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Abstract

The paper deals with the stabilizability of linear plantsos@ parameters vary with time in a compact set. First, nagess
and sufficient conditions for the existence of a linear gaiheduled stabilizing compensator are given. Next, it @vshthat, if
these conditions are satisfied, any compensator trangfetidn depending on the plant parameters and internallyiliziag the
closed-loop control system when the plant parameters arstanat, can be realized in such a way that the closed-loapatsyic
stability is guaranteed under arbitrary parameter vanati To this purpose it is shown first that any transfer fumcthat is stable
for all constant parameters values admits a realizationithatable under arbitrary parameter variations (LPV $tgthi Then,
the Youla—Kucera parametrization is exploited. PrecjdeRV stability can be ensured by taking an LPV stable retiinaof the
Youla—Kucera parameter. To find one such realization, aoreddy simple and general algorithm based on Lyapunov e&msat
and Cholesky’s factorization is provided. The result casfitably be used to achieve both pointwise optimality (orepolacement)
and LPV stability. Some potential applications in adaptieatrol and online tuning are pointed out.

I. INTRODUCTION

Linear parameter-varying (LPV) systems are a useful gdimat@n of linear time-invariant (LTI) systems not only daise
they provide the natural setting for the adaptive (gairesciing) control of linear plants whose parameters varyiriret but
also because many nonlinear plants can conveniently bedaetéanto a linear differential inclusion and, thereforeated as
LPV systems (see, for instance, Sect. 4.3 in [8] and [24]])[1B fact, recent surveys have pointed out the importaricerg
to the LPV framework in the modern control system literat[2@], [19].

Nevertheless, the stability analysis of LPV systems i$ atithallenging subject since most of the classic tools usetie
LTI case are no longer valid. Lyapunov theory is a notableepon. In particular, it has been shown that the stability o
stabilizability of an LPV system is equivalent to the existe of a Lyapunov norm [18], [10], [9], [3], although not a duatic
one, in general.

It is common practice in the control of LPV systems to detaema family of compensators each of which is suitable for
particular parameter values. However, the systematidlisyadnalysis of this type of design solution is rather retf5]. Since
the early 90s, many papers have dealt with gain-scheduiafiilization and performance of LPV systems [2], [1], [2[2].
Most of them exploit quadratic Lyapunov functions, with soexceptions that consider parameter—-dependent and pohfhe
Lyapunov functions [11], [4]. A technique based on pole gssient via state feedback has been considered in [22].

The first part of this paper relates the stabilizability ofl#PV plant by means of a linear gain-scheduled compensator to
the existence of a polyhedral Lyapunov function. This resuploits a duality property and the separation principgiespnted
in [4], [6]. It generalizes significantly the results obtaghin [4] for LPV systems, where the input and output matrieese
assumed constant and the stabilizability conditions weitg sufficient.

The second part of this paper is concerned with the fundaahprablem of finding an LPV stabilizing controller realizat
from a parametric compensator transfer function that esssimternal stability for every constant value of the plaartameters.
Indeed, as already suggested in [19], to guarantee syabililer parameter variations, the parametric transfertiomshould
be properly realized but, to these authors’ knowledge, meege conditions have yet been provided concerning theende
of such a realization. By adapting results from [13] and [6]s shown that an LPV stabilizing compensator realizatidn
any stabilizing parametric compensator transfer functimfeed exists. The main results of the paper are summarized n

« Necessary and sufficient conditions for LPV stabilizapilitre provided in terms of bilinear equations that entail the
separation of state estimation and feedback (separationife).

« It is shown that for any parametric proper rational tran$tgrction that is stable for any fixed value of the parameters
there exists a realization that is stable under parametétizmns.

o This result is applied to the problem of determining a redion of a parametric compensator transfer function for a
parametric plant in such a way that closed—loop LPV stabititguaranteed. Moreover, resorting to the Youla—Kucera
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parametrization in its observer—based version [14], [228], [20], it is proved that LPV stability can be achieved by
taking an LPV stable realization of the Youla—Kucera pan@mevhich provides a characterization of all LPV stabili
compensators.

« Several applications of the suggested technique, such iaswise optimality with LPV stability, pole placement and
online tuning, are pointed out.

Il. PROBLEM STATEMENT
Given a parametric proper rational transfer function

W(s,w) = Jc\lf((:i”ww)), weW, 1)
wherew is a parameter anty a compact set, the state—space representation
2(t) = F(w)z(t) + Gw)w(t), @)
§t) = H(w)z(t) + K(w)w(?),
or, more concisely, |
_ | Fw) | G(w)
Y(w) = H(w) | Kw) |’ 3
is a realization oV (s, w) if
W(s,w) = H(w)[sI — F(w)] 'G(w) + K(w), YweW. 4

As long asw € W is constant and (3) is minimal, the following two properte® equivalent: (i)X(s,w) is a Hurwitz
polynomial; (ii) the realization (3) is asymptotically bta. Instead, ifw varies in time, the condition thak(s, w) is a Hurwitz
polynomial for any fixed value ofv is only necessary for (3) to be asymptotically stable. Tioeeg the following definition
is opportune.

Definition 2.1: LPV stable realization. Assuming thati(s, w) is a Hurwitz polynomial for all fixedv € W, the realization
(3) of (1) isLPV stableif

£(t) = F(w(t)) 2(t) (5)

is asymptotically stable for any functian(t) taking values in/V.
As will be shown soon, finding an LPV stable realization, ifyaof a transfer function with Hurwitz denominator is very
useful in parametric control design. Consider now a syrgitoperLPV plantdescribed by

z(t) = A(w)z(t) + B(w)u(t),
y(t) = Clw)x(t), (6)

wherez(t) € R”, u(t) € R™, y(t) € RP, andw € W, with A(-), B(-),C(-) continuous functions ofv and ¥V compact.
Let (1) be the transfer function of a parametric compensatsuring that thelosed—loopcontrol system for the plant (6) is
internally stable forany constant value ab.

The following definition will be adopted throughout this gap

Definition 2.2: LPV stabilizing controller realization. The realization (3) is abPV stabilizingrealization of the parametric
compensator transfer function (1) if the closed—loop adrstystem with the controller realized as in (3) is asymptity stable
when the parameter varies with time according to any arbitrary functiar{¢) taking values in the compact sg¥.

Taking Definition 2.2 into account, the main problem to bevedlcan be stated as follows.

Problem 2.1:LPV synthesis. Given a plant (6) and a parametric compensator transfetifum(1) ensuring internal closed-
loop stability for all constant values af € W, find an LPV stabilizing controller realization (3).

A. Motivation

Problem 2.1 is motivated by the fact that the closed-loop Isstem may be unstable if the parametric compensator &éansf
function is not realized properly. To show this, considez g#imple fluid plant represented in Fig. 1. Its (stable) finster
model is

§(t) = —ay(t) + w(t) u(t), a>0 )

where the state/outpuf(t) = h(t) — h is the deviation of the actual levél(t) in the reservoir from the equilibrium level,
the plant inputu(¢) is the valve openingy(t) is the (measured) pressure in the tahk(t) is the level of the fluid in the tank
andw(t) = p+/p(t) /v + h1(t), with v denoting the fluid density and with constant. Assume thét < w~ < w(t) < w™,
vt, and that the feedback controller transfer function is

K(w)

s+

. 3>0, 8)



L

Fig. 1. Simple fluid—flow plant.

with p
K(w) = =2, ko >0, (9)

to compensate for pressure variations.
Whenw is constant, the feedback control system is internallylstalith characteristic polynomial:

d(s) = s> + (B + a)s + aff + Ko. (10)

The controller (8) admits the two realizations:

yielding, respectively, the closed—loop system matrices:

—a  —Ko -« w
Al(w)—{ 1 —ﬁ :|, AQ(U})—|: —Iio/’w —ﬁ:| (12)
¥1(w) leads to an asymptotically stable feedback system indegmlydof howw varies with time, whereass(w) may not.
Indeed, ifa and 8 are small enough and varies over a sufficiently large range, the system may beables{16]. In [15]
this situation has been attributed to the existence of ‘taidcoupling terms”. Conditions ensuring that such terms @teerist
have been derived for the case in which the LPV system arises the linearization of a nonlinear plant (see Theorem 10 in
[19]). It will be shown later that framing the design problem an LPV gain-scheduling problem avoids this issue.

IIl. PRELIMINARY RESULTS

This section extends to LPV systems the results obtaine@]iar{d [13] for linear switching systems. To this purposenso
stabilizability and quadratic stabilizability conditismill be derived. Either of the following assumptions wik lnade.
Assumption 1:There exist two positive—definite matricsand@), and two matrice&’ (w) andY (w) dependent on parameter
w such that
PA(w)" + A(w)P + B(w)U(w) + U(w)' B(w)" <0, (13)

Aw)TQ + QA(w) + Y (w)C(w) + CT(w)Y (w)T <0, (14)

where A(w), B(w) andC(w) are defined by (6).

Assumption 1 is standard in quadratic stabilizability #sd(see, e.g., [2]). Whe® and C' are constant, conditions (13)
and (14) correspond to linear matrix inequalities (LMI'§jnfortunately, quadratic stabilizability is restrictiveonditions that
remove conservatism will be given soon.

To state the second assumption, the following definitioneisded.

Definition 3.1: A matrix M (w), continuous function ofv € YW, W compact, is of clas${; if there existsr > 0 such that
[T +7M(w)||:1 < 1 for all w € W. Similarly, M (w) is of classH if there existsr > 0 such that||] + 7M (w)||- < 1 for
all w e W.

Remark 3.1:The conditionM € H;, respectively,M € H.., is equivalent to the fact that the measurg respectively,
oo, reported in [5] satisfies the constraimt(M) < 1, respectively,u..(M) < 1 (see Exercise 16, p. 147, in [5]), which
means that a systems with such &has the state matrix is LPV stable.

Assumption 2:There exist a full row rank x p matrix X, a full column rankv x n matrix R, as well as ann x p matrix
U(w), av x p matrix L(w) and matricesP(w) € H; and Q(w) € H, dependent onw such that

A(w)X + B(w)U(w) = X P(w), (15)
RA(w) + L(w)C(w) = Q(w)R. (16)



The importance of the previous assumptions is illustratedhle following theorem.

Theorem 3.1:The following two conditions are equivalent:

i) the inequalities (13) and (14) of Assumption 1 are satikfie

ii) the LPV plant (6) isquadratically stabilizable by means of a compensator of the form (3).
The following two conditions are also equivalent:

iii)  the equations (15) and (16) of Assumption 2 are satisfied

iv)  the LPV plant (6) is stabilizable by means of a compensafahe form (3) and the closed—loop system admits a
polyhedralLyapunov function.

Proof: The equivalence of i) and ii) can be proven as in [2] to which thader is referred. Note only that, if these
conditions are satisfied, the observer—based controllserited by

Sa) = [AQw) + Dw)Cw) + Bw)Tw)]i () - Lw)y(o), an
u(t) = J(w)z(t) +v(t), (18)
v(t) = 0, (19)

with J(w) = —BT (w)P and L(w) = —QCT (w), is a quadratically stabilizing compensator
To prove that iv) implies iii), assume that a stabilizing qmnsator exists. The related stable closed—loop systemxnsat

A(w) + B(w)K (w)C(w) B(w)H (w)
G(w)C(w) F(w) '
Since the system stability implies the existence of a palyaleLyapunov function, the following equation holds foms®
P(w) € H; (see [5] for details):

[ R P [ £]-(5 ]

(20)

whose upper block row yields
A(w)X 4+ B(w)K (w)C(w)X + B(w)H(w)Z = A(w)X + B(w)U(w) = XP(w), (22)

whereU (w) = K(w)C(w)X + H(w)Z, which proves (15). The necessity of (16) can be proven imalai way by duality
[4].

To prove that iii) implies iv), assume that (15) and (16) aaéis§ied, and consider the compensator of ordef ;1 — n
described by

i(t) = Qw)r(t) — L(w)y(t) + RB(w)u(t), (23)
2(t) = Mr(t), (24)
2(t) = Fsp(w)z(t) + Gsr(w)z(t), (25)
u(t) = Hgp(w)z(t) + Ksp(w)z(t) + v(t), (26)
v(t) 0, (27)

wherev will be used latet, matrix M is any left inverse ofR, i.e.,
MR =1, (28)
and Fsp(w), Gsp(w), Hsp(w), Ksr(w) can be computed from

Gt Fr 1=V 2] @)

where Z is any complement oX that makes the square matr[xX

7 ] invertible and

V(w) = ZP(w). (30)

Letting
s(t) = R z(t) — r(t) (31)

1The reason for introducing the dummy signék) = 0 will become clear later.



and choosindz? 27 sT|7 as the state vector, after simple manipulations the follgndlosed—loop matrix is obtained:
A(w) + B(w)Ksp(w) B(w)Hgp(w) | —B(w)Kspr(w)M
GSF(U}) FSF(’U)) —GSF(U})M
0 0 | Q(w)
The LPV system is stable if and only if the diagonal blockstef block—triangular state matrix (32) are LPV stable (seg Pa

| of [18]). Now, the upper left diagonal block is LPV stablechese it satisfies equation (21), while the lower right block
Q(w(t)) € He is the state matrix of an LPV stable system, according to Rler34.. [ |

(32)

The conditions of Theorem 3.1 are numerically hard, in geinétowever, if A(w) has the polytopic structure:

A(w) = Z Aiwi, w; Z 0, Z w; = 1, (33)
i=1 i=1
for some integek, and B andC are constant matrices, the algorithms suggested in [7]z4B]profitably be used to compute

X andR.
The following result, taken from [6], will be used later.

Proposition 3.1: Assume that either pair of stabilizability conditions oféldrem 3.1 is satisfied and &/ (s, w) be the
transfer function of a compensator ensuring that the clésegl is internally stabldor fixedw. Then, W (s, w) can be realized
in the form (17) — (19) or, respectively, in the form (23) — Y2iith (19) (respectively, (27)) replaced by

v(s) =T(s,w)[C(w)z(s) —y(s)] = T(s,w) o(s), (34)

whereT (s, w) is a stable transfer function (Youla—Kucera parameter,[[2f]]) ando(s) = C(w)Z(s) — y(s).
The structure of the resulting compensator is shown in Fig.2

PLANT

u
[A(w) | C(W)} y

Bw)| 0

Q(w) |-L(w)RB(W)
Mw)| 0 0

OBSERVER

[t Hy (W) | Kyw)

ESTIM. STATE FEEDBACK

\Y

i o Ustab [FS W) GSF(W)}

Fig. 2. Observer-based controller parametrization.

Remark 3.2:The compensator structure represented in Fig. 2 contairenarglized observer as defined in [17], [26]. A
special compensator with this structure is obtained underassumption of quadratic stabilizability faf(w) = A(w) +
B(w)K(w) + L(w)C(w), andR = M = I with a merely static estimated—state compensaiow).

IV. LPV STABLE REALIZATION OF A PARAMETRIC TRANSFER FUNCTION

In the sequel, we will exploit the fact that the closed-logptem in Fig. 2 is LPV stable if we take an LPV stable realaati
of the block denoted b{'(s,w). To this aim the following definition is useful.

Definition 4.1: Stable regular parametric (SRP) transfer function. A proper rational transfer functiotV (s, w)/d(s, w),
whereN is ap x m polynomial matrix ins, d(s,w) a monic polynomial of degree in s, with N andd continuous functions



of w € W C R*® with W an assigned compact set, is calledtable regular parametri¢SRP) transfer function ifl(s, w) is
Hurwitz for all w € W.

It will be proved presently that the next procedure provided PV stable realization of an SRP transfer function.

Procedure 4.1:

1) Take any realizatiof F'(w), G'(w), H(w), K (w)} of the SRP transfer functio (s, w)/d(s, w), so that
N(s,w)/d(s,w) = Hw)(I — F(w)) 'G(w) + K (w). (35)

where F'(w) is a Hurwitz matrix continuous im for all w € W.
2) Compute the positive—definite solutid®(w) of the Lyapunov equation:

FT(w)P(w) + P(w)F(w) = —1. (36)

3) FactorizeP(w) as
P(w) = R"(w)R(w), (37)

where R(w) is an upper triangular matrix (Cholesky’s decomposition).
4) Realize the given SRP function according to

it) = F(w)z(t) + Glw)u(t),
y(t) = H(w)z(t) + K(w)u(t), (38)
where F(w) = R(w)F(w)R~*(w), G(w) = R(w)G(w) H(w) = H(w)R™(w) and K (w) = K (w)

The following result holds.

Theorem 4.1:Any SRP transfer function admits an LPV stable realizatiomputable by means of Procedure 4.1.
Proof: Consider an arbitrary SRP transfer functidf(s, w)/d(s,w) and, for any fixedw € W, realize it according to
Procedure 4.1. To prove that this realization remains stahtler arbitrary variations(¢) of w, note that

R~ T(w)FT (w)RT (w)R(w) R~ (w) + R~ (w)RT (w) R(w)F(w)R™*(w) = =R~ T (w)R™} (w). (39)
Therefore
FT(w)I 4+ IF(w) = =P~ (w), (40)
where P(w) = R(w)RT (w) = R(w)[R” (w)R(w)]R(w)~" is similar to P(w).

By continuity, P~ (w) is positive definite and lower bounded, that is,
P w) > pI (41)

for some positive3, which means that(t) = F(w) z(t) is quadratically stable since it admits the identity ma##xa Lyapunov
matrix. [ |

Remark 4.1:To avoid confusion, observe that the matfitxw) cannot the thought of as a state transformation matrix when
w varies with time.

A. Implementation

To make Procedure 4.1 amenable to online implementatiep, $uses Cholesky’s factorization rather than the moreralatu
product of square rootB'/2 adopted in [6]. In this way, the number of flops required to finel LPV stable realization can be
estimated. Precisely, given the realization (35) of ondethe Lyapunov equation (36) entails solving a set of linaaragions
in (v + 1)v/2 unknowns, which requires abo(tv + 1)v/2)3/3 flops. Cholesky’s algorithm to find in (37) requires/®/3
flops. The determination af from F'R = RF requires about?® flops. Finally, the computation @ = RG requiresp x v2/2
flops and that off from RH = H requiresm x 12 /2 flops. All of these operations have to be performed withingampling
time, which can be accomplished using current technology.

Clearly, simpler solutions are possible in particular sas®r instance, if the Hurwitz denominatéfs, w) of the transfer
function is expressed in the factored form:

d(s,w) = H[s + Ai(w)] H[52 + 20;(w)s + 0]2-(111) + wjz(w)], (42)

i J

where\;(w) ando;(w) are positive, the transfer function can be expanded inttgbdractions as

N(va) _ Q; Bjs + 44
d(S,w) =D+ ; S+ /\z(w) + ; 2 + 2crj(w)s + U,?(w) +w]2'(w)7 (43)



whose numerators coefficients, BJ 4; can be computed by solving linear equations. In this caséPanstable realization
is provided by

F(w) = block—diag{—)\i(w), [ :ZZE;”U% _u:;(gu)) }} (44)
Gw) = [1 1 ...[0 1][0 1]...7", (45)
Hw) = [araz ... [fi m][B2 2] ... ], (46)
K(w) = D, (47)

wherea;, 3; and; are simply related t@y;, 3; and#;.

V. PARAMETRIZATION OF ALL LPV STABILIZING COMPENSATOR REALIZATIONS

A. Controller parametrization: the case of LPV stable ptant

If the plant to be controlled is LPV stable as in the examplgsitated at the end of Section IlI, the required controller
realization can be structured as in Fig. 3, whéi@, w) is a stable transfer function (Youla—Kucera parameter).

u [ AW) | B(W):| y

cw)| o

Tsw) (~—(H)—<

[A(w) | B(w)} |

cw)| o 9

Fig. 3. Structure of an LPV stable plant.

By realizingT'(s, w) according to (2), the state—space representation of treedidoop system becomes:

%x(t) =A(w)z(t) + B(w)u(t), (48)
%w) — A(w)i(t) + Blw)u(?), (49)
Salt) =F)a(t) + Gl)(Cl)(t) - y(t), (50)

u(t) = Hw)(t) + K@)(Cw)i(o) - (o) 51)

Letting e(t) = #(t) — x(t) and choosindzT (¢) 27 (t) €T (t)]T as the state vector, the state matrix of the closed—loosyst
takes the form:
A(w) B(w)H(w) B(w)K(w)C(w)
0 F(w) G(w)C(w) . (52)
0 0 A(w)

Therefore the closed loop is LPV stable as longFds(t)) is stable.

Since the structure in Fig. 3 parametrizes all stabiliziogipensators (see p. 67 of [20]), when the plant is LPV stable,
Problem 2.1 admits a solution for any stabilizing controtlansfer functioniV (s, w). According to Fig. 3,W (s, w) can be
written as

W(s,w) = —[I — T(s,w)C(w)(sI — A(w)) " B(w)] T (s, w), (53)
so that the Youla—Kucera parameter is
T(s,w) = W(s,w)[C(w)(s] — A(w)) ™ B(w)W (s,w) + I]~* (54)

which must be realized properly to ensure LPV stability.



B. Controller parametrization: the general case

Problem 2.1 can be solved, provided the plant satisfies #féligability conditions of Section I, as stated by thdléwing
theorem that draws on [6] with some minor technical adjustme

Theorem 5.1:If the plant (6) satisfies the stabilizability condition®}1 (16) of Assumption 2, Problem 2.1 (LPV synthesis)
is solvable for an arbitrary stabilizing controller tramsffunction W (s, w). Moreover, if the plant satisfies the quadratic
stabilizability conditions (13) — (14) of Assumption 1, Btem 2.1 is solvable with a compensator of or@er+ v, wheren
is the plant state dimension amdthe degree of the denominatd(s, w) of W (s, w).

Proof: In view of Proposition 3.1, any compensator transfer fuorcliV’ (s, w) can be given the structure of Fig. 2. To
prove LPV stability, it is enough to observe that, accordingrheorem 4.1, an LPV stable realization of the Youla—Kacer
parametefl'(s,w) can always be found starting from any asymptotically stabddization ofT'(s, w) using Procedure 4.1m

The practical implementation of the LPV stabilizing compa&tor requires the online realization of the Youla—Kucera
parameter from the compensator transfer function. In tise ad quadratic stabilizability, the following result sififies this
task.

Theorem 5.2:Assume that the planfA(w), B(w),C(w)} satisfies the quadratic stabilizability conditions of Asgtion
1 and that a state—space realizatiph(w), G(w), H(w), K (w)} of the compensator is given. Then, an LPV stabilizing
compensator realization solving Problem 2.1 is

A(w) + B(w)J(w) + L(w)C(w) — B(w)K™ (w)C(w) B(w)H™ | B(w)K™ (w) — L(w)
—G(w)C(w) FO (w) G (w) ] (55)
J(w) = KO (w)C(w) HD (w) | K™ (w)
with J(w) = —BT (w)P and L(w) = —QC*(w), as in Theorem 3.1, and the Youla—Kucera parameter reatized
FT)( w) G(T) (w
[ ] -
A(w) + B(w)K(w)C(w)  B(w)H(w) | B(w)K(w) — L(w) 1 (56)
Y G(w)Cw) F(w) G(w) T
—J(w) + K(w)C(w)  H(w) | K(w)

where R(w) is computed according to Procedure 4.1.

Proof: By combining (55) and (56) wittR(w) = I and dropping the argument to simplify notation, the compensator

turns out to be
A+ LC+BJ—-—BKC —-BJ+BKC BH | —-L+ BK

LC — BKC A+BKC BH|-L+BK
~GC Ge F G
J—KC ~J+KC H | K

Denote the state vector for (57) " (t) ¢7(t) nT(¢)]T. Consider the equivalent compensator realization by takie new
state vectorf(2(¢) — £(t))T ¢T(t) nT(t)]T. The compensator realization becomes

(57)

A+BJ 0 0 0

LC -~ BKC A+LC BH |-L+BK (58)
~-GC 0 F G

J—KC 0 H| K

leading, for any fixedw € W, to the same transfer function 4%, G, H, K} since the variables(¢) — £(¢) and{(t) are
unreachable and unobservable, respectively.

Owing to the particular structure of (56), the same compengeansfer function is obtained for any arbitraR(w). Then
we can prove stability by exploiting Theorem 4.1 and commmui(w) as in Procedure 4.1. Essentially, the LPV stability of the
overall closed—loop is assured if we take an LPV stable zatidin of the Youla—Kucera parametdr(”), G(T), H(T) K(T)},
Indeed, the closed—loop system is LPV stableFif) is LPV stable. In fact, with reference to the state ved(ar(t) —
)T () 2T () o7 (t)]*, the overall system matrix is

A+ BJ 0 0 0
I, O LC—-BKC A+ LC (-L+BK)C BH I, O (59)
0 R B(J - KC) 0 A+ BKC  BH 0 R!
-GC 0 GC F
It follows that the system is LPV stable if and only if the tarelocks:
A+ BKC BH 1
A+BJ, A+ LC, R ac ja ] R (60)



are LPV stable [18]. Now, the first two blocks are stable bystarction, while the third block is stable since, in view dDj,

all the matrices share the Lyapunov function||3. [ |
Remark 5.1:0ften the plant parameters are constant most of the time endudbject to variations only occasionally. In

these cases, it is reasonable to design the controller in augay that it is optimal for the prevailing parameter valbes

ensures LPV stability too. Optimality can be achieved,,eby. determining the Youla—Kucera parameter according & th

Wiener—Hopf design [27]. The only additional requirementhat the Youla-Kucera parameter be properly realized.

VI. APPLICATIONS AND EXAMPLES
A. Fixed pole assignment
Consider the case in which the compensator transfer fundialesigned so as to locate the closed—loop poles in the same
place for all (constant) values of the parameters, whichnsi¢lat
Sep(w) = A(w) + B(w)K (w)C(w) | B(w)H (w)
G(w)C(w) | Flw)
must exhibit fixed poles. In view of equation (56), this sfieation is equivalent to the requirement that the Youla-d¢ac
parameter has fixed poles. To this purpose, use can be make pfdcedures illustrated in Section IV. For simplicitys@se

that the desired closed—loop eigenvalues are distinctn,Tthe transformation matri®(w) in equation (56) can be chosen in
such a way tha# (") (w) = F(T) = const. The following proposition formalizes this result.

Proposition 6.1: Assume that the plant is LPV stable and that the assigned eosapor transfer functiotV (s, w)/d(s)
allocates the poles of the closed—loop transfer functiofixed positions. Then, an LPV stabilizing realization of floem (3)
with F' constant can be obtained for this compensator.

If the plant is LPV stable, the compensator can be structaseh Fig. 3 and the sensitivity function can be written as

S(s,w) =1— [C(w)(s] — A(w)) ™ B(w)]T(s,w). (62)

(61)

Pole assignment can be achieved by makKittg, w) cancel all of the plant eigenvalues and replace them by its poles. In
this way, stability is obviously guaranteed for every canstvalue ofw. To achieve LPV stability]'(s, w) must be realized
properly. Since the poles @f(s, w) are fixed, we can just realize it by taking a constant stateixAatso that no transformation
R(w) is needed.

Example 6.1:Flow control revisited

Consider the hydraulic plant in Fig. 1. The compensator ¢8ples the close—loop poles at the roots of (10).aélrhoc
LPV stabilizing realization was already derived at the eficSabsection 1I-A. However, the controller transfer fuocti(8)
can also be realized from (53) and (54) with

K(w)(s +a) _ (ko/w)(s +a)
(s +a)(s+0) +rww — (s+a)(s+5) + ro
leading to a compensator that ensures closed-loop LPMistdbr the desired poles.

T(s,w) = (63)

B. Online tuning for LTI plants

The procedures conceived for LPV plants can profitably be tsesynthesize parametric compensators for LTI plants ehos
parameters are known accurately. Still, to improve theesggperformances, some controller parameter YV can be tuned
online according to the scheme of Fig. 4.

d(®

r(t) /
_ R(s/W) P(s) —®H—T—

Fig. 4. LTI plant with LPV compensator.

Assume that internal stability is ensured for eanstant value of the parameter € W. The main question is whether
system stability can be ensureden under tuningAn answer is provided by the following result.

Corollary 6.1: Assume thatP(s) is a stabilizable (in the LTI sense) aml(s,w) is a family of compensator transfer
functions, parametrized with respectq that ensure the internal stability of the closed-loop eysfor all constantv € W.
Then, there always exists a realization®fs, w) that guarantees LPV stability too.

Proof: It is enough to observe that (13) and (14) are always satigfi¢de case of LTI plants. ]



Remark 6.1:The previous result is valid no matter how the parametentyiig carried out. It may be performed by a human
operator or by an adaptive device.

Example 6.2:Let P(s) in Fig. 4 be

P(s) = Jlr m (64)

To (partly) suppress a disturbanég) with a (dominant) sinusoidal component of frequengy the controller transfer function
can be chosen as

kw?(s + a)
$2 4+ 28ws + w?

R(s) = (65)
with w = wg and¢ small.

If the disturbance frequency varies in a range < wg < w™ (as is often the case in practice), the parametan (65) must
be adjusted accordingly (which, of course, requires méaguhe disturbance frequency) and the control system besan
LPV system whose stability depends on the controller ratibn. By realizing the controller in companion form, thatst

input and output matrices of the resulting closed—loopesysturn out to be:

—u ko kw? |0

Acr | Ber | 0 0 1 0

[CCL 0 || -1 —w? 2|1 (66)
1 0 0 |O

Assume for simplicityo = 1 in (65) to cancel the pole of (64). Then the realization ismanimal and, indeed, equivalent to

0 1 0
[ Aoy | Bor } =| —(h+w? —2w ‘ 1. (67)
Cor 0 Kw? 0 | 0

It is known that this system is unstable fosmall andw varying with time. However, the compensator can be realizeslich
a way that, for any fixedo, its transfer function matches the desired one and, at time $ene, LPV stability is guaranteed.
Since the plant is LPV stable, the theory of Subsection V-pligg. In particular, the compensator can be given the form:

B T(s,w)
R(S,U)) - _1 —T(S,U})P(S)’ (68)
from which:
2
T(s,w) R kw?(s + 1) (69)

T 1+RP §2 + 2lws+ (1 + K)w?’

Therefore the problem can be solved by finding an LPV statddizagion of T'(s,w). According to Subsection IV-A and
assuming complex eigenvalues, one such realization is

[ —&w w1+ K — €2 ‘ 0 ]
L],
0

) [Fm G(T)}

—wm —Ew

hi(w) ha(w) |

whereh; (w), ho(w) are given by

hi(w) = kw(p — Ew)/V/1+K—E€2,  hy(w) = kw?. (71)

The resulting controller realization as in (68)is thus

—Ew wy/14+Kk—86 0 0

ie = | —w/I+r—€2 —fw Lo fze+ | 1 e (72)
hl(w) hQ(w) —H 0
u = [ hl(w) hg(w) 0 }6

In figure 5 the evolution of the outpuj,, with the so realized controller and with the same contraléalized in minimal
form (ym.n) are depicted fop = 1, x = 10 and¢ = 0.01. It is apparent how the latter leads to instability (notet tthe size
scale fory;,, andy,,;, are quite different). The tuning parameter time evolutiois also depicted.
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Fig. 5.  yip0: ouput with the proposed realizatiom;,,: ouput corresponding to the unstable closed-loop prodigethe minimal realization of the
compensatoryw: tuning parameter subject to a piecewise sinusoidal vaniat

C. LPV stability within the Hurwitz region

In most practical cases, given a parametric plant and a grentompensator, we can establish the region of stability
the parameter space by using standard tools such as the-Raui#fitz table. Obviously, the resulting analysis is vadisl long
as the parameters are constant in time. The present appabaweis us to ensure LPV stability for all possible variasomithin
the region of stability.

Consider the following simple plant:

0 1 (0
Aw) [ Bw) ] _ | 0 ]
[C(w) g } - | e (73)

with £ small andp ~ 1 but p < 1. The controller must satisfy the following specifications:
« for any fixed value ofw € [0, 1] the controller transfer function has the PI structure:

h
Wcomp(s) =k+ ga (74)

« the closed—loop system is LPV stable wher= w(t) varies with time in the interva, 1];
« the proportional and integral gaitsand i can be changed online within the region for which stabilgyguaranteed for
any fixedw, and the closed—loop system is stable regardless of theatizm.
Trivial computations based on the Routh—Hurwitz array emshat the closed—loop system is stable for every fixed
0<w<1,ifand only if h > 0 andh < £(1 + k). Therefore, for fixedv the stability region in thék, h)—plane is:

R=1{h>e and h<&(1+k)— e} (75)

with e positive and arbitrarily small.
This system is quadratically stabilizable. Possible gdifis) and L(w) of the observer—-based controller (see (17) — (18)) are

J(w)=[pw —1), Lw)=[0 puw]". (76)
Correspondingly the pre—compensator equations are
d [ _ 0 1 1 0 0
@i { 2 } = { ~Atpwtk) —€ ] { 2 } + [ pw ]y<t>+ { 1 }”“)’ (77)
w) = Lo =11] 3|+, (78)
2
o = -1 01 7 |+u. (79)
2

v(s) = T(s,w)o(s). (80)
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The Youla—Kucera parameté&t(s, w) can be realized as in (56) starting from any realization ef ¢dbmpensator. A simple
realization of (74) is given byl' =0, G =1, H = h and K = k. In this case:

0 1 0 0
FM(w) | T (w) R(w) 0 —(1+pw+k) =& h|—(pw—k) R~ Y(w) 0
T T = ) (81)
HD(w) | KD(w) 0 I 1 0 0 1 0 I
—(pw — k) -1 h| k
where R(w) is the upper—triangular Cholesky factor of the solut®r= R” R = [p;;] of the Lyapunov equation:
(FD (w)TP + PFD (w) = 1. (82)
Leta=¢, 8= (1+ pw+ k) andy = h. Then, (82) entails the solution of the linear set:
0 0 0 -28 0 -27|PMm j
0 -2 0 2 0 0 P22
D33 -1
0 0 0 0 =2y 0 = . (83)
D12 0
1 -8 —a 0 0 1 ) 0
0 0 -1 —y =8 0 23
7 b D31 0

The nonzero entries ak = [r;;] turn out to be

11 = /P11, Ti2 = p12/7"11, T3 = P13/7’11, T22 = /P22 — 7’%2, T23 = (p23 - 7"127’13)/7’227 733 = 1\/ P33 — 7’%3 - 7"%3-
R~! = [s;] is also upper—triangular. Its nonzero entries given by

si1=1/r11, S22 =1/raa, s33=1/r33, s12=—"12/(r11722), S13 = —(r22812 +713/733), S23 = —723/(T22733).

The preceding operations can easily be implemented onkeause their computational burden is small.

VII. CONCLUSIONS

Necessary and sufficient conditions for the existence of BN ktabilizing compensator have been provided. It has been
shown that, if these conditions are satisfied, any givenmatiac gain—scheduled transfer function ensuring intestebility
for constant values of the parameters admits an LPV statglialization (which is nonminimal, in general). A procee to
construct a realization of this kind has been described.edtfie assumption of quadratic stabilizability, it turng that the
dimension of an LPV stabilizing compensator realizatiotmige the dimension of the controlled plant plus the ordethef
compensator transfer function to be realized.

The results lend themselves to interesting extensionsiristance, pointwise optimality can be ensured along witlv LP
stability. However, nothing can yet be said about time—wayyperformance. In this respect, the present paper follawwsath
opposite to that followed in [1][2], where LPV performancashbeen considered without pointwise optimality.

Since the suggested realization procedure is independehiodesign criterion, it can be combined with any synthesis
technique. It seems particularly suited to the online tgrof standard controllers.
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