
Type preorders and recursive terms

Fabio Alessi 1

Dipartimento di Matematica e Informatica
Università degli Studi di Udine

Via delle Scienze 208, 33100 Udine (Italy)

Mariangiola Dezani-Ciancaglini 2,3

Dipartimento di Informatica
Università degli Studi di Torino

corso Svizzera 185, 10149 Torino (Italy)

Abstract
We show how to use intersection types for building models of a λ-calculus enriched with
recursive terms, whose intended meaning is of minimal fixed points. As a by-product we
prove an interesting consistency result.

1. Introduction

Intersection types were introduced in the late 70’s by Coppo and Dezani [5,6,3],
to overcome the limitations of Curry’s type discipline. They are a very expressive
type language which allows to describe and capture various properties of λ-terms.
For instance, they have been used in Pottinger [19] to give the first type theoretic
characterisation of strongly normalizable terms and in Coppo et al. [7] to capture
persistently normalising terms and normalising terms. See Dezani et al. [8] for a
more complete account of this line of research.

In this paper we are concerned with the λrec-calculus, obtained from the stan-
dard λ-calculus by adding rec-abstraction, according to the syntax:

t ::= x | tt | λx.t | rec x.t

1 e-mail: alessi@dimi.uniud.it
2 e-mail: dezani@di.unito.it
3 Partially supported by EU within the FET - Global Computing initiative, project DART IST-2001-
33477, and MURST Project McTati. The funding bodies are not responsible for any use that might
be made of the results presented here.

c©2004 Published by Elsevier Science B. V.

Alessi & Dezani

We denote by Λrec this set of terms.
The reduction rule for rec-abstraction is

(red-rec) rec x.t → t[x := rec x.t]

This rule substantiates the intuition of rec x.t as a fixed-point of λx.t:

rec x.t = (λx.t)(rec x.t) → t[x := rec x.t]

In a sense our rec operator can be seen as an untyped version of the recursion
operator in Plotkin PCF [18] and of the fixed point operator in ML language [15].

In this paper we show that intersection types are expressive enough for building
models of λrec-calculus in which rec is interpreted as the least fixed point operator.
Provided that we work with suitable intersection types structures which satisfies the
Generation Theorem (we will use the Easy ones), we just have to add to the standard
Type Assignment System the natural rule induced by the interpretation of rec x.t as
minimal fixed point of λx.t in order to obtain models for the λrec-calculus. This
typing rule is:

(rec)
Γ, x :A `5

t : B Γ `5 rec x.t : A

Γ `5 rec x.t : B

The justification comes from our aim of building models in which the interpretation
of terms is the set of types which can be assigned to them. Therefore in agreement
with rule (red-rec) we need to derive the same types for rec x.t and t[x := rec x.t].
A typing derivation for Γ `5

t[x := rec x.t] : B in general will contain sub-
derivations whose conclusions are Γ `5 rec x.t : Ai, for some i∈I since rec x.t
is a subterm of t[x := rec x.t]. We can easily transform such a derivation in a
derivation of Γ, x : A `5

t : B where A =
⋂

i∈I Ai. Moreover by rule (∩I) (see
Definition 2.6) we get Γ `5

rec x.t : A.
A natural question is why we did not simply interpret rec as a fixed point com-

binator: we will discuss this in the conclusion since it requires some notational
conventions introduced in the paper.

Coppo in [4] proved that the set of λ-terms typable in the intersection type
assignment systems properly contains the set of λ-terms typable using the ML let

rule [15], with respect to the standard mapping associating “let x = N in M” to
“(λx.M)N”. This containment does not hold any more if we map the fixed point
operator of ML Fix to our recursive operator rec. In fact the ML typing rule for Fix:

(Fix)
Γ, x :A ` t : A

Γ ` Fixx.t : A

allows to derive ` Fix x.x : A for all types A, while our rule (rec) allows to ob-
tain for rec x.x just types equivalent to the universal type Ω. This agrees with the
requirement that the interpretation of rec x.x is the bottom element. Notice that
Mycroft letrec typing rule [16], [9] is even more permissive than rule (Fix) and
then it increases the sets of types derivable for recursive terms.

2

Alessi & Dezani

Comparing the rules (rec) and (Fix), one can observe that rule (rec) does not re-
quire that x and t are typed with the same type, but it has the demanding condition
that the type of x must be derivable for the whole recursive term rec x.t. This im-
plies that each type derivation for a recursive term has to start always by assigning
the universal type Ω to it.

As a by-product of our construction we can prove an interesting consistency
result concerning simple easy terms. Roughly speaking, a simple easy term is a
term to which one can assign an arbitrary intersection type by suitably extending (in
a conservative way) the preorder on types. The key property is that in the extended
type preorder the term does not receive “too many” types. Notably, simple easiness
implies easiness: we recall that, according to Jacopini [12], a closed term M is easy
if, for any other closed term N , the theory λβ + {M = N} is consistent. We show
that given any simple easy term e, we can add to the calculus the countable amount
of equations

(∗e) ∀t∈Λrec. e(λx.t) = rec x.t

and the resulting theory λrec +(∗e) is still consistent. The proof uses the technique
of [1], which allows to build filter models which equate the interpretation of simple
easy terms to suitable domain operators.

This consistency result, proved by semantic tools, contrasts the mainstream of
consistency proofs in λ-calculi, which is based on the use of syntactic tools (see
Kuper [13] and the references there). As to application of semantic tools, we can
mention the references of Alessi et al. [1].

2. Intersection Type Assignment Systems

Intersection types are syntactic objects built inductively by closing a given set CC

of type atoms (ground types) plus the universal type Ω under the function type
constructor → and the intersection type constructor ∩.

2.1. Definition. [Intersection type language] Let CC be a countable set of ground
types. The intersection type language over CC, denoted by TT = TT(CC), is defined
by the following abstract syntax:

TT = Ω | CC | TT→TT | TT ∩ TT.

Notation Upper case Roman letters i.e. A, B, . . ., will denote arbitrary types. Greek
letters α, β, . . . will denote constants in CC. When writing intersection types we
shall use the following conventions:
• the constructor ∩ takes precedence over the constructor →;
• the constructor → associates to the right;
•

⋂
i∈I Ai with I = {1, . . . , n} and n ≥ 1 is short for ((. . . (A1 ∩ A2) . . .) ∩ An);

•
⋂

i∈I Ai with I = ∅ is Ω.

Much of the expressive power of intersection type disciplines comes from the fact

3

Alessi & Dezani

that types can be endowed with a preorder relation ≤ which satisfies the axioms
and rules 5 of Figure 1, so inducing the structure of a meet semi-lattice with respect
to ∩, the top element being Ω. We recall here the notion of easy intersection type
theory as first introduced in Alessi and Lusin [2].

2.2. Definition. [Easy intersection type theories] Let TT = TT(CC) be an intersec-
tion type language. The easy intersection type theory (eitt for short) Σ(CC,5) over
TT is the set of all judgements A ≤ B derivable from 5, where 5 is a collection
of axioms and rules such that (we write A ∼ B for A ≤ B & B ≤ A and 5− for
5 \5):

(i) 5 contains the set 5 of axioms and rules shown in Figure 1;

(ii) 5− contains only axioms of the following two shapes:

α ≤ α′,

α ∼
⋂

h∈H(ϕh → Eh),

where α, α′∈CC, ϕh∈CC ∪ {Ω}, and Eh∈TT;
(iii) for each α∈CC there is exactly one axiom in 5− of the shape α ∼

⋂
h∈H(ϕh →

Eh);
(iv) let 5− contain α ∼

⋂
h∈H(ϕh → Eh) and α′ ∼

⋂
k∈K(ϕ′

k → E ′
k). Then 5−

contains also α ≤ α′ if and only if for each k∈K, there exists hk∈H such that
ϕ′

k ≤ ϕhk
and Ehk

≤ E ′
k are both in 5−.

2.3. Example. Taking CC = {ω} and 5− = {ω ≤ ω → ω} we obtain an eitt.
Honsell and Ronchi [11] show that this eitt induces a filter λ-model (according to
the construction given in Section 3) isomorphic to Park λ-model [17].

Notice that:
(a) since Ω ∼ Ω → Ω∈Σ(CC,5) by (Ω) and (Ω-η), it follows that all atoms in CC

are equivalent to suitable (intersections of) arrow types;

(refl) A ≤ A (trans)
A ≤ B B ≤ C

A ≤ C

(mon)
A ≤ A′ B ≤ B′

A ∩ B ≤ A′ ∩ B′
(idem) A ≤ A ∩ A

(inclL) A ∩ B ≤ A (inclR) A ∩ B ≤ B

(→ ∩) (A → B) ∩ (A → C) ≤ A → B ∩ C (η)
A′ ≤ A B ≤ B′

A → B ≤ A′ → B′

(Ω) A ≤ Ω (Ω-η) Ω ≤ Ω → Ω

Fig. 1. The axioms and rules of 5.

4

Alessi & Dezani

(b) ∩ (modulo ∼) is associative and commutative;
(c) in the last clause of the above definition E ′

k and Ehk
must be constant types

for each k∈K (but we do not denote them with Greek letters since this is a conse-
quence, not an hypothesis).

Notation When we consider an eitt Σ(CC,5), we will write CC
5 for CC, TT

5 for
TT(CC) and Σ5 for Σ(CC,5). Moreover A ≤5 B will be short for (A ≤ B)∈Σ5

and A∼5B for A ≤5 B ≤5 A. We will consider syntactic equivalence “≡” of
types up to associativity and commutativity of ∩.

A nice feature of eitts is that the order between intersections of arrows agrees
with the order between joins of step functions. This property, which implies the
representability of all continuous functions in the induced filter λ-models (see Sec-
tion 3) and which is fully explained in Section 2 of [8], relies on the next theorem.
For a proof see [1].

2.4. Theorem. For all I , and Ai, Bi, C, D∈TT
5,

⋂

i∈I

(Ai→Bi) ≤5 C→D if and only if
⋂

i∈J

Bi ≤5 D where J = {i∈I | C ≤5 Ai}.

Notice that in the statement of Theorem 2.4 the set J may be empty, and in this
case we get Ω∼5D.

Before giving the crucial notion of intersection-type assignment system, we in-
troduce bases and some related definitions.

2.5. Definition. [Basis] A 5-basis is a (possibly infinite) set of statements of the
shape x :A, where A∈TT

5, with all variables distinct.

We will use the following notation:

(i) x∈Γ is short for (x : A)∈Γ for some A.
(ii) If Γ is a 5-basis and A∈TT

5 then Γ, x :A is short for Γ∪ {x :A} when x /∈ Γ.

(iii) Let Γ and Γ′ be 5-bases. The 5-basis Γ] Γ′ is defined in Figure 2.

2.6. Definition. [Type assignment systems] The intersection type assignment sys-
tem relative to the eitt Σ5, notation λ∩5, is a formal system for deriving judge-
ments of the form Γ `5

t : A, where the subject t is an untyped λ-term, the
predicate A is in TT

5, and Γ is a 5-basis. Its axioms and rules are given in Fig-
ure 3.

2.7. Example. The term λx.rec y.xy can be easily typed in all λ∩5, as shown in
Figure 4.

Γ] Γ′ = {x : A ∩ B | x : A∈Γ and x : B∈Γ′}

∪ {x : A | x : A∈Γ and x /∈ Γ′}

∪ {x : B | x : B∈Γ′ and x /∈ Γ}.

Fig. 2. Union of bases.

5

Alessi & Dezani

(Ax)
(x :A)∈Γ

Γ `5 x :A
(Ax-Ω) Γ `5

t : Ω

(→I)
Γ, x :A `5

t : B

Γ `5 λx.t : A→B
(→E)

Γ `5
t : A → B Γ `5

u : A

Γ `5 tu : B

(∩I)
Γ `5

t : A Γ `5
t : B

Γ `5 t : A ∩ B
(≤5)

Γ `5
t : A A ≤5 B

Γ `5 t : B

(rec)
Γ, x :A `5

t : B Γ `5 rec x.t : A

Γ `5 rec x.t : B

Fig. 3. The axioms and rules of λ∩5.

x : Ω→A, y : Ω `5 x : Ω→A x : Ω→A, y : Ω `5 y : Ω
(→E)

x : Ω→A, y : Ω `5 xy : A x : Ω→A `5
rec y.xy : Ω

(µ)
x : Ω→A `5

rec y.xy : A
(→I)

`5 λx.rec y.xy : (Ω→A)→A

Fig. 4. Derivation of `5 λx.rec y.xy : (Ω→A)→A.

Notice that due to the presence of axiom (Ax-Ω), one can type terms without
assuming types for all their free variables.

As usual we consider λ-terms modulo α-conversion. Notice that the intersec-
tion elimination rules

(∩E)
Γ `5

t : A ∩ B

Γ `5 t : A

Γ `5
t : A ∩ B

Γ `5 t : B

are derivable 4 in any λ∩5.
Moreover, the following rules are admissible:

(≤∇ L)
Γ, x : A ` t : B A′ ≤∇ A

Γ, x : A′ ` t : B

(W)
Γ ` t : B x /∈ Γ

Γ, x : A ` t : B
(S)

Γ, x : A ` t : B x /∈ FV (t)

Γ ` t : B

Before giving the Generation Theorem, which essentially will enable us to “re-
verse” the rules of the type assignment system, we have to take some care about
recursive terms, since in deriving types for them with rule (rec), we have premises
that contains the terms themselves. So, in doing proofs by induction on derivations,
we need to take into account how many times we applied rule (rec).

2.8. Definition. Given a derivation D of the judgment Γ `5 rec x.t : A, ν(D) is
the number of applications of rule (rec) in D which have rec x.t as subject of the

4 Recall that a rule is derivable in a system if, for each instance of the rule, there is a deduction in
the system of its conclusion from its premises. A rule is admissible in a system if, for each instance
of the rule, if its premises are derivable in the system then so is its conclusion.

6

Alessi & Dezani

conclusion.

Notice that ν(D) does not take into account possible applications of (rec) to
proper subterms of the term which is the subject of D conclusion.

The first four points of the following Generation Theorem have been shown
in [1]: the last point which characterises the rec-terms can be easily checked by
induction on derivations.

2.9. Theorem (Generation Theorem).

(i) Assume A6∼5Ω. Then Γ `5 x : A if and only if (x :B)∈Γ and B ≤5 A for
some B∈TT

5.
(ii) Γ `5

tu : A if and only if Γ `5
t : B→A, and Γ `5

u : B for some B∈TT
5.

(iii) Γ `5 λx.t : A if and only if Γ, x :Bi `
5

t : Ci and
⋂

i∈I(Bi→Ci) ≤5 A, for
some I and Bi, Ci∈TT

5.
(iv) Γ `5 λx.t : B→C if and only if Γ, x :B `5

t : C.
(v) Let A6∼5Ω. A derivation D is a derivation of Γ `5 rec x.t : A if and only if

there exist a non-empty set I , and Di, Ci, Bi, such that:
• for any i∈I , Di is a subderivation of D with conclusion Γ `5 rec x.t : Bi;
• ∀i∈I.Γ, x :Bi `

5
t : Ci;

•
⋂

i∈I Ci ≤5 A;
• Σi∈Iν(Di) + |I| = ν(D).

Note that in points (i) and (v) of the previous theorem, we have to suppose that
A 6∼∇ Ω, otherwise we could derive `∇ x : Ω and `∇ rec x.t : Ω just using axiom
(Ax-Ω).

2.10. Theorem (Substitution Lemma). Γ `5
t[z/u] : A if and only if ∃D∈TT

5. Γ, z :
D `5

t : A and Γ `5
u : D.

Proof. (⇒) is a consequence of the Generation Theorem, reasoning by induction
on the structure of t. We just consider the case of t ≡ rec x.v. We proceed by
a further induction on ν(D), where D is the derivation of Γ `5 rec x.v : A. If
ν(D) = 0, then A∼5Ω and the thesis is trivial. Otherwise, by the Generation
Theorem, point (v), there exist I , Di, Ci, Bi such that

(i) for any i∈I , Di is a subderivation in D of Γ, z :D `5 rec x.v : Bi;

(ii) ∀i∈I. Γ, z :D, x :Bi `
5

v : Ci;
(iii)

⋂
i∈I Ci ≤5 A;

(iv) Σi∈Iν(Di) + |I| = ν(D).

Applying the induction on ν(D) to (i) and the induction on terms to (ii), we have,
for any i∈I ,
• Γ `5 rec x.v[z/u] : Bi;
• Γ, x :Bi `

5
v[z/u] : Ci.

Applying (rec) to the last two judgements, we have, for any i∈I , Γ `5
rec x.v[z/u] :

7

Alessi & Dezani

Ci. By (iii), rules (∩I) and (≤5) we get Γ `5 rec x.v[z/u] : A.

(⇐) We reason again by induction on the structure of t, with the nested induction on
ν(D) in the case of t = rec x.v. We just consider the two cases of application and
recursive terms. Let Γ `5

t[z/u] : A, with t ≡ t1t2. By the Generation Theorem,
point (ii), there exists A′ such that Γ `5

t1[z/u] : A′ → A, Γ `5
t2[z/u] : A′. By

induction, there exist types D1, D2, such that:
- Γ, z :D1 `

5
t1 : A′ → A; Γ `5

u : D1;
- Γ, z :D2 `

5
t2 : A′; Γ `5

u : D2.
By rule (∩I) we get Γ `5

u : D1 ∩ D2.
By rule (≤∇ L) we have Γ, z : D1 ∩ D2 `5

t1 : A′ → A and Γ, z : D1 ∩ D2 `5

t2 : A′. By applying (→E) it follows Γ, z :D1 ∩D2 `
5

t1t2 : A. The proof for this
case is complete by choosing D ≡ D1 ∩ D2.
Let D be a derivation of Γ `5

t[z/u] : A, with t ≡ rec x.v. We reason by induction
on ν(D). If ν(D) = 0, then A∼5Ω and can choose D ≡ Ω. Otherwise, by the
Generation Theorem, point (v), there exist I , Di, Ci, Bi, such that:

(i) for any i∈I , Di is a subderivation in D of Γ `5 rec x.v[z/u] : Bi;

(ii) ∀i∈I. Γ, x :Bi `
5

v[z/u] : Ci;
(iii)

⋂
i∈I Ci ≤5 A;

(iv) Σi∈Iν(Di) + |I| = ν(D).

Applying induction to (i), for any i∈I , there exist Di such that Γ, z :Di `
5 rec x.v :

Bi and Γ `5
u : Di. Applying induction to (ii), for any i∈I , there exist D′

i such
that Γ, z :D′

i, x :Bi `
5

v : Ci and Γ `5
u : D′

i. Let D̃ ≡
⋂

i∈I(Di ∩ D′
i). By rule

(≤∇ L) it follows:
• ∀i∈I. Γ, z :D̃ `5 rec x.v : Bi and Γ `5

u : Di;
• ∀i∈I. Γ, z :D̃, x :Bi `

5
v : Ci.

Applying to these last two judgments rule (rec) followed by rules (∩I) and (≤∇ L),
and using (iii), we get Γ, z :D̃ `5

rec x.v : A. Applying rule (∩I) to the judgments
concerning u, we get Γ `5

u : D̃. Type D̃ allows to prove the thesis.

We end the section with an important consequence of the Substitution Lemma,
namely the invariance of type assignment with respect to rule (red-rec): a type is
derivable for rec x.t if and only if it is derivable for t[x/rec x.t].

2.11. Proposition. Γ `5
rec x.t : A if and only if Γ `5

t[x/rec x.t] : A.

Proof. (⇒) Suppose Γ `5 rec x.t : A. Then by the Generation Theorem, point
(v), there exists I, Bi, Ci, such that, for any i∈I , Γ `5 rec x.t : Bi, Γ, x :: Bi `

5
t :

Ci and moreover
⋂

i∈I Ci ≤5 A. By the Substitution Lemma we get, for any i∈I ,
Γ `5

t[x/rec x.t] : Ci, hence, using (∩I) and (≤∇ L), we get Γ `5
t[x/rec x.t] :

A.
(⇐) Suppose Γ `5

t[x/rec x.t] : A. By the Substitution Lemma, there exists D
such that Γ `5 rec x.t : D and Γ, x :D `5

t : A. By applying rule (rec) we obtain
Γ `5 rec x.t : A.

8

Alessi & Dezani

3. Filter Models

Before entering the details of how to build models out of intersection types, we have
to focus on the precise notion of model for λrec-calculus. Actually we start from
the classical definition of λ-model à la Hindley-Longo (see [10]), with a further
condition which forces the interpretation of rec x.t as a fixed point of λx.t.

3.1. Definition. [models of λrec-calculus] A model for the λrec-calculus consists
of a triple 〈D, ·, [[]]D〉 such that D is a set, · : D × D → D, Env : V ar → D and
the interpretation function [[]]D : Λ × Env → D satisfies:

(i) [[x]]Dρ = ρ(x);
(ii) [[tu]]Dρ = [[t]]Dρ · [[u]]Dρ ;

(iii) [[λx.t]]Dρ · [[u]]Dρ = [[t]]Dρ[x:=[[u]]Dρ];

(iv) If ρ(x) = ρ′(x) for all x∈FV(t), then [[t]]Dρ = [[t]]Dρ′ ;
(v) If y /∈ FV(t), then [[λx.t]]Dρ = [[λy.t[x := y]]]Dρ ;

(vi) If ∀d∈D.[[t]]Dρ[x:=d] = [[u]]Dρ[x:=d], then [[λx.t]]Dρ = [[λx.u]]Dρ ;
(vii) [[rec x.t]]Dρ = [[t]]Dρ[x:=[[rec x.t]]Dρ].

〈D, ·, [[]]D〉 is extensional if moreover when x /∈ FV(t):

[[λx.tx]]Dρ = [[t]]Dρ .

We now discuss how to build λ-models out of type theories. We start with the
definition of filter for eitts. Then we show how to turn the space of filters into an
applicative structure. We define continuous maps from the space of filters to the
space of its continuous functions and vice versa. Since the composition of these
maps is the identity we get standard λ-models (filter models). The interpretation of
recursive terms is then obtained by using fixed point operators (we use the minimal
one).

3.2. Definition. [Filters]

(i) A 5-filter (or a filter over TT
5) is a set X ⊆ TT

5 such that:
• Ω∈X;
• if A ≤5 B and A∈X , then B∈X;
• if A, B∈X , then A ∩ B∈X;

(ii) F5 denotes the set of 5-filters over TT
5;

(iii) if X ⊆ TT
5, ↑5X denotes the 5-filter generated by X;

(iv) a 5-filter is principal if it is of the shape ↑5{A}, for some type A. We shall
denote ↑5{A} simply by ↑5A.

It is well known that F5 is an ω-algebraic lattice, whose poset of compact
(or finite) elements is isomorphic to the reversed poset obtained by quotienting the
preorder on TT

5 by ∼5. That means that the compact elements are the filters of the
form ↑5A for some type A, the top element is TT

5, and the bottom element is ↑5Ω.
Moreover the join of two filters is the filter induced by their union and the meet of

9

Alessi & Dezani

two filters is their intersection, i.e.:

X t Y = ↑5(X ∪ Y)

X u Y = X ∩ Y .

The key property of F∇ is to be a reflexive object in the category of ω-algebraic
complete lattices and Scott-continuous functions. This become clear by endowing
the space of filters with a notion of application which induces continuous maps
from F∇ to its function space [F5 → F5] and vice versa.

3.3. Definition. [Application]

(i) Application · : F5 × F5 → F5 is defined as

X · Y = {B | ∃A∈Y.A → B∈X}.

(ii) The continuous maps F
5 : F5 → [F5 → F5] and G

5 : [F5 → F5] →
F5 are defined as:

F5(X) = λλY ∈F5.X · Y ;

G5(f) =↑5 {A → B | B∈f(↑5 A)}.

Notice that previous definition is sound, since it is easy to verify that X · Y is a
5-filter.

As expected, F5 and G5 are inverse to each other: the proof is given in [1].

3.4. Lemma.
F5 ◦ G5 = id[F5→F5];

G5 ◦ F5 = id5

F .

We are now in position for interpreting the λrec-calculus. Let Env
5
F be the set

of all mappings from the set of term variables to F5 and ρ range over Env
5
F . Let

fix be the minimal fixed point operator, that is:
• ∀X∈F5. X · (fix(X)) = fix(X);
• ∀X, Y ∈F5.X · Y = Y ⇒ fix(X) ⊆ Y .

Via the maps F5 and G5, Figure 5 defines the semantic interpretation [[]]5 :
Λrec × Env

5
F → F5 of λrec-terms.

As well-known, Lemma 3.4 implies that F5 induces an extensional λ-model,
since it is a reflexive object in the cartesian closed category of ω-algebraic lattice,
hence all the equations in Definition 3.1 hold, but for (vii), which follows immedi-
ately by definition of fixed point operator.

Next step is to relate the abstract notion of interpretation above, with the type
assignment system. More specifically we want to prove that for any eitt Σ5, λrec-
term t, and environment ρ, we have

10

Alessi & Dezani

[[x]]5ρ = ρ(x);

[[tu]]5ρ = F
5([[t]]5ρ)([[u]]5ρ);

[[λx.t]]5ρ = G5(λλX∈F5.[[t]]5ρ[X/x]);

[[rec x.t]]5ρ = fix([[λx.t]]5ρ).

Fig. 5. Interpretation of λrec-terms.

[[t]]5ρ = {A∈TT
5 | ∃Γ |= ρ. Γ `5

t : A},

where the notation Γ |= ρ means that for (x : B)∈Γ one has that B∈ρ(x).

In view of this we need a characterisation of fix as filter. Lemma 3.4 implies that
every “higher order” space can be embedded in a canonical way in F5, by defining
standard appropriate mappings via F5 and G5. For instance, in order to embed the
space of fix, namely [[F5 → F5] → F5], inF5, we consider the pair of mappings
H5 : F5 → [[F5 → F5] → F5] and K5 : [[F5 → F5] → F5] → F5 defined
as follows:

H5(X) = F5(X) ◦ G5,

K
5(H) = G

5 ◦ λλX.(H ◦ F
5)(X).

It is easy to check that

(\) H
5 ◦ K

5 = id[[F5→F5]→F5]→[[F5→F5]→F5].

We say that a filter X represents an operator H∈[[F5 → F5] → F5] if
H5(X) = H. The equality (\) guarantees that each H is represented by K5(H).

Given any eitt Σ5, we now study a special filter, called Ξ5, first introduced in
[1], where Ξ5 is proved to be a 5-filter representing the fix operator (see Theorem
3.7).

3.5. Definition. [Filter Ξ5] Let Σ5 an eitt. For all integers n, the sets Φ5
n and the

filters Ψ5
n are defined by mutual induction as follows:

Φ5
0 = {Ω} Ψ5

0 = ↑5Φ5
0 ;

Φ5
n+1 = {C → A | ∃B.C → B∈Ψ5

n & C ≤5 B → A} Ψ5
n+1 = ↑5Φ5

n+1.

We define Ξ5 =
⋃

n Ψ5
n .

For instance A → Ω∈Φ5
1 , (Ω → A) → A∈Φ5

2 , (Ω → A0) ∩ (A0 → A1) →
A1∈Φ5

3 , and (Ω → A0) ∩ (A0 → A1) ∩ . . . ∩ (An−1 → An) → An∈Φ5
n+2 for all

A, A0, . . . , An.

11

Alessi & Dezani

C → A∈Ψ5
0 ⇔ Ω ≤5 C → A by definition of Ψ5

0

⇔ Ω → Ω ≤5 C → A by axioms (Ω)and (Ω-η)

⇔ Ω ≤5 A by rule (η) and Theorem 2.4.

Fig. 6. Proof of].

Now we give an useful lemma on Φ5
n , Ψ5

n which characterises the arrow types
in Ξ5.

3.6. Lemma. (i) For all n > 0 we have C → A∈Φ5
n ⇔ C → A∈Ψ5

n .

(ii) For all n > 0 we have

C → A∈Ψ5
n ⇔ ∃B0, . . . , Bn. C ≤5

⋂
0≤i≤n−1(Bi → Bi+1)

& B0 ≡ Ω & Bn ≡ A.

Proof. (i) is proved in [1]. The proof of (ii) is by induction on n.
For n = 1 Figure 6 shows:

(]) C → A∈Ψ5
0 ⇔ Ω ≤5 A.

and Figure 7 concludes the proof.
Figure 8 gives the proof for the induction step.

The key property of Ξ5 proved in [1] is:

3.7. Theorem. The filter Ξ5 represents the minimal fixed point operator, i.e. Ξ5 =
H5(fix).

Having characterized fix through the filter Ξ5 is fundamental for proving the
next result.

C → A∈Ψ5
1 ⇔ C → A∈Φ5

1

by (i)

⇔ ∃B. C → B∈Ψ5
0 & C ≤5 B → A

by definition of Φ5
1

⇔ ∃B. Ω ≤5 B & C ≤5 B → A

by (])

⇔ C ≤5 Ω → A

by rule (η) and Theorem 2.4.

Fig. 7. Proof of the first step of Lemma 3.6(ii).

12

Alessi & Dezani

C → A∈Ψ5
n+1 ⇔ C → A∈Φ5

n+1

by (i)

⇔ ∃B. C → B∈Ψ5
n & C ≤5 B → A

by definition of Φ5
n+1

⇔ ∃B, B0, . . . , Bn. C ≤5

⋂
0≤i≤n−1(Bi → Bi+1)

& B0 ≡ Ω & Bn ≡ B & C ≤5 B → A

by induction

⇔ ∃B0, . . . , Bn. B0 ≡ Ω &

by rules (mon),

C ≤5 (
⋂

0≤i≤n−1(Bi → Bi+1)) ∩ (Bn → A)

(trans) and axiom (idem).

Fig. 8. Proof of the induction step of Lemma 3.6(ii).

3.8. Theorem.
[[t]]5ρ = {A∈TT

5 | ∃Γ |= ρ. Γ `5
t : A}.

Proof. By induction on λrec-terms, using the Generation Theorem 2.9. All cases
but that of rec-terms are proved in [1].

When considering terms rec x.t, by the characterization [[rec x.t]]5ρ = Ξ5 ·
[[λx.t]]5ρ , we have to show:

Ξ5 · [[λx.t]]5ρ = {A∈TT
5 | ∃Γ |= ρ. Γ `5

rec x.t : A}.

Figure 9 shows:

([) Ξ5 · [[λx.t]]5ρ = {A | ∃n, B0 . . . Bn, Γ |= ρ. B0 ≡ Ω & Bn ≡ A

& Γ, x : Bi `
5

t : Bi+1(0 ≤ i ≤ n − 1)}.

Proof of ⊆.

We check by induction on i that Γ `5 rec x.t : Bi for 0 ≤ i ≤ n. The basic step is
trivial since B0 ≡ Ω.
For the induction step it suffices to apply rule (rec):

Γ, x :Bi `
5

t : Bi+1 Γ `5 rec x.t : Bi

Γ `5 rec x.t : Bi+1

We conclude Γ `5
rec x.t : A since Bn ≡ A.

Proof of ⊇.

13

Alessi & Dezani

Ξ5 · [[λx.t]]5ρ = {A | ∃C∈[[λx.t]]5ρ . C → A∈Ξ5}

by definition of application

= {A | ∃C, Γ |= ρ. Γ `5 λx.t : C & C → A∈Ξ5}

by induction

= {A | ∃C, Γ |= ρ. Γ `5 λx.t : C & ∃n, B0 . . . Bn.

C ≤5

⋂
0≤i≤n−1(Bi → Bi+1) & B0 ≡ Ω & Bn ≡ A}

by definition of Ξ5 and Lemma 3.6(ii)

= {A | ∃n, B0 . . . Bn, Γ |= ρ. B0 ≡ Ω & Bn ≡ A

& Γ `5 λx.t : Bi → Bi+1(0 ≤ i ≤ n − 1)}

by rule (≤5)

= {A | ∃n, B0 . . . Bn, Γ |= ρ. B0 ≡ Ω & Bn ≡ A

& Γ, x : Bi `
5

t : Bi+1(0 ≤ i ≤ n − 1)}

by the Generation Theorem (Theorem 2.9(iv)).

Fig. 9. Proof of ([).

This proof is by induction on ν(D) where D is a derivation of Γ `5 rec x.t : A.
The basic step ν(D) = 0 is immediate.
For the induction step we get from the Generation Theorem (Theorem 2.9(v)) that
there exist a non-empty set J , Dj, Ej, Dj , such that:

(i) for any i∈J , Dj is a subderivation of D with conclusion Γ `5 rec x.t : Dj;
(ii) ∀j∈J.Γ, x :Dj `

5
t : Ej;

(iii)
⋂

j∈J Ej ≤5 A;
(iv) Σj∈Jν(Dj) + |J | = ν(D).

From (i) and (iv) we get by induction Dj∈Ξ5 · [[λx.t]]5ρ for all i∈J . This implies
by ([) that there exist nj, B

(j)
0 . . . B

(j)
nj such that B

(j)
0 ≡ Ω, B

(j)
nj ≡ Dj and Γ, x :

B
(j)
i `5

t : B
(j)
i+1(0 ≤ i ≤ nj−1). Using (ii) and ([) again we get Ej∈Ξ5 ·[[λx.t]]5ρ ,

so we conclude A∈Ξ5 · [[λx.t]]5ρ from (iii) being Ξ5 · [[λx.t]]5ρ a 5-filter.

We end by showing the following consistency result: given any simple easy
terms e, we can add to the calculus the countable amount of equations

(∗e) ∀t∈Λrec. e(λx.t) = rec x.t

and the resulting theory λrec + (∗e) is still consistent.
We recall the definition of simple easy terms first done in [2]. A term is

simple easy if we can force its interpretation to be extended exactly by an arbi-
trary principal filter. More precisely e is simple easy if, given an eitt Σ5 and

14

Alessi & Dezani

a type Z∈TT
5, we can extend in a conservative way Σ5 to an eitt Σ5′ , so that

[[e]]5
′

= (↑5
′

Z) t [[e]]5.
First we introduce EITT maps: an EITT map applied to an easy intersection

type theory and to a type builds a new easy intersection type theory which is a
conservative extension of the original one.

3.9. Definition. [EITT maps]

(i) Let Σ5 and Σ5′ two eitts. We say that Σ5′ is a conservative extension of Σ5

(notation Σ5 v Σ5′) if and only if CC
5 ⊆ CC

5′

and for all A, B∈TT
5,

A ≤5 B if and only if A ≤5′ B.

(ii) A pointed eitt is a pair (Σ5, Z) with Z∈TT
5.

(iii) An EITT map is a map M : PEITT 7→ EITT, such that for all (Σ5, Z)

Σ5 v M(Σ5, Z),

where EITT and PEITT denote respectively the class of eitts and pointed
eitts.

3.10. Definition. [Simple easy terms] An unsolvable term e is simple easy if there
exists an EITT map Me such that for all pointed eitt (Σ5, Z),

`5′

e : B if and only if ∃C∈TT
5.C ∩ Z ≤5′ B & `5

e : C,

where Σ5′

= Me(Σ
5, Z).

Define I ≡ λx.x, W2 ≡ λx.xx, W3 ≡ λx.xxx, and Rn inductively as R0 =
W2W2, Rn+1 = RnRn. Examples of simple easy terms are W2W2, W3W3I,
and Rn for all n [2]. Lusin [14] gives further examples of simple easy terms.

The property of simple easy terms useful here is (for a proof see [1]):

3.11. Theorem. Let e be a simple easy term. Then there exists a non-trivial filter
model F5 such that the interpretation of e is the minimal fixed point operator.

We can then conclude:

3.12. Theorem. Let e be a simple easy term. Then there exists a non-trivial fil-
ter model F5 such that the interpretation of e(λx.t) and rec x.t coincide for all
t∈Λrec.

3.13. Corollary. Let e be a simple easy term. Then the theory λrec + (∗e) is
consistent.

4. Conclusion

We end the paper justifying the decision of explicitly introducing terms rec x.t and
of not interpreting them by [[Y(λx.t)]]5 for some fixed point combinator Y. A first

15

Alessi & Dezani

reason is the smoothness of the type assignment system: deriving types for rec x.t
is very plain with respect to the cumbersome application of rules for deriving types
to Y(λx.t). As a second, and more important, reason, the possible interpretation
of rec x.t as minimal fixed point of λx.t cannot be captured by any Y. In fact,
there is no fixed point combinator Ỹ such that [[Ỹ]]5 represents the minimal fixed
point operator fix in each filter model F5. In fact, consider the filter model FPark

isomorphic to the Park λ-model DPark of λ-calculus (see example 2.3). As proven
in [11], for all closed λ-terms t, [[t]]Park is above a certain compact element c

different from the bottom element. In particular, for all fixed point combinators
Y, [[YI]]Park is above c, where I is the identity combinator. Since fix(λλX.X) is
obviously the bottom element, we have that it is not possible that HPark([[Y]]Park)
represents fix, since

HPark([[Y]]Park)(λλX.X) = (FPark([[Y]]Park) ◦ GPark)(λλX.X)

= FPark([[Y]]Park)(GPark(λλX.X))

= [[Y]]Park · [[I]]Park

= [[YI]]Park

w c

where we have used the fact that [[I]]5 = G5(λλX.X) for all Σ5.

Acknowledgments

The authors are grateful to Furio Honsell for enlightening discussions on the subject
of the present paper and to the referees for careful reading and useful suggestions
which strongly improved the paper presentation.

References

[1] Fabio Alessi, Mariangiola Dezani-Ciancaglini, and Stefania Lusin. Intersection types
and domain operators. Theoret. Comput. Sci., 316(1–3):25–47, 2004.

[2] Fabio Alessi and Stefania Lusin. Simple easy terms. In S. van Bakel, editor,
Intersection Types and Related Systems, volume 70 of Electronic Lecture Notes in
Theoretical Computer Science. Elsevier, 2002.

[3] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. J. Symbolic Logic, 48(4):931–940
(1984), 1983.

[4] Mario Coppo. An extended polymorphic type system for applicative languages. In
Piotr Dembinski, editor, MFCS’80, volume 88 of Lecture Notes in Computer Science,
pages 194–204, Berlin, 1980. Springer-Verlag.

16

Alessi & Dezani

[5] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic
functionality theory for the λ-calculus. Notre Dame J. Formal Logic, 21(4):685–693,
1980.

[6] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Principal type
schemes and λ-calculus semantics. In J.P.Seldin and J.R.Hindley, editors, To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 535–
560. Academic Press, London, 1980.

[7] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. Type theories,
normal forms, and D∞-lambda-models. Inform. and Comput., 72(2):85–116, 1987.

[8] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, and Silvia Likavec. Behavioural
inverse limit models. Theoret. Comput. Sci., 316(1–3):49–74, 2004.

[9] Martin Emms and Hans Leiß. Extending the type checker of standard ML by
polymorphic recursion. Theoret. Comput. Sci., 212(1–2):157–181, 1999.

[10] Roger Hindley and Giuseppe Longo. Lambda-calculus models and extensionality. Z.
Math. Logik Grundlag. Math., 26(4):289–310, 1980.

[11] Furio Honsell and Simona Ronchi Della Rocca. An approximation theorem for
topological lambda models and the topological incompleteness of lambda calculus.
J. Comput. System Sci., 45(1):49–75, 1992.

[12] Giuseppe Jacopini. A condition for identifying two elements of whatever model
of combinatory logic. In Corrado Böhm, editor, λ-calculus and computer science
theory, volume 37 of Lecture Notes in Computer Science, pages 213–219, Berlin,
1975. Springer-Verlag.

[13] Jan Kuper. On the Jacopini technique. Inform. and Comput., 138:101–123, 1997.

[14] Stefania Lusin. Intersection Types, Lambda Abstraction Algebras and Lambda
Theories. PhD thesis, Venice University, 2002.

[15] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The
MIT Press, 1990.

[16] Alan Mycroft. Polymorphic type schemes and recursive definitions. In Manfred Paul
and Bernard Robinet, editors, International Symposium on Programming, volume 167
of Lecture Notes in Computer Science, pages 217–228, Berlin, 1984. Springer-Verlag.

[17] David Park. The Y-combinator in Scott’s λ-calculus models (revised version). Theory
of Computation Report 13, Department of Computer Science, University of Warick,
1976.

[18] Gordon Plotkin. LCF considered as a programming language. Theoret. Comput. Sci.,
5:223–255, 1977.

[19] Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. In J.P.
Seldin and J.R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 561–577. Academic Press, London, 1980.

17

	Introduction
	Intersection Type Assignment Systems
	Filter Models
	Conclusion
	References

