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Abstract

We use intersection types as a tool for obtainingλ-models. Relying on the notion ofeasy
intersection type theorywe successfully build aλ-model in which the interpretation of an
arbitrary simple easy term is any filter which can be described by a continuous predicate.
This allows us to prove two results. The first gives a proof of consistency of theλ-theory
where theλ-term(λx.xx)(λx.xx) is forced to behave as the join operator. This result has
interesting consequences on the algebraic structure of the lattice ofλ-theories. The second
result is that for any simple easy term there is aλ-model where the interpretation of the
term is theminimalfixed point operator.

Key words: Lambda calculus, intersection types, models of lambda calculus, lambda
theories, fixed point operators.

Introduction

Intersection types were introduced in the late 70’s by Dezani and Coppo [8, 10, 6],
to overcome the limitations of Curry’s type discipline. They are a very expressive
type language which allows to describe and capture various properties ofλ-terms.
For instance, they have been used in Pottinger [19] to give the first type theoretic
characterisation ofstrongly normalizableterms and in Coppo et al. [11] to cap-
turepersistently normalising termsandnormalising terms. See Dezani et al. [12],
appearing also in this issue, for a more complete account of this line of research.
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IST-2001-33477, and MURST Projects COMETA and McTati. The funding bodies are not
responsible for any use that might be made of the results presented here.
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Intersection types have a very significant realizability semantics with respect to
applicative structures. This is a generalisation of Scott’s natural semantics [20] of
simple types. According to this interpretation types denote subsets of the applica-
tive structure, an arrow typeA→ B denotes the sets of points which map all points
belonging to the interpretation ofA to points belonging to the interpretation ofB,
and an intersection typeA ∩ B denotes the intersections of the interpretation ofA
and the interpretation ofB. Building on this, intersection types have been used in
Barendregt et al. [6] to give a proof of the completeness of the natural semantics
of Curry’s simple type assignment system in applicative structures, introduced in
Scott [20].

Intersection types have also an alternative semantics based onduality which is re-
lated to Abramsky’sDomain Theory in Logical Form[1]. Actually it amounts to
the application of that paradigm to the special case ofω-algebraic lattice models
of pureλ-calculus, see Coppo et al. [9]. Namely, types correspond tocompact ele-
ments: the typeΩ denotes the least element, intersections denotejoins of compact
elements, and arrow types denotestep functionsof compact elements. A typing
judgement can then be interpreted as saying that a given term belongs to a pointed
compact open set in anω-algebraic lattice model ofλ-calculus. By duality, type
theories give rise tofilter λ-models. Intersection type assignment systems can then
be viewed asfinitary logical descriptions of the interpretation ofλ-terms in such
models, where the meaning of aλ-term is the set of types which are deducible for it.
This duality lies at the heart of the success of intersection types as a powerful tool
for the analysis ofλ-models, see Plotkin [18] and the references there. Section 2 of
Dezani et al. [12] discusses intersection types (with partial intersection) as finitary
descriptions of inverse limitλ-models.

Theλ-models we build out of intersection types differ essentially in thepreorder
relationsbetween types. In all these preorders, the equivalencies between atomic
types and intersections of arrow types are crucial in order to determine the theory.
In the present paper the focus is on semantic proofs of consistencies ofλ-theories.

Actually, the mainstream of consistency proofs is based on the use of syntactic tools
(see Kuper [15] and the references there). Instead, very little literature can be found
on the application of semantic tools, we can mention the papers Zylberajch [22],
Baeten and Boerboom [5], Alessi et al. [3], Alessi and Lusin [4].

In [4] Alessi and Lusin deal with the issue of easiness proofs ofλ-terms from the
semantic point of view (we recall that a closed terme is easyif, for any other closed
termt, the theoryλβ + {t = e} is consistent). Going in the direction of Alessi et
al. [3], they introduced the notion ofsimple easiness: this notion, which turns out
to be stronger than easiness, can be handled in a natural way by semantic tools, and
allows to prove consistency results via construction of suitable filter models: given
a simple easy terme and an arbitrary closed termt, it is possible to build (in a
canonical way) a non-trivial filter model which equates the interpretation ofe and
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t. [4] proves in such a way the easiness of several terms.

Besides, simple easiness is interesting in itself, since it has to do with minimal sets
of axioms which are needed in order to assign certain types to the easy terms.

The theoretical contribution of the present paper is to show how the relation be-
tween simple easiness and axioms on types can be put to work in order to interpret
easy terms by filters described bycontinuouspredicates.

This produces two nice applications. Given an arbitrary simple easy terme we build
a filter modelF5 such thate is interpreted as the join operator: the interpretation
[[e]]5 of e in F5 is exactly the filterΘ such that for all filtersΞ,Υ

(Θ · Ξ) ·Υ = Ξ tΥ.

This way we prove the consistency of theλ-theory which equates(λx.xx)(λx.xx)
to the join operator. This consistency has been used in Lusin and Salibra [17] to
show that there exists a sub-lattice of the lattice ofλ-theories which satisfies many
interesting algebraic properties.

The second result we give is the following. For an arbitrary simple easy terme there
is a filter modelF5 such that the interpretation[[e]]5 of e in F5 is theminimal
fixed point operatorµ (that isµ(f) =

⊔
n f

n(⊥), for all continuous endofunctions
f overF5). This result is not trivial: easy terms can obviously be equated to an
arbitrary fixed point combinatorY, i.e. it is possible to findλ-modelsM such that
[[e]]M = [[Y]]M. This only implies that[[e]]M represents a fixed point operator, but
there is no guarantee as to theminimality.

The present paper is organised as follows. In Section 1 we present easy intersection
type theories and type assignment systems for them. In Section 2 we introduceλ-
models based on spaces of filters in easy intersection type theories. Section 3 gives
the main theoretical contribution of the present paper: after introducing simple easy
terms, we show that each simple easy term can be interpreted as an arbitrary filter
which can be described by acontinuouspredicate. In Section 4 and Section 5 we
derive from our result the two above mentioned applications. Finally, Section 6 dis-
cusses similarities and differences between the present paper and Dezani et al. [12].

The consistency of theλ-theory in which theλ-term (λx.xx)(λx.xx) behaves as
the join operator was presented at WIT’02 [13].

1 Intersection Type Assignment Systems

Intersection typesare syntactic objects built inductively by closing a given setCC
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of type atoms(constants), which contains the universal typeΩ, under thefunction
typeconstructor→ and theintersectiontype constructor∩.

Definition 1 (Intersection type language)Let CC be a countable set of constants
such thatΩ ∈ CC. Theintersection type languageoverCC, denoted byTT = TT(CC), is
defined by the following abstract syntax:

TT = CC | TT → TT | TT ∩ TT.

Notation Upper case Roman letters i.e.A,B, . . ., will denote arbitrary types. Greek
lettersφ, ψ, . . .will denote constants inCC. When writing intersection types we shall
use the following conventions:

• the constructor∩ takes precedence over the constructor→;
• the constructor→ associates to the right;
• ⋂

i∈I Ai with I = {1, . . . , n} andn ≥ 1 is short for((. . . (A1 ∩ A2) . . .) ∩ An);
• ⋂

i∈I Ai with I = ∅ is Ω.

Much of the expressive power of intersection type disciplines comes from the fact
that types can be endowed with apreorder relation≤ which satisfies axioms and
rules5 of Figure 1, so inducing the structure of a meet semi-lattice with respect
to ∩, the top element beingΩ. We recall here the notion ofeasyintersection type
theory as first introduced in Alessi and Lusin [4].

(refl) A ≤ A (trans)
A ≤ B B ≤ C

A ≤ C

(mon)
A ≤ A′ B ≤ B′

A ∩B ≤ A′ ∩B′
(idem) A ≤ A ∩ A

(inclL) A ∩B ≤ A (inclR) A ∩B ≤ B

(→ ∩) (A→ B) ∩ (A→ C) ≤ A→ B ∩ C (η)
A′ ≤ A B ≤ B′

A→ B ≤ A′ → B′

(Ω) A ≤ Ω (Ω-η) Ω ≤ Ω → Ω

Fig. 1. The axioms and rules of5

Definition 2 (Easy intersection type theories)Let TT = TT(CC) be an intersection
type language. Theeasy intersection type theory(eitt for short) Σ(CC,5) over TT
is the set of all judgementsA ≤ B derivable from5, where5 is a collection of
axioms and rules such that (we writeA ∼ B for A ≤ B & B ≤ A and5− for
5 \5):

(1) 5 contains the set5 of axioms and rules shown in Figure 1;
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(2) 5− contains axioms of the following two shapes only:

φ ≤ φ′,

φ ∼ ⋂
h∈H(ϕh → Fh).

whereφ, φ′, ϕh ∈ CC, Fh ∈ TT, andφ, φ′ 6≡ Ω;
(3) no rule is in5−;
(4) for eachφ 6≡ Ω there is exactly one axiom in5− of the shapeφ ∼ ⋂

h∈H(ϕh →
Fh);

(5) let 5− containφ ∼ ⋂
h∈H(ϕh → Fh) and φ′ ∼ ⋂

k∈K(ϕ′k → F ′k), with
φ, φ′ 6≡ Ω. Then5− contains alsoφ ≤ φ′ iff for eachk ∈ K, there exists
hk ∈ H such thatϕ′k ≤ ϕhk

andFhk
≤ F ′k are both in5−.

Notice that:
(a) sinceΩ ∼ Ω → Ω ∈ Σ(CC,5) by (Ω) and (Ω-η), it follows that all atoms inCC
are equivalent to suitable (intersections of) arrow types;
(b)∩ (modulo∼) is associative and commutative;
(c) in the last clause of the above definitionF ′k andFhk

must be constant types for
eachk ∈ K.

Notation When we consider an eittΣ(CC,5), we will write CC5 for CC, TT5 for TT(CC)
andΣ5 for Σ(CC,5). MoreoverA ≤5 B will be short for(A ≤ B) ∈ Σ5 and
A∼5B for A ≤5 B ≤5 A. We will consider syntactic equivalence “≡” of types
up to associativity and commutativity of∩.

One can easily show that all types (not only type constants) are equivalent to suit-
able intersections of arrow types. This is stated in the following lemma together
with a simple inequality between intersections of arrows and arrows of intersec-
tions.

Lemma 3

(1) For all A ∈ TT5 there areI, andBi, Ci ∈ TT5 such that

A∼5
⋂
i∈I

(Bi → Ci).

(2) For all J ⊆ I, andAi, Bi ∈ TT5,⋂
i∈I

(Ai → Bi) ≤5 (
⋂
i∈J

Ai) → (
⋂
i∈J

Bi).

A nice feature of eitts is the possibility of performing smooth induction proofs
based on the number of arrows in types. In view of this aim next definition and
lemma work.
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Definition 4 The mapping# : TT5 → IN is defined inductively on types as follows:

#(A) = 0 if A ∈ CC5;

#(A→ B) = #(A) + 1;

#(A ∩B) = max{#(A),#(B)}.

Lemma 5 For all A ∈ TT5 with #(A) ≥ 1 there isB ∈ TT5 such thatA∼5B,
B ≡ ⋂

i∈I(Ci → Di), and#(B) = #(A).

PROOF. LetA ≡ (
⋂

j∈J(C ′j → D′j))∩ (
⋂

h∈H φh), whereC ′j, D
′
j ∈ TT5, φh ∈ CC5.

For eachh ∈ H there areI(h), ϕ(h)
i ∈ CC5, F (h)

i ∈ TT5, such that

φh∼5
⋂

i∈I(h)

(ϕ
(h)
i → F

(h)
i ).

We can choose

B ≡ (
⋂
j∈J

(C ′j → D′j)) ∩ (
⋂

h∈H

(
⋂

i∈I(h)

(ϕ
(h)
i → F

(h)
i ))).

Another nice feature of eitts is that the order between intersections of arrows agrees
with the order between joins of step functions. This property, which is fully ex-
plained in Section 2 of [12], relies on the next theorem.

Theorem 6 For all I, andAi, Bi, C,D ∈ TT5,⋂
i∈I

(Ai → Bi) ≤5 C → D iff
⋂
i∈J

Bi ≤5 D whereJ = {i ∈ I | C ≤5 Ai}.

PROOF. (⇐) easily follows from Lemma 3(2) and rule (η).

As to(⇒), recall that, by Definition 2, for each constantφ 6≡ Ω, there is exactly one
axiom in5− of the shapeφ ∼ ⋂

h∈H(ϕh → Fh). One can prove the statement by
induction on the definition of≤5; the only non-trivial case is when the inequality is
derived using transitivity as the last step with the middle type being an intersection
containing constants. In that case, condition (5) of Definition 2 is used.

Notice that in the statement of Theorem 6 the setJ may be empty, and in this case
we getΩ∼5D.

Before giving the crucial notion ofintersection-type assignment system, we intro-
duce bases and some related notations.
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Definition 7 (Basis) A 5-basisis a (possibly infinite) set of statements of the
shapex :A, whereA ∈ TT5, with all variables distinct.

We will use the following notations:

• If Γ is a∇-basis thenx ∈ Γ is short for(x : A) ∈ Γ for someA.
• If Γ is a5-basis andA ∈ TT5 thenΓ, x :A is short forΓ ∪ {x :A} whenx /∈ Γ.

Definition 8 (Type assignment system)The intersection type assignment system
relative to the eittΣ5, notationλ∩5, is a formal system for deriving judgements of
the formΓ `5 t : A, where thesubjectt is an untypedλ-term, thepredicateA is
in TT5, andΓ is a5-basis. Its axioms and rules are the following:

(Ax)
(x :A) ∈ Γ

Γ `5 x :A
(Ax-Ω) Γ `5 t : Ω

(→ I)
Γ, x :A `5 t : B

Γ `5 λx.t : A→ B
(→ E)

Γ `5 t : A→ B Γ `5 u : A

Γ `5 tu : B

(∩I)
Γ `5 t : A Γ `5 t : B

Γ `5 t : A ∩B
(≤5)

Γ `5 t : A A ≤5 B

Γ `5 t : B

Example 9 Self-application can be easily typed in allλ∩5, as follows.

x : (A → B) ∩A `5 x : (A → B) ∩A
(≤5)

x : (A → B) ∩A `5 x : A → B

x : (A → B) ∩A `5 x : (A → B) ∩A
(≤5)

x : (A → B) ∩A `5 x : A
(→ E)

x : (A → B) ∩A `5 xx : B
(→ I)

`5 λx.xx : (A → B) ∩A → B

Notice that due to the presence of axiom(Ax-Ω), one can type terms without as-
suming types for their free variables.

As usual we considerλ-terms moduloα-conversion. Notice that intersection elim-
ination rules

(∩E)
Γ `5 t : A ∩B

Γ `5 t : A

Γ `5 t : A ∩B
Γ `5 t : B

are derivable1 in anyλ∩5.

Moreover, the following rules are admissible:

1 Recall that a rule isderivable in a system if, for each instance of the rule, there is a
deduction in the system of its conclusion from its premises. A rule isadmissiblein a system
if, for each instance of the rule, if its premises are derivable in the system then so is its
conclusion.
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(≤∇ L)
Γ, x : A ` t : B A′ ≤∇ A

Γ, x : A′ ` t : B

(W)
Γ ` t : B x 6∈ Γ

Γ, x : A ` t : B
(S)

Γ, x : A ` t : B x 6∈ FV (t)

Γ ` t : B

We end this section with a standard Generation Theorem.

Theorem 10 (Generation Theorem)

(1) AssumeA 6∼5Ω. ThenΓ `5 x : A iff (x : B) ∈ Γ andB ≤5 A for some
B ∈ TT5.

(2) Γ `5 tu : A iff Γ `5 t : B → A, andΓ `5 u : B for someB ∈ TT5.
(3) Γ `5 λx.t : A iff Γ, x :Bi `5 t : Ci and

⋂
i∈I(Bi → Ci) ≤5 A, for someI

andBi, Ci ∈ TT5.
(4) Γ `5 λx.t : B → C iff Γ, x :B `5 t : C.

PROOF. The proof of each (⇐) is easy. So we only treat (⇒).

(1) Easy by induction on derivations, since only the axioms (Ax),(Ax-Ω), and
the rules(∩I), (≤5) can be applied. Notice that the conditionA 6∼5Ω implies that
Γ `5 x : A cannot be obtained just using axiom(Ax-Ω).

(2) If A∼5Ω we can chooseB∼5Ω. Otherwise, the proof is by induction on deriva-
tions. The only interesting case is whenA ≡ A1 ∩ A2 and the last applied rule is
(∩I):

(∩I)
Γ `5 tu : A1 Γ `5 tu : A2

Γ `5 tu : A1 ∩ A2

.

The conditionA 6∼5Ω implies that we cannot haveA1∼5A2∼5Ω. We give the
proof forA1 6∼5Ω andA2 6∼5Ω, the other cases can be treated similarly. By induc-
tion there areB1, B2 such that

Γ `5 t : B1 → A1, Γ `5 u : B1,

Γ `5 t : B2 → A2, Γ `5 u : B2.

ThenΓ `5 t : (B1 → A1) ∩ (B2 → A2) and by Lemma 3(2) and rule(η)

(B1 → A1) ∩ (B2 → A2) ≤5 B1 ∩B2 → A1 ∩ A2 ≤ B1 ∩B2 → A.

We are done, sinceΓ `5 u : B1 ∩B2 by rule (∩I) .

(3) The proof is very similar to the proof of Point(2). It is again by induction on
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derivations and again the only interesting case is when the last applied rule is (∩I):

(∩I)
Γ `5 λx.t : A1 Γ `5 λx.t : A2

Γ `5 λx.t : A1 ∩ A2

.

By induction there areI, Bi, Ci, J,Dj, Gj such that

∀i ∈ I. Γ, x :Bi `5 t : Ci,∀j ∈ J. Γ, x :Dj `5 t : Gj,⋂
i∈I(Bi → Ci) ≤5 A1 &

⋂
j∈J(Dj → Gj) ≤5 A2.

So we are done since(
⋂

i∈I(Bi → Ci)) ∩ (
⋂

j∈J(Dj → Gj)) ≤5 A.

(4) The caseC∼5Ω is trivial. Otherwise letI, Bi, Ci as in Point(3), whereA ≡
B → C. Then

⋂
i∈I(Bi → Ci) ≤5 B → C implies by Theorem 6 that

⋂
i∈J Ci ≤5

C whereJ = {i ∈ I | B ≤5 Bi}. From Γ, x : Bi `5 t : Ci we can derive
Γ, x :B `5 t : Ci by rule (≤∇ L), so by(∩I) we haveΓ, x :B `5 t :

⋂
i∈J Ci.

Finally applying rule(≤5) we can concludeΓ, x :B `5 t : C.

Note that in Point (1) of the previous theorem, we have to suppose thatA 6∼∇ Ω,
since we can derivè∇ x : Ω using axiom(Ax-Ω).

2 Filter Models

In this section we discuss how to buildλ-models out of type theories. We start with
the definition offilter for eitt’s. Then we show how to turn the space of filters into
an applicative structure. We define continuous maps from the space of filters to
the space of its continuous functions. Since the composition of these maps is the
identity we getλ-models (filter models).

Definition 11 (Filters)

(1) A5-filter (or a filter overTT5) is a setΞ ⊆ TT5 such that:
• Ω ∈ Ξ;
• if A ≤5 B andA ∈ Ξ, thenB ∈ Ξ;
• if A,B ∈ Ξ, thenA ∩B ∈ Ξ;

(2) F5 denotes the set of5-filters overTT5;
(3) if Ξ ⊆ TT5, ↑5 Ξ denotes the5-filter generated byΞ;
(4) a5-filter is principal if it is of the shape↑5 {A}, for some typeA. We shall

denote↑5 {A} simply by↑5 A.

It is well known thatF5 is anω-algebraic lattice, whose poset of compact (or finite)
elements is isomorphic to the reversed poset obtained by quotienting the preorder
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on TT5 by∼5. That means that compact elements are the filters of the form↑5 A
for some typeA, the top element isTT5, and the bottom element is↑5 Ω. Moreover
the join of two filters is the filter induced by their union and the meet of two filters
is their intersection, i.e.:

Ξ tΥ = ↑5 (Ξ ∪Υ)

Ξ uΥ = Ξ ∩Υ.

The key property ofF∇ is to be a reflexive object in the category ofω-algebraic
complete lattices and Scott-continuous functions. This become clear by endowing
the space of filters with a notion of application which induces continuous maps
fromF∇ to its function space[F5 → F5] and vice versa.

Definition 12 (Application)

(1) Application· : F5 ×F5 7→ F5 is defined as

Ξ ·Υ = {B | ∃A ∈ Υ.A→ B ∈ Ξ}.

(2) The continuous mapsF5 : F5 7→ [F5 → F5] andG5 : [F5 → F5] 7→ F5
are defined as:

F5(Ξ) = λλΥ ∈ F5.Ξ ·Υ;

G5(f) =↑5 {A→ B | B ∈ f(↑5 A)}.

Notice that previous definition is sound, since it is easy to verify thatΞ · Υ is a
5-filter.

We start with a useful lemma on application.

Lemma 13 LetΣ5 be an eitt,Ξ ∈ F5 andC ∈ TT5. Then

B ∈ Ξ· ↑5 C iff C → B ∈ Ξ.

PROOF.

B ∈ Ξ· ↑5 C ⇔ ∃C ′.C ≤5 C ′ & C ′ → B ∈ Ξ by definition of application

⇔ C → B ∈ Ξ by rule(η).

As expected,F5 andG5 are inverse to each other.
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Lemma 14

F5 ◦G5 = id[F5→F5];

G5 ◦ F5 = idF5 .

PROOF. It suffices to consider compact elements.

(F5 ◦G5)(f)(↑5 A) = {B | A→ B ∈ G5(f)}

by definition ofF5 and Lemma 13

= {B | A→ B ∈↑5 {A′ → B′ | B′ ∈ f(↑5 A′)}}

by definition ofG5

= {B | ∃I, Ai, Bi.(∀i ∈ I.Bi ∈ f(↑5 Ai))

&
⋂

i∈I(Ai → Bi) ≤5 A→ B}

by definition of filter

= {B | ∃I, Ai, Bi.(∀i ∈ I.Bi ∈ f(↑5 Ai))

&
⋂

i∈J Bi ≤5 B}

whereJ = {i ∈ I | A ≤5 Ai} by Theorem 6

= {B | B ∈ f(↑5 A)}

by the monotonicity off

= f(↑5 A).

(G5 ◦ F5)(↑5 A) = ↑5 {B → C | C ∈↑5 A· ↑5 B} by definition of

F5 andG5

= ↑5 {B → C | B → C ∈↑5 A} by Lemma 13

= ↑5 A by Lemma 3(1).

Lemma 14 implies thatF5 induces an extensionalλ-model. LetEnvF5 be the set
of all mappings from the set of term variables toF5 andρ range overEnvF5.
Via the mapsF5 andG5 we get the standardsemantic interpretation[[ ]]5 : Λ ×
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EnvF5 7→F5 of λ-terms:

[[x]]5ρ = ρ(x);

[[tu]]5ρ = F5([[t]]5ρ )([[u]]5ρ );

[[λx.t]]5ρ = G5(λλΞ ∈ F5.[[t]]5ρ[Ξ/x]).

Actually, by using the Generation Theorem 10, it is easy to prove by induction on
λ-terms that:

[[t]]5ρ = {A ∈ TT5 | ∃Γ � ρ. Γ `5 t : A},
where the notationΓ � ρ means that for(x : B) ∈ Γ one has thatB ∈ ρ(x).

Remark 15 Note that any intersection type theory satisfying Theorem 6 produces
a reflexive object in the category ofω-algebraic lattices, and Lemma 3(1) ensures
that the retraction pair(G,F) consists of isomorphisms.

We conclude this section with the formal definition of filter models.

Definition 16 (Filter models)

The extensionalλ-model〈F5, ·, [[ ]]5〉 is called thefilter modeloverΣ5.

3 Simple Easy Terms and Continuous Predicates

In this section we give the main notion of the paper, namelysimple easiness. A
terme is simple easy if, given an eittΣ5 and a typeE ∈ TT5, we can extend in a
conservative wayΣ5 to an eittΣ5

′
, so that[[e]]5

′
= (↑5′ E) t [[e]]5. This allows

to build with a uniform technique, the filter models in which the interpretation ofe
is a filter of types induced by a continuous predicate(see Definition 20).

First we introduceEITT maps: an EITT map applied to an easy intersection type
theory and to a type builds a new easy intersection type theory which is a conser-
vative extension of the original one.

Definition 17 (EITT maps)

(1) Let Σ5 andΣ5
′
two eitts. We say thatΣ5

′
is a conservative extensionof Σ5

(notationΣ5 v Σ5
′
) iff CC5 ⊆ CC5

′
and for allA,B ∈ TT5,

A ≤5 B iff A ≤5′ B.

(2) A pointedeitt is a pair(Σ5, E) withE ∈ TT5.
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(3) AnEITT mapis a mapM : PEITT 7→ EITT, such that for all(Σ5, E)

Σ5 v M(Σ5, E),

where EITT and PEITT denote respectively the class of eitts and pointed eitts.

We now give the central notion ofsimple easyterm.

Definition 18 (Simple easy terms)An unsolvable terme is simple easyif there
exists an EITT mapMe such that for all pointed eitt(Σ5, E),

`5′ e : B iff ∃C ∈ TT5.C ∩ E ≤5′ B & `5 e : C,

whereΣ5
′
= Me(Σ

5, E).

Define I ≡ λx.x, W2 ≡ λx.xx, W3 ≡ λx.xxx, andRn inductively asR0 =
W2W2, Rn+1 = RnRn. Examples of simple easy terms areW2W2 (see next
section),W3W3I, andRn for all n [4]. See Lusin [16] for further examples of
simple easy terms.

The first key property of simple easy terms is the following.

Theorem 19 With the same notation of previous definition, we have

[[e]]5
′
= (↑5′ E) t [[e]]5.

PROOF. (⊇) TakingC = Ω in Definition 18, we havè 5′ e : E. Therefore,
(↑5′ E) ⊆ [[e]]5

′
. Since[[e]]5 ⊆ [[e]]5

′
, we get[[e]]5

′ ⊇ (↑5′ E) t [[e]]5.
(⊆) If B ∈ [[e]]5

′
, then`5′ e : B, hence, by Definition 18, there existsC ∈ TT5

such thatC ∈ [[e]]5 andC∩E ≤5′ B. We are done, sinceC∩E ∈ (↑5′ E)t[[e]]5
′
.

Finally, we define filters bycontinuouspredicates.

Definition 20 (Continuous predicates)Let P : PEITT 7→ {tt, ff} a predicate. We
say thatP is continuousiff (as usualP(Σ5, E) is short forP(Σ5, E) = tt):

(1) Σ5 v Σ5
′
& P(Σ5, E) ⇒ P(Σ5

′
, E)

(2) P(Σ5∞ , E) ⇒ ∃n.P(Σ5n , E)

whereΣ5∞ = Σ(
⋃

n CC5n ,
⋃

n5n).

The5-filter induced byP overΣ5 is the filter defined by:

Ξ5P =↑5 {A ∈ TT5 | P(Σ5, A)}.
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Note that if we endowPEITT with the Scott topology induced by the ordering
(Σ5, E) v (Σ5

′
, E ′) iff Σ5 v Σ5

′
andE∼5E ′, then continuous predicates are in

one-to-one correspondence with Scott open sets inPEITT.

For the proof of the Main Theorem it is useful to recall some properties of Scott’s
λ-modelD∞ [20]. We are interested in the inverse limitλ-modelD∞, obtained
starting from the two point latticeD0 = {⊥,>} and the embeddingi0 : D0 →
[D0 → D0] defined by:

i0(⊥) = ⊥ ⇒ ⊥

i0(>) = ⊥ ⇒ >
wherea ⇒ b is the step function defined by

λd. if a v d then b else⊥.

It is well-known (and first shown in Wadsworth [21]) that in this model the inter-
pretation of all unsolvable terms is bottom. Moreover this model is isomorphic to
the filter model〈F50 , ·, [[ ]]50〉 induced by the eittΣ50 defined by:

CC50 = {Ω, ω};

50 = 5∪ {ω ∼ Ω → ω}.

This isomorphism (stated with a proof sketch in Coppo et al. [9] and fully proved
in Alessi [2]) is a particular case of the duality discussed in Section 2 of [12].
Therefore we get:

Proposition 21 In the filter model〈F50 , ·, [[ ]]50〉 the interpretation of all unsolv-
able terms is↑50 Ω.

Theorem 22 (Main Theorem) Let e be a simple easy term,P : PEITT→ {tt, ff}
be a continuous predicate andΞ5P be the5-filter induced byP overΣ5. Then there
is a filter modelF5 such that

[[e]]5 = Ξ5P .

PROOF. Let 〈·, ·〉 denote any fixed bijection between IN× IN and IN such that
〈r, s〉 ≥ r.

We will choose a denumerable sequence of eittsΣ50 , . . . ,Σ5r , . . .. For eachr we
will consider a fixed enumeration〈T (r)

s 〉s∈IN of the set{A ∈ TT5r | P(Σ5r , A)}.

We can construct the model as follows.

step0: take the eittΣ50 defined as above.

14



step(n+ 1): if n = 〈r, s〉 we defineΣ5n+1 = Me(Σ
5n , T (r)

s ) (notice thatΣ5n v
Σ5n+1).

final step: takeΣ5∞ = Σ(
⋃

n CC5n ,
⋃

n5n).

First we prove that the modelF5∞ is non-trivial by showing that[[I]]5∞ 6= [[K]]5∞ ,
whereI ≡ λx.x, K ≡ λxy.x. LetD ≡ (ω → ω) → (ω → ω). Since`5∞ I : D,
we have thatD ∈ [[I]]5∞ . On the other hand, if it wereD ∈ [[K]]5∞ , then there
would existn such thatD ∈ [[K]]5n. This would imply (by applying several times
the Generation Theorem)ω → ω ≤5n ω. Since we haveΣ5n v Σ5n+1 for all
n, we should haveω → ω ≤50 ω. Sinceω ∼50 Ω → ω, we should conclude
by Theorem 6,Ω ≤50 ω, which is a contradiction. Therefore, we cannot have
D ∈ [[K]]5∞ and the modelF5∞ is non-trivial.

Now we prove that[[e]]5∞ =↑5∞ {T (r)
s | r, s ∈ IN} by showing that[[e]]5n =↑5n

{T (r)
s | 〈r, s〉 < n} for all n. The inclusion(⊇) is immediate by construction. We

prove (⊆) by induction onn. If n = 0, then [[e]]50 =↑50 Ω by Proposition 21.
Suppose the thesis is true forn = 〈rn, sn〉 and letB ∈ [[e]]5n+1 . Then`5n+1 e : B.
This is possible only if there existsC ∈ TT5n such thatC ∩ T (rn)

sn
≤5n+1 B and

moreover̀ 5n e : C. By induction we haveC ∈↑5n {T (r)
s | 〈r, s〉 < n}, hence

T (r1)
s1

∩ . . .∩T (rk)
sk

≤5n C for somer1, . . . , rk, s1, . . . , sk with 〈ri, si〉 < n (1 ≤ i ≤
k). We deriveT (r1)

s1
∩ . . . ∩ T (rk)

sk
∩ T (rn)

sn
≤5n+1 B, i.e.B ∈↑5n+1 {T (r)

s | 〈r, s〉 <
n+ 1} .

Finally we show that

A ∈ TT5∞ & P(Σ5∞ , A) ⇔ ∃r, s. A ≡ T (r)
s .

(⇐) is immediate by Definition 20(1).

We prove (⇒). If A ∈ TT5∞ andP(Σ5∞ , A), then by definition ofΣ5∞ and the con-
tinuity of P, it follows that there isr such thatA ∈ TT5r andP(Σ5r , A). Therefore
by definition ofT (r)

s , there iss such thatA ≡ T (r)
s .

So we can conclude[[e]]5∞ =↑5∞ {A ∈ TT5∞ | P(Σ5∞ , A)}, i.e. [[e]]5∞ = Ξ5∞P .

4 Consistency ofλ-theories

We introduce now aλ-theory whose consistency has been first proved using a suit-
able filter model in Dezani and Lusin [13]. We obtain the same model here as a
consequence of Theorem 22.
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Definition 23 (TheoryJ ) Theλ-theoryJ is axiomatized by

W4xx = x; W4xy = W4yx; W4x(W4yz) = W4(W4xy)z

whereW2 ≡ λx.xx andW4 ≡ W2W2.

It is clear that the previous equations hold if the interpretation ofW4 is the join
operator on filters. In order to use Theorem 22 we need:

• the join operator on filters to be a filter generated by a continuous predicate;
• W4 to be simple easy.

For the first condition it is easy to check that the join relative toF5 is represented
by the filter:

Θ =↑5 {A→ B → A ∩B | A,B ∈ TT5}.
In fact, by easy calculation we have:

(Θ · Ξ) ·Υ = Ξ tΥ

for all filtersΞ,Υ in F5. Therefore, the required predicate is

P(Σ5, C) ⇔ C ≡ A→ B → A ∩B.

It is trivial that the predicate above is continuous.

To show thatW4 is simple easy we give a lemma which characterises the types
derivable forW2 andW4.

Lemma 24

(1) `5 W2 : A→ B iff A ≤5 A→ B;
(2) `5 W4 : B iff A ≤5 A→ B for someA ∈ TT5 such that̀ 5 W2 : A.
(3) If `5 W4 : B then there existsA ∈ TT5 such that#(A) = 0, A ≤5 A → B

and`5 W2 : A.

PROOF. (1) By a straightforward computation,A ≤5 A → B implies`5 W2 :
A → B. Conversely, supposè5 W2 : A → B. If B∼5Ω, then by axioms (Ω),
(Ω-η), and rules (η), (trans), we haveA ≤5 A → B. Otherwise, by Theorem
10(4) it follows x :A `5 xx : B. By Theorem 10(2) there exists a typeC ∈ TT5

such thatx : A `5 x : C → B andx : A `5 x : C. Notice thatB 6∼5Ω implies
C → B 6∼5Ω, since fromC → B∼5Ω we getC → B∼5Ω → Ω by axiom (Ω-η)
and rule (trans) and this impliesB∼5Ω by Theorem 6. So by Theorem 10(1), we
getA ≤5 C → B. We haveA ≤5 C either by Theorem 10(1) if C 6∼5Ω or by
axiom (Ω) and rule (trans) if C∼5Ω. FromA ≤5 C → B andA ≤5 C by rule
(η) it follows A ≤5 A→ B.
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(2) The caseB∼5Ω is trivial. Otherwise, if`5 W4 : B, by Theorem 10(2) it
follows that there existsA ∈ TT5 such that̀ 5 W2 : A and`5 W2 : A → B. We
conclude by Point(1).

(3) Let `5 W4 : B. Then, by Point(2), the set

Π = {A ∈ TT5 | `5 W2 : A andA ≤5 A→ B}

is non-empty. LetA ∈ Π be such that#(A) is minimal. We are done if we prove
#(A) = 0. By contradiction, if it is not the case, by applying Lemma 5, we obtain
a typeA′ such thatA′∼5A, A′ ≡ ⋂

i∈I(Ci → Di) and#(A′) = #(A). From
A ≤5 A → B we have

⋂
i∈I(Ci → Di) ≤5 A → B, hence, by Theorem 6,⋂

i∈J Di ≤5 B whereJ = {i ∈ I | A ≤5 Ci}. Since`5 W2 : A, by (≤5)
it follows `5 W2 : Ci → Di for all i ∈ J and`5 W2 :

⋂
i∈J Ci. By Point

(1) it follows ∀i ∈ J.Ci ≤5 Ci → Di. By axiom (→ ∩) and rule (η) we get
C ≤5 C → ⋂

i∈J Di, and alsoC ≤5 C → B, whereC ≡ ⋂
i∈J Ci. We have

obtained:

`5 W2 : C;

C ≤5 C → B;

#(C) < #(A′) = #(A).

This is a contradiction, sinceC ∈ Π contradicts the minimality of#(A).

The crucial step for proving simple easiness ofW4 is to find its EITT map.

Definition 25 Let (Σ5, E) a pointed eitt andχ /∈ CC5. We define

MW4(Σ
5, E) = Σ5

′
,

where:

• CC5
′
= CC5 ∪ {χ} ;

• 5′ = 5∪ {χ ∼ χ→ E}.

First we notice thatMW4 is an EITT map. In factMW4(Σ
5, E) is an easy inter-

section type theory by Definition 25. Moreover, it is straightforward to show by
induction on derivations thatΣ5 v MW4(Σ

5, E).

Now we prove thatMW4 is an EITT map forW4.

Lemma 26 LetΣ5
′
= MW4(Σ

5, E). Then

`5′ W4 : B iff ∃C ∈ TT5.C ∩ E ≤5′ B & `5 W4 : C.
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PROOF. Throughout the proof we use the Generation Theorem and Theorem 6
without explicitly mentioning them each time.

(⇒) Let `5′ W4 : B. First we show that there is a typeD ∈ TT5
′
such that

(a) D ≡ ⋂
i∈I(ϕi → Fi) ∩ χ;

(b) ∀i ∈ I.ϕi ∈ CC5 & Fi ∈ TT5;

(c) D ≤5′ D → B;

(d) `5′ W2 : D.

By Lemma 24(3) `5′ W4 : B implies that there existsA ∈ TT5
′

such that the
following three properties hold:

(i) #(A) = 0;

(ii) A ≤5′ A→ B;

(iii) `5′ W2 : A.

If we considerA′ ≡ A ∩ χ, it is easy to check thatA′ satisfies (i) and (iii) above.
Moreover, (ii) holds forA′ since by Lemma 3(2) and rules(mon), (η):

A ∩ χ ≤5′ (A→ B) ∩ (χ→ E) ≤5′ A ∩ χ→ B ∩ E ≤5′ A ∩ χ→ B.

It must beA′ ∼5′ (
⋂

k∈K φk) ∩ χ, with φk ∈ CC5, φk 6∼5′Ω for all k ∈ K, since
the unique possible shape forA′ is an intersection of constants containingχ. Next,
since for eachk ∈ K, we have, from the axioms of5, φk ∼5

⋂
l∈L(k)(ϕ

(k)
l →

F
(k)
l ), we can defineD ≡ ⋂

k∈K(
⋂

l∈L(k)(ϕ
(k)
l → F

(k)
l ))∩χ. Then, by reindexing the

types and using a unique intersection, we get the syntactic shape forD required by
conditions (a) and (b). Moreover, conditions (c) and (d) hold since by construction
D ∼5 A′.

Considering (a), (d), rule(≤5′) and Lemma 24(1), we have that for alli ∈ I,
ϕi ≤5′ ϕi → Fi. SinceΣ5 v Σ5

′
and for eachi ∈ I, ϕi, Fi ∈ TT5, it follows that

ϕi ≤5 ϕi → Fi, for all i ∈ I. By applying Lemma 24(1) and rule(∩I), we get
`5 W2 :

⋂
i∈I(ϕi → Fi). This implies by Lemma 3(2) and rule(≤5)

`5 W2 : (
⋂
i∈I′

ϕi) → (
⋂
i∈I′

Fi) for all I ′ ⊆ I. (1)

Because of (c),(
⋂

i∈J Fi) ∩ E ≤5′ B whereJ = {i ∈ I | D ≤5′ ϕi)}. Because
of (d) and rule(≤5′), it follows `5′ W2 :

⋂
i∈J ϕi. Letϕi ≡

⋂
h∈H(i)(ζ

(i)
h → G

(i)
h ).

Then by rule(≤5′), we havè 5′ W2 : ζ
(i)
h → G

(i)
h for eachi ∈ J andh ∈ H(i). By

18



Lemma 24(1) it follows, for eachi ∈ J andh ∈ H(i), ζ(i)
h ≤5′ ζ(i)

h → G
(i)
h . Using

againΣ5 v Σ5
′
, we have, for eachi ∈ J andh ∈ H(i), ζ(i)

h ≤5 ζ
(i)
h → G

(i)
h ,

hence, by Lemma 24(1), `5 W2 : ζ
(i)
h → G

(i)
h , for eachi ∈ J andh ∈ H(i).

Therefore, by rule(∩I), we havè 5 W2 :
⋂

i∈J(
⋂

h∈H(i)(ζ
(i)
h → G

(i)
h )), that is

`5 W2 :
⋂
i∈J

ϕi. (2)

Applying rule(→ E) to (1) with I ′ = J and(2), we obtaiǹ 5 W4 :
⋂

i∈J Fi. Since
we have proven(

⋂
i∈J Fi) ∩ E ≤5′ B, we are done, by choosingC ≡ ⋂

i∈J Fi.

(⇐) By Theorem 19 we have that̀5
′
W4 : E. Since by hypothesis̀5 W4 : C

and moreoverΣ5 v Σ5
′
, we obtaiǹ 5′ W4 : C. By applying rule(≤5′) we have

`5′ W4 : B.

The previous lemma yields the second crucial step in the construction of the model.

Theorem 27 W4 is simple easy.

We can conclude:

Theorem 28 (Consistency ofJ ) Theλ-theoryJ is consistent.

Remark 29 The set of allλ-theories is naturally equipped with a structure of com-
plete lattice (see Barendregt [7], Chapter 4), with meetu defined as set theoretic
intersection. The joint of twoλ-theoriesT andS is the least equivalence relation
including T ∪ S. Lusin and Salibra [17] consider the set[J ) of all λ-theories
extendingJ : this is a sublattice of the lattice ofλ-theories. They prove that this
sublattice has many interesting algebraic properties, due to the validity of the equa-
tions definingJ (see Definition 23). In particular[J ) satisfies a restricted form of
distributivity, called meet semidistributivity, i.e. for allλ-theoriesT ,S,G ∈ [J ), if
T u S = T u G, thenT u S = T u (S t G).

5 Minimal Fixed Point Operators

In this section we prove that for all simple easy termse there are filter modelsF5
such that[[e]]5 represents the minimal fixed point operatorµ.

Actually, since[[e]]5 ∈ F5, while µ ∈ [[F5 → F5] → F5], the identification
between[[e]]5 andµ is possible via the “canonical embedding” of[[F5 → F5] →
F5] in F5.
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Lemma 14 implies that every “higher order” space can be embedded in a canon-
ical way inF5, by defining standard appropriate mappings viaF5 andG5. For
instance, in order to embed the space ofµ, namely[[F5 → F5] → F5], in
F5, we consider the pair of mappingsH5 : F5 → [[F5 → F5] → F5] and
K5 : [[F5 → F5] → F5] → F5 defined as follows:

H5(Ξ) = F5(Ξ) ◦G5,

K5(H) = G5 ◦ λλΞ.(H ◦ F5)(Ξ).

It is easy to check that

H5 ◦K5 = id[[F5→F5]→F5]→[[F5→F5]→F5]. (3)

We say that a filterΞ representsan operatorH ∈ [[F5 → F5] → F5] if H5(Ξ) =
H. The equality (3) guarantees that eachH is represented byK5(H).

So the problem of finding a filter modelF5, such that[[e]]5 representsµ, can be
solved if we findF5 such that[[e]]5 = K5(µ).

Remark 30 We point out that, given a simple easy terme, the existence of a model
F5 where[[e]]5 representsµ is not trivial at all. A simple easy terme, being easy,
can obviously be equated to an arbitrary fixed point combinatorY. This could be
useful in view of identifying[[e]] with µ, provided that there exists a fixed point
combinatorỸ such that[[Ỹ]]5 representsµ in eachfilter modelF5. In fact, if
there were such ãY, then it would be possible to find a filter modelF5′ such
that [[Ỹ]]5

′
= [[e]]5

′
, following the technique of Alessi and Lusin [4]. Therefore we

would obtainH5′([[e]]5
′
) = µ. Unfortunately, such ãY does not exist. In fact, con-

sider the filter modelFPark isomorphic to the Parkλ-modelDPark of λ-calculus
(see Honsell and Ronchi [14]). As proven in [14], for all closedλ-termst, [[t]]Park

is above a certain compact elementc different from the bottom element. In partic-
ular, for all fixed point combinatorsY, [[YI]]Park is abovec, whereI is the identity
combinator. Sinceµ(λλX.X) is obviously the bottom element, we have that it is not
possible thatHPark([[Y]]Park) representsµ, since

HPark([[Y]]Park)(λλX.X) = (FPark([[Y]]Park) ◦GPark)(λλX.X)

= FPark([[Y]]Park)(GPark(λλX.X))

= [[Y]]Park · [[I]]Park

= [[YI]]Park

w c

where we have used the fact that[[I]]5 = G5(λλX.X) for all Σ5.
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We intend to prove the desired result using Theorem 22 as follows:

• given an eittΣ5, we characterise the filterK5(µ),
• we notice thatK5(µ) can be defined as a filter of types which satisfies a contin-

uous predicate,
• finally, we apply Theorem 22.

In the following definition we introduce the setsΦ5n , the filtersΨ5n and the filter
Ψ5∞. Later on we shall prove thatΨ5∞ coincide withK5(µ).

Definition 31 (The filter Ψ5∞) Let Σ5 an eitt. For all integersn, the setsΦ5n and
the filtersΨ5n are defined by mutual induction as follows:

Φ50 = {Ω} Ψ50 = ↑5 Φ50 ;

Φ5n+1 = {C → B | ∃B′.C → B′ ∈ Ψ5n & C ≤5 B′ → B} Ψ5n+1 = ↑5 Φ5n+1.

We defineΨ5∞ =
⋃

n Ψ5n .

For instanceA → Ω ∈ Φ51 , (Ω → A) → A ∈ Φ52 , (Ω → A0) ∩ (A0 → A1) →
A1 ∈ Φ53 , and(Ω → A0) ∩ (A0 → A1) ∩ . . . ∩ (An−1 → An) → An ∈ Φ5n+2 for
all A,A0, . . . , An.

Now we prove two useful lemmata onΦ5n , Ψ5n . The first lemma shows that(Ψ5n )n

is a chain: the second lemma shows thatΦ5n andΨ5n contain the same arrow types
for n > 0.

Lemma 32 For all n ≥ 0 we haveΨ5n ⊆ Ψ5n+1.

PROOF. We prove the thesis by induction onn. By definitionΨ50 is the bottom
element ofF5, henceΨ50 ⊆ Ψ51 .
SupposeΨ5n ⊆ Ψ5n+1. It is enough to proveΦ5n+1 ⊆ Ψ5n+2. Let C → B ∈ Φ5n+1.
Then there existsB′ such thatC → B′ ∈ Ψ5n andC ≤5 B′ → B. By induction
we haveΨ5n ⊆ Ψ5n+1, hence by definitionC → B ∈ Φ5n+2 ⊆ Ψ5n+2.

Lemma 33 For all n > 0 we haveC → B ∈ Φ5n ⇔ C → B ∈ Ψ5n .

PROOF. (⇒) is obvious by definition.
For (⇐) letC → B ∈ Ψ5n (with B 6∼5Ω, otherwise the thesis is trivial). Then there
areI andDi, Gi such that for alli ∈ I, Gi → Di ∈ Φ5n and

⋂
i∈I(Gi → Di) ≤5

C → B. By Theorem 6:⋂
i∈J

Di ≤5 B whereJ = {i ∈ I | C ≤5 Gi}. (4)
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Moreover, by definition ofΦ5n , we get that there areD′i, for all i ∈ I, such that
Gi → D′i ∈ Ψ5n−1 andGi ≤5 D′i → Di. From this last judgements and(4) above,
by Lemma 3(2) we getC ≤5 (

⋂
i∈J D

′
i) → (

⋂
i∈J Di). This together with(4) gives:

C ≤5 D̃ → B, (5)

whereD̃ =
⋂

i∈J D
′
i. SinceΨ5n−1 is a filter andGi → D′i ∈ Ψ5n−1, we have that⋂

i∈J(Gi → D′i) ∈ Ψ5n−1, hence by Lemma 3(2) and again the fact thatΨ5n−1 is a
filter, we have(

⋂
i∈J Gi) → D̃ ∈ Ψ5n−1. SinceC ≤5 (

⋂
i∈J Gi), by rule (η) we get

(
⋂

i∈J Gi) → D̃ ≤5 C → D̃, henceC → D̃ ∈ Ψ5n−1. This last fact together with
(5) impliesC → B ∈ Φ5n .

As a consequence of previous lemma, the filterΨ5∞ is generated by the union of
Φ5n ’s.

Lemma 34 LetΣ5 an eitt. ThenΨ5∞ represents a fixed point operator:

∀f ∈ [F5 → F5].H5(Ψ5∞)(f) = (f ◦ (H5(Ψ5∞))(f).

PROOF. By definition ofH5 we have to prove:

∀f ∈ [F5 → F5].(F5(Ψ5∞) ◦G5)(f) = (f ◦ F5(Ψ5∞) ◦G5)(f).

SinceF5 is surjective onto[F5 → F5], we can takef = F5(Ξ) and we get using
Lemma 14 and the definition ofF5:

∀Ξ ∈ F5.Ψ5∞ · Ξ = Ξ · (Ψ5∞ · Ξ).

As usual, we only consider compact filters, i.e. we will prove that:

∀C ∈ TT5.Ψ5∞· ↑5 C =↑5 C · (Ψ5∞· ↑5 C).

For allB ∈ TT5 we have:
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B ∈ Ψ5∞· ↑5 C ⇔ C → B ∈ Ψ5∞ by Lemma 13

⇔ ∃n. C → B ∈ Ψ5n+1 by definition ofΨ5∞

⇔ ∃n. C → B ∈ Φ5n+1 by Lemma 33

⇔ ∃n,B′. C → B′ ∈ Ψ5n &

C ≤5 B′ → B by definition ofΦ5n+1

⇔ ∃n,B′. B′ ∈ Ψ5n · ↑5 C &

C ≤5 B′ → B by Lemma 13

⇔ ∃n. B ∈↑5 C · (Ψ5n · ↑5 C) by Lemma 13

⇔ B ∈↑5 C · (Ψ5∞· ↑5 C) by definition ofΨ5∞.

An operatorH ∈ [[F5 → F5] → F5] is pre-fixed point operatoriff:

∀f ∈ [F5 → F5].H(f) ⊆ (f ◦ H)(f).

Clearly all fixed point operators are pre-fixed point operators, but not vice versa.

Lemma 35 Let Σ5 an eitt. ThenΨ5∞ represents the minimal pre-fixed point oper-
ator: for all H ∈ [[F5 → F5] → F5] pre-fixed point operators andf ∈ [F5 →
F5],

H5(Ψ5∞)(f) ⊆ H(f).

PROOF. Reasoning as in the proof of previous lemma it is easy to check that we
only need to show:

∀Ξ ∈ F5.Ψ5∞ · Ξ ⊆ (H ◦ F5)(Ξ),

i.e.
∀C ∈ TT5.Ψ5∞· ↑5 C ⊆ H(g),

whereg = F5(↑5 C).

We first prove by induction onn that

∀C ∈ TT5.Ψ5n · ↑5 C ⊆ H(g). (6)

If n = 0, then

Ψ50 · ↑5 C = ↑5 Ω

⊆ H(g).
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Casen+ 1.

B ∈ Ψ5n+1· ↑5 C ⇔ C → B ∈ Ψ5n+1 by Lemma 13

⇔ C → B ∈ Φ5n+1 by Lemma 33

⇔ ∃B′. C → B′ ∈ Ψ5n &

C ≤5 B′ → B by definition ofΦ5n+1

⇔ ∃B′. B′ ∈ Ψ5n · ↑5 C &

C ≤5 B′ → B by Lemma 13

⇒ ∃B′. B′ ∈ H(g) &

C ≤5 B′ → B by induction

⇔ B ∈ g(H(g)) by Lemma 13

beingg = F5(↑5 C)

⇒ B ∈ H(g) sinceH is a pre-fixed

point operator.

This completes the proof of(6). We now perform the final step.

B ∈ Ψ5∞· ↑5 C ⇔ B ∈ (
⋃

n Ψ5n )· ↑5 C by definition ofΨ5∞

⇔ ∃n. B ∈ Ψ5n · ↑5 C since the application is continuous

⇒ B ∈ H(g) by (6).

By Lemmata 34 and 35 we get thatΨ5∞ is K5(µ), i.e. the filter which represents
µ.

Theorem 36 LetΣ5 an eitt. ThenΨ5∞ represents the minimal fixed point operator:

Ψ5∞ = K5(µ).

We can provide now the desired filter model.

Theorem 37 Lete be a simple easy term. Then there exists a filter modelF5 such
that the interpretation ofe is the minimal fixed point operator.

PROOF. The predicateP(Σ5, E) ⇔ E ∈ Ψ5∞ is trivially continuous. By
Theorem 22, there exists a filter modelF5∞ such that[[e]]5∞ is the filter induced
by P, that isΨ5∞. Finally, by Theorem 36,Ψ5∞ representsµ.
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6 Relations between the present paper and [12]

Since [12] appears in this same journal issue, we think it is worthwhile to point out
some common features, as well as some fundamental differences between these
two papers.

First of all, both papers useintersection types theories to buildλ-models: this com-
mon approach is discussed in Section 2 of [12].

In this section we adopt the convention that definitions, theorems and any other
result appearing in [12] will be typed with a final asterisk.

The first difference is the language of intersection types itself. In this paper the
intersection type constructoris atotal functionfrom pairs of types to types (Defini-
tion 1), while in [12] it is apartial functionfrom pairs of types to types (Definitions∗

10 and 12). From the viewpoint of the domain descriptions the gain is notable: with
the language of the present paper we can representω-algebraic lattices, while with
the language of [12] we can represent Scott domains. A smaller difference is that
here we deal with a class of intersection type languages, so the set of constant types
is a parameter, while [12] takes into account only two intersection type languages
with fixed type constants.

The type preordersin the two papers (Definition 2 and Definition∗ 14) share the
first nine axioms and rules, which are standard properties of joins and step func-
tions plus the axiom makingΩ the top. Since in the present paper we allow to build
intersection types starting from an arbitrary set of constants, Definition 2 only gives
the shape the axioms on constants must have, while Definition∗ 14 gives the com-
mon axioms for the two languages considered there. The peculiar axioms of the
two preorders in [12] are given in Definition∗ 15. We remark that all axioms in
Definitions∗ 14 and 15 are of the shape required by Definition 2. Notably axiom
(Ω-η) holds for all the preorders considered here, but only for the second preorder
of [12]. The first preorder of [12] satisfies the weaker axiom (Ω →): this is the
key for representing a lifted domain. So the first type theory of [12] is not an eitt
according to Definition 2 since axiom (Ω-η) is missing, and the second type theory
of [12] is not an eitt according to Definition 2 since the intersection type constructor
is partial.

The definitions of filters (Definition 11 and Definition∗ 17), of bases (Definition 7
and Definition∗ 20), of type assignment systems (Definition 8 and Definition∗ 22)
and the Generation Theorems (Theorem 10 and Theorem∗ 25) are exactly the same
in both papers (the proof is given only here). This way both papers buildλ-models,
but with different aims. [12] gives two models which are isomorphic to two inverse
limit λ-models and uses them to show properties of these last models. Instead, the
present paper allows to define infinitely many models, but we do not know if all
of them have corresponding inverse limitλ-models, the aim being that of finding
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models where we force the interpretations of suitableλ-terms.

7 Conclusion

The relation between the notions of simple easiness and easiness requires further
investigation. While it is clear that simple easiness implies easiness, the question
whether easiness implies simple easiness remains open.

The contribution of the present paper is to show that each simple easy term can be
interpreted as an arbitrary domain operator which can be represented as a filter of
types defined by a continuous predicate.

Research directions which we plan to follow are:

• the characterisation of theλ-theories whose consistency can be shown using the
present approach;

• the characterisation of the operators which can be equated to simple easy terms.
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