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Abstract

We illustrate the use of intersection types as a semantic tool for proving easiness
result on λ-terms. We single out the notion of simple easiness for λ-terms as a useful
semantic property for building filter models with special purpose features. Relying
on the notion of easy intersection type theory, given λ-terms M and E, with E
simple easy, we successfully build a filter model which equates interpretation of M
and E, hence proving that simple easiness implies easiness. We finally prove that a
class of λ-terms generated by ω2ω2 are simple easy, so providing alternative proof
of easiness for them.

Introduction

Intersection types were introduced in the late 70’s by Dezani and Coppo
[10,12,6], to overcome the limitations of Curry’s type discipline. They are
a very expressive type language which allows to describe and capture various
properties of λ-terms. For instance, they have been used in [26] to give the
first type theoretic characterization of strongly normalizable terms and in [13]
to capture persistently normalizing terms and normalizing terms. See [14] for
a more complete account of this line of research.

Intersection types have a very significant realizability semantics with re-
spect to applicative structures. This is a generalization of Scott’s natural
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semantics [28] of simple types. According to this interpretation types denote
subsets of the applicative structure, an arrow type A → B denotes the sets of
points which map all points belonging to the interpretation of A to points be-
longing to the interpretation of B, and an intersection type A∩B denotes the
intersections of the interpretation of A and the interpretation of B. Building
on this, intersection types have been used in [6] to give a proof of the com-
pleteness of the natural semantics of Curry’s simple type assignment system
in applicative structures, introduced in [28].

But intersection types have also an alternative semantics based on duality
which is related to Abramsky’s Domain Theory in Logical Form [1]. Ac-
tually it amounts to the application of that paradigm to the special case of
ω-algebraic complete lattice models of pure lambda calculus, [11]. Namely,
types correspond to compact elements: the type Ω denoting the least element,
intersections denoting joins of compact elements, and arrow types denoting
step functions of compact elements. A typing judgment then can be inter-
preted as saying that a given term belongs to a pointed compact open set in
a ω-algebraic complete lattice model of λ-calculus. By duality, type theories
give rise to filter λ-models. Intersection type assignment systems can then be
viewed as finitary logical definitions of the interpretation of λ-terms in such
models, where the meaning of a λ-term is the set of types which are deducible
for it.

This duality lies at the heart of the success of intersection types as a pow-
erful tool for the analysis of λ-models, see e.g. [2,6,11,13,3,16,20,15,25,18,27].

In this paper we face the issue of easiness proofs of λ-terms from the
semantic point of view (we recall that a closed term P is easy if, for any other
closed term M , the theory λβ + {M = P} is consistent).

Actually the mainstream of easiness proofs is based on the use of syntactic
tools (see [22], [23], [21], [8], [9], [7], [24], for easiness results on the λ-terms
dealt with in the present paper and other general easiness results obtained via
syntactic tools).

Instead, very little literature can be found on easiness issues handled by
semantic tools, and we can summarize it in short lines.

A semantic proof of the easiness of ω2ω2 (ω2 = λx.xx) appeared in [5]
with a proof based on non-standard P(ω) models. [19] builds extensional
filter models equating ω2ω2 to arbitrary closed terms. The third reference
is the main inspiration of the present paper: in [4] a strengthened version
of intersection types theories, namely the easy ones, were introduced and
successfully used for proving semantically easiness of the terms ω2ω2 and ω3ω3I
(ω3 = λx.xxx, I = λx.x), by exhibiting, for any M , suitable filter models which
identify the interpretation of M with the interpretation of the given easy term.

In this paper we go in the direction of [4]. We introduce the notion of
simple easiness: roughly speaking, an unsolvable term E is simple easy if, for
each filter model F5 built on an easy intersection type theory Σ5, any type
C in Σ5, we can expand Σ5 to a new easy intersection type theory Σ5′ such
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that the interpretation of E in F5′ is the sup of the old interpretation of E
in F5 and the filter generated by C.

As a first consequence of this fact, if one starts from a filter model where
the interpretation of E is the least element, then [[E]] can possibly become any
filter.

A second consequence is that simple easiness is a stronger notion than
easiness. A simple easy term E is easy, since, given an arbitrary closed term
M , it is possible to build (in a canonical way) a non-trivial filter model which
equates the interpretation of E and M .

Besides of that, simple easiness is interesting in itself, since it has to do
with minimal sets of axioms which are needed in order to give the easy term
a certain type.

The question whether easiness implies simple easiness is open.

We will prove that the terms Rn are simple easy where R0 = (ω2ω2)
and Rn+1 = RnRn. For ω2ω2, our simple easiness result can be viewed as
a strengthened version of the easiness result of [4] for ω2ω2. Instead simple
easiness of Rn for n > 0 is totally new.

The present paper is organized as follows. In Section 1 we present easy
intersection type theories and type assignment systems for them. We prove
some meta-theoretic properties including a Generation Theorem. In Section 2
we introduce λ-models based on spaces of filters in easy intersection type
theories. In Section 3 we introduce the notion of simple easiness and prove
that simple easiness implies easiness. Sections 4 and 5 contain respectively
the simple easiness proofs for ω2ω2 and the generalization to Rn.

1 Intersection Type Assignment Systems

Intersection types are syntactical objects built inductively by closing a given
set CC of type atoms (constants) which contains the universal type Ω under
the function type constructor→ and the intersection type constructor ∩.

Definition 1.1 [Intersection Type Language]
Let CC be a countable set of constants such that Ω ∈ CC. The intersection type
language over CC, denoted by TT = TT(CC) is defined by the following abstract
syntax:

TT = CC | TT → TT | TT ∩ TT.

Notice that the most general form of an intersection type is a finite inter-
section of arrow types and type constants.

Notation
Upper case Roman letters i.e. A,B, . . ., will denote arbitrary types. Greek
letters will denote constants in CC. When writing intersection types we shall
use the following convention: the constructor ∩ takes precedence over the
constructor → and it associates to the right. Moreover An → B will be short
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for A → · · · → A︸ ︷︷ ︸
n

→ B. I, J,K etc. will denote non-empty finite sets.

Much of the expressive power of intersection type disciplines comes from the
fact that types can be endowed with a preorder relation ≤, which induces the
structure of a meet semi-lattice with respect to ∩, the top element being Ω.
The notion we give of easy intersection type theory differs from the original
one of [4] in that:

• we consider just extensional structures (where any constant is equivalent to
an intersection of arrow types);

• we allow equivalence axioms ψ ∼ A of a slightly more general shape.

A part from these two (minor) points the present definition coincide with that
of [4].

Definition 1.2 [Easy intersection type theories]
Let TT = TT(CC) be an intersection type language. The easy intersection type
theory (eitt for short) Σ(CC,5) over TT is the set of all judgments A ≤ B
derivable from 5, where 5 is a collection of axioms and rules such that (we
write A ∼ B for A ≤ B & B ≤ A):

(i) 5 contains the set 5 of axioms and rules:

(refl) A ≤ A (idem) A ≤ A ∩ A

(inclL) A ∩B ≤ A (inclR) A ∩B ≤ B

(mon)
A ≤ A′ B ≤ B′

A ∩B ≤ A′ ∩B′ (trans)
A ≤ B B ≤ C

A ≤ C

(Ω) A ≤ Ω (Ω-η) Ω ≤ Ω → Ω

(→-∩) (A → B) ∩ (A → C) ≤ A → B ∩ C (η)
A′ ≤ A B ≤ B′

A → B ≤ A′ → B′

(ii) further axioms can be of the following two shapes only:

ψ ≤ ψ′,

ψ ∼ ⋂
h∈H(ξh → Eh).

where ψ, ψ′, ξh ∈ CC, A ∈ TT, and ψ, ψ′ 6≡ Ω;

(iii) 5 does not contain further rules;

(iv) for each ψ 6≡ Ω there is exactly one axiom in 5 of the shape ψ ∼ A;

(v) Let 5 contain ψ ∼ ⋂
h∈H(ξh → Eh) and ψ′ ∼ ⋂

k∈K(ξ′k → E ′
k). Then 5

contains also ψ ≤ ψ′ iff for each k ∈ K, there exists hk ∈ H such that
ξ′k ≤ ξhk

and Ehk
≤ E ′

k are both in 5.

Notice that:
(a) since Ω ∼ Ω → Ω ∈ Σ(CC,5) by (Ω) and (Ω-η), it follows that all atoms
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in CC are equivalent to suitable (intersections of) arrow types;
(b) ∩ (modulo ∼) is associative and commutative;
(c) in the last clause of the above definition E ′

k and Ehk
must be constant

types for each k ∈ K.

Notation
When we consider an eitt Σ(CC,5), we will write CC5 for CC, TT5 for TT(CC)
and Σ5 for Σ(CC,5). Moreover A ≤5 B will be short for (A ≤ B) ∈ Σ5

and A∼5B for A ≤5 B ≤5 A. We will consider syntactic equivalence “≡” of
types up to associativity and commutativity of ∩. We will write

⋂
i≤n Ai for

A1 ∩ . . .∩An. Similarly we will write
⋂

i∈I Ai, where I denotes always a finite
non-empty set.

A nice feature of easy intersection type structures is the possibility of
performing smooth induction proofs based on the number of arrows in the
types.

In view of this aim next definition and lemma work.

Definition 1.3
The mapping # : TT5 → N is defined inductively on types as follows:

#(A) = 0 if A ∈ CC5;

#(A → B) = #(A) + 1;

#(A ∩B) = max{#(A), #(B)}.

Lemma 1.4
For all A ∈ TT5 with #(A) ≥ 1 there is B ∈ TT5 such that A∼5B, B ≡⋂

i∈I(Ci → Di), and #(B) = #(A).

Proof. Let A ≡ (
⋂

j∈J(C ′
j → D′

j)) ∩ (
⋂

h∈H ψh), where C ′
j, D

′
j ∈ TT5, ψh ∈

CC5. For each h ∈ H there are I(h), ξ
(h)
i ∈ CC5, E

(h)
i ∈ TT5, such that

ψh∼5
⋂

i∈I(h)(ξ
(h)
i → E

(h)
i ). We can choose

B ≡ (
⋂
j∈J

(C ′
j → D′

j)) ∩ (
⋂

h∈H

(
⋂

i∈I(h)

(ξ
(h)
i → E

(h)
i ))).

2

Before giving the crucial notion of intersection-type assignment system, we
introduce bases and some related definitions.

Definition 1.5 [Bases]

(i) A 5-basis is a (possibly infinite) set of statements of the shape x : B,
where B ∈ TT5, with all variables distinct.

(ii) x ∈ Γ is short for ∃A ∈ TT5. (x :A) ∈ Γ and Γ, x :A is short for Γ∪{x :A}
when x /∈ Γ.
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(iii) Let Γ and Γ′ be 5-bases. The 5-basis Γ ] Γ′ is defined as follows:

Γ ] Γ′ = {x : A ∩B | x : A ∈ Γ and x : B ∈ Γ′}
∪ {x : A | x : A ∈ Γ and x /∈ Γ′}
∪ {x : B | x : B ∈ Γ′ and x /∈ Γ}.

Accordingly we define:

Γ ⊆+ Γ′ ⇔ ∃Γ′′. Γ ] Γ′′ = Γ′.

Definition 1.6 [The type assignment system]
The intersection type assignment system relative to the eitt Σ5, notation λ∩5,
is a formal system for deriving judgements of the form Γ `5 M : A, where the
subject M is an untyped λ-term, the predicate A is in TT5, and Γ is a 5-basis.
Its axioms and rules are the following:

(Ax)
(x :A) ∈ Γ

Γ `5 x :A
(Ax-Ω) Γ `5 M : Ω

(→ I)
Γ, x :A `5 M : B

Γ `5 λx.M : A → B
(→ E)

Γ `5 M : A → B Γ `5 N : A

Γ `5 MN : B

(∩I)
Γ `5 M : A Γ `5 M : B

Γ `5 M : A ∩B
(≤5)

Γ `5 M : A A ≤5 B

Γ `5 M : B

As usual we consider λ-terms modulo α-conversion. Notice that intersec-
tion elimination rules

(∩E)
Γ `5 M : A ∩B

Γ `5 M : A

Γ `5 M : A ∩B

Γ `5 M : B
.

can be immediately proved to be derivable in all λ∩5. A first simple proposi-
tion, which can be proved straightforwardly by induction on the structure of
derivations is the following.

Proposition 1.7

(i) If x /∈ FV(M) and Γ, x :B `5 M : A, then Γ `5 M : A;

(ii) If Γ `5 M : A and Γ ⊆+ Γ′, then Γ′ `5 M : A.

We end this section by stating a Generation Theorem (its proof is quite
similar to that given in [4]), or for the type assignment system λ∩5.

Theorem 1.8 (Generation Theorem)

(i) Assume A6∼5Ω. Γ `5 x : A iff (x : B) ∈ Γ and B ≤5 A for some

B ∈ TT5.

(ii) Γ `5 MN : A iff Γ `5 M : B → A, and Γ `5 N : B for some B ∈ TT5.

(iii) Γ `5 λx.M : A iff Γ, x : Bi `5 M : Ci and
⋂

i∈I(Bi → Ci) ≤5 A, for

some I and Bi, Ci ∈ TT5.
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(iv) Γ `5 λx.M : B → C iff Γ, x :B `5 M : C.

2 Filter Models

In this section we discuss how to build λ-models out of type theories. We
start with the definition of filter for eitt’s. Then we show how to turn the
space of filters into an applicative structure. Finally we will define a notion of
interpretation of λ-terms and show that we get λ-models (filter models).

Filter models arise naturally in the context of those generalizations of Stone
duality that are used in discussing domain theory in logical form (see [1], [11],
[29]). This approach provides a conceptually independent semantics to inter-
section types, the lattice semantics. Types are viewed as compact elements of
domains. The type Ω denotes the least element, intersections denote joins of
compact elements, and arrow types allow to internalize the space of continuous
endomorphisms. Following the paradigm of Stone duality, type theories give
rise to filter models, where the interpretation of λ-terms can be given through
a finitary logical description.

Definition 2.1

(i) A 5-filter (or a filter over TT5) is a set X ⊆ TT5 such that:
• Ω ∈ X;
• if A ≤5 B and A ∈ X, then B ∈ X;
• if A, B ∈ X, then A ∩B ∈ X;

(ii) F5 denotes the set of 5-filters over TT5;

(iii) if X ⊆ TT5, ↑ X denotes the 5-filter generated by X;

(iv) a 5-filter is principal if it is of the shape ↑ {A}, for some type A. We
shall denote ↑ {A} simply by ↑ A.

It is well known that F5 is a ω-algebraic cpo, whose compact (or finite)
elements are the filters of the form ↑ A for some type A and whose bottom
element is ↑ Ω.

Next we endow the space of filters with the notions of application and of
λ-term interpretation. Let EnvF5 be the set of all mappings from the set of
term variables to F5.

Definition 2.2

(i) Application · : F5 ×F5 → F5 is defined as

X · Y = {B | ∃A ∈ Y.A → B ∈ X}.
(ii) The interpretation function: [[ ]]5 : Λ× EnvF5 → F5 is defined by

[[M ]]5ρ = {A ∈ TT5 | ∃Γ |= ρ. Γ `5 M : A},
where ρ ranges over EnvF5 and Γ |= ρ if and only (x : B) ∈ Γ implies
B ∈ ρ(x).
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(iii) The triple 〈F5, ·, [[ ]]5〉 is called the filter model over Σ5.

Notice that previous definition is sound, since it is easy to verify that X ·Y
is a 5-filter. Next we prove that F5 is a λ-model. First we need a syntactic
result, which is proved by induction on the derivation of judgments.

Theorem 2.3
For all I, and Ai, Bi, C,D ∈ TT5,⋂

i∈I

(Ai → Bi) ≤5 C → D ⇒ ∃J ⊆ I.C ≤5
⋂
i∈J

Ai &
⋂
i∈J

Bi ≤5 D,

provided that D 6∼5Ω.

Theorem 2.4
The filter model 〈F5, ·, [[ ]]5〉 is a λ-model, in the sense of Hindley-Longo [17],
that is:

(i) [[x]]5ρ = ρ(x);

(ii) [[MN ]]5ρ = [[M ]]5ρ · [[N ]]5ρ ;

(iii) [[λx.M ]]5ρ ·X = [[M ]]5ρ[X/x];

(iv) (∀x ∈ FV(M). [[x]]5ρ = [[x]]5ρ′ ) ⇒ [[M ]]5ρ = [[M ]]5ρ′ ;

(v) [[λx.M ]]5ρ = [[λy.M [y/x]]]5ρ , if y /∈ FV(M);

(vi) (∀X ∈ F5.[[M ]]5ρ[X/x] = [[N ]]5ρ[X/x]) ⇒ [[λx.M ]]5ρ = [[λx.N ]]5ρ .

Moreover it is extensional, that is [[λx.Mx]]5ρ = [[M ]]5ρ when x /∈ FV(M).

Proof. By Theorem 2.3 and Theorem 2.13 (iii) of [11], [F5 → F5] is a retract
of F5, hence it is a λ-model. 2

3 Simple easy terms

In this section we give the main notion of the paper, namely simple easiness.
A term E is simple easy if, given any eitt Σ5 and a type Z in it, we can
extend in a conservative way Σ5 to a new easy intersection type theory, say
Σ5′ , so that [[E]]5

′
=↑ Z ∪ [[E]]5. On one hand, a consequence of this notion

is that it is possible to build through a uniform technique, filter models that
equate the interpretation of E with the interpretation of M , for M arbitrary.
Therefore simple easiness implies easiness. On the other hand, simple easiness
is interesting in itself: in fact when E is simple easy then for any Σ5 and type
Z in it, we can enrich Σ5 with a set of new constants and axioms for them,
which is minimal, in the sense that in the enriched intersection type theory, E
can receive just Z (and its intersections with other types already derivable for
E in Σ5), as new type with respect to the old types E could receive in Σ5.

Definition 3.1
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(i) Let Σ5 and Σ5′ be two easy intersection type theories. We define Σ5 v
Σ5′ iff CC5 ⊆ CC5

′
and for all A,B ∈ TT5,

A ≤5 B ⇔ A ≤5′ B.

(ii) Let, for any n ∈ N, Σ5n v Σ5n+1 . We define

Σ5∗ = Σ(
⋃
n

CC5n ,
⋃
n

5n).

It is immediate to prove that in the definition above Σ5∗ is an eitt and for
each n, Σ5n v Σ5∗ .

Definition 3.2

(i) A pointed eitt is a pair (Σ5, Z) with Z ∈ TT5.

(ii) EITT and PEITT denote respectively the class of eitts and pointed eitts.

(iii) A filter scheme is a mapping S : PEITT → EITT, such that for all
(Σ5, Z)

Σ5 v S(Σ5, Z).

We now give the central notion of simple easy term.

Definition 3.3
An unsolvable term E is simple easy if there exists a filter scheme SE such
that for all pointed eitt (Σ5, Z),

`5′ E : B ⇐⇒ ∃C ∈ TT5.C ∩ Z ≤5′ B & `5 E : C,

where Σ5′ = SE(Σ5, Z).

Theorem 3.4
With the same notation of previous definition, we have [[E]]5

′
=↑ Z t [[E]]5.

Proof. (⊇) We have, taking B = Ω in the Definition 3.3, `5′ E : Z. Therefore
↑ Z ⊆ [[E]]5

′
. Since moreover [[E]]5 ⊆ [[E]]5

′
, we get [[E]]5

′ ⊇↑ Z t [[E]]5.
(⊆) If B ∈ [[E]]5

′
, then `5′ E : B, hence, by Definition 3.3, there exists

C ∈ TT5 such that C ∈ [[E]]5 and C ∩Z ≤5′ B. We are done, since C ∩Z ∈↑
Z t [[E]]5

′
. 2

Theorem 3.5
Let E be a simple easy term. Then E is easy.

Proof. Let M be an arbitrary closed λ-term. We prove that there exists a
non-trivial filter model F5 such that [[M ]]5 = [[E]]5. First a simple remark on
interpretations of terms. Let (Σ5n)n be an ascending chain of easy intersection
type theories, with Σ5n v Σ5n+1 for each n. For each n, we can find a sequence
of types (A

(n)
p )p ⊆ TT5n such that

∀n, p.A
(n)
p+1 ≤5n A(n)

p & [[M ]]5n =
⋃
p

↑ A(n)
p .
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Actually it is not restrictive to choose such sequences so that this further
condition holds:

(∗) ∀n.A
(n)
n+1 ≤5n+1 A(n)

n .

Given such sequences (A
(n)
p )p, we define, for each n, Zn = A

(n)
n ∈ TT5n . We

show that in the filter model F5∗

(†) [[M ]]5∗ =
⋃
n

↑ Zn.

(⊇) is immediate since by definition of Zn we have Zn ∈ [[M ]]5n ⊆ [[M ]]5∗ .
As to (⊆), let A ∈ [[M ]]5∗ . Then there exists n such that A ∈ [[M ]]5n =

⋃
p ↑

A
(n)
p . This implies that there exists p such that A

(n)
p ≤5n A. For any m ≥ n, p

it follows Zm ≤5m A, hence A ∈ ⋃
n ↑ Zn.

We now exploit the equality (†) and define a filter model such that the
interpretation of E is equal to

⋃
n ↑ Zn. Here is the construction of the

model.

step 0:
take the easy intersection type theory Σ50 whose filter model is isomorphic to
Scott D∞ (see [3]):

- CC50 = {Ω, ω};
- 50 = 5∪ {ω ∼ Ω → ω}.

step (n + 1):
perform the following operations:

- compute [[M ]]5n ;

- take a sequence (A
(n)
p )p such that [[M ]]5n =

⋃
p ↑ A

(n)
p and condition (∗)

above is satisfied;
- define the type Zn as A

(n)
n ;

- define Σ5n+1 = SE(Σ5n , Zn);

final step:
take Σ5∗ .

We will prove that F5∗ identifies M and E, but before that we have to
prove that F5∗ is not trivial. For this aim we show that [[I]]5∗ 6= [[K]]5∗ , where
K = λxy.x. Let D ≡ (ω → ω) → (ω → ω). Since `5∗ I : D, we have that
D ∈ [[I]]5∗ . On the other hand, if D ∈ [[K]]5∗ , then there should be n such
that D ∈ [[K]]5n . This would imply (by applying several times the Generation
Theorem) ω → ω ≤5n ω. Since we have Σ5p v Σ5p+1 for any p, we should
have ω → ω ≤50 ω. Since ω ∼50 Ω → ω, we should conclude, by Theorem
2.3, Ω ≤50 ω, which is a contradiction. Therefore we cannot have D ∈ [[K]]5∗

and the model F5∗ is non-trivial.

In order to prove that [[M ]]5∗ = [[E]]5∗ , in view of (†), it is sufficient to
prove that

[[E]]5∗ =
⋃
n

↑ Zn.
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First we prove (⊇). By Theorem 3.4 and the definition of Σ5n , we have that
for all n, Zn ∈ [[E]]5n , hence Zn ∈ [[E]]5∗ and the inclusion is proved.
We prove (⊆) by induction on n, by showing that [[E]]5n ⊆↑ Zn. If n = 0, then
[[E]]50 =↑ Ω, since F50 is the Scott D∞ model, where all unsolvable terms
are equated to bottom. Suppose the thesis true for n and let B ∈ [[E]]5n+1 .
Then `5n+1 E : B. This is possible only if there exists C ∈ TT5n such that
C ∩ Zn+1 ≤5n+1 B and moreover `5n E : C. By induction we have C ∈↑Zn,
hence Zn ≤5n C. Since Zn+1 ≤5n+1 Zn, we derive Zn+1 ≤5n+1 C, hence
Zn+1 ≤5n+1 Zn+1 ∩ C ≤5n+1 B. 2

4 Simple easiness of ω2ω2

In this section we prove that ω2ω2 is simple easy, and as a by-product of
Theorem 3.5 we obtain its easiness.

First we give a lemma which characterizes the types derivable for ω2 and
ω2ω2.

Lemma 4.1

(i) `5 ω2 : A → B iff A ≤5 A → B;

(ii) `5 ω2ω2 : B iff A ≤5 A → B for some A ∈ TT5 such that `5 ω2 : A.

(iii) If `5 ω2ω2 : B then there exists A ∈ TT5 such that #(A) = 0, A ≤5
A → B and `5 ω2 : A.

Proof. Using Theorem 1.8 and Lemma 1.4. A direct proof can be found in
[4]. 2

The first step for proving simple easiness of ω2ω2 is to find its filter scheme.

Definition 4.2
Let be (Σ5, Z) be a pointed eitt. We define

S(ω2ω2)(Σ
5, Z) = Σ5′ ,

where:

• CC5
′
= CC5 ∪ {χ} (with χ /∈ CC5);

• 5′ = 5∪ {χ ∼ χ → Z}.
Lemma 4.3

(i) S(ω2ω2)(Σ
5, Z) is an easy intersection type theory;

(ii) Σ5 v S(ω2ω2)(Σ
5, Z).

Proof. (i) is immediate by Definition 4.2. (ii) follows by induction on deriva-
tion of judgements. 2

Next lemma is crucial for proving that S(ω2ω2) is a filter scheme for ω2ω2.
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Lemma 4.4
Let Σ5′ = S(ω2ω2)(Σ

5, Z). Then

`5′ ω2ω2 : B ⇐⇒ ∃C ∈ TT5.C ∩ Z ≤5′ B & `5 ω2ω2 : C.

Proof. Throughout the proof we use the Generation Theorem and Theorem
2.3 without explicitely mentioning them each time.

(⇒) Let `5′ ω2ω2 : B. Then there exists a type P ∈ TT5
′
such that

(a) P ≡ ⋂
i∈I(ξi → Ei) ∩ χ;

(b) ∀i ∈ I.ξi ∈ CC5 & Ei ∈ TT5;
(c) P ≤5′ P → B;
(d) `5′ ω2 : P .

In fact, by Lemma 4.1(iii) it follows that there exists T ∈ TT5
′
such that the

following three properties hold:
(i) #(T ) = 0;
(ii) T ≤5′ T → B;
(iii) `5′ ω2 : T .

If we consider T ′ ≡ T ∩ χ, it is easy to prove that T ′ satisfies (i), (ii) and
(iii) above. It must hold T ′ ∼5′ (

⋂
k∈K ψk) ∩ χ, with ψk ∈ CC5, ψk 6∼5′Ω

for all k ∈ K, since the unique possible shape for T ′ is an intersection of
constants containing χ. Next, since for each k ∈ K, we have, from the axioms
of 5, ψk ∼5

⋂
l∈L(k)(ξ

(k)
l → E

(k)
l ), we can define P ≡ ⋂

k∈K(
⋂

l∈L(k)(ξ
(k)
l →

E
(k)
l ))∩χ. Then, by reindexing the types and using a unique intersection, we

get the required syntactic shape for P as in (a).

Considering (a), (d), (≤5) and Lemma 4.1(i), we have that for all i ∈ I,
ξi ≤5′ ξi → Ei. Since Σ5 v Σ5′ and for each i ∈ I, ξi, Ei ∈ TT5, it follows
that ξi ≤5 ξi → Ei, for all i ∈ I. By applying Lemma 4.1(i) and (∩I), we
get `5 ω2 :

⋂
i∈I(ξi → Ei). Because of (c), there exists I ′ ⊆ I such that

P ≤5′ (
⋂

i∈I′ ξi) ∩ χ and (
⋂

i∈I′ Ei) ∩ Z ≤5′ B. Because of (d) and (≤5′), it

follows `5′ ω2 :
⋂

i∈I′ ξi. Let ξi ≡
⋂

m∈M(i)(ζ
(i)
m → D

(i)
m ). Then by (≤5′), we

have `5′ ω2 : ζ
(i)
m → D

(i)
m for each i ∈ I ′ and m ∈ M (i). By Lemma 4.1(i) it

follows, for each i ∈ I ′ and m ∈ M (i), ζ
(i)
m ≤5′ ζ

(i)
m → D

(i)
m . Exploiting again

Σ5 v Σ5′ , we have, for each i ∈ I ′ and m ∈ M (i), ζ
(i)
m ≤5 ζ

(i)
m → D

(i)
m , hence,

by Lemma 4.1(i), `5 ω2 : ζ
(i)
m → D

(i)
m , for each i ∈ I ′ and m ∈ M (i). Therefore,

by (∩I), we have `5 ω2 :
⋂

i∈I′(
⋂

m∈M(i)(ζ
(i)
m → D

(i)
m )), that is `5 ω2 :

⋂
i∈I′ ξi.

Since `5 ω2 :
⋂

i∈I(ξi → Ei), by (≤5) we get `5 ω2 : (
⋂

i∈I′ ξi) → (
⋂

i∈I′ Ei).
Therefore, applying (→ E), we obtain `5 ω2ω2 :

⋂
i∈I′ Ei. Since we have

proven (
⋂

i∈I′ Ei) ∩ Z ≤5′ B, we are done, by choosing C ≡ ⋂
i∈I′ Ei.

(⇐) By Theorem 3.4 we have that `5′ ω2ω2 : Z. Since by hypothesis `5
ω2ω2 : C and moreover Σ5 v Σ5′ , we obtain `5′ ω2ω2 : C. By applying
(≤5′) we have `5′ ω2ω2 : B. 2

Theorem 4.5
ω2ω2 is simple easy.
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Proof. It follows immediately by Definition 3.3, Lemmas 4.3 and 4.4. 2

By previous theorem and Theorem 3.5 we get via semantics the well known
result on easiness of ω2ω2 (see e.g. [5] for another semantic proof).

Corollary 4.6 ω2ω2 is easy.

5 Generalizing simple easiness to Rn

In this section we generalize the results of previous section, proving that a
class of λ-terms generated by ω2ω2 is simple easy. More in details, consider
the terms so defined inductively:

R0 = ω2ω2;

Rn+1 = RnRn.

Relying on semantic proof of easiness for ω2ω2, it is not difficult to prove
via semantics that for any n, Rn is an easy term: in fact we know from previous
sections that there exists a filter model F5∗ which identifies R0 to an arbitrary
M ′. Take M ′ = KM . Then we have

[[R1]]
5∗ = [[R0R0]]

5∗

= [[KMR0]]
5∗

= [[M ]]5∗ .

Thus we have that for any M , we can build a model which identifies R1 with
M . So going on inductively, we can prove that Rn is easy for any n.

Nevertheless proving simple easiness of Rn is a rather more difficult task,
and it is the aim of the present section.

We start fixing some notations. From now on σ̃ stands for a (non-empty)
sequence of types [σ1, . . . , σn]. Given A and B types, ρ(σ̃, B) will be short for
the type

σ1 ∩ (σ1 → σ2) ∩ . . . ∩ (σ1 → σ2 . . . → σn) ∩ (σ1 → σ2 . . . → σn → B).

For each 0 ≤ p ≤ n, we write ρ(p)(σ̃, B) as short for ρ([σp+1, . . . , σn], B).
Notice that

- ρ(σ̃, B) = ρ(0)(σ̃, B),
- A → ρ([σ1, . . . , σn, σn+1], B) ∼ A → ρ([σ1, . . . , σn], σn+1 ∩ (σn+1 → B)),
- ρ(p)(σ̃) ∼ σp+1 → ρ(p+1)(σ̃),
- ρ(n)(σ̃, B) ≡ B.

Let τ be a fresh constant. We define a set of axioms A(σ̃, τ) as follows:

A(σ̃) = {σj ∼ τ → σj | 1 ≤ j ≤ n} ∪ {τ ∼ σ1 → σ1}.
Before going on we have to remark the auxiliary character of the set of

axioms A. In Definition 5.1 below, in defining the theory Σ5(n)
, the central

role is played by the axiom χ ∼ ρ(χ, σ̃, Z), which allows to give the easy term
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the type Z. But since we consider extensional structures, we need to find also
suitable axioms for each new constant that is introduced. For this aim we
introduce A.

We now define the sequence of filter scheme SRn .

Definition 5.1
For any n > 0 and (Σ5, Z) pointed eitt, we define SRn(Σ5, Z) = Σ5(n)

, where:

- CC5
(n)

= CC5 ∪ {χ, σ1, . . . , σn, τ};
- 5(n) = 5∪A(σ̃, τ) ∪ {χ ∼ χ → ρ(σ̃, Z)}.

Lemma 5.2

(i) SRn(Σ5, Z) is an easy intersection type theory;

(ii) Σ5 v SRn(Σ5, Z).

Proof. (i) follows immediately by Definition 4.2. (ii) follows by induction on
derivation of judgements. 2

Next two lemmata are very useful. Their proofs are long but not difficult,
relying on the Generation Theorem and Theorem 2.3.

Lemma 5.3
Let n > 0. Let A ∈ TT5, A 6∼5 Ω. Then for any 1 ≤ j ≤ n,

(i) A 6≤5(n) σj;

(ii) A 6≤5(n) τ ;

(iii) σj 6≤5(n) A;

(iv) τ 6≤5(n) A.

Lemma 5.4
Let n > 0 and 0 ≤ p ≤ n. Then

(i) `5(n)
Rp : ρ(p)(σ̃, Z);

(ii) 6`5(n)
Rp : σj, for j ≤ p;

(iii) 6`5(n)
Rp : τ .

Next theorem is the key result for proving simple easiness of Rn. Its
consequence, as expected, will be that SRn are filter schemes for Rn.

Theorem 5.5 Let n > 0 and 0 ≤ p ≤ n. Then

`5(n)

Rp : B ⇐⇒ ∃C ∈ TT5. `5 Rp : C & C ∩ ρ(p)(σ̃, Z) ≤5(n) B.

Proof. (⇒) We reason by induction on p. If p = 0, then the proof follows
exactly the lines of the proof of Theorem 4.4, by replacing Z with ρ(p)(σ̃, Z).

Suppose now the thesis true for p. We prove the thesis for p + 1. Let `5(n)

Rp+1 : B. Then there exists A′ ∈ TT5
(n)

such that `5(n)
Rp : A′ ∩ (A′ → B).

Since ρ(p)(σ̃, Z) ≤5(n) σp+1, by Lemma 5.4(i) and (≤5(n)), we get `5(n)

Rp : σp+1. Hence we can define A ∈ TT5
(n)

as A ≡ A′ ∩ (A′ → B) ∩ σp+1 so

14



that
- `5(n)

Rp : A and
- A ≤5(n) σp+1 ∩ (A → B).

By induction there exists C ′ ∈ TT5 such that:

(i) `5 Rp : C ′;

(ii) C ′ ∩ ρ(p)(σ̃, Z) ≤5(n) A.

Let C ′ ∼5
⋂

i∈I(Di → Ei), with Di ∈ TT5 for each i ∈ I. By (ii) and (trans)
it follows

(†) C ′ ∩ ρ(p)(σ̃, Z) ≤5(n) A → B.

Notice that

ρ(p)(σ̃, Z) ∼5(n) (τ → σp+1) ∩ (σp+1 → ρ(p+1)(σ̃, Z)).

Moreover we cannot have A ≤5(n) τ . If so, we could deduce `5(n)
Rp : τ ,

contradicting Lemma 5.4(iii). So, when applying Theorem 2.3 to (†), we
conclude that there exists I ′ ⊆ I such that:

(a) A ≤5(n) (
⋂

i∈I′ Di) ∩ σp+1;

(b) (
⋂

i∈I′ Ei) ∩ ρ(p+1)(σ̃, Z) ≤5(n) B.

(a) along with (ii), implies C ′∩ρ(p)(σ̃, Z) ≤5(n)

⋂
i∈I′ Di. Let K, Tk, Uk ∈ TT5,

be such that
⋂

i∈I′ Di ≡
⋂

k∈K(Tk → Uk). By (trans) for all k ∈ K we have
C ∩ ρ(p)(σ̃, Z) ≤5(n) Tk → Uk, that is

(c)
⋂
i∈I

(Di → Ei) ∩ (τ → σp+1) ∩ (σp+1 → ρ(p+1)(σ̃, Z)) ≤5(n) Tk → Uk.

Since Tk ∈ TT5, by Lemma 5.3(i) and (ii), we can have neither Tk ≤5(n) τ nor
Tk ≤5(n) σp+1. So, when applying Theorem 2.3 to (c), we obtain that there
exists Ik ⊆ I, such that Tk ≤5(n)

⋂
i∈Ik

Di and
⋂

i∈Ik
Ei ≤5(n) Uk. By standard

computations we get
⋂

i∈I(Di → Ei) ≤5(n) Tk → Uk for all k ∈ K, hence

C ′ ≤5(n)

⋂

k∈K

(Tk → Uk) ≡
⋂

i∈I′
Di.

Applying Lemma 5.2, we get C ′ ≤5
⋂

k∈K(Tk → Uk) ≡
⋂

i∈I′ Di. By (i) and
(≤5), we get

(d) `5 Rp :
⋂

i∈I′ Di.
On the other hand, since C ′ ≤5 (

⋂
i∈I′ Di) → (

⋂
i∈I′ Ei), by (≤5) we have

(e) `5 Rp : (
⋂

i∈I′ Di) → (
⋂

i∈I′ Ei). Therefore, applying (→ E) to (d) and
(e), we get `5 Rp+1 :

⋂
i∈I′ Ei. We are done, defining C as

⋂
i∈I′ Ei and taking

into account of (ii).

(⇐) follows by standard computations, using Lemma 5.4(i). 2

Simple easiness of Rn is now an immediate consequence of previous The-
orem.

Theorem 5.6
For any n, Rn is simple easy.
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Proof. Take p = n in the statement of the previous theorem and remember
ρ(n)(σ̃, Z) ≡ Z. 2

Corollary 5.7
For any n, Rn is easy.
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