Intersection Types and Lambda Models

Fabio Alesst

aDip. di Matematica e Informatica Via delle Scienze, 206 IBW@dine (ltaly)
al essi @i m .uniud.it

Franco Barbanerzd

PDip. di Matematica e Informatica Viale A.Doria, 6 95125 Caie (Italy)
barba@m .unict.it

Mariangiola Dezani-Ciancaglifi?

¢Dip. di Informatica Corso Svizzera, 185 10149 Torino (ljaly
dezani @li .unito.it

Abstract

Invariance of interpretation bg-conversion is one of the minimal requirements for any
standard model for the-calculus. With the intersection type systems being a ggner
framework for the study of semantic domains for healculus, the present paper provides
a (syntactic) characterisation of the above mentionedirement in terms of characterisa-
tion results for intersection type assignment systems.

Instead of considering conversion as a whole, reductioneapdnsion will be consid-
ered separately. Not only for usual computational rules fikn, but also for a number of
relevant restrictions of those. Characterisations wikhlse provided for (intersection) filter
structures that are indeedmodels.

1 Introduction

In the A-calculus, the computational model at the basis of the fanat program-
ming paradigm, the basic step of computation is usuallytified with the notion

L Partially supported by MURST project NAPOLI.

2 Partially supported by EU within the FET - Global Computingiative, project DART
ST-2001-33477 , and MURST Project and McTafi. The fundingdmedre not responsible
for any use that might be made of the results presented here.

Preprint submitted to Elsevier Science 27 July 2005

of S-reduction:

Whereas, like any “computation rule”, its role is (roughtg)make moreexplicit
the “information” represented by &term, such information, intuitively, must not
be modified by the computational process embodied by thatadi. That is why
any classical notion of denotational interpretation far Xhcalculus has to respect
minimal requisites w.r.t. the operational interpretatadrthe calculus. As a matter
of fact, any classical denotational semantics for dhealculus must be required
sound that is it must interpret any twoonvertibleterms with the very same infor-
mation (denotational value).

The soundness requirement for denotational models fok4teculus is, at large,
the context of the present paper. In particular, we addhesstudy of this require-
ment at a deeper level, that is, we “decompose” it into tw@asate requirements to
be investigated individually: one concernifigeduction alone and one concerning
[-expansion.

(a) ForanyN st M —sz N, [M] =[N]

(b) ForanyN st.N —z M, [M] =[N]

where[M] represents the denotational interpretation of the téfnin a given
domain.

Due to the large variety of possible denotational modelgHeri-calculus, such
an investigation cannot be successfully undertaken umlessanage to identify a
finitary and natural framework where most of the models pseplan the literature
could be “embedded” and analysed.

Type assignment systems for the untypedalculus with intersection types are
definitely a framework with the qualities we are looking furey form a class of
type assignment systems which allow to express, in a nanddinitary way, many

of the most importantienotationalproperties of terms (as a matter of fact, also
many relevanbperationalproperties can be characterised by means of intersection

types).

Indeed, intersection types are a powerful tool for both tiedyssis and synthesis of
A-models (see.q.[9] [11], [18], [24], [23], [28], [15], [6] and the referensdhere):

on the one hand, intersection type disciplines providedigitnductive definitions

of interpretation of\-terms in models. On the other hand, they are suggestive for
the shape the domain model has to have in order to exhib#ingstoperties (see
e.g.[11], [24], [3], [7], [17], [14]).

Intersection types can be also viewed as a restriction afah@ain theory in logical
form, see [1], to the special case of modelling purealculus by means ab-
algebraic complete lattices. Many properties of these tsathn be proved using
this paradigm, which goes back to Stone duality.

Different finitary characterisations of models for thealculus can be obtained by
introducing specific constants, typing rules and type mtexs in the basic intersec-
tion type assignment system. An element of a particular domepresenting the
denotational meaning of a terid, comes out to correspond to the set of types that
can be inferred fod/.

It is then clear that, in the framework of intersection tygstems, the study of
the requirementsga) and (b) above mentioned can be fully formalised in terms
of typing invariancethat is, in type theory terminology, by the so-called Sabje
Reduction and Expansion properties. Hence, particulat#syic) characterisations
of those domains where the requiremgant (resp.(b)) is met, can be achieved by
isolating necessary and sufficient conditions enablingpa gystem to enjoy the
property of Subject Reduction (resp. Subject Expansiong @f the main results
of the present paper consists in a number of such necesshsyfiicient conditions
for these properties.

It is worth noticing that many restrictions of thierule have been devised in the
literature with the aim of formalising particular sorts afreputations. Interesting
examples of such restrictions are the rule of Plotkiy'scalculus [27], the rule of
Al-calculus [13] and the rule ofKN-calculus [23]. In this paper we shall prove
our results also for the restricted notions of computateméodied by the above
mentioned calculi.

(#-conversion as a whole will be also taken into account in plaiger, but from a
rather broader perspective (forming the basis for furtbsearch): characterisation
results will be in fact provided for those filter (intersexct) structures that are also
A-models for the afore mentioned calculi. Such results wilfip from the charac-
terisation results concerning Subject Reduction and SuBpepansion.

The extensionality property in the denotational semabicthe \-calculus will be
taken into account in terms of its syntactic formalizatithe-rule. We shall show
how to characterise the intersection type systems enjdyuigect Reduction and
Subject Expansion properties with respecttaile, as well as the filter structures
that are extensional-models for the considered calculi.

This paper is structured as follows: in Section 2 we recadl diefinitions of in-
tersection types and intersection type preorders. We bhigllly recall the main
systems proposed in the literature, in particular thossedIto the use of intersec-
tion types for denotational semantics. We shall also intoedconditions on type
preorders to be used in our characterisation results.@egtiliscusses intersection
type assignment systems and their properties. Section 4amtain our character-
isation results concerning- andn-reduction/expansion. Our characterisations of
filter structure that ara-models will be given in Section 5. The last section (Sec-
tion 6) will provide a few remarks on possible further resbasn the arguments of
the paper.

The present paper extends [3] and [4] providing all the aditroofs in those
preliminary versions.

2 Intersection Type Languages and Type Preorders

In this section we shall recall the main notions concernirtgrsection type lan-
guages and type preorders.

Intersection typeare syntactic objects built by closing a given §aif type atoms
(constants) under thieinction typeconstructor— , and theintersection typeon-
structorn.

Definition 1 (Intersection Type Language) Theintersection type languagaver
C, denoted byl = T(C) is defined by the following abstract syntax:

T=C|T—T|TNT.

NOTATION. Upper case Roman letters i.4, B, ..., will denote arbitrary types.
When writing intersection types we shall use the followirmgpwention: the con-
structorn takes precedence over the constructer and — associates to the right.
ForexampldA-B—-C)NA—-B—-C=((A—-(B—C))NA)—(B—C).

In this paper we shall be concerned with several differetdrgection type lan-
guages arising from taking different sets of type atomseddjmg on which typing

invariance properties we want to capture. Typical choiocesHe set of type atoms
areC,,, a countable set of constants, or finite sets {ikep, w} or {v}.

Most of the expressive power of intersection type languageses from the fact
that they are endowed with @eorder relation <, which induces, on the set of
types, the structure of a meet semi-lattice with respect.tdhis appears natu-
ral when we think of types as sets of denotations, and irgerpas set-theoretic
intersections angk as set inclusion.

Definition 2 (Intersection Type Preorder)
An intersection type preordet = (C*, <y) is a binary relation<y on T(C*)
satisfying the set of axioms and rules of Figure 1.

NoTATION. We shall writeA ~sx. B when bothA <y B andB <y, A.

Axiom (£2) states that the type preorders containing the con$tdmave itself
as top element. This is particularly meaningful when usezbimbination with the
Q-type assignment systems, which essentially tfeats the universal type of all
A-terms (see Definition 14).

(refl) A< A (idem) A< ANA

(incly) AnNB< A (inclg) AnNB<B
(mo)ASAI B<PB (trans)ASB B<C
ANB<ANB A<LC
Q) ifQeC A<L<Q (v)ifre€C A—B<v

Fig. 1. Basic Axioms and Rules of Type Preorders.

Axiom (v) states that is above any arrow type. This axiom agrees with:tktgpe
assignment systems, which treaas the universal type of aN-abstractions (see
Definition 16). Notice that the role of may be played by the tyge — 2, when()
is in €. For this reason it is of no use to have at the same tirard(). Hence we
impose, as a pragmatic rule, that these two constants docoat together in any
C.

Notice that associativity and commutativityf(as always module-) follow eas-
ily from the above axioms and rules. For instance, commuitais immediate:

ANB<(ANB)N(ANB) < BNA.

Sincen is commutative and associative, we shall wfite,, A; for A, N ... N A,.
Similarly, we shall writen,;<; A;, wherel denotes always a finite set. Moreover, we
convene thah;cyA; is 2 whenQeC and we forbid intersections on the empty set
when(¢ C.

Remark 3 It is not required that~ be congruent with the constructor . For
many type preorders this will be implied by the extra axiognar (™) (see Fig-
ure 2).

All the type preorders considered so far in the literatueed®fined for languages
over finite or countable sets of atoms and are “generatedebyrsive setsy of
axioms and rules of the shapk < B (wherevy it is said to generatel when
A < B holds if and only if it can be derived from the axioms and rubésy,
together with those in Definition 2). Such generated prasrtiave been referred
to astype theoriesWe shall denote them byV = (CV, <,).

Note that there are only countably many possiplehence, there are uncountably
many preorders which cannot be represented this way. Nexelzt the correspon-
dencey; — <, Is not injective.

In this paper we try to be as general as possible, stickingutonotion of type
preorder which indeed extends the notion of type preordeuslly considered in
the literature, where rule$)j and) are not taken into account and are instead

postulated inside the recursive sets generating the tyguagher.

Figure 2 shows a list of special purpose axioms and ruleshwinwe been consid-
ered in the literature, and which we shall briefly discussiafbllowing.

(©2-n) N<Q—-0 (—-N) (A-B)N(A—-C)<A—-BnC

(Q-lazy) A—B<Q—Q (—-N™) (A-B)N(A—=C)~A—-BnNnC

A <A B<B A~A B~ B
m - = Eca-p) ASB~A B
(w-Scot) R —w ~w (w-Park) W—w~ W
(wp) w<y (p—w) pow~w
(Ww—o) wop~yp (1) (p—=¢)N(w—w) ~w

Fig. 2. Possible Axioms and Rules concernidg

The meaning of axioms and rules of Figure 2 can be grasped takestypes to
denote subsets of a domain of discourse and we lock aas the function space
constructor in the light of Curry-Scott semantics, see .[3bjus the typed — B
denotes the set abtal functions which map each elementéfinto an element of
B.

Sincef) represents the maximal element, i.e. the whole univérse (2 is the set of
functions which applied to an arbitrary element return agai arbitrary element.
Thus, axiom (2-n) expresses the fact that all the objects in our domain obdise
are total functions, i.e. thd? is equal toQ2 — 2 [9]. If now we want to capture
only those terms which truly represent functions, as we defample in the lazy
A-calculus, we cannot assume axiof?-(). One still may postulate the weaker
property (2-lazy) to make all functions total [2]. It simply says that an eleme
which is a function, because it magsinto B, maps also the whole universe into
itself.

The intended interpretation of arrow types motivates axiest+nN), which implies
that if a function maps! into B, and the same function maps aldanto C, then,
actually, it maps the whold into the intersection oB andC (i.e. intoB N C), see

[9].

Rule (n) is also very natural in view of the set-theoretic interptieta It implies
that the arrow constructor is contra-variant in the firstuangnt and covariant in
the second one. It is clear that if a function mapmto B, and we take a subsdt
of A and a superséd®’ of B, then this function will map alsd’ into B’, see [9].

The rules (—-N"~) and ™) are similar to the rules-G-N) and). They capture
properties of the graph models for the untypedalculus, see [28] and [19].

The remaining axioms express peculiar properties gfllRe inverse limit models,
see [9], [12], [11], [24], [22], [14].

We can introduce now a list of significant intersection typegoders which have
been extensively considered in the literature. All thessomters have been intro-
duced mainly to obtain corresponding filter models of (rettd) \-calculi, as we
shall discuss in Section 5. The order is logical, rather thatorical, and some ref-
erences define the models, others deal with the corresppfitter models: [31],
[10], [23], [24], [18], [2], [9], [29], [26], [11], [28], [19, [17].

These preorders are of the foldY = (CV, <), with various different namey,
picked for mnemonic reasons. In Figure 3, for each preardewe list its setCV
of constants and its set of extra axioms and rules taken from Figure 2. HEre
is an infinite set of fresh atoms (i.e. different frav, ¢, w).

Ba = ¢, Ba =1

Y~ cov = {(—-n), ()}

L = {pw} ML =CDVU{(wp), (p—w), (w—)}
iR = {p,w} HR = CDVU{(wp), (w—), (1)}
ccHR = EHR = CDV

A9 = () AO = DY U {(Q-lazy)}

B —{QluC, BCD =cCDYU{(Q-n)}

¢ ={Quw} Sc = BCD U {(w-Scot)}

P2 = {Q,w} Pa = BCD U {(w-Park)}

‘P2 — {0, p,w} CDZ =HLUBCD

Pl =2 P = {0}

€N = {QUC. &n = PLU{(—-N), (Q-n)}

CPPM — {0, 0,0} DHM = BCD U {(wy), (w-Scot), (w—)}

Fig. 3. Particular Atoms, Axioms and Rules.

We define two conditions on type preorders to be used in ouachtexisation results
for rule 3.

Definition 4 (Beta and v-sound Preorders)

(1) Atype preordet: is beta iff for all sets of indexeg, and all typesA;, B;,

C, DinT(CZ):

i€l ieJ
(2) Atype preordek: is v-sound iff forall A, BeT(C*):
1% 7/42 A— B.

A few comments on the previous definition. In the definitiomefa preorders, if

is empty and2cC* we get() ~5, D. Instead, by assumptior,can never be empty
when) ¢ C*. If we look atn as representing join, and arrow types as representing
step functions, then the condition for a type preorder ohppdieta is exactly the
relation which holds between sups of step functions [20].

Ther-sound condition is used both to preverftom being a redundant type and to
avoid assigning too many types to\eabstraction (assigning amounts exactly to
discriminating an abstraction and nothing more). Noti his trivially »-sound
whenv ¢ C*.

WhenY = XV, for someyy, it is usually possible to prove the above defined
conditions by induction on the derivation that shows that given types are in the
preorder relation. The following notion strong betas handy when proving that
some of the type preorders of Figure 3 are beta. A type preaidas strong beta
when its sety of axioms and rules contain®&CD and a sety~ of axioms with
suitable properties.

Definition 5 (Strong Beta Preorders)
A type preordep.V is strong betaf <y = BCD U 7y~ and:

(1) v~ contains no rule and only axioms of one of the following twap&s:
- <,
-~ Mier () =),
wherey, ¢/, v, P eCV, andy, ', v 2 Q for all i€ l;
(2) foreachyeCV suchthat) # €2 there is exactly one axiom ix— of the shape
¥~ Mier(Wf = ?);
3) let v~ containy ~ N, (WY —) and v/ ~ Njey (WY — 1P,
Thensy~ contains alsoy < o' iff for each je.J there existgel such that
i <y andy? < ¢?) are both iny

For example the preorde™L, »5¢ yPa sCPZ sTHR gndyPHM gre
strong beta.

Lemma 6 Each strong beta type preorder is beta.

PROOF. We shall denote elements & by ¢, &, ¢, ¢ (possibly with indexes).

By assumption, for each constaneCV there is exactlyoneaxiom stating that)
is equivalent to an intersection of arrow types. We denotd sun intersection by
Mierw (€W — (). Moreover, notice that the most general form of an inteisect
type is a finite intersection of arrow types and type constaine can prove two
statements by simultaneous induction on the definitior<pthe first of which
implies the beta condition:

o if (ﬂieI(Ai - BZ)) N (ﬂheH @Z)h) Sv (ﬂjeJ(Cj - Dj)) N (ﬂkeK ‘Pk)’ then
(Nier Bi) N (ﬂheH'(ﬂlngm’Q(%))) <y D;jwherel" = {iel | C; <, Ai},
H = {heH | C; <, & for somele L)}, L& = {IeLt) | ¢; <

g
o if (ﬂieI(Ai - BZ)) N (ﬂheH @Z)h) Sv (ﬂjeJ(Cj - Dj)) N (ﬂkeK ‘Pk)’ then

(Nicr Bi) N (Nnerr (Moo G¥)) <o Cl6¥) wherel’ = {iel | € <, A},
H' = {heH | gr()fk) < fl(wh) for SomelEL(wh)}’ L@ — {leL(lﬂh) ‘ fq(qfk) <o

&y,

Proposition 7

(1) Type preorders of Figure 3 are beta.
(2) Type preorders of Figure 3 atesound.

PROOF. (1) Forsye{Ba,CDV, EHR, AO, BCD, Pl,En} we can prove, by induc-
tion on the definition oK, that

(M= B)) N () ¥a) <g (NG =D))N () &) = [Bi<y Dj,

el heH jeJ keK el’
wherel’ = {icl | C; <g A;}.
The preorder&V for \y€{HL, Sc, Pa,CDZ, HR, DHM} are beta by Lemma 6.

(2) For ESHR one can eas_ily show, by induction eficy, thaty <gcpp A
implies thatA is an intersection of.

Example 8 An example of a non-beta preorderi§, defined byC® = {Q, $, O}
and{ = BCD U {($)}, where

(O) A< A[S = Q).
»¢ is not beta, sincé — & <, O — Q, but V€, $.

NOTATION. We write “the type preordeX validatesy/” to mean that all axioms
and rules of; are admissible ifx.

In order to characterise the invariance of typing unglexpansion, we need to
introduce a further condition on type preorders, which esaklly says that each
atomic type either is greater than or equal to a type whichbeadeduced for all
terms which are abstractions (see Definition 16), or it isveen two intersections
of “strictly related” arrow types, as specified in the folliong definition.

Definition 9 (Eta Preorders) A type preordeiX is eta iff for all 1»)cC* one of
these two conditions hold:

o v<x1
e there exist non-empty families of typed;, B; }icr, {Dij, Eij}ijes in T(C*)
such that

miel(Ai - Bi)ﬁzw <s ﬂie[’(ﬂje]i(Di,j - Ei,j)) &
Viel'. A; <s Njes, Dij & Njes, Bij <s Bi,

wherel” = {iel | B; #x Q}.

It is easy to verify that if eithef2 2C* and ¥ validatescDY or QeC* andX vali-
datesAQ, then the condition of the above definition simplifies to tequirement
that all atomic types are either greater thaar greater thari) — €2, or they are
equivalent to a suitable intersection of arrow types, ngmel

Vel v <s;porQ — Q <y, ¢p or I, {A;, B; Yier. Nier(Ai — Bi)~s.

The following proposition singles out all type preorderg-gjure 3 which are eta:
the proof is trivial.

Proposition 10 If sy e{HL, EHR, AO, Sc, Pa,CDZ, DHM}, thenXV is a eta pre-
order.

3 Intersection Type Assignments

We are now ready to introduce the crucial notionrgérsection type assignment
systemFirst we need a few preliminary definitions.

Definition 11 (1) AX-basisis a set of statements of the shap8, whereBeT(C*).
All term variables occurring in &-basis are distinct.
(2) Anintersection-type assignment systesfative toY, denoted by\n>, is a
formal system for deriving judgements of the fdrmv> A : A, where the
subject)M is a \-term, thepredicateA is in T(C*), andT is a ¥-basis.

We shall considei-terms up tax-conversion and we shall assume the Barendregt
convention on variables [8] to be fulfilled. The Barendregbwention for judg-

10

(AX) T,z:Ak%5 x:A

L,w:AFE M : B

(=) TFEM:A—B IFEN: A
—
TFE Az M : A— B

I'FS MN: B

(—E)

() TFEM:A T M : B < TFIM:A A<y B
TFEM:ANB = TFE M: B

Fig. 4. The Axioms and Rules of the Basic Type Assignmentedyst

mentsI’ > M : A implies that variables occurring in the-basisI" cannot occur
bound in the term\/.

NOTATION. If T is aX-basis then:el is short for(x : A)el” for someA.
If T is aX-basis anddeT(C*) thenl', z : A is shortforl' U {z : A} whenz ¢ T.

WhenY = ©V we shall denoteén* and-> by ANV andV, respectively.

Various type assignment systems can be defined, each of éwe@metrized with a
particular type preordex. The simplest system is given in the following definition.

Definition 12 (Basic Type Assignment System)
Given a type preordex;, the axioms and rules of thmasic type assignment system
denoted by\ny, for deriving judgementE -3 M : A, are shown in Figure 4.

Example 13 Self-application can be easily typedimy, as follows.
z:(A—-B)NAFE 2:(A—B)NA z:(A—-B)NAFE 2:(A—B)NA
<
z:(A-B)NA+FE 2:A— B N (A= B)NAFE 2:A
z:(A— B)NAFE z2:B
5 Av.az: (A—B)NA— B

(<)
(—E)

—>|)

If QeC, a natural choice is to sé? as the universal type of all-terms. This
amounts modifying the basic type assignment system by gddsuitable axiom
for Q.

Definition 14 (Q2-type Assignment System)

Given a type preordex with QcC*, the axioms and rules of tiie-type assignment
system(denoted\N3,), for deriving judgements of the forfh—5 M : A, are those

11

of the basic one, plus the axiom
(AxQ) T F5 M : Q.

Example 15 Also non-strongly normalising terms can be typedir, even with
a type different fronf. Note the usage of the axiofAx<2). LetA = \z.zx.
A yQFsz: A
y QS Avaw: A— A
S (=)
Fg Ayrx: Q—A— A Fo AA:Q
5 Oyz.a)(AA): A— A

—>|)

(=B

Analogously to the case 6f, whenve(, it is natural to consider as the universal
type for abstractions, hence modifying the basic systendoyng a special axiom
for v.

Definition 16 (v-type Assignment System)

Given a type preordeX with v€C*, the axioms and rules of thetype assignment
system(denoted\n?), for deriving judgements of the fort-> M : A, are those
of the basic one, plus the axiom

(Axv) T > \x.M : v.

Example 17 Axiom (Ax-) allows again to type non-strongly normalising terms.
Notice that the term of Example 15 is not typablé\r'meR, as proved in [18].
v AyvES x: A
(=1
yv > Az A— A
5 (=D
Fodyzx:v—A— A Fo Az AA v
F> (Ayz.z)(Az.AA) : A— A

(—E)

For simplicity we assume the symbélsandv to be reserved for the universal type
constants respectively used in the systevng and \n>, i.e. we forbidQeC> or
veC> when we deal with\N3;.

NOTATION. In the following, A\n* will range overAny;, AN and \n>. More pre-
cisely, we shall assume than™ stands for\n wheneveQ<C*, for AN when-
evervcC”, and forAny otherwise. Similarly, for->. If there is no danger of con-
fusion, we write simply- for -*.

The subterm property does not hold in general Xor:. In fact, \z. M is typable
also when/ is not typable. Moreover, inn5 and AN, a judgement —= M : A
does not implyF'V (M) C T

12

One of the most interesting features of intersection tyesys is that of enabling
precise characterisation results of many important sets¢efms, among which the
one of Strongly-Normalizing terms. Such a result is statetié following theorem

and it will be used in the next section (for a proof see [17].

Theorem 18 (Characterisation of Strongly Normalising Terms) term M is
strongly normalising iff for all type preorders, there existAcT(C*) and a
3-basisT" such thafl’ F3 M : A.

We end this subsection by defining the union betwedrasis which requires some
care in the presence of the intersection type constructor.

Definition 19 T'y W'y = {(z:A) | (z:A)el'y andx ¢ T'y} U
{(z:A) | (x:A)elyandz ¢ Ty} U
{(x:A1NAy) | (z:A;)el’; and (x:Ay) el }

In the rest of this section we shall introduce a few relevaopprties of intersection
types, needed for our characterisation results in theviahig section.

3.1 Admissible Rules

Many interesting type assignment rules can be proved to imsadle.

Proposition 20 (Admissible Rules)For any type preordek, the following rules
are admissible in the intersection type assignment syatem

(mE)FI—ZM:AﬂB (mE)FI—EM:AﬂB

VTTE M A " TFM:B

W) FF=M:A 2¢T (S D,o:BF*M: A x¢ FV(M)
e:BE>M: A E=M:A
e:BFM:A THF*N: B Le:BFEM: A <s B

© Lt (<L) 22 €=

'F> M[z:=NJ]: A La:CH*M: A

In the following we shall freely use the rules of the abovep®sition.

3 The type systems considered in [17] are induced by type igearstead of type pre-
orders, but the arguments given there to show the charsatien of strongly normalising
terms extend without changes to type preorders.

13

3.2 Generation Lemmata

We introduce now a few properties enabling to “reverse” soifthe rules of the
type assignment systems)”, so as to achieve some form of generation (or inver-
sion) lemmas (see Theorems 21 and 22).

Such properties are not trivial. For instance, for the aretimination rule, in gen-
eral we can only say that whén-> M N : A, then there are a non-empty, finite set
I and typesB;, C;, such that for eache/, ' -* M : B, —C;,T' v* N : B;, and
moreoven)c; C; <s A. Reasoning similarly on the rule—), one can conclude
again that it cannot be reversed. More formally, we get thleviang theorem.

NOTATION. When we write “...assumd <y €)...” we mean that this condition
is always true when we deal with and+>, while it must be checked far5.
Similarly, the conditions €5, A must be checked just for>.

Theorem 21 (Generation Lemma l) Let > be a type preorder.

(1) Assumed 45 Q. Thenl' = MN : A iff TF* M : B, —C;,T > N : B;,
and;c; C; <s A for some non-empty sétand typesB;, C;eT(C*).

(2) Assumer «£s5; A. ThenT' F* \a.M : A iff T, 2:B; V> M : C;, and
Nicr(B; — C;) <5 A for some non-empty sétand typesB;, C;,eT(C*).

PROOF. The proof of each<) is easy. So we only treatf).

(1) By induction, on derivations. The only interesting casahenA = A; N A,
and the last applied rule is))):

(1) ¥ MN:A TH”MN: A,
Fl_EMNZAlﬂAQ

The conditionA-5.Q) implies that we cannot havé, ~y A, ~x Q. We do the
proof for A; 452 and A545.(2, the other cases can be treated similarly. By induc-
tion, there ard, B;, C;, J, D;, E; such that

viel. T+°M:B—C, TFE N : B,
vied. TFM:D,—E, T+ N: D,
Nicr Ci <z A & Njes Ej <s As.

So we are done sind€),c; C;) N (Njes E;) <z A.

(2) The proof is very similar to the proof of (1). It is again ingluction on deriva-

14

tions and again the only interesting case is when the ladiealmle is (OI):

(N T X M: A, TH \ae.M: A,
r I_E Ax. M Al ﬂAg

The conditionv £ A implies that we cannot have <y, A; andv <y A,. We do
the proof forv £, A, andv £, A,. By induction, there aré, B;, C;, J, D;, E; such
that

Viel. T,x:B; V> M : C;,VjeJ. T, x:D; > M : E},

ﬂiGI(Bi _>CZ> SE Al & ﬂ]EJ(D] —>EJ) SE A2-

So we are done, sindg),c;(B; — C;)) N (N;es(D; — E;)) <. A. The other two
cases are easier. For instancey#yA; andv ~yx A,, it is sufficient to take
Nic1(B; — C;) above to conclude.

Using the properties introduced in Definition 4, we can gige/ma rather powerful
generation lemma fakN*, which is one of the essential ingredients for the proofs
of our results. We use the notion of “validation” introducddgage 9.

Special cases of this theorem have been previously provig],ifiL2], [11], [24],
and [18].

Theorem 22 (Generation Lemma ll) Let> be a type preorder.

(1) Assumed#£sQ. Thenl' H* z : A iff (x:B)el’ and B <y A for some
BeT(C*).

(2) Assumel£xQ and letY validatecDV. Thenl' = MN : A iff T'F* M :
B— A, andl’ H* N : B for someBeT(C*).

(3) LetX bev-sound and beta. Thdn-> \z.M : B—C iff T, o:BF* M : C.

PROOF. The proof of each<) is easy. So we only treatf).

(1) Easy by induction on derivations, since only the axios)((Ax-(2), and
the rules(nl), (<) can be applied. Notice that the conditidi¢s (2 implies that
I' ¥ z : A cannot be obtained just using axioms (fRX-

(2) LetI, B;, C; be as in Theorem 21(1). Applying ru{el) toT = M : B; — C;

we can derivel' +* M : N;c;(B; — C;), so by rule(<) we havel’ +* M :

Nicr Bi — Nicr Ci- Infact, by rule §) and axiom (~ -N) we getN;c;(B; — C;) <s

Nict(Nicr Bi — Ci) <s Nicr Bi — Nicr Ci- We can choos®& = N,;c; B; and con-
cludel' == M : B — A, sinceN;¢; C; <s A.

(3) By ther-soundness of, we cannot have~syxB — C. Let I, B;, C; be as in
Theorem 21(2), wherd = B — C. ThenN;¢;(B; — C;) <s B— C implies that

15

Nics Ci <s C whereJ = {iel | B <y B;}, sinceX is beta. Froml", z:B; F*
M : C; we can derive’, z:B F* M : C; using rule(< L), so by(nl) we have
[,x:B F* M : (e, Ci. Finally, applying rule(<), we can conclud&, z:B +*
M :C.

4 Characterisation of Subject Reduction and Expansion

In the literature, to which we have provided many referenodbe previous sec-
tions, many models for th&-calculus and a number of its restrictions have been
shown to be finitary representable by means of (intersectigres. We now ad-
dress, from the “intersection type point of view”, the géaeequirementga) and

(b) concerning soundness discussed in the introduction. ticpkar, we shall char-
acterise those intersection type systems in which typegraserved under various
notions of conversions?, n, together with some of thenestrictionsinspired by
A-calculi considered in the literature.

Let us first give the definitions of these restricted redexes.
Definition 23 (Restricted Redexes)

(1) Aredex(\z.M)N is avarg-redexif N is a variable.

(2) Aredex\z.M)N is afung-redexif N is an abstraction.

(3) Aredex(\z.M)N is anids-redexif xt€ FV (M).

(4) A redex(Az.M)N is anormg-redexif N is a closed strongly normalising
term.

The “call-by-value”\-calculus is obtained by restrictingvtar - andfunjs-redexes
(usually calleds,-redexes) [27], the\l-calculus by allowing to abstract only vari-
ables which occur free in the bodies (in this way we only getaper subset of
the set ofid3-redexes, whose elements are usually callededexes) [13] and the
AKN-calculus by restricting toar3-, idG- andnormg-redexes [23].

We shall deal now with rules of the form

M—g N THFN:A (R-red) M—g N TFM:A
I'FM: A 'FN:A

(R-exp)

where —g denotes the reduction relation obtained by restrictingcibretraction
to the set ofR-redexes. Admissibility of the above rules in a type assignims
usually referred to asubject expansioandsubject reductionrespectively.

Theorem 24 (Characterisation of SubjectR-conversion)
(1) T +* M[z :== N] : Aandl' V* N : B, thenl',z : B’ -* M : A and
[+* N : B’ for someB’eT(C>).

16

(2) (R-expansion) RuleR-exp) is admissible imn* iff for all R-redexes
(Ax.M)N and for all contextd™:

N is typable inl" wheneven\/ [z := N] is typable inl".

(3) (R-reduction) Rule R-red) is admissible imn* iff rule (— 1) can be re-
versed forR-redexes, i.e. for all', M, A, B such that \x.M)N is aR-redex
for someN:

' Xe.M:B—A = T,e:BF* M : A.

PROOF. (1) If A ~x Q we can choos&’ = (2. Otherwise the proof is by struc-
tural induction onM.

If M =y # x we can choos®’ = B.
If M = x,thenM[x := N] = N and we can choosB’ = A.

If M = M, M, then, by Theorem 21(1), there areC;, D; such thal’ —* M, [z :=
N] : C;—D;, T > Mz := N| : C;, for all iel, andN;c; D; <s A. By
induction, there ar&", B such that,z : BY +* M, : C;— D, T > N :
BY Tz : B? ¥ M, : C;andT = N : B for icI. Then we can choose
B = Nic;(BY n B®). By rule (< L), we getl,z : B' +* M, : C;— D;,
I,z:B'F* M,:C;and, byrule(0l), [== N : B’. So we conclude using rules
(—E), ("), and).

If M = \x.M' andr <5, A then we can choosB’ = B since by ruleg) I', x :
B F* X\x.M' : v and we conclude using ruleCf. Otherwise, by Theorem 21(2),
there arel, C;, D; such thatl',y : C; V¥ M'[z := N| : D, for all iel and
Nicr(C; — D;) <sx A. By induction, there aré3; such thafl’,y : C;,z : B; F=
M': D;andl’ +* N : B;, foriel. ChoosingB’ = N;c; B;, We get, by rule € L),
L,y:Cy,x:B F M : D;and, byrule1), [- N : B’. We conclude using
rules 1), (N1) and).

(2) (=) Clearly, if N is not typable in the context then also(A\z.M)N has no
type inI" by Theorem 21(1).

(«) It suffices to show thaf > M|z := N] : A impliesT > (Az.M)N : A

whenever A\z.M)N is anR-redex. By hypothesid, -* N : B for someB and
then, by point (1Y, z : B’ > M : Aandl' - N : B’ for someB’. We conclude
using rules & 1) and (— E).

(3) (=) Assumel’ F* \x.M : B — A, which impliesT',y:B = (Az.M)y : A
by rules (W) and (E), for a freshy. The admissibility of rule R-red) gives us
[,y:BF> M[z :=y]: A. Hencel',z:B -* M : A.

17

(<) It suffices to show thaf —* (Az.M)N : AimpliesT"’ = M[z := N]: A
whenever \z.M)N is anR-redex. The casd ~x (s trivial for \N35. Otherwise,
by Theorem 21(1), there exists a finite $&nd types3;, C; such thal’ = \z. M :
B;—C;, T +* N : B; and,c; C; <y A. By hypothesis, we gdt, z:B; ¥ M :
C;. Thenl' > M|z := N] : C; follows by an application of rule (C), and so we
can concludé& +* M|z := N] : A using rules(l) and).

By Theorems 22(3) and 24(3) we immediately get a conditioitivassures Sub-
ject g-reduction.

Corollary 25 If ¥ is v-sound and beta then rulg{red) is admissible il\N*.

The condition of Theorem 24(2) above is immediately mekg, in AN when
x€FV (M) and inA\n> whenN is an abstraction. We can discuss the admissibility
and non-admissibility of restricte@expansions for our type systems.

Corollary 26

(1) Rule gar3-exp) is admissible in alkng, but never imnNy and A\N>.
(2) Rule fungs-exp) is admissible in alkng and \N>, but never in\Ny.
(3) Rule {dB-exp) is admissible in alkny; and A\Ng, but never im\N>.
(4) Rule formp3-exp) is admissible in alkn®.

(5) Rule (B-exp) is admissible in alANg, but never imnNy and A\N>.

PROOF. Each of the five admissibilities but (4) follows from Theor@d(2).

Item (4) is a consequence of Theorem 18, stating that eachgdyr normalising
term is typable in all intersection type systems from a &létdasis. So all closed
strongly normalising terms are typable in all intersectigre systems starting from
the empty basis.

For the non-admissibility of rulesvérs-ezp) and (B-exp) in ANy and in AN,
notice that we can always derivé \z.x : A— A, but by the Generation Lemmas
| and Il (Theorems 21(1) and 22(1)) we cannot derive the sgmefor (\yx.z)z
from the empty basis without using (A®).

An example showing thafyn3-exp) is not admissible inNj isk5 vz : A — A
andi/s (A\yz.x)(At.z) : A — A.

An example showing thaid3-exp) is not admissible il\N> is F> Az.z : v and
> (\yx.y)z : v. Rule {dB-exp) is not admissible also for terms of thé-calculus
sincer> \z.zx v andi” (\yz.yz)z : v.

Notice that there ar@-redexes that, without beingormg-redexes, are typable

18

whenever their contracta are. As an example takey)y.

We end this section with the characterisation of SubjectReon and Expansion
for then-rule.

Theorem 27 (Characterisation of Subject;-conversion)

(1) Rule g-exp) is admissible inn* iff ¥ is eta.
(2) Rule @-red) is admissible imny iff ¥ validatescDy, in A5 iff %
validatesBCD, and it is never admissible ik,

PROOF. (1) (=) Let {<C* be a constant that does not satisfy the first condition
in Definition 9, i.e.v £, $.

We can deriver: > x : . To derivez:{ > \y.zy : & by Theorem 21(2) we
needl, A;, B; such thatr:{, y:A; F= zy : B; foralliel andN;;(A; — B;) <s <.
Let I’ = {i€l | Bi#xQ)}. Foranyicl’, by Theorem 21(1) we get<>, y:A4; F* x :
D, j— E;j, x:$,y:A; 2y 2 Dy, andNjey, B ; <s B; forsomeJ;, D; ;, E; ;. By
Theorem 22(1) we have <y, D, ; — E; ; andA; <5, D, for all icI’ andjeJ,.
So we conclude

Nicr(Ai = Bi)<s$ <s Micr(Njes, (Dij — Eij))
Viel'. Az SE ﬂjGJi DZ,_] & ﬂjEJi EZ,] SE Bz

(<) The proof thatl" * M : A impliesT" ¥ \z.Mx : A, wherexz is fresh, is
by induction on the structure of. The unique non-trivial case is wheh= ¢ is a
type constant not greater thanin this case we use the fact thais eta in order to
do the derivation discussed in the proof ef). In details, suppose that-> M : ¢
for someycC* such that' £+ and moreover:

Nier(Ai = B))<s¥ <s Nicr(Njes,(Dij — Ei;))
VZGI, AZ SE ﬂjGJz’ Dz,j & ﬂjEJi Ez,] SE Bi!

wherel’ = {iel | Bi#x}. By rule (<), we can derivd’ -* M : D, ; — F;
forall iel’, jeJ;, and sol', x:D; ; > Mz : E; ; by rule (— E). From rules € L),
(NI) and) we getl’, z:A; =¥ Mz : B; for all ieI’. Consider nowiel \ I'. In
such a case, sindg;~x2, we get immediately, using axio(#x-£2) and rule),
I',z:A; F* Mz : B;. Therefore, for anyc/, we getl’ -* \z.Mz : A; — B; using
rule (— 1). So we can conclude by)() and (<) thatl' > \z. Mz : 1.

(2) (=) Let us assume that does not validate axiom-{ -N), i.e. that there are
types A, B,C such thattA— B) N (A—C) £s A— B n C. We can derive
r:(A—=B)N (A—C) k5 \y.xy : A— B N C using rules(<), (—E), (NI),
and (— 1), butz : A— B n C cannot be derived from:(A — B) N (A— C) by
Theorem 22(1). Now suppose thatdoes not validate rulepf, i.e. that there are

19

typesA, B,C, D such thatA <y, BandC <y DbutB—C «£s A— D. We
can deriver:B — C 5% \y.wy : A— D using rules €), (— E), and (— 1), but
2:B — Cl/%x : A— D by Theorem 22(1).

If QeC* we getz:Q F5 \y.ay : Q— Q by axiom (Ax£2) and rule (— I). By
Theorem 22(1) we can deriveQ 5 z : Q—Qiff Q <y Q—Q, i.e. iff &
validates axiom{Q-7).

If veC* we get-> \y.zy : v by axiom (Ax+), but we cannot derive : v from
the empty basis by Theorem 22(1).

(<) We prove that under the given conditions on type preorfiers \z.Mx : A
andz ¢ FV(M)imply ' > M : A. We give the proof fonNg, that one forxny;
being similar and simpler. By Theorem 2125 \x.Mz : A implies that there
arel, B;, C; suchthaf', x:B; 5 Mz : C; and,c;(B; — C;) <s A. If for somei
we getC; ~y (2, then we can obtai®?; — C; ~x € by axiom §2-n) and rule).
Therefore we can forget thodg — C;. Otherwisel’, z:B; +5 Mz : C; implies
by Theorem 22(2) and rule (S) thBt-5 M : D; — C;, andl', z:B; -5 = : D;,
for someD;. By Theorem 22(1) we geB; <y D;, so we can derivé +5 M :
B; — C; using rule K), sinceD; — C; <y B; — C; by rule (7). Rule (0I) implies
['+5 M : e (B; — C;). So we can concludg -5 M : A using rule).

5 Filter A-structures and Filter Models

In this section we shall see how the results obtained in tbeigus sections can
be used to prove characterisation results concerning awrdefined by means
of intersection types, the so-called filterstructures. In particular, necessary and
sufficient conditions will be given that characterize thber \-structures that are
also models for the (restricted}calculi.

Let us begin with a short discussion about how it is possiblenterpret types.
There are essentialtyvo semantics for intersection types.

One is theset-theoreticasemantics, originally introduced in [9], generalizing the
one given by Scott for simple types. The meanings of typesasets of the do-
main of discourse, arrow types are definedogscal predicatesand intersection is
set-theoretic intersection.

The second semantics, which arises in the wake of Stonetuediults (see [1],
[12], [32]), views types asompact elements Plotkin’s \-structures [28]. Accord-

ing to this interpretation, the tyde denotes the least element, intersections denote
joins of compact elements, and arrow types allow to intézeahe space of con-
tinuous endomorphisms. By duality, type preorders give tidilter \-structures

20

where the interpretation of-terms can be given through a finitary logical descrip-
tion.

In order to introduce filtei-structures, let us give the appropriate notion of filter
over a type preorder. This is a particular case of filter ovgerericT-meet semi-
lattice (see [25]).

Definition 28 (3 -filters) Let: be a type preorder.

(1) AX-filter (or a filter overT(C*)) is a set= C T(C*) such that
(@) if QeC® thenQez;
(b) if A <y, BandAez=, thenBez;
(c) if A, Be=, thenAN Be=.
(2) F* the set of-filters overT(C*).
(3) If = C T(C*), 1= denotes th&-filter generated by.
(4) A XAfilter is principal if it is of the shape[{A}, for some typed. We shall
denotel{ A} simply byt A.

It is well known thatF* is anw-algebraic lattice, whose poset of compact (or finite)
elements is isomorphic to the reversed poset obtained biyemtiog the preorder
onT(C*) by ~x. That means that compact elements are the filters of the ferm
for some typeA, the top element i (C*), and the bottom element ig2 when
QcC* and) otherwise. Moreover, the join of two filters is the filter irwhd by
their union and the meet of two filters is their intersection;

EUT =T17(EUT)
=ENT==2NT.

We now turn the space of filters into an applicative structure
Definition 29 (Application) Application _- _: F* x F* — FZ* is defined as
=-T=1{B|3JAeT.A — Be=}.
Taking the Stone duality view-point, the interpretatiort&ins coincides with the
sets of types which are deducible for them:
Definition 30 For any A\-term M and environmeng : Var — F=\ {0},
[M]; ={A |30 Ep. T H" M : A},

whereVar is the set of term variables add|= p if and only if (z : B)el" implies
Bep(z).

We callfilter A-structurethe triple (>, - [|*).

21

By rules (2), (<) and (OI), the interpretations of alk-terms are filters.

Dropping the empty set from the codomain of environmentsisessary for ob-
taining models. First of all, notice that the empty set is &fibnly if Q@ ¢ C*.
Clearly, any reasonable interpretation)eterms must give the same meaning to
the terms: and(\y.z)z. If we would allowp(z) = = #) andp(z) = () we would
get[z]> = Z and[(\y.z)z]; = 0: in fact no type is derivable far from a basis
which does not contaim WhenQ ¢ C*. This example is obviously related to the
fact that rule {d3-exp) is admissible only whefeC*.

Remark 31 In the literature (see for instance [16]) filtek-structures are often
referred to as triples 7=, F*, G*) where the map&* : F* — [F* — F*] and
G* : [F* — F¥| — F* are defined by:

FE(Z) = ATEFEE- T,

G(f) = {A— B | Bef(1A)} Ut if veC
- {A— B | Bef(1A)} otherwise.

Actually our definition of filter\-structure coincides with this last one, since ap-
plication “-” allows to recover bothF* and G*. Moreover, the interpretatiofi |*
coincides with the interpretation ofterms induced in the standard way By and
G*. We prefer here the definition of filtarstructures as triplegF>, -, []*) since

it is closer to the syntactic perspective of the previousises.

The notion of restricted redexes introduced in Definitionl@ads us to consider
correspondingly notions of restrictedmodels: first we adapt the classical defi-
nition of \-model a la Hindley-Longo [21] to encompass the variousamst of
reduction, then we characterise the filter structures wimdhce these models. To
accommodate “call-by-valueX-calculus we allow the codomains of environments
to be proper subsets of the whole domains of models.

Definition 32 (A\-models) A modelfor the (restricted)\-calculus \g (i.e. of the
calculus whose redexes are exactly Beedexes) consists of a tripkD, -, [[7)
such thatD isa set, : D x D — D, Env:Var — V for some) C D and the
interpretation functiorf] : A x Env— D satisfies:

1) [2]7 = pla);
@) [MNIP = [M]2 - [NT?:

3) [\z. M]] -[N]? = [[M]]f[m;:mz;} for all R-redexe$\z. M) N;
(4) If p(z) = p/(x) for all zeFV(M), then[M]? = [[M]]/?;
(5) Ify ¢ FV(M), then[Az. M]] = [M\y.Mx := y]]]

),
(6) I vdeD.[M]D, _, = [N]Z._,, then[\z. M]? = [Az.NTP.

22

The restricted mod€D, -, [|7) is extensionaif moreover when: £FV (M):

[Ae.Mz]? = [M]7.

p

Actually, using the Generation Lemmata, we can prove thdil@r \-structures
satisfy all the points of the previous definition but the dhone.

A direct counterexample to the third point is easy. ConsigdeR as the set ofi-
redexes, take for instance the preortiédefined byC' = {Q, »}, andt = {(1)},
where

(1) Q=0 ~Q—¢p

Because off) and (<), we havet), Az.z : Q— . Let p(y) = 1Q. Then, by
(—E), we get-l, (\z.x)y : ¢. So

[(Az.z)y]l = {A |30 Ep. T Hi (\z.z)y : A} by definition of interpretation
2 Te by above
£ 1Q sincep ¢ 112
= [yl}-

Lemma 33 For all type preordersy the interpretation functior]* satisfies con-
ditions (1), (2), (4), (5), (6) of Definition 32.

PROOF. (1) follows immediately from Definition 30 and Theorem 22(1)

(2) Let Ac[MN]>. The cased ~x Qs trivial. Otherwise there exists B-basis
I' such thatl' = p andI’ F* MN : A. By Theorem 21(1), there exigt and
B;, C;€T(C*) such thatl' v* M : B; — C;, T V* N : B, for all iel, and
Nicr Ci <s A. HenceB;e[N]> andB; — C;e[M]?, for all ic!. By definition of
application, it followsC;c[M]; - [N]> for all ic, and this impliesAic [M]>-[N],
being[M]> - [N]> afilter.

Let now Ac[M]> - [N]>. Then there exist, and B;, C;eT(C*) such thatB; —
Cie[M]7, Bl-e[[N]]f, foralliel, andN;c; C; <s A. Hence there exist-basesT’;
andl”, suchthat’; = p, T = p, and moreover; > M : B; — C;,T; = N : B;.
Consider theZ-basisl” = W (T; WT%). We havel” = p, T +* M : B; — C;
andl” F* N : B;. Using rules(— E), (Nl) and (<) we deducd” =* MN : A,
so we concludele[M N]>.

(4) and (5) are trivial.
(6) Suppose that the premise holds aﬁttd[[/\x.M]]f. The cases <y, A is trivial.
Otherwise there is &-basisl such thafl’ = p andT’ +* A\z.M : A. Sincex ¢

23

EV(A\z.M), by rule (S) we can assume¢ I'. By Theorem 21(2) there exigtand
B;, C;€T(C*) such thatl’,» : B; F* M : C; for all i1, ThenCie[[M]]f[x::TBi]:
by the premise this implie€;c[N]}, 5, and sol',x = B; - N : C; for
someX-basisl’; such thatl’; = p. Choosingl” = W;¢;I";, we havel” = p and
Ix : B; V= N : C; for all icI. Using rules(—1), (NI) and (<) we deduce
I = Az.N : A, so we conclud¢z. M]> C [A\z.N]>. Similarly, one can prove
M. N> € [Az. M]3

Due to the previous lemma, a filtarstructure is anodel(i.e. afilter mode) of the
A-calculus)y iff the interpretation functiorf]* equates th&-redexes with their
contracta, that is it satisfies the condition (3) of DefimtR®:

[(A\z.M)NT, = [M]5,._nyz for all R-redexeg . M)N.

For the successive development it is handy to split the abowrdition in the fol-
lowing two conditions on type assignment systems which enéa to the rules
(R-exp) and R-red).

Definition 34 (1) Condition(R-[exp]): for all z, M, N, T, p, if (Az.M)N is an
R-redex,I' F* M|z := N] : A, andl" |= p, then there is &-basisI” such
thatT’ = p andT” > (Az.M)N : A,

(2) Condition(R-[red]): for all x, M, N, T, p, if (\z.M)N is anR-redex,I" >
(Ax.M)N : A, andT" |= p, then there is &-basisI” such thatl” = p and
IV M[z := N] : A.

Clearly these conditions are more permissive than the gporading rules: i.e. the
admissibility of the rule implies the validity of the conidit, but not vice versa.

Theorem 35 (1) Condition(varg-[ezp]) holds in allAxn*.

(2) Condition(funj-[exzp]) holds in all\n3 and A\n*, and in ANy proviso that
for all p, x, M there are ax-basisI" and a typeAeT(C*) such thatl" |= p
andl' F3 \z.M : A,

(3) Condition(id3-[exp]) holds in allAny; and AN, and inAN> proviso that for
all p, M there are a>-basisI" and a typeAcT(C*) such thatl' = p and
TS M : A

(4) Condition(normg-[exp]) holds in allA\n*.

(5) Condition(3-[exp]) holds in all \ng, and in ANy and AN proviso that for
all p, M there are a>-basisI" and a typeAcT(C*) such thatl' = p and
== M: A

PROOF. Admissibility of rule R-exp) implies validity of condition(R-[exp]),
hence by Corollary 26 we have that:

24

condition(fung-[exp]) holds in all\n3 and\N7;
condition(id3-[exp]) holds in allAny and\Ng;

condition(normg-[exp]) holds in allA\n*;
condition(S-[exp]) holds in allANg,.

For the remaining cases, notice that= p andIl” | pimply ' W IV = p by
definition of =. Moreover, ifT' > M : Awe getC W IV F= M : A by rules €
L) and (W) for allT”. Therefore, by Theorem 24(2), conditigR-[ezp]) can be
rewritten as follows:

forall x, M, N, T, p, if (\x.M)N is anR-redex,[' -* M[z := N]: A, andl" |= p,
then there are &-basisl” and a typeBeT (C*) such thal” = p and
I N : B.

(1) We get{x:B} > x : B for all Bep(z): recall that by definitiorn(z) is never
empty for allp andzx.

(2) The condition for\Nj; is clearly sufficient. It is also necessaftyyz.z)(A\z. M)
is afung-redex for allz, M and-3 A\z.2 : A— A.

(3) The condition for\n* is clearly sufficient. It is also necessatyyz.y) M is an
id3-redex for allM and-> \z.M : v.

(4) The condition for\ny; and AN is clearly sufficient. It is also necessary since
(A\yz.z)M is apB-redex for allM and-* \z.z : A — A.

If (Az.M)N being anR-redex implies that so iS\z. M)y, for a fresh variabley,
then conditionR-[red]) is equivalent to:

Condition(R-[red]-«): for all , M, T, p, if (\x.M)N is anR-redex for someV,
' \x.M : B— A, andl" |= p, then there is &-basisI” such thaf” |= p and
IV a:BF* M : A.

as proved in the following Theorem.

Theorem 36 Conditions(R-[red]) and(R-[red]-+) are equivalent, provis\z. M) N
being anR-redex implies that so i6\x.M)y, for a fresh variabley.

PROOF. (=) Let (\z.M)N be anR-redex for someV. Assumel’ -* \z.M :
B — A, which impliesT’, y: B > (A\x.M)y : A by rule (— E) for a freshy. Notice
that by assumptiot\z. M)y is aR-redex. Notice also that |~ p impliesT’, y:B =
ply := 1B]. By condition(R-[red]) there isI” | ply := 1B] such thatl” +*
Mz :=y| : A. LetT” = {z:C€el"” | z # y}: by construction™ = p and by rule
(L) I, y:B+F* Mz :=y] : A. Hencel”, z:B +* M : A.

25

(<) LetT = (\z.M)N : A and(\z.M)N be anR-redex. The casél ~x Q) is
trivial for An3. Otherwise, by Theorem 21(1), there exists a finite/sand types
B;,C; such thatl' H* \z.M : B;—C;, T ¥ N : B; and,c; C; <5 A. By
condition (R-[red]-«) there arel; such thafl”, = p andT;,, z:B; V> M : C; for

all iel. LetI” = I' W (Wi, I;): we getl” = p by definition of |=. We deduce
by (£ L)yand W) I, 2:B; V= M : C; andI” F* N : B; for all icI. Then
I =¥ Mz = N] : C; follows by an application of rule (C), and so we can
concludel” > M[z := N] : A using rules () and (<).

Remark that the condition of previous theorem is satisfieg@rwthe set ofR-
redexes includes the setwdr3-redexes.

We end the section by giving the characterisations of the preorders inducing
models of (restricted)-calculi. These characterisations, which are generaissit
of the corresponding result in [11], follow easily from Thems 35 and 36.

Theorem 37 (Characterisations of (Restricted) Filter Modés) (F> - []*)isa
model of the

(1) “call-by-value™ A-calculus iff foralll',z, M, A, B, p:
(@ ifCTF= Az M : A— Bandl = pthenl”,z : AF* M : BandI” = p
for someX-basisl”;
(b) [[Ax.M]]E # ;
(2) M-calculus iff foralll',xz, M, A, B, p such thatee F'V (M):
(@ fTF= Az M : A— Bandl = pthenl”,z : AF* M : BandI” = p
for someX-basisl”;
(b) if veC* then[[M]]E # (;
(3) AKN-calculus iff foralll',z, M, A, B, p:
@ ifCF= M. M : A— Bandl' = pthenl”, 2z : AF* M : BandI” |= p
for someX-basisl”;
(b) if veC* then[[M]]f # 0;
(4) wholeA-calculus iff foralll’,z, M, A, B, p:
@ ifC = M. M : A— Bandl' = pthenl”, 2z : AF* M : BandI” |= p
for someX-basisl”;

(b) [M]7 # 0.

PROOF. First of all notice that all considered calculi satisfy tlundition of The-
orem 36. More precisely in all these calculi but in thlecalculus the set of redexes
includes the set ofar-redexes. Instead for all variablgsve have that\z. M)y

is afl-redex whenevefAz. M) N is ajl-redex.

Condition(a) specialises conditiofR-[red]-*) for the considered restrictions of

26

A-calculus, and therefore by Theorem 8%),is necessary and sufficient to assure:
[(Az.M)NT,; C [[M]]E[x::[[m]g]-

Taking into account theftM] # (iff there arel’ |= p, A such thaf > M : A,
Theorem 35 implies that conditidb) is necessary and sufficient to assure:

[[M]]pz[x::[[m]g] C [(Az.M)NT; .

As an immediate consequence of Theorem 37(4) and Theoredy, 22C. -, [|*)
is aA-model whenevek is a beta theory an@<C>.

We can also characterise filter models which are extensiggiag Theorem 27.
Note that for the)-rule the possibility of changing basis (in agreement witixad
environment) plays a role only i#€C, since in all other cases the sub-formula
property holds ang-convertible terms have the same set of free variables.

Theorem 38 (Characterisation of extensional (restrictedjilter models) LetX:
be a type preorder. The filtev-structure(F>, - []*) is an extensional filter model
of the restricted\-calculus\r iff itis a model ofAg, X is an eta type preorder
which validateg DV, and moreover iflc C* thenX: validates axiom{Q-n), if veC*
thenve[M] for all M, p.

PROOF. (=) LetpcC* be a constant that satisfies neither conditions of Definition
9. One can show thaigé[[)\y.:cy]]f[m::w]: this implies tha®: must be eta.

We haveA — BN Ce[My.ay],.1apna_cy for all A, B,C, butA — BN
Cel(A — B)Nn (A — CO) only if ¥ validates axiom--N). Similarly, one can
show that> must validate axiomf) always, and axiont§-n) whenQeC*. Lastly if
veC” thenve[\z.Mz]) for all M, p by axiom(Ax-v): therefore we neede [M]’
for all M, p.

(<) follows from Theorem 27, but for the case C*, in whichv is harmless being
contained in the interpretations of all terms.

Using Proposition 7(1), Lemma 21 and previous theorems e ge

(F V) with s7€{Ba, CDV} is a model of the\l-calculus,

(FV, -, []V) with ye{HL, HR } is an extensional model of the-calculus,
(FERR . [1€MRY is a model of the “call-by-valueX-calculus,

(FV, -, []V) with 7€{AO, BCD, Pl, En} is a model of the whola-calculus,
<f'V’) [[]]V>

A-calculus.

V’.’[[
V.’[[

with sy €{Sc, Pa,CDZ, DHM} is an extensional model of the whole

27

Let =% be the preorder defined in example 8: [4] proves that it indizcaodel of
the whole\-calculus by showing condition (@) of Theorem 37.

6 Conclusion

When stepping into the world of-calculus semantics, intersection type systems
turn out to be a useful “vehicle” to move around, since theyjte a finitary way

to describe and analyse particular classes of models. Bglgiadding a single
constant or condition on a type preorder, a different seit@mdomain is charac-
terized. One is then naturally induced to expect that ieteisn types will provide,

in the long run, a sort of tailor shop in which particular densacan be tailored for
any specific need.

In the present paper we have provided characterisatiottsesuncerning intersec-
tion type systems for tha-calculus, for a number of its restrictions and for their
corresponding extensional versions. Some results cleisetthose intersection
type systems for which typing invariance holds w.pt.and n-conversion. Filter
A-structures induced by intersection type preorders haea lsbown to provide
models for the whole-calculus and for a number of relevant “restrictedtalculi
whenever particular conditions on the type preorders dfidldd. These character-
isations have an intereper sein the syntactic theory of intersection types. How-
ever, the paper keeps also a general perspective, sincessapaeduction results
are parametric over the set of restricted redexes. Thergferhave a basis for fur-
ther analysis: whenever operational investigation wilhpat new sets of restricted
redexes, the present paper’s results will provide a useélilpinary tool for isolat-
ing conversion properties, thus characterising the cpomding filter models.

AcknowledgementsThe authors are grateful to Furio Honsell, Henk Barendregt
and Wil Dekkers for enlightening discussions on the subggdihe present pa-
per. Moreover, they would like to thank the two anonymousneds for their sev-
eral suggestions about the form of the paper as well as tlegrih correcting a
few flaws in some proofs. The authors thank also the refere@&blLIC’03 and
TYPES’03 for careful reading preliminary versions of theger and for their use-
ful comments. The second author wishes to express his thartkisella Meli and
Alessandro Cavalli.

References
[1] S. Abramsky. Domain theory in logical formAnn. Pure Appl. Logic51(1-
2):1-77, 1991.

[2] S. Abramsky and C.-H. L. Ong. Full abstraction in the léaynbda calculus.
Inform. and Comput105(2):159-267, 1993.

28

[3] F. Alessi, F. Barbanera, and M. Dezani-Ciancaglini.etsection types and
computational rules. In R. de Queiroz, E. Pimentel, and §u€iredo, editors,
WOLLIC’03 volume 84 ofENTCS Elsevier, 2003.

[4] F. Alessi, F. Barbanera, and M. Dezani-Ciancaglini.|dramng filter models.
In S. Berardi, M. Coppo, and F. Damiani, editof¥,PES’03volume 3085 of
LNCS pages 17-33. Springer-Verlag, 2004.

[5] F. Alessi, M. Dezani-Ciancaglini, and F. Honsell. Filtmodels and easy
terms. In A. Restivo, S. Ronchi Della Rocca, and L. Roverdifogs,
ICTCS’01, volume 2202 oLNCS pages 17-37. Springer-Verlag, 2001.

[6] F. Alessi, M. Dezani-Ciancaglini, and S. Lusin. Intes8en types and domain
operators.Theoret. Comput. S¢i316(1-3):25-47, 2004.

[7] F. Alessiand S. Lusin. Simple easy terms. In S. van Batditor,ITRS'02
volume 70 ofENTCS Elsevier, 2002.

[8] H. Barendregt. The Lambda Calculus: its Syntax and Semanti®orth-
Holland, Amsterdam, revised edition, 1984.

[9] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. Adlillambda model
and the completeness of type assignménSymbolic Logic48(4):931-940,
1983.

[10] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Fuooal characters of
solvable termsZ. Math. Logik Grundlag. Math27(1):45-58, 1981.

[11] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Typesthies, normal
forms, andD . -lambda-modelsinform. and Comput.72(2):85-116, 1987.

[12] M. Coppo, F. Honsell, M. Dezani-Ciancaglini, and G. lgon Extended type
structures and filter lambda models. In G. Lolli, G. Longod @& Marcja,
editors,Logic colloquium '82 pages 241-262. North-Holland, 1984.

[13] H. Curry and R. FeysCombinatory Logigcvolume | of Studies in Logic and
the Foundations of Mathematichlorth-Holland, 1958.

[14] M. Dezani-Ciancaglini and S. Ghilezan. Two behavidlambda models. In
H. Geuvers and F. Wiedijk, editor§YPES'02volume 2646 of. NCS pages
127-147. Springer-Verlag, 2003.

[15] M. Dezani-Ciancaglini, S. Ghilezan, and S. Likavec. hBe&oural inverse
limit models. Theoret. Comput. S¢i316(1-3):49-74, 2004.

[16] M. Dezani-Ciancaglini, F. Honsell, and F. Alessi. A collete characterization
of complete intersection-type preordefAsCM TOCL, 4(1):120-147, 2003.

[17] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama.n@@ositional charac-
terization of\-terms using intersection typeBheoret. Comput. S¢2005. to
appear. An extended abstract appearedlHFCS’0Q volume 1893 0lLNCS
pages 304-313. Springer-Verlag, 2000.

[18] L. Egidi, F. Honsell, and S. Ronchi Della Rocca. Opemadil, denotational
and logical descriptions: a case stuéynd. Inform, 16(2):149-169, 1992.

[19] E. Engeler. Algebras and combinatordgebra Universalis13(3):389-392,
1981.

[20] G. Gierz, K. Hoffmann, K. Keimel, J. Mislove, and D. StoA Compendium
of Continuous LatticesSpringer-Verlag, 1980.

[21] R. Hindley and G. Longo. Lambda-calculus models aneémrsibnality. Z.

29

Math. Logik Grundlag. Math.26(4):289-310, 1980.

[22] F. Honsell and M. Lenisa. Some results on the full alesiva problem for
restricted lambda calculi. In A. M. Borzyszkowski and S. 8lokvski, editors,
MFCS’93 volume 711 oLLNCS pages 84-104. Springer-Verlag, 1993.

[23] F. Honsell and M. Lenisa. Semantical analysis of perglestrategies in-
calculus.Theoret. Comput. S¢i212(1-2):183-209, 1999.

[24] F. Honsell and S. Ronchi Della Rocca. An approximatioeorem for topo-
logical lambda models and the topological incompletenés$snobda calcu-
lus. J. Comput. System Sci5(1):49-75, 1992.

[25] P.T. Johnstonestone spaceambridge University Press, Cambridge, 1986.
Reprint of the 1982 edition.

[26] D. Park. TheY-combinator in Scott's\-calculus models (revised version).
Theory of Computation Report 13, Department of Computeer8m, Uni-
versity of Warwick, 1976.

[27] G.D. Plotkin. Call-by-name, call-by-value and thealculus.Theoret. Com-
put. Sci, 1(2):125-159, 1975.

[28] G. D. Plotkin. Set-theoretical and other elementarygis of the\-calculus.
Theoret. Comput. S¢il21(1-2):351-409, 1993.

[29] D. Scott. Continuous lattices. In F.W.Lawvere, edilmposes, algebraic ge-
ometry and logicvolume 274 oLNM, pages 97-136. Springer-Verlag, 1972.

[30] D. Scott. Open problem. In C. Bohm, editbgmbda Calculus and Computer
Science Theorwolume 37 ofLNCS page 369. Springer-Verlag, 1975.

[31] S. van Bakel. Complete restrictions of the intersattiype discipline.Theo-
ret. Comput. Scj.102(1):135-163, 1992.

[32] S. Vickers. Topology via logic Cambridge University Press, Cambridge,
1989.

30

