solved, provided the plant satisfies the stabilizability conditions of Section III, as stated by the following
theorem that draws on [6] with some minor technical adjustment.

Theorem 5.1:If the plant (6) satisfies the stabilizability conditions (15) – (16) of Assumption 2, Problem 2.1 (LPV synthesis)
is solvable for an arbitrary stabilizing controller transfer function W (s, w). Moreover, if the plant satisfies the quadratic
stabilizability conditions (13) – (14) of Assumption 1, Problem 2.1 is solvable with a compensator of order2n + ν, wheren
is the plant state dimension andν the degree of the denominatord(s, w) of W (s, w).

Proof: In view of Proposition 3.1, any compensator transfer function W (s, w) can be given the structure of Fig. 2. To
prove LPV stability, it is enough to observe that, accordingto Theorem 4.1, an LPV stable realization of the Youla–Kucera
parameterT (s, w) can always be found starting from any asymptotically stablerealization ofT (s, w) using Procedure 4.1.

The practical implementation of the LPV stabilizing compensator requires the online realization of the Youla–Kucera
parameter from the compensator transfer function. In the case of quadratic stabilizability, the following result simplifies this
task.

Theorem 5.2:Assume that the plant{A(w), B(w), C(w)} satisfies the quadratic stabilizability conditions of Assumption
1 and that a state–space realization{F (w), G(w), H(w), K(w)} of the compensator is given. Then, an LPV stabilizing
compensator realization solving Problem 2.1 is





A(w) + B(w)J(w) + L(w)C(w) − B(w)K(T )(w)C(w) B(w)H(T ) B(w)K(T )(w) − L(w)

−G(T )(w)C(w) F (T )(w) G(T )(w)

J(w) − K(T )(w)C(w) H(T )(w) K(T )(w)



 (55)

with J(w) = −BT (w)P andL(w) = −QCT (w), as in Theorem 3.1, and the Youla–Kucera parameter realizedas
[

F (T )(w) G(T )(w)

H(T )(w) K(T )(w)

]

=

[

R(w) 0
0 I

]





A(w) + B(w)K(w)C(w) B(w)H(w)
G(w)C(w) F (w)

B(w)K(w) − L(w)
G(w)

−J(w) + K(w)C(w) H(w) K(w)





[

R−1(w) 0
0 I

]

,

(56)

whereR(w) is computed according to Procedure 4.1.

Proof: By combining (55) and (56) withR(w) = I and dropping the argumentw to simplify notation, the compensator
turns out to be









A + LC + BJ − BKC −BJ + BKC BH −L + BK
LC − BKC A + BKC BH −L + BK

−GC GC F G
J − KC −J + KC H K









. (57)

Denote the state vector for (57) by[x̂T (t) ξT (t) ηT (t)]T . Consider the equivalent compensator realization by taking the new
state vector[(x̂(t) − ξ(t))T ξT (t) ηT (t)]T . The compensator realization becomes









A + BJ 0 0 0
LC − BKC A + LC BH −L + BK

−GC 0 F G
J − KC 0 H K









(58)

leading, for any fixedw ∈ W , to the same transfer function as{F, G, H, K} since the variableŝx(t) − ξ(t) and ξ(t) are
unreachable and unobservable, respectively.

Owing to the particular structure of (56), the same compensator transfer function is obtained for any arbitraryR(w). Then
we can prove stability by exploiting Theorem 4.1 and computingR(w) as in Procedure 4.1. Essentially, the LPV stability of the
overall closed–loop is assured if we take an LPV stable realization of the Youla–Kucera parameter,{F (T ), G(T ), H(T ), K(T )}.
Indeed, the closed–loop system is LPV stable ifF (T ) is LPV stable. In fact, with reference to the state vector[(x̂(t) −
ξ(t))T ξT (t) xT (t) ηT (t)]T , the overall system matrix is

[

I2n 0
0 R

]









A + BJ 0 0 0
LC − BKC A + LC (−L + BK)C BH
B(J − KC) 0 A + BKC BH

−GC 0 GC F









[

I2n 0
0 R−1

]

. (59)

It follows that the system is LPV stable if and only if the three blocks:

A + BJ, A + LC, R

[

A + BKC BH
GC F

]

R−1 (60)
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are LPV stable [18]. Now, the first two blocks are stable by construction, while the third block is stable since, in view of (40),
all the matrices share the Lyapunov function‖ · ‖2

2.
Remark 5.1:Often the plant parameters are constant most of the time and are subject to variations only occasionally. In

these cases, it is reasonable to design the controller in such a way that it is optimal for the prevailing parameter valuesbut
ensures LPV stability too. Optimality can be achieved, e.g., by determining the Youla–Kucera parameter according to the
Wiener–Hopf design [27]. The only additional requirement is that the Youla-Kucera parameter be properly realized.

VI. A PPLICATIONS AND EXAMPLES

A. Fixed pole assignment

Consider the case in which the compensator transfer function is designed so as to locate the closed–loop poles in the same
place for all (constant) values of the parameters, which means that

ΣCL(w) =

[

A(w) + B(w)K(w)C(w) B(w)H(w)
G(w)C(w) F (w)

]

(61)

must exhibit fixed poles. In view of equation (56), this specification is equivalent to the requirement that the Youla–Kucera
parameter has fixed poles. To this purpose, use can be made of the procedures illustrated in Section IV. For simplicity, assume
that the desired closed–loop eigenvalues are distinct. Then, the transformation matrixR(w) in equation (56) can be chosen in
such a way thatF (T )(w) = F (T ) = const. The following proposition formalizes this result.

Proposition 6.1:Assume that the plant is LPV stable and that the assigned compensator transfer functionN(s, w)/d(s)
allocates the poles of the closed–loop transfer function infixed positions. Then, an LPV stabilizing realization of theform (3)
with F constant can be obtained for this compensator.

If the plant is LPV stable, the compensator can be structuredas in Fig. 3 and the sensitivity function can be written as

S(s, w) = 1 − [C(w)(sI − A(w))−1B(w)]T (s, w). (62)

Pole assignment can be achieved by makingT (s, w) cancel all of the plant eigenvalues and replace them by its own poles. In
this way, stability is obviously guaranteed for every constant value ofw. To achieve LPV stability,T (s, w) must be realized
properly. Since the poles ofT (s, w) are fixed, we can just realize it by taking a constant state matrix F so that no transformation
R(w) is needed.

Example 6.1:Flow control revisited
Consider the hydraulic plant in Fig. 1. The compensator (8) locates the close–loop poles at the roots of (10). Anad-hoc

LPV stabilizing realization was already derived at the end of Subsection II-A. However, the controller transfer function (8)
can also be realized from (53) and (54) with

T (s, w) =
κ(w)(s + α)

(s + α)(s + β) + κ(w)w
=

(κ0/w)(s + α)

(s + α)(s + β) + κ0
(63)

leading to a compensator that ensures closed–loop LPV stability for the desired poles.

B. Online tuning for LTI plants

The procedures conceived for LPV plants can profitably be used to synthesize parametric compensators for LTI plants whose
parameters are known accurately. Still, to improve the system performances, some controller parameterw ∈ W can be tuned
online according to the scheme of Fig. 4.

R(s,w)+ +
−

r(t)

d(t)

P(s)

Fig. 4. LTI plant with LPV compensator.

Assume that internal stability is ensured for eachconstant value of the parameterw ∈ W . The main question is whether
system stability can be ensuredeven under tuning. An answer is provided by the following result.

Corollary 6.1: Assume thatP (s) is a stabilizable (in the LTI sense) andR(s, w) is a family of compensator transfer
functions, parametrized with respect tow, that ensure the internal stability of the closed-loop system for all constantw ∈ W .
Then, there always exists a realization ofR(s, w) that guarantees LPV stability too.

Proof: It is enough to observe that (13) and (14) are always satisfiedin the case of LTI plants.
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Remark 6.1:The previous result is valid no matter how the parameter tuning is carried out. It may be performed by a human
operator or by an adaptive device.

Example 6.2:Let P (s) in Fig. 4 be

P (s) =
1

s + µ
. (64)

To (partly) suppress a disturbanced(t) with a (dominant) sinusoidal component of frequencyω0, the controller transfer function
can be chosen as

R(s) =
κω2(s + α)

s2 + 2ξωs + ω2
(65)

with ω = ω0 andξ small.
If the disturbance frequency varies in a rangeω− ≤ ω0 ≤ ω+ (as is often the case in practice), the parameterω in (65) must
be adjusted accordingly (which, of course, requires measuring the disturbance frequency) and the control system becomes an
LPV system whose stability depends on the controller realization. By realizing the controller in companion form, the state,
input and output matrices of the resulting closed–loop system turn out to be:

[

ACL BCL

CCL 0

]

=









−µ κω2α κω2 0
0 0 1 0

−1 −ω2 −2ξω 1
1 0 0 0









. (66)

Assume for simplicityα = µ in (65) to cancel the pole of (64). Then the realization is nonminimal and, indeed, equivalent to

[

ACL BCL

CCL 0

]

=





0 1 0
− (κ + 1)ω2 −2ξω 1

κω2 0 0



 . (67)

It is known that this system is unstable forξ small andw varying with time. However, the compensator can be realizedin such
a way that, for any fixedw, its transfer function matches the desired one and, at the same time, LPV stability is guaranteed.
Since the plant is LPV stable, the theory of Subsection V-A applies. In particular, the compensator can be given the form:

R(s, w) = − T (s, w)

1 − T (s, w)P (s)
, (68)

from which:

T (s, w) =
R

1 + RP
=

κω2(s + µ)

s2 + 2ξωs + (1 + κ)ω2
. (69)

Therefore the problem can be solved by finding an LPV stable realization of T (s, w). According to Subsection IV-A and
assuming complex eigenvalues, one such realization is

Σ(T ) =

[

F (T ) G(T )

H(T ) 0

]

=





−ξω ω
√

1 + κ − ξ2

−ω
√

1 + κ − ξ2 −ξω

0
1

h1(w) h2(w) 0



 , (70)

whereh1(w), h2(w) are given by

h1(w) = κω(µ − ξω)/
√

1 + κ − ξ2, h2(w) = κω2. (71)

The resulting controller realization as in (68)is thus

ẋc =





−ξω ω
√

1 + κ − ξ2 0

−ω
√

1 + κ − ξ2 −ξω 1
h1(w) h2(w) −µ



xc +





0
1
0



 e

u =
[

h1(w) h2(w) 0
]

e

(72)

In figure 5 the evolution of the outputylpv with the so realized controller and with the same controllerrealized in minimal
form (ymin) are depicted forµ = 1, κ = 10 andξ = 0.01. It is apparent how the latter leads to instability (note that the size
scale forylpv andymin are quite different). The tuning parameter time evolutionω is also depicted.
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Fig. 5. ylpv : ouput with the proposed realization;ymin: ouput corresponding to the unstable closed–loop producedby the minimal realization of the
compensator;ω: tuning parameter subject to a piecewise sinusoidal variation.

C. LPV stability within the Hurwitz region

In most practical cases, given a parametric plant and a parametric compensator, we can establish the region of stabilityin
the parameter space by using standard tools such as the Routh-Hurwitz table. Obviously, the resulting analysis is validas long
as the parameters are constant in time. The present approachallows us to ensure LPV stability for all possible variations within
the region of stability.

Consider the following simple plant:

[

A(w) B(w)
C(w) 0

]

=





0 1 0
−(1 + ρw) −ξ 1

1 0 0



 (73)

with ξ small andρ ≈ 1 but ρ < 1. The controller must satisfy the following specifications:

• for any fixed value ofw ∈ [0, 1] the controller transfer function has the PI structure:

Wcomp(s) = k +
h

s
; (74)

• the closed–loop system is LPV stable whenw = w(t) varies with time in the interval[0, 1];
• the proportional and integral gainsk andh can be changed online within the region for which stability is guaranteed for

any fixedw, and the closed–loop system is stable regardless of their variation.

Trivial computations based on the Routh–Hurwitz array ensure that the closed–loop system is stable for every fixedw,
0 ≤ w ≤ 1, if and only if h > 0 andh ≤ ξ(1 + k). Therefore, for fixedw the stability region in the(k, h)–plane is:

R = {h ≥ ǫ and h ≤ ξ(1 + k) − ǫ} (75)

with ǫ positive and arbitrarily small.
This system is quadratically stabilizable. Possible gainsJ(w) andL(w) of the observer–based controller (see (17) – (18)) are

J(w) = [ρw − 1], L(w) = [0 ρw]T . (76)

Correspondingly the pre–compensator equations are

d

dt

[

x̂1

x̂2

]

=

[

0 1
−(1 + ρw + k) −ξ

] [

x̂1

x̂2

]

+

[

0
ρw

]

y(t) +

[

0
1

]

v(t), (77)

u(t) = [ ρw − 1 ]

[

x̂1

x̂2

]

+ v(t), (78)

o(t) = −[ 1 0 ]

[

x̂1

x̂2

]

+ y(t), (79)

v(s) = T (s, w) o(s). (80)
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The Youla–Kucera parameterT (s, w) can be realized as in (56) starting from any realization of the compensator. A simple
realization of (74) is given by:F = 0, G = 1, H = h andK = k. In this case:

[

F (T )(w) G(T )(w)

H(T )(w) K(T )(w)

]

=

[

R(w) 0
0 I

]









0 1 0 0
−(1 + ρw + k) −ξ h −(ρw − k)

1 0 0 1
−(ρw − k) −1 h k









[

R−1(w) 0
0 I

]

, (81)

whereR(w) is the upper–triangular Cholesky factor of the solutionP = RT R = [pij ] of the Lyapunov equation:

(F (T )(w))T P + PF (T )(w) = I. (82)

Let α = ξ, β = (1 + ρw + k) andγ = h. Then, (82) entails the solution of the linear set:













0 0 0 −2β 0 −2
0 −2α 0 2 0 0
0 0 0 0 −2γ 0
1 −β −α 0 0 1
0 0 −1 −γ −β 0





























p11

p22

p33

p12

p23

p31

















=

















−1
−1
−1
0
0
0

















. (83)

The nonzero entries ofR = [rij ] turn out to be

r11 =
√

p11, r12 = p12/r11, r13 = p13/r11, r22 =
√

p22 − r2
12, r23 = (p23 − r12r13)/r22, r33 =

√

p33 − r2
13 − r2

23.

R−1 = [sij ] is also upper–triangular. Its nonzero entries given by

s11 = 1/r11, s22 = 1/r22, s33 = 1/r33, s12 = −r12/(r11r22), s13 = −(r22s12 + r13/r33), s23 = −r23/(r22r33).

The preceding operations can easily be implemented online because their computational burden is small.

VII. C ONCLUSIONS

Necessary and sufficient conditions for the existence of an LPV stabilizing compensator have been provided. It has been
shown that, if these conditions are satisfied, any given parametric gain–scheduled transfer function ensuring internal stability
for constant values of the parameters admits an LPV stabilizing realization (which is nonminimal, in general). A procedure to
construct a realization of this kind has been described. Under the assumption of quadratic stabilizability, it turns out that the
dimension of an LPV stabilizing compensator realization istwice the dimension of the controlled plant plus the order ofthe
compensator transfer function to be realized.

The results lend themselves to interesting extensions. Forinstance, pointwise optimality can be ensured along with LPV
stability. However, nothing can yet be said about time–varying performance. In this respect, the present paper followsa path
opposite to that followed in [1][2], where LPV performance has been considered without pointwise optimality.

Since the suggested realization procedure is independent of the design criterion, it can be combined with any synthesis
technique. It seems particularly suited to the online tuning of standard controllers.
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