Intersection Types and Domain Operators

Fabio Alessf, Mariangiola Dezani-Ciancaglifj Stefania Lusifi
2Dipartimento di Matematica e Informatica, Univeidi Udine, via delle Scienze 208,
33100 Udine, Italyalessi@dimi.uniud.it

bDipartimento di Informatica, Universitdi Torino, Corso Svizzera 185, 10149 Torino,
Italy dezani@di.unito.it

“Dipartimento di Informatica, Universitdi Venezia, via Torino 153, 30170 Venezia, Italy
slusin@dsi.unive.it

Abstract

We use intersection types as a tool for obtainlamodels. Relying on the notion efasy
intersection type theorywe successfully build a-model in which the interpretation of an
arbitrary simple easy term is any filter which can be described by a continuous predicate.
This allows us to prove two results. The first gives a proof of consistency of-theory
where the\-term (A\z.zx)(Az.xzx) is forced to behave as the join operator. This result has
interesting consequences on the algebraic structure of the latticéhebries. The second
result is that for any simple easy term there i&-emodel where the interpretation of the
term is theminimalfixed point operator.

Key words: Lambda calculus, intersection types, models of lambda calculus, lambda
theories, fixed point operators.

Introduction

Intersection types were introduced in the late 70’s by Dezani and Coppo [8, 10, 6],
to overcome the limitations of Curry’s type discipline. They are a very expressive
type language which allows to describe and capture various propertieteains.

For instance, they have been used in Pottinger [19] to give the first type theoretic
characterisation o$trongly normalizablderms and in Coppo et al. [11] to cap-
ture persistently normalising termandnormalising termsSee Dezani et al. [12],
appearing also in this issue, for a more complete account of this line of research.

* Partially supported by EU within the FET - Global Computing initiative, project DART
IST-2001-33477, and MURST Projects COMETA and McTati. The funding bodies are not
responsible for any use that might be made of the results presented here.

Preprint submitted to Elsevier Science 28 September 2003

Intersection types have a very significant realizability semantics with respect to
applicative structures. This is a generalisation of Scott’'s natural semantics [20] of
simple types. According to this interpretation types denote subsets of the applica-
tive structure, an arrow typé — B denotes the sets of points which map all points
belonging to the interpretation of to points belonging to the interpretation Bf

and an intersection typé N B denotes the intersections of the interpretation of

and the interpretation aB. Building on this, intersection types have been used in
Barendregt et al. [6] to give a proof of the completeness of the natural semantics
of Curry’s simple type assignment system in applicative structures, introduced in
Scott [20].

Intersection types have also an alternative semantics basawladity which is re-

lated to Abramsky'®©omain Theory in Logical Form[1]. Actually it amounts to

the application of that paradigm to the special case-algebraic lattice models

of pure A\-calculus, see Coppo et al. [9]. Namely, types corresporatapact ele-
ments the type(2 denotes the least element, intersections dejoats of compact
elements, and arrow types denatep functionof compact elements. A typing
judgement can then be interpreted as saying that a given term belongs to a pointed
compact open set in an-algebraic lattice model ok-calculus. By duality, type
theories give rise tdilter A-models Intersection type assignment systems can then
be viewed adinitary logical descriptions of the interpretation afterms in such
models, where the meaning of\eterm is the set of types which are deducible for it.
This duality lies at the heart of the success of intersection types as a powerful tool
for the analysis oh-models, see Plotkin [18] and the references there. Section 2 of
Dezani et al. [12] discusses intersection types (with partial intersection) as finitary
descriptions of inverse limit-models.

The A-models we build out of intersection types differ essentially inghresorder
relationsbetween types. In all these preorders, the equivalencies between atomic
types and intersections of arrow types are crucial in order to determine the theory.
In the present paper the focus is on semantic proofs of consistenciebebries.

Actually, the mainstream of consistency proofs is based on the use of syntactic tools
(see Kuper [15] and the references there). Instead, very little literature can be found
on the application of semantic tools, we can mention the papers Zylberajch [22],
Baeten and Boerboom [5], Alessi et al. [3], Alessi and Lusin [4].

In [4] Alessi and Lusin deal with the issue of easiness proofs-tgrms from the
semantic point of view (we recall that a closed term easyif, for any other closed

termt, the theory\ + {t = e} is consistent). Going in the direction of Alessi et

al. [3], they introduced the notion @imple easinesshis notion, which turns out

to be stronger than easiness, can be handled in a natural way by semantic tools, and
allows to prove consistency results via construction of suitable filter models: given

a simple easy terna and an arbitrary closed term it is possible to build (in a
canonical way) a non-trivial filter model which equates the interpretatienawfd

t. [4] proves in such a way the easiness of several terms.

Besides, simple easiness is interesting in itself, since it has to do with minimal sets
of axioms which are needed in order to assign certain types to the easy terms.

The theoretical contribution of the present paper is to show how the relation be-
tween simple easiness and axioms on types can be put to work in order to interpret
easy terms by filters described bgntinuougredicates.

This produces two nice applications. Given an arbitrary simple easyterabuild
a filter modelFV such thatk is interpreted as the join operator: the interpretation
[e]V of e in FV is exactly the filtel© such that for all filters, T

(©-

[1]

) T=ZUT.

This way we prove the consistency of theheory which equate@\z.xx)(\zx.xx)

to the join operator. This consistency has been used in Lusin and Salibra [17] to
show that there exists a sub-lattice of the lattice-@heories which satisfies many
interesting algebraic properties.

The second result we give is the following. For an arbitrary simple easydénare

is a filter modelFV such that the interpretatiofe]V of e in FV is theminimal
fixed point operatoy: (thatisu(f) = L, f"(L), for all continuous endofunctions

f over FV). This result is not trivial: easy terms can obviously be equated to an
arbitrary fixed point combinatoy, i.e. it is possible to find-modelsM such that
[e]™ = [Y]™. This only implies thafe] represents a fixed point operator, but
there is no guarantee as to timénimality.

The present paper is organised as follows. In Section 1 we present easy intersection
type theories and type assignment systems for them. In Section 2 we intrbduce
models based on spaces of filters in easy intersection type theories. Section 3 gives
the main theoretical contribution of the present paper: after introducing simple easy
terms, we show that each simple easy term can be interpreted as an arbitrary filter
which can be described bya@ntinuouspredicate. In Section 4 and Section 5 we
derive from our result the two above mentioned applications. Finally, Section 6 dis-
cusses similarities and differences between the present paper and Dezani et al. [12].

The consistency of tha-theory in which the-term (Az.xzz)(A\zx.zz) behaves as
the join operator was presented at WIT'02 [13].

1 Intersection Type Assignment Systems

Intersection typesire syntactic objects built inductively by closing a given Eet

of type atomgconstants), which contains the universal typeunder thefunction
typeconstructor— and theintersectiontype constructon.

Definition 1 (Intersection type language)Let C be a countable set of constants
such that) € C. Theintersection type languag&er C, denoted by = T(C), is
defined by the following abstract syntax:

T=C|T—-T|TNT.

Notation Upper case Roman letters i£, B, . . ., will denote arbitrary types. Greek
letterso, ¢, . . . will denote constants i€. When writing intersection types we shall
use the following conventions:

¢ the constructon takes precedence over the construetgr

e the constructor— associates to the right;

o Nic; A;with I ={1,...,n}andn > lis shortfor((... (A1 NAz)...) N A,);
e Nics A; with I =0 isQ.

Much of the expressive power of intersection type disciplines comes from the fact
that types can be endowed wittpeeorder relation< which satisfies axioms and
ruless; of Figure 1, so inducing the structure of a meet semi-lattice with respect
to N, the top element being. We recall here the notion @asyintersection type
theory as first introduced in Alessi and Lusin [4].

A<B B<C
< < <
(refl) A< A (trans) A<C
A<A B<PH
— —) <
(mon) ANB<AND (idem) A< ANA
(incly) ANB< A (inclg) ANB<B
A<A B<PH
(—N) A—=B)NA—-C)<A—=BnC (n) A-B<A D
Q) A<Q Q) Q<00

Fig. 1. The axioms and rules gf

Definition 2 (Easy intersection type theories)LetT = T(C) be an intersection
type language. Theasy intersection type theofgitt for short) ¥(C, /) overT
is the set of all judgementd < B derivable fromsy, wherexy is a collection of
axioms and rules such that (we write~ Bfor A < B & B < Aandxy/~ for

v\ V)

(1) w7 contains the sety of axioms and rules shown in Figure 1;

(2) v~ contains axioms of the following two shapes only:

o< ¢,
¢ ~ Nhen(pn — Fr).

Where¢> ¢/7 Yn € (C,, Fh e, and¢7 (b, §é Q’

(3) noruleisinsy—;

(4) foreachy # Q2 there is exactly one axiom ip~ of the shape ~ N, (pn —
Fr);

(5) let 7~ containg ~ Nper(en — Fr) and ¢’ ~ Ny (@) — F'%), with
o, ¢ # Q. Thensy~ contains alsop < ¢' iff for eachk € K, there exists
hi, € H such thaty’,, < ¢, and F},, < F'; are both inyy~.

Notice that:

(@) since2 ~ Q2 — Q € X(C,) by (©2) and (2-n), it follows that all atoms inC
are equivalent to suitable (intersections of) arrow types;

(b) N (modulo~) is associative and commutative;

(c) in the last clause of the above definiti6jy and F},, must be constant types for
eachk € K.

Notation When we consider an eit(C, 57), we will write CV for C, T forT(C)
andXV for ¥(C, 7). MoreoverA <. B will be short for(A < B) € ¥V and
A~g B for A <, B <, A. We will consider syntactic equivalence=" of types
up to associativity and commutativity of.

One can easily show that all types (not only type constants) are equivalent to suit-
able intersections of arrow types. This is stated in the following lemma together
with a simple inequality between intersections of arrows and arrows of intersec-
tions.

Lemma 3
(1) Forall A €TV there arel, andB;, C; € TV such that

A~ ﬂ(BZ —).

el
(2) Forall J C I,andA;, B; €TV,

(4 — B;) <y ([4) — ([By).

el ieJ icJ

A nice feature of eitts is the possibility of performing smooth induction proofs
based on the number of arrows in types. In view of this aim next definition and
lemma work.

Definition 4 The mapping# : TV — N is defined inductively on types as follows:

4(A) —0 if Ac CY;
#(A — B) = #(A) + 1;
#(ANB) = max{#(A), #(B)}.

Lemma5 For all A € TV with #(A) > 1 there isB € TV such thatA~ B,
B =i/ (Ci — Dy), and#(B) = #(A).

PROOF. Let A = (N;c;(C] — Dj)) N (Nen ¢n), WhereC:, D} €TV, ¢, € CV.
For eachh € H there ard ™, o\ € €V, F €TV, such that

h h
o~y) (9" — FY).

ieI(h)

We can choose

B=(N(C—D)n(N(N " —EM)).

jeJ heH jerh)

Another nice feature of eitts is that the order between intersections of arrows agrees
with the order between joins of step functions. This property, which is fully ex-
plained in Section 2 of [12], relies on the next theorem.

Theorem 6 For all I, andA,;, B;,C,D €TV,

el e

PROOF. («) easily follows from Lemma @) and rule).

As to (=), recall that, by Definition 2, for each constaniz (2, there is exactly one
axiom ins/~ of the shape ~ N,cu(wrn — Fr). One can prove the statement by
induction on the definition of,; the only non-trivial case is when the inequality is
derived using transitivity as the last step with the middle type being an intersection
containing constants. In that case, conditibndf Definition 2 is used.

Notice that in the statement of Theorem 6 the.satay be empty, and in this case
we getQi~ D.

Before giving the crucial notion dhtersection-type assignment systeve intro-
duce bases and some related notations.

Definition 7 (Basis) A v/-basisis a (possibly infinite) set of statements of the
shaper: A, whereA € TV, with all variables distinct.

We will use the following notations:

e If T"isaV-basisthern € I'is short for(xz : A) € I' for someA.
e If I"is asy-basis andd € TV thenl", z: A is short forl’ U {z: A} whenz ¢ T".

Definition 8 (Type assignment system)Theintersection type assignment system
relative to the eitt>V, notation\NV, is a formal system for deriving judgements of
the formI’ -V t : A, where thesubjectt is an untyped\-term, thepredicateA is
inTY, andl" is asy-basis. Its axioms and rules are the following:

: r

(AX) m (AX-Q) T FY ¢ : ©
x:
(1) e:AFVt: B (E)Fl—vt:A—>B 'FYu:A
— —
v xxt:A— B 'Y tu: B

(m)I‘I—Vt:AFI—Vt:B (<>F|—Vt:AA§vB

F'-vt:ANB —V I'-vt:B

Example 9 Self-application can be easily typed in alhV, as follows.

zr:(A—=B)NAFVz:(A—B)NA z2:(A—=B)NAFVz:(A—B)NA
<

>z SV)
z:(A-B)NAFVz:A— B zr:(A—=B)NAFVz: A

(—E)
z:(A—B)NAFV zx: B

FVY \Xx.xx: (A— B)NA— B

—>|)

Notice that due to the presence of axigAx-(2), one can type terms without as-
suming types for their free variables.

As usual we considex-terms modulax-conversion. Notice that intersection elim-
ination rules
'vVt:AnB I'vVt:AnB

(NE) '=vt: A '-vt¢:B
are derivablé in any \NV.

Moreover, the following rules are admissible:

I Recall that a rule islerivablein a system if, for each instance of the rule, there is a
deduction in the system of its conclusion from its premises. A rudgisissiblan a system

if, for each instance of the rule, if its premises are derivable in the system then so is its
conclusion.

MNe:AFt:B A< A

(<v L)

ex:A+t:B
()Fl—t:B:E¢F S Die:AFt:B o € FV(t)
I'x:AFt: B 'Ht:B

We end this section with a standard Generation Theorem.
Theorem 10 (Generation Theorem)

(1) Assumedyt €. Thenl' v z : Aiff (x: B) € I'and B <, A for some
BeTV.

@ T'FVtu: Aif TV t: B— A,andI' FV u: B for someB € TV.

B)ITFY et Aiff I'x: B; Y t : C; andN,¢;(B; — C;) <y A, for somel
andB;,C; €TV,

@IV xet:B—-Ciffx:BFV t:C.

PROOF. The proof of each<) is easy. So we only treatf).

(1) Easy by induction on derivations, since only the axioms (ARx-(2), and
the rules(Nl), (<) can be applied. Notice that the conditidit (2 implies that
' =V x : A cannot be obtained just using axigAx-(2).

(2) If A~ we can choos&~ (). Otherwise, the proof is by induction on deriva-
tions. The only interesting case is whdn= A; N A, and the last applied rule is
(nn:

() 'EVtu: A, 'V tu: A,

I'FVtu: AN A, '

The conditionA%vQ implies that we cannot havd,~ A,~). We give the
proof for A; £ and A~ (), the other cases can be treated similarly. By induc-
tion there areB;, B, such that

'=vt+.B,— A, 'V u: By,
I'EYt:By,— Ay, THEV u: Bs.

ThenT' FV t: (B; — A;) N (By — Ay) and by Lemma @) and rule(n)
(Bl —>A1)H(BQ—>A2) SV BlmBgﬁAlﬂAQ §BlﬂBg—>A
We are done, sincE -V u : B; N By by rule (1) .

(3) The proof is very similar to the proof of Poif2). It is again by induction on

derivations and again the only interesting case is when the last applied ralg is (

() 'V Azt: A THEY Azt A,
'V Azt Al F‘IAQ

By induction there aré, B;, C;, J, D;, G; such that

Viel.Tx:B;FVt:C;,Vje F,:U:Dj VYt Gj,
ﬂie](Bi - Oz‘) Sv A & ﬂjeJ(Dj - Gj) Sv As.

So we are done sind@),c;(B; — C;)) N (Njes(D; — G;)) <g A.

(4) The case&’'~, 2 is trivial. Otherwise let/, B;, C; as in Point(3), whereA =
B — C.ThenN;c;(B; — C;) <y B — Cimplies by Theorem 6 thai, ; C; <,
CwhereJ = {i € I | B <y B;}. FromI',z : B; -V t : C; we can derive
Iz:BFY t:C;byrule(<y L), soby(nl)we havel',z: B FV t : N;c;C;.
Finally applying rule(<,) we can concludé,z: B FV t : C.

Note that in Point (1) of the previous theorem, we have to supposeithat (,
since we can deriveV z : Q using axiom(Ax-(2).

2 Filter Models

In this section we discuss how to buildmodels out of type theories. We start with

the definition offilter for eitt’'s. Then we show how to turn the space of filters into

an applicative structure. We define continuous maps from the space of filters to
the space of its continuous functions. Since the composition of these maps is the
identity we getA\-models filter models.

Definition 11 (Filters)

(1) A ~y-filter (or afilter overTY) is a set= C TV such that:
e Qc=;
o if A<, BandA c =, thenB € 5
e if A, Be =, thenANB € Z
(2) FV denotes the set gf-filters overm;
(3) if = C TV, 1V = denotes they-filter generated by;
(4) ay-filter is principalif it is of the shapeV { A}, for some typed. We shall
denotelV {A} simply byTV A.

Itis well known thatFV is anw-algebraic lattice, whose poset of compact (or finite)
elements is isomorphic to the reversed poset obtained by quotienting the preorder

onTY by ~. That means that compact elements are the filters of the form

for some typed, the top element iV, and the bottom element (¥ (). Moreover

the join of two filters is the filter induced by their union and the meet of two filters
is their intersection, i.e.:

SUYT =1V (EUY)
ENY ==N7.

The key property ofFV is to be a reflexive object in the categorywfalgebraic
complete lattices and Scott-continuous functions. This become clear by endowing
the space of filters with a notion of application which induces continuous maps
from FV to its function spac&Fv — FV] and vice versa.
Definition 12 (Application)
(1) Application- : FV x FV — FV is defined as
=-T={B|3A€YT.A— BeZ=}.

(2) The continuous mai®” : 7V — [FV — FV]andGV : [FVY — FV]— FV
are defined as:

FV(Z) =AY € FV.2- T;
GV(f)=1V{A—B|Be f(1V A)}.

Notice that previous definition is sound, since it is easy to verify hafl’ is a
v-filter.

We start with a useful lemma on application.
Lemma 13 LetXV be an eitt= € FV andC € TY. Then

BezVC iff ¢C—-BekE.

PROOF.

BeZ V(& 3IC.C <, C"& C" — B € = by definition of application
& (C—Be= by rule(n).

As expectedFV andGV are inverse to each other.

10

Lemma 14
FV o GV = |d[_7:v_,_7:v],

Gv OFV — |d]:v

PROOF. It suffices to consider compact elements.

(FY o GV)(f)(TV A) ={B | A— B eGY(f)}
by definition of FV and Lemma 13
={B|A—=BelV{A = B'|B € f(IV A)}}
by definition of GV
= {B|3I,4;, B;.(Vi € I.B; € f(1V 4)))
&Nicr(Ai — B;) <y A — B}
by definition of filter
={B|3I,A;,B;.(Vie I.B; € f(1V A)))
&Nies Bi <¢ B}
whereJ = {i € I | A <, A;} by Theorem 6
={B[Bef(1VA)}
by the monotonicity off
= (v A).

(GVoFV)(TV A) =1V {B —C|C eV A 1V B} by definition of

Fv andGV
=1V{B—-C|B—CeclV A} bylLemmal3
=1V A by Lemma &1).

Lemma 14 implies thaFV induces an extensionatmodel. LetEnv - be the set
of all mappings from the set of term variables &’ and p range overEnv .
Via the mapdFv andGV we get the standarsemantic interpretatiorf [V : A x

11

Envyo—FV of A-terms:

[«1y = p();
[tuly = FV([E]) (Tuly);

p p p

Dat]y = GY(AZ € FV.[t]Tz).

Actually, by using the Generation Theorem 10, it is easy to prove by induction on
A-terms that:
[t]y ={A €TV [T >p. [V t: A},

where the notatiof > p means that fofz : B) € I" one has thaB € p(x).

Remark 15 Note that any intersection type theory satisfying Theorem 6 produces
a reflexive object in the category ofalgebraic lattices, and Lemma 3(1) ensures
that the retraction pair(G, F) consists of isomorphisms.

We conclude this section with the formal definition of filter models.
Definition 16 (Filter models)

The extensional-model(FV, -, [|V) is called thefilter modelover¥V.

3 Simple Easy Terms and Continuous Predicates

In this section we give the main notion of the paper, nansatyple easinesA
terme is simple easy if, given an eiEV and a typeEl € TV, we can extend in a
conservative wayV to an eittXV', so that[e]V' = (1V' E) U [e]V. This allows
to build with a uniform technique, the filter models in which the interpretation of
is a filter of types induced by a continuous predicgtee Definition 20).

First we introduceEITT mapsan EITT map applied to an easy intersection type
theory and to a type builds a new easy intersection type theory which is a conser-
vative extension of the original one.

Definition 17 (EITT maps)

(1) LetXV andXV' two eitts. We say that"V' is a conservative extensianf LV
(notationXV C V') iff CY C CV andforall4, B €TV,

A<, Biff A<, B.

(2) Apointedeittis a pair(XV, E) with E e TV.

12

(3) AnEITT mapis a mapM : PEITT — EITT, such that for al(XV, E)
SV C M2V, E),
where EITT and PEITT denote respectively the class of eitts and pointed eitts.
We now give the central notion sfimple easyerm.

Definition 18 (Simple easy terms)An unsolvable terne is simple easyif there
exists an EITT mapl. such that for all pointed eitt>V, £),

FV'e:Biff 3C €eTV.CNE<, B& FVe:C,
whereXV' = M. (XV, E).
Definel = Az.x, Wy = \zr.xx, W3 = Az.zxx, andR,, inductively asR, =
W;W,, R,.1 = R,R,.. Examples of simple easy terms &¥é, W, (see next
section),W3;WsI, andR,, for all n [4]. See Lusin [16] for further examples of
simple easy terms.
The first key property of simple easy terms is the following.

Theorem 19 With the same notation of previous definition, we have

[e]V' = (1Y E)U[e]".

PROOF. (D) Taking C = Q in Definition 18, we have-V' e : E. Therefore,
(1Y E) C [e]V'. Since[e]V C [e]V', we get[e]V' 2 (1Y E) U [e]V.
(C) If B € [e]V', thenkY" e : B, hence, by Definition 18, there exists ¢ TV

/

suchthat € [e]Y andCNE <., B.We are done, sinadeénE € (1V' E)U[e]"V'.

Finally, we define filters bgontinuougpredicates.

Definition 20 (Continuous predicates)LetP : PEITT— {tt, ff} a predicate. We
say thatP is continuousff (as usualP(XV, E) is short forP(XV, E) = tt):

(1) SVC XV & P(XV,E) = P(XV,E)
(2) P(XV>,E) = 3n.P(XV", E)

whereXVe = (U, CV", U, Vn)-
Thexy-filter induced byP overXV is the filter defined by:

=Y =1V {A €T | P(SV, A)},

13

Note that if we endowPEITT with the Scott topology induced by the ordering
(XV,E)C (XV, E)iff vV C XV andE~ E’, then continuous predicates are in
one-to-one correspondence with Scott open se®EIT T.

For the proof of the Main Theorem it is useful to recall some properties of Scott's
A-model D, [20]. We are interested in the inverse limitmodel D, obtained
starting from the two point lattic®, = {1, T} and the embedding : D, —

Dy — D) defined by:

(L) =1 =1
in(T)=1L=T

wherea = b is the step function defined by

M. if aC dthenbelsel.

It is well-known (and first shown in Wadsworth [21]) that in this model the inter-
pretation of all unsolvable terms is bottom. Moreover this model is isomorphic to
the filter model(FVo, -, []V°) induced by the eitEV° defined by:

CVe = {Q,w};
Vo = vVU{w~Q—w}

This isomorphism (stated with a proof sketch in Coppo et al. [9] and fully proved
in Alessi [2]) is a particular case of the duality discussed in Section 2 of [12].
Therefore we get:

Proposition 21 In the filter modekF Vo, - []V°) the interpretation of all unsolv-
able terms igfVe Q).

Theorem 22 (Main Theorem) Lete be a simple easy term®, : PEITT — {it, ff}
be a continuous predicate ait} be thes/-filter induced byP over:V. Then there
is a filter modelFV such that

[e]V = =¥

PROOF. Let (-,-) denote any fixed bijection between NN and N such that
(r,s) >r.

We will choose a denumerable sequence of &ifts, ..., XV, For each- we
will consider a fixed enumeratioff (") _py of the set{ A € TV" | P(EV7, A)}.

We can construct the model as follows.

step0: take the eitt>Vo defined as above.

14

step(n + 1) if n = (r, s) we definexV=+ = M. (XV~, T{")) (notice that-V» C
Nn),

final step: takeXVe~ = %(U, CV",U, Vn)-

First we prove that the modéiV~ is non-trivial by showing thafI] V> # [K]V,
wherel = \z.z, K = \zy.z. LetD = (w — w) — (w — w). SincekVe=1: D,

we have thatD € [I]Ve>=. On the other hand, if it wer® < [K]V~, then there
would existn such thatD € [K]V~. This would imply (by applying several times
the Generation Theorem) — w <, w. Since we havesv» C XV~+ for all

n, we should havey — w <, w. Sincew ~, €2 — w, we should conclude
by Theorem 62 <., w, which is a contradiction. Therefore, we cannot have
D e [K]V>= and the modef V= is non-trivial.

Now we prove thafe] Ve =1V~ {T(") | r s € N} by showing thafe]V» =1V~
{T) | {r,s) < n} for all n. The inclusion(2) is immediate by construction. We
prove (C) by induction onn. If n = 0, then[e]Ve =1Ve Q by Proposition 21.
Suppose the thesis is true for= (r,, s,,) and letB € [e]V~+'. Then-V»+ e : B.
This is possible only if there exists € TV~ such thatC N T\ <, ., B and
moreover-V» e : C. By induction we have? €1V» {T") | (r,s) < n}, hence
TN, .NTI <, Cforsomery, ... 7y, s1,...,sp With (r;, s;) <n (1 <i <
k). We derivel ™) n ... T T <o B,ie. B elVea {T | (r,s) <
n+1}.

Finally we show that
AcTV= &P(XV> A) & Frs. A=T0.
(«=) is immediate by Definition 2@).
We prove &). If A e TV>= andP(XV>= A), then by definition ok2V~ and the con-
tinuity of P, it follows that there i3 such thatd € TV andP(XV~, A). Therefore

by definition of 7", there iss such thatd = 7).

So we can concludie]Ve =1V= {4 €TV> | P(XV=, A)},i.e.[e]Ve = ZY~.

4 Consistency of\-theories

We introduce now a-theory whose consistency has been first proved using a suit-
able filter model in Dezani and Lusin [13]. We obtain the same model here as a
consequence of Theorem 22.

15

Definition 23 (Theory [7) The\-theory 7 is axiomatized by
Wyxr =x; Wyzy = Wyyz; Wy (Wyayz) = W(Wyxy)z
whereW, = \z.zzx andW, = W, W,.

It is clear that the previous equations hold if the interpretatioWof is the join
operator on filters. In order to use Theorem 22 we need:

¢ the join operator on filters to be a filter generated by a continuous predicate;
e W, to be simple easy.

For the first condition it is easy to check that the join relativg-to is represented
by the filter:
O=V{A—->B—ANB| A BeTV}.

In fact, by easy calculation we have:
(©-2)-T ==zuT
for all filters=, T in FV. Therefore, the required predicate is
PXV,C) & C=A—-B— ANB.
It is trivial that the predicate above is continuous.

To show thatW, is simple easy we give a lemma which characterises the types
derivable forW, andW,.

Lemma 24

1) FVWy: A= Biff A<, A — B,

(2) FV W, : Biff A < A — BforsomeA €TV such that-V W, : A.

(3) If vV W, : B then there existsl € TV such that#(4) =0, A<, A — B
and~V W, : A.

PROOF. (1) By a straightforward computation < A — B implies-V W, :
A — B. Conversely, supposeV W, : A — B. If B~(}, then by axioms{),
(22-n), and rules /), (trans), we haveA <, A — B. Otherwise, by Theorem
10(4) it follows z : A -V xx : B. By Theorem 1(R) there exists a typé' € TV
suchthatr: AV z : C — Bandx: A FY z: C. Notice thatB£_ (2 implies
C — B 4, since fromC' — B~ we getC — B~ — Q by axiom {2-n)
and rule {rans) and this impliesB~ by Theorem 6. So by Theorem (I, we
getA <y C — B.We haveA < C either by Theorem 1Q) if C%_< or by
axiom (2) and rule {rans) if C~ 2. FromA <, C — B andA <, C by rule
(n) itfollows A <, A — B.

16

(2) The caseB~ (1 is trivial. Otherwise, if-V W, : B, by Theorem 1(®) it
follows that there existsl € TV such that-V W, : A and~Y W, : A — B. We
conclude by Poin1).

(3) LetY W, : B. Then, by Poin{2), the set
O={AcT |FY W,: AandA <, A — B}

is non-empty. Letd € II be such thag(A) is minimal. We are done if we prove

#(A) = 0. By contradiction, if it is not the case, by applying Lemma 5, we obtain
a type A’ such thatd'~g A, A" = Ni;(C; — D;) and#(A') = #(A4). From

A <, A — B we haveN,;(C; — D;) <¢ A — B, hence, by Theorem 6,
Nics Di <g BwhereJ = {i € I | A <g C;}. SincerV W, : A, by (<)

it follows -V W, : C; — D; forall: € Jand-Y Wy : N,c; C;. By Point
(1) it follows Vi € J.C; < C; — D;. By axiom (= n) and rule) we get

C <y C — NiesD;, and alsoC' <, ¢ — B, whereC' = N;c; C;. We have
obtained:

v WQ . C,
C <, C — B;
#(C) < #(A) = #(A).

This is a contradiction, sina€ & II contradicts the minimality of£(A).

The crucial step for proving simple easinesd¥f, is to find its EITT map.

Definition 25 Let(XV, F) a pointed eitt andy ¢ CV. We define

Mw,(ZV,E) =2V,
where:

« CV' =CYU{x}:
o V' =vU{x~x—E}

First we notice thaMyy, is an EITT map. In facMw, (XV, E) is an easy inter-
section type theory by Definition 25. Moreover, it is straightforward to show by
induction on derivations thatV C Mw, (XY, E).

Now we prove thaMw, is an EITT map foiW .

Lemma 26 LetYV' = My, (ZV, E). Then

FV'W,: Biff 3C eTV.CNE <. B& FV W, C.

17

PROOF. Throughout the proof we use the Generation Theorem and Theorem 6
without explicitly mentioning them each time.

(=) Let+Y" W, : B. First we show that there is a tyge € TV' such that

@) D = Mier(pi — Fi) N x;
(b)Vie .o, e CV & F; €TV,
(c) D <y D — B;

(d) -V W, : D.

By Lemma 243) -V W, : B implies that there existsl € TV such that the
following three properties hold:

(i) #(A)=0;
(i) A<, A— B;
(i) FV' W, : A.

If we considerA’ = AN y, itis easy to check that’ satisfies (i) and (iii) above.
Moreover, (ii) holds forA’ since by Lemma @) and rulegmon), (n):

ANx<gA—=DB)N(x— L)<y ANx—=BNE<y ANy — B.

It must beA” ~¢r (Nkex ¢k) N X, With ¢, € CV, ¢t 2 for all k € K, since

the unique possible shape fdf is an intersection of constants containipgNext,
since for eacht € K, we have, from the axioms of, ¢, ~v Niecrt (<p,(’“) —
Fl(k)), we can defind = mkeK(nleL(k)<90l(k) — Fl(k)))ﬂx. Then, by reindexing the
types and using a unique intersection, we get the syntactic shapertaquired by
conditions (a) and (b). Moreover, conditions (c) and (d) hold since by construction
D~ A

Considering (a), (d), rul¢<.,) and Lemma 2@), we have that for ali € I,
¢i <o @i — F;. SinceXV C XV and for each € I, ¢;, F; € TV, it follows that
v <y pi — F;, foralli € I. By applying Lemma 2@) and rule(Nl), we get
FV Wy : N (@i — F;). This implies by Lemma@) and rule(<,)

FY Wy () wi) — () Fy)forall I' C 1. (1)
iel’ iel’

Because of (C)(N;c; Fi) N E < BwhereJ = {i € I | D <./ ¢;)}. Because
of (d) and rule(<.), it follows -Y' W : My @1 Leto; = Myepro (¢ — G,
Then by rulg<.), we have-¥' W, : ¢\ — G\ for eachi € Jandh € H®. By

18

Lemma 241) it follows, for eachi € J andh € H®, g,(f) <o g“,(j) — fo). Using
againxV C XV, we have, for each € J andh € H®, ¢ <, ¢! — GY,
hence, by Lemma 24), -V W, : () — G\ for eachi € J andh € H®.
Therefore, by rulénl), we have-V Wy : N;c;(Nner® (Q(f) — Gﬁf))), that is

-V Wg : m IR (2)

icJ

Applying rule(— E) to (1) with I’ = J and(2), we obtain-v W, : N, F;. Since
we have proveriN,c; F;) N £ <. B, we are done, by choosing = N,c; F;.

(«<) By Theorem 19 we have that”” W, : E. Since by hypothesisV W, : C
and moreoveEY C ©V', we obtain-¥' W, : C. By applying rule(<..) we have
V"W, : B.

The previous lemma yields the second crucial step in the construction of the model.
Theorem 27 W, is simple easy.

We can conclude:

Theorem 28 (Consistency off) The\-theory.7 is consistent.

Remark 29 The set of alh-theories is naturally equipped with a structure of com-
plete lattice (see Barendregt [7], Chapter 4), with meedefined as set theoretic
intersection. The joinJ of two A-theories7 andS is the least equivalence relation
including7 U S. Lusin and Salibra [17] consider the sgf) of all A-theories
extending7: this is a sublattice of the lattice of-theories. They prove that this
sublattice has many interesting algebraic properties, due to the validity of the equa-
tions defining7 (see Definition 23). In particulaj7) satisfies a restricted form of
distributivity, called meet semidistributivity, i.e. for alitheories7, S, G € [7), if
TnS=7TnNng,thenTNS=7n1(SUQG).

5 Minimal Fixed Point Operators

In this section we prove that for all simple easy temsrthere are filter model&™
such thafle]V represents the minimal fixed point operator

Actually, since[e]V € FV, while u € [[FV — FV] — FV], the identification
betweenfe]V andy is possible via the “canonical embedding”[pFV — FV| —
FV]in FV.

19

Lemma 14 implies that every “higher order” space can be embedded in a canon-
ical way in FV, by defining standard appropriate mappings NaandGV. For
instance, in order to embed the spaceugfnamely[[FV — FV] — FV], in

FV, we consider the pair of mappings” : 7V — [[FV — FV]| — FV]and

KV : [[FY — FV] — FV] — FV defined as follows:

HY (Z) = FY(2) 0 GV,
KY(H) = GY o A=.(H o FV)(E).

It is easy to check that

HY o KY = id[[]-'v_g-'v}_ﬂ-'v}ﬁ[[]:v_>]-‘v]_>]:v]. (3)

We say that a filteE representsan operatoH € [[FV — FV] — FV]if HV(Z) =
H. The equality (3) guarantees that e&tls represented b}V (H).

So the problem of finding a filter modéTV, such thafe]V representg:, can be
solved if we find7V such thafe]V = KV (u).

Remark 30 We point out that, given a simple easy tesnthe existence of a model
FV where[e]V representgu is not trivial at all. A simple easy term, being easy,
can obviously be equated to an arbitrary fixed point combinatofhis could be
useful in view of identifyinde] with i, provided that there exists a fixed point
combinatorY such that[Y]V representsu in eachfilter model FV. In fact, if
there were such &, then it would be possible to find a filter mod&F’ such
that [Y]Y' = [e]¥’, following the technique of Alessi and Lusin [4]. Therefore we
would obtainH"Y' ([e]¥') = 1. Unfortunately, such & does not exist. In fact, con-
sider the filter modelF"** isomorphic to the Park-modelD** of \-calculus
(see Honsell and Ronchi [14]). As proven in [14], for all closedermst, [t]7**

is above a certain compact elemendifferent from the bottom element. In partic-
ular, for all fixed point combinator’, [YI]F*"* is abovec, wherel is the identity
combinator. Sincel(M X.X) is obviously the bottom element, we have that it is not
possible thatl”*"*([Y]"**) representgu, since

HPok([Y]PorR) (AX.X) = (FPoR([Y]Po*) 0 GPark) (MX.X)
= FPark([Y]Por®) (G R (M X. X))
= [Y]Por* . [I]Por*
= [YTI]Park

Jdc

where we have used the fact tfff¥ = GV(NX.X) for all £V.

20

We intend to prove the desired result using Theorem 22 as follows:

e given an eitt>V, we characterise the filté&V (1),

e we notice thalKV (1) can be defined as a filter of types which satisfies a contin-
uous predicate,

¢ finally, we apply Theorem 22.

In the following definition we introduce the sets’, the filters¥Y and the filter
UY. Later on we shall prove thaty coincide withKV (1).

Definition 31 (The filter ¥'Y) Let>V an eitt. For all integersn, the setsby and
the filters¥Y are defined by mutual induction as follows:

o ={} v =1V oY
oY, ={C > B|3B.C > B eVY &C<,B — B} Y, =1V oY,

We definel’y =, Y.

For instanced — Q € &Y, (2 — A) — A€ &5, (Q — Ay) N (A — A4;) —
A€ q)v’ and<Q — Ag) N (AO — Al) n...N (An—l — An) — A, € (I),Y+2 for
all A, Ao, ..., A,.

Now we prove two useful lemmata @y, ¥V. The first lemma shows tha@),,
is a chain: the second lemma shows thgtand ¥} contain the same arrow types
forn > 0.

Lemma 32 For all n > 0 we havely C ¥, ;.

PROOF. We prove the thesis by induction en By definition 'y is the bottom
element ofFV, hencely C U,

Supposelyy C U ,. Itis enough to provey,, C ¥, ,. LetC — B € 9.

Then there exist®’ such thatC’ — B’ € ¥ andC' <, B’ — B. By induction
we havely C ¥ ,, hence by definitiol — B € &), C ¥, ,.

Lemma 33 Foralln >0we haveC' - Be &Y < C — BeVUy.

PROOF. (=) is obvious by definition.

For (<) letC' — B € WY (with B£_(2, otherwise the thesis is trivial). Then there
arel andD;,G; such that for ali € I, G; — D; € @Y andN;(G; — D;) <g

C — B. By Theorem 6:

N D; <, BwhereJ = {i € I | C <, G;}. (4)

e

21

Moreover, by definition ofdY, we get that there ar®, for all i € I, such that

G; — D} e ¥ , andG; <y D) — D,. From this last judgements arid)) above,
by Lemma §2) we getC' <y, (N;c; D) — (Nics D:). This together witt{4) gives:

C<yD— D, (5)

whereD = N,; D.. SincelY , is a filter andG; — D, € ¥Y ,, we have that

n—11

Nics(Gi — D}) € ¥ |, hence by Lemma(2) and again the fact thak,” ; is a

n—11
filter, we have(N,c, G;) — D € UY_,. SinceC <, (Nic; Gi), by rule ¢;) we get
(Nies Gi) — D <y, C — D, henceC' — D € W¥Y_,. This last fact together with
(5) impliesC — B € &Y.

As a consequence of previous lemma, the filkgf is generated by the union of
dVY's.

Lemma 34 LetXV an eitt. Then?'Y represents a fixed point operator:

Vi elFY = FYLHY(VI)(f) = (f o (HY (V) (f)-

PROOF. By definition of HV we have to prove:
Ve [FY = FYLEV(EY) o GY)(f) = (f e FY(¥) 0 GY)(/).

SinceFV is surjective ontdFV — FV], we can take’ = FV (=) and we get using
Lemma 14 and the definition @t:

As usual, we only consider compact filters, i.e. we will prove that:
VO eV UY- 1V C =1V C- (L TV O).

For all B € TV we have:

22

Bevy - 1VC & (C—-BecVY by Lemma 13

< dn.C - Bev), by definition of U’y
& 3dn.C - Bed), by Lemma 33
& In,B.C - B eV &

C<y,B —B by definition of®,”,
& In,B. B eTY-1VC&

C<y B —B by Lemma 13

< dn. BetvV C-(UY-1V C) by Lemma 13
S BevVOo-(vY-1V(0) by definition of Uy .

An operatoH € [[FYV — FV]| — FV]is pre-fixed point operatoiff:

Vi elFY = FYLH(f) € (f o H)(f).

Clearly all fixed point operators are pre-fixed point operators, but not vice versa.

Lemma 35 LetXV an eitt. Them'Y represents the minimal pre-fixed point oper-
ator: forall H € [[FV — FV] — FV] pre-fixed point operators anfl € [FV —
FVI,

HY (WZ)(f) S H(f)-

PROOF. Reasoning as in the proof of previous lemma it is easy to check that we
only need to show:
VEe FY.UY -ZC (HoFV)(T),
ie.
VC eTV. WY1V C C H(g),
whereg = FV(1V C).

We first prove by induction on that
VC eTV. WY1V C C H(g). (6)
If n =0, then
Uy 1vV O =1vQ
€ H(g).

23

Casen + 1.

Bevw/ - 1VC&C—BeW/, by Lemma 13
& C—Bed), by Lemma 33
& 3IB.C—-B etV &
C<y B —B by definition of®,”,
< 3dB. B eUy - 1VC&
C<y,B —B by Lemma 13
= 3B'. B' € H(g) &
C<y,B —B by induction
< B e g(H(g)) by Lemma 13

beingg = FV(1V C)
= B e H(g) sinceH is a pre-fixed

point operator
This completes the proof @6). We now perform the final step.
BeUY- V(O <« Be (U,VY) 1V C by definition of Uy,

< dn. Be Y- 1V C since the application is continuous
= B € H(g) by (6).

By Lemmata 34 and 35 we get th&t/ is KV (u), i.e. the filter which represents
L.

Theorem 36 LetXV an eitt. Thenl'Y represents the minimal fixed point operator:

v = K9 (1),

We can provide now the desired filter model.

Theorem 37 Lete be a simple easy term. Then there exists a filter mgdesuch
that the interpretation oé is the minimal fixed point operator.

PROOF. The predicateP?(XV,E) <« FE € VY is trivially continuous. By
Theorem 22, there exists a filter mod€V~ such thaffe]V~ is the filter induced
by P, that isU'Y . Finally, by Theorem 36yY representsgt.

24

6 Relations between the present paper and [12]

Since [12] appears in this same journal issue, we think it is worthwhile to point out
some common features, as well as some fundamental differences between these
two papers.

First of all, both papers usatersection types theories to buidmodels this com-
mon approach is discussed in Section 2 of [12].

In this section we adopt the convention that definitions, theorems and any other
result appearing in [12] will be typed with a final asterisk.

The first difference is the language of intersection types itself. In this paper the
intersection type constructas atotal functionfrom pairs of types to types (Defini-

tion 1), while in [12] it is apartial functionfrom pairs of types to types (Definitionhs

10 and 12). From the viewpoint of the domain descriptions the gain is notable: with
the language of the present paper we can represafgebraic lattices, while with

the language of [12] we can represent Scott domains. A smaller difference is that
here we deal with a class of intersection type languages, so the set of constant types
is a parameter, while [12] takes into account only two intersection type languages
with fixed type constants.

The type preordersn the two papers (Definition 2 and Definitioi4) share the

first nine axioms and rules, which are standard properties of joins and step func-
tions plus the axiom making the top. Since in the present paper we allow to build
intersection types starting from an arbitrary set of constants, Definition 2 only gives
the shape the axioms on constants must have, while Definitidmgives the com-

mon axioms for the two languages considered there. The peculiar axioms of the
two preorders in [12] are given in Definitiorl5. We remark that all axioms in
Definitions' 14 and 15 are of the shape required by Definition 2. Notably axiom
(©2-n) holds for all the preorders considered here, but only for the second preorder
of [12]. The first preorder of [12] satisfies the weaker axidn -&): this is the

key for representing a lifted domain. So the first type theory of [12] is not an eitt
according to Definition 2 since axiort{n) is missing, and the second type theory

of [12] is not an eitt according to Definition 2 since the intersection type constructor
is partial.

The definitions of filters (Definition 11 and Definitibd7), of bases (Definition 7

and Definitiori 20), of type assignment systems (Definition 8 and Definitia®)

and the Generation Theorems (Theorem 10 and Theia2&jrare exactly the same

in both papers (the proof is given only here). This way both papers hunhddels,

but with different aims. [12] gives two models which are isomorphic to two inverse
limit \-models and uses them to show properties of these last models. Instead, the
present paper allows to define infinitely many models, but we do not know if all
of them have corresponding inverse limimodels, the aim being that of finding

25

models where we force the interpretations of suitabterms.

7 Conclusion

The relation between the notions of simple easiness and easiness requires further
investigation. While it is clear that simple easiness implies easiness, the question
whether easiness implies simple easiness remains open.

The contribution of the present paper is to show that each simple easy term can be
interpreted as an arbitrary domain operator which can be represented as a filter of
types defined by a continuous predicate.

Research directions which we plan to follow are:

¢ the characterisation of thetheories whose consistency can be shown using the
present approach;
¢ the characterisation of the operators which can be equated to simple easy terms.

Acknowledgements

We are grateful to the referees for their careful reading and many useful remarks.
The final version of the paper strongly improved due to their suggestions. In partic-
ular, both Section 6 of the present paper and Section 2 of [12] were added to answer
referees’ right criticisms. Moreover, Section 2 has been rewritten and the majority
of proofs in Section 5 have been simplified. We would also like to thank Silvia
Ghilezan and Silvia Likavec for valuable collaboration in the final preparation of
the present paper.

References

[1] S. Abramsky. Domain theory in logical formrAnn. Pure Appl. Logic51(1-
2):1-77, 1991.

[2] F. Alessi. Strutture di tipi, teoria dei domini e modelli del lambda calcolo
PhD thesis, Torino University, 1991.

[3] F. Alessi, M. Dezani-Ciancaglini, and F. Honsell. Filter models and easy
terms. In A.Restivo, S.Ronchi, and L.Roversi, editdétaljan Conference on
Theoretical Computer Scienceolume 2202 ofLecture Notes in Computer
Sciencepages 17-37, Berlin, 2001. Springer-Verlag.

26

[4] F. Alessi and S. Lusin. Simple easy terms. In S. van Bakel, ediritet-
section Types and Related Systewatume 70 ofElectronic Lecture Notes in
Theoretical Computer Sciendélsevier, 2002.

[5] J. Baeten and B. Boerboom. can be anything it shouldn’t béndag.Math,
41:111-120, 1979.

[6] H.Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignmadnSymbolic Logic48(4):931-940
(1984), 1983.

[7] H. P. Barendregt.The Lambda Calculus: its Syntax and Semantidsrth-
Holland, Amsterdam, revised edition, 1984.

[8] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the\-calculus.Notre Dame J. Formal Logj@21(4):685-693, 1980.

[9] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended type
structures and filter lambda models. In G.Lolli, G.Longo, and A.Marcja,
editors, Logic colloquium '82 pages 241-262, Amsterdam, 1984. North-
Holland.

[10] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes
and \-calculus semantics. o H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalismpages 535-560. Academic Press, London,
1980.

[11] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type theories, normal
forms, andD,.-lambda-modelsinform. and Comput.72(2):85-116, 1987.

[12] M. Dezani-Ciancaglini, S. Ghilezan, and S. Likavec. Behavioural inverse
limit models. Theoret. Comput. S¢i2003. This issue.

[13] M. Dezani-Ciancaglini and S. Lusin. Intersection types and
lambda theories. In S. Soloviev, R. D. Cosmo, and G. Longo,
editors, International Workshop on Isomorphisms of Type2002.
http://www.irit.fr/zeno/WIT2002/proceedings.shtml.

[14] F. Honsell and S. Ronchi Della Rocca. An approximation theorem for topo-
logical lambda models and the topological incompleteness of lambda calcu-
lus. J. Comput. System Sc#5(1):49-75, 1992.

[15] J. Kuper. On the Jacopini techniquénform. and Comput.138:101-123,
1997.

[16] S. Lusin. Intersection Types, Lambda Abstraction Algebras
and Lambda Theories PhD thesis, Venice University, 2002.
ftp://ftp.cs.unibo.it/pub/techreports/2003-07.pdf.

[17] S. Lusin and A. Salibra. The lattice of lambda theoriek.of Logic and
Computation2003. to appear.

[18] G. D. Plotkin. Set-theoretical and other elementary models oftbalculus.
Theoret. Comput. S¢il21(1-2):351-409, 1993.

[19] G. Pottinger. A type assignment for the strongly normalizaterms. In
J. Seldin and J. Hindley, editor$p H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalismpages 561-577. Academic Press,
London, 1980.

[20] D. S. Scott. Continuous lattices. In F. Lawvere, edii@mposes, Algebraic

27

Geometry and Logicvolume 274 ofLecture Notes in Mathematicpages
97-136, Berlin, 1972. Springer-Verlag.

[21] C. P. Wadsworth. The relation between computational and denotational prop-
erties for Scott’'sD_-models of the lambda-calculusSIAM J. Comput.
5(3):488-521, 1976.

[22] C. Zylberajch.Syntaxe et Semantique de la Faéilén Lambda-calculPhD
thesis, Universé Paris VII, 1991.

28

