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Abstract

Invariance of interpretation byβ-conversion is one of the minimal requirements for any
standard model for theλ-calculus. With the intersection type systems being a general
framework for the study of semantic domains for theλ-calculus, the present paper provides
a (syntactic) characterisation of the above mentioned requirement in terms of characterisa-
tion results for intersection type assignment systems.

Instead of considering conversion as a whole, reduction andexpansion will be consid-
ered separately. Not only for usual computational rules like β, η, but also for a number of
relevant restrictions of those. Characterisations will bealso provided for (intersection) filter
structures that are indeedλ-models.

1 Introduction

In theλ-calculus, the computational model at the basis of the functional program-
ming paradigm, the basic step of computation is usually identified with the notion
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ST-2001-33477 , and MURST Project and McTafi. The funding bodies are not responsible
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Preprint submitted to Elsevier Science 27 July 2005



of β-reduction:
(λx.M)N →β M [x := N ]

Whereas, like any “computation rule”, its role is (roughly)to make moreexplicit
the “information” represented by aλ-term, such information, intuitively, must not
be modified by the computational process embodied by the ruleitself. That is why
any classical notion of denotational interpretation for theλ-calculus has to respect
minimal requisites w.r.t. the operational interpretationof the calculus. As a matter
of fact, any classical denotational semantics for theλ-calculus must be required
sound, that is it must interpret any twoconvertibleterms with the very same infor-
mation (denotational value).

The soundness requirement for denotational models for theλ-calculus is, at large,
the context of the present paper. In particular, we address the study of this require-
ment at a deeper level, that is, we “decompose” it into two separate requirements to
be investigated individually: one concerningβ-reduction alone and one concerning
β-expansion.

(a) For anyN s.t.M →β N, [[M ]] = [[N ]]

(b) For anyN s.t.N →β M, [[M ]] = [[N ]]

where [[M ]] represents the denotational interpretation of the termM in a given
domain.

Due to the large variety of possible denotational models fortheλ-calculus, such
an investigation cannot be successfully undertaken unlesswe manage to identify a
finitary and natural framework where most of the models proposed in the literature
could be “embedded” and analysed.

Type assignment systems for the untypedλ-calculus with intersection types are
definitely a framework with the qualities we are looking for:they form a class of
type assignment systems which allow to express, in a naturaland finitary way, many
of the most importantdenotationalproperties of terms (as a matter of fact, also
many relevantoperationalproperties can be characterised by means of intersection
types).

Indeed, intersection types are a powerful tool for both the analysis and synthesis of
λ-models (seee.g.[9] [11], [18], [24], [23], [28], [15], [6] and the references there):
on the one hand, intersection type disciplines provide finitary inductive definitions
of interpretation ofλ-terms in models. On the other hand, they are suggestive for
the shape the domain model has to have in order to exhibit certain properties (see
e.g.[11], [24], [5], [7], [17], [14]).

Intersection types can be also viewed as a restriction of thedomain theory in logical
form, see [1], to the special case of modelling pureλ-calculus by means ofω-
algebraic complete lattices. Many properties of these models can be proved using
this paradigm, which goes back to Stone duality.
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Different finitary characterisations of models for theλ-calculus can be obtained by
introducing specific constants, typing rules and type preorders in the basic intersec-
tion type assignment system. An element of a particular domain, representing the
denotational meaning of a termM , comes out to correspond to the set of types that
can be inferred forM .

It is then clear that, in the framework of intersection type systems, the study of
the requirements(a) and (b) above mentioned can be fully formalised in terms
of typing invariance, that is, in type theory terminology, by the so-called Subject
Reduction and Expansion properties. Hence, particular (syntactic) characterisations
of those domains where the requirement(a) (resp.(b) ) is met, can be achieved by
isolating necessary and sufficient conditions enabling a type system to enjoy the
property of Subject Reduction (resp. Subject Expansion). One of the main results
of the present paper consists in a number of such necessary and sufficient conditions
for these properties.

It is worth noticing that many restrictions of theβ-rule have been devised in the
literature with the aim of formalising particular sorts of computations. Interesting
examples of such restrictions are the rule of Plotkin’sλv-calculus [27], the rule of
λI -calculus [13] and the rule ofλKN-calculus [23]. In this paper we shall prove
our results also for the restricted notions of computationsembodied by the above
mentioned calculi.

β-conversion as a whole will be also taken into account in thispaper, but from a
rather broader perspective (forming the basis for further research): characterisation
results will be in fact provided for those filter (intersection) structures that are also
λ-models for the afore mentioned calculi. Such results will profit from the charac-
terisation results concerning Subject Reduction and Subject Expansion.

The extensionality property in the denotational semanticsfor theλ-calculus will be
taken into account in terms of its syntactic formalization:theη-rule. We shall show
how to characterise the intersection type systems enjoyingSubject Reduction and
Subject Expansion properties with respect toη-rule, as well as the filter structures
that are extensionalλ-models for the considered calculi.

This paper is structured as follows: in Section 2 we recall the definitions of in-
tersection types and intersection type preorders. We shallbriefly recall the main
systems proposed in the literature, in particular those related to the use of intersec-
tion types for denotational semantics. We shall also introduce conditions on type
preorders to be used in our characterisation results. Section 3 discusses intersection
type assignment systems and their properties. Section 4 will contain our character-
isation results concerningβ- andη-reduction/expansion. Our characterisations of
filter structure that areλ-models will be given in Section 5. The last section (Sec-
tion 6) will provide a few remarks on possible further research on the arguments of
the paper.
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The present paper extends [3] and [4] providing all the omitted proofs in those
preliminary versions.

2 Intersection Type Languages and Type Preorders

In this section we shall recall the main notions concerning intersection type lan-
guages and type preorders.

Intersection typesare syntactic objects built by closing a given set
�

of type atoms
(constants) under thefunction typeconstructor→ , and theintersection typecon-
structor∩.

Definition 1 (Intersection Type Language) The intersection type languageover�
, denoted by� = �(

�
) is defined by the following abstract syntax:

� =
�
| � → � | � ∩ � .

NOTATION. Upper case Roman letters i.e.A,B, . . ., will denote arbitrary types.
When writing intersection types we shall use the following convention: the con-
structor∩ takes precedence over the constructor→ , and→ associates to the right.
For example(A→B→C) ∩A→B→C ≡ ((A→ (B→C)) ∩A)→ (B→C).

In this paper we shall be concerned with several different intersection type lan-
guages arising from taking different sets of type atoms, depending on which typing
invariance properties we want to capture. Typical choices for the set of type atoms
are

�
∞, a countable set of constants, or finite sets like{Ω, ϕ, ω} or {ν}.

Most of the expressive power of intersection type languagescomes from the fact
that they are endowed with apreorder relation, ≤, which induces, on the set of
types, the structure of a meet semi-lattice with respect to∩. This appears natu-
ral when we think of types as sets of denotations, and interpret ∩ as set-theoretic
intersections and≤ as set inclusion.

Definition 2 (Intersection Type Preorder)
An intersection type preorderΣ = (

�
Σ,≤Σ) is a binary relation≤Σ on �(

�
Σ)

satisfying the set of axioms and rules of Figure 1.

NOTATION. We shall writeA ∼Σ B when bothA ≤Σ B andB ≤Σ A.

Axiom (Ω) states that the type preorders containing the constantΩ haveΩ itself
as top element. This is particularly meaningful when used incombination with the
Ω-type assignment systems, which essentially treatΩ as the universal type of all
λ-terms (see Definition 14).
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(refl) A ≤ A (idem) A ≤ A ∩ A

(inclL) A ∩B ≤ A (inclR) A ∩ B ≤ B

(mon)
A ≤ A′ B ≤ B′

A ∩ B ≤ A′ ∩ B′
(trans)

A ≤ B B ≤ C

A ≤ C

(Ω) if Ω∈
�

A ≤ Ω (ν) if ν∈
�

A→B ≤ ν

Fig. 1. Basic Axioms and Rules of Type Preorders.

Axiom (ν) states thatν is above any arrow type. This axiom agrees with theν-type
assignment systems, which treatν as the universal type of allλ-abstractions (see
Definition 16). Notice that the role ofν may be played by the typeΩ→Ω, whenΩ
is in

�
. For this reason it is of no use to have at the same timeν andΩ. Hence we

impose, as a pragmatic rule, that these two constants do not occur together in any�
.

Notice that associativity and commutativity of∩ (as always modulo∼) follow eas-
ily from the above axioms and rules. For instance, commutativity is immediate:

A ∩B ≤ (A ∩ B) ∩ (A ∩B) ≤ B ∩A.

Since∩ is commutative and associative, we shall write
⋂

i≤nAi for A1 ∩ . . . ∩ An.
Similarly, we shall write∩i∈IAi, whereI denotes always a finite set. Moreover, we
convene that∩i∈∅Ai is Ω whenΩ∈

�
and we forbid intersections on the empty set

whenΩ /∈
�

.

Remark 3 It is not required that∼ be congruent with the constructor→ . For
many type preorders this will be implied by the extra axiom (η) or (η∼) (see Fig-
ure 2).

All the type preorders considered so far in the literature are defined for languages
over finite or countable sets of atoms and are “generated” by recursive sets5 of
axioms and rules of the shapeA ≤ B (where5 it is said to generate≤ when
A ≤ B holds if and only if it can be derived from the axioms and rulesof 5
together with those in Definition 2). Such generated preorders have been referred
to astype theories. We shall denote them byΣ5 = (

�
5,≤5).

Note that there are only countably many possible5; hence, there are uncountably
many preorders which cannot be represented this way. Note also that the correspon-
dence5 7→≤5 is not injective.

In this paper we try to be as general as possible, sticking to our notion of type
preorder which indeed extends the notion of type preorders usually considered in
the literature, where rules (Ω) and (ν) are not taken into account and are instead
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postulated inside the recursive sets generating the type preorder.

Figure 2 shows a list of special purpose axioms and rules which have been consid-
ered in the literature, and which we shall briefly discuss in the following.

(Ω-η) Ω ≤ Ω→Ω (→ -∩) (A→B) ∩ (A→C) ≤ A→B ∩ C

(Ω-lazy) A→B ≤ Ω→Ω (→ -∩∼) (A→B) ∩ (A→C) ∼ A→B ∩ C

(η)
A′ ≤ A B ≤ B′

A→B ≤ A′ →B′
(η∼)

A′ ∼ A B ∼ B′

A→B ∼ A′ →B′

(ω-Scott) Ω→ω ∼ ω (ω-Park) ω→ω ∼ ω

(ωϕ) ω ≤ ϕ (ϕ→ω) ϕ→ω ∼ ω

(ω→ϕ) ω→ϕ ∼ ϕ (I) (ϕ→ϕ) ∩ (ω→ω) ∼ ω

Fig. 2. Possible Axioms and Rules concerning≤.

The meaning of axioms and rules of Figure 2 can be grasped if wetake types to
denote subsets of a domain of discourse and we look at→ as the function space
constructor in the light of Curry-Scott semantics, see [30]. Thus the typeA→B
denotes the set oftotal functions which map each element ofA into an element of
B.

SinceΩ represents the maximal element, i.e. the whole universe,Ω→Ω is the set of
functions which applied to an arbitrary element return again an arbitrary element.
Thus, axiom (Ω-η) expresses the fact that all the objects in our domain of discourse
are total functions, i.e. thatΩ is equal toΩ→Ω [9]. If now we want to capture
only those terms which truly represent functions, as we do for example in the lazy
λ-calculus, we cannot assume axiom (Ω-η). One still may postulate the weaker
property (Ω-lazy) to make all functions total [2]. It simply says that an element
which is a function, because it mapsA into B, maps also the whole universe into
itself.

The intended interpretation of arrow types motivates axiom(→ -∩), which implies
that if a function mapsA intoB, and the same function maps alsoA intoC, then,
actually, it maps the wholeA into the intersection ofB andC (i.e. intoB ∩C), see
[9].

Rule (η) is also very natural in view of the set-theoretic interpretation. It implies
that the arrow constructor is contra-variant in the first argument and covariant in
the second one. It is clear that if a function mapsA intoB, and we take a subsetA′

of A and a supersetB′ of B, then this function will map alsoA′ intoB′, see [9].

The rules (→ -∩∼) and (η∼) are similar to the rules (→ -∩) and (η). They capture
properties of the graph models for the untypedλ-calculus, see [28] and [19].
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The remaining axioms express peculiar properties of D∞-like inverse limit models,
see [9], [12], [11], [24], [22], [14].

We can introduce now a list of significant intersection type preorders which have
been extensively considered in the literature. All these preorders have been intro-
duced mainly to obtain corresponding filter models of (restricted)λ-calculi, as we
shall discuss in Section 5. The order is logical, rather thanhistorical, and some ref-
erences define the models, others deal with the corresponding filter models: [31],
[10], [23], [24], [18], [2], [9], [29], [26], [11], [28], [19], [17].

These preorders are of the formΣ5 = (
�
5,≤5), with various different names5,

picked for mnemonic reasons. In Figure 3, for each preorderΣ5 we list its set
�
5

of constants and its set5 of extra axioms and rules taken from Figure 2. Here
�
∞

is an infinite set of fresh atoms (i.e. different fromΩ, ν, ϕ, ω).

�Ba =
�
∞ Ba = ∅

�CDV =
�
∞ CDV = {(→ -∩), (η)}

�HL = {ϕ, ω} HL = CDV ∪ {(ωϕ), (ϕ→ω), (ω→ϕ)}
�HR = {ϕ, ω} HR = CDV ∪ {(ωϕ), (ω→ϕ), (I)}
�EHR = {ν} EHR = CDV

�AO = {Ω} AO = CDV ∪ {(Ω-lazy)}
�BCD = {Ω} ∪

�
∞ BCD = CDV ∪ {(Ω-η)}

�Sc = {Ω, ω} Sc = BCD ∪ {(ω-Scott)}
�Pa = {Ω, ω} Pa = BCD ∪ {(ω-Park)}
�CDZ = {Ω, ϕ, ω} CDZ = HL ∪ BCD

�Pl = {Ω, ϕ} Pl = {(η∼)}
�En = {Ω} ∪

�
∞ En = Pl ∪ {(→ -∩∼), (Ω-η)}

�DHM = {Ω, ϕ, ω} DHM = BCD ∪ {(ωϕ), (ω-Scott), (ω→ϕ)}

Fig. 3. Particular Atoms, Axioms and Rules.

We define two conditions on type preorders to be used in our characterisation results
for ruleβ.

Definition 4 (Beta andν-sound Preorders)

(1) A type preorderΣ is beta iff for all sets of indexesI, and all typesAi, Bi,
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C,D in �(
�

Σ):
⋂

i∈I

(Ai→Bi) ≤Σ C→D ⇔
⋂

i∈J

Bi ≤Σ D whereJ = {i∈I | C ≤ Ai}.

(2) A type preorderΣ is ν-sound iff for all A,B∈�(
�

Σ):

ν 6∼Σ A→B.

A few comments on the previous definition. In the definition ofbeta preorders, ifJ
is empty andΩ∈

�
Σ we getΩ ∼Σ D. Instead, by assumption,J can never be empty

whenΩ /∈
�

Σ. If we look at∩ as representing join, and arrow types as representing
step functions, then the condition for a type preorder of being beta is exactly the
relation which holds between sups of step functions [20].

Theν-sound condition is used both to preventν from being a redundant type and to
avoid assigning too many types to aλ-abstraction (assigningν amounts exactly to
discriminating an abstraction and nothing more). Notice thatΣ is trivially ν-sound
whenν /∈

�
Σ.

When Σ = Σ5, for some5, it is usually possible to prove the above defined
conditions by induction on the derivation that shows that two given types are in the
preorder relation. The following notion ofstrong betais handy when proving that
some of the type preorders of Figure 3 are beta. A type preorder Σ5 is strong beta
when its set5 of axioms and rules containsBCD and a set5− of axioms with
suitable properties.

Definition 5 (Strong Beta Preorders)
A type preorderΣ5 is strong betaif 5 = BCD ∪5− and:

(1) 5− contains no rule and only axioms of one of the following two shapes:
- ψ ≤ ψ′,
- ψ ∼

⋂

i∈I(ψ
(1)
i → ψ

(2)
i ),

whereψ, ψ′, ψ
(1)
i , ψ

(2)
i ∈

�
5, andψ, ψ′, ψ

(2)
i 6≡ Ω for all i∈I;

(2) for eachψ∈
�
5 such thatψ 6≡ Ω there is exactly one axiom in5− of the shape

ψ ∼
⋂

i∈I(ψ
(1)
i → ψ

(2)
i );

(3) let 5− containψ ∼
⋂

i∈I(ψ
(1)
i → ψ

(2)
i ) and ψ′ ∼

⋂

j∈J(ψ
′(1)
j → ψ

′(2)
j ).

Then5− contains alsoψ ≤ ψ′ iff for eachj∈J there existsi∈I such that
ψ

′(1)
j ≤ ψ

(1)
i andψ(2)

i ≤ ψ
′(2)
j are both in5−.

For example the preordersΣHL, ΣSc, ΣPa, ΣCDZ , ΣHR, andΣDHM are
strong beta.

Lemma 6 Each strong beta type preorder is beta.

PROOF. We shall denote elements of
�
5 by ψ, ξ, ϕ, ζ (possibly with indexes).
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By assumption, for each constantψ∈
�
5 there is exactlyoneaxiom stating thatψ

is equivalent to an intersection of arrow types. We denote such an intersection by
⋂

l∈L(ψ)(ξ(ψ) → ζ (ψ)). Moreover, notice that the most general form of an intersection
type is a finite intersection of arrow types and type constants. We can prove two
statements by simultaneous induction on the definition of≤, the first of which
implies the beta condition:

• if (
⋂

i∈I(Ai→Bi)) ∩ (
⋂

h∈H ψh) ≤5 (
⋂

j∈J(Cj→Dj)) ∩ (
⋂

k∈K ϕk), then

(
⋂

i∈I′ Bi) ∩ (
⋂

h∈H′(
⋂

l∈L(ψh)′ ζ
(ψh)
l )) ≤5 Dj whereI ′ = {i∈I | Cj ≤5 Ai},

H ′ = {h∈H | Cj ≤5 ξ
(ψh)
l for somel∈L(ψh)}, L(ψh)′ = {l∈L(ψh) | Cj ≤5

ξ
(ψh)
l };

• if (
⋂

i∈I(Ai→Bi)) ∩ (
⋂

h∈H ψh) ≤5 (
⋂

j∈J(Cj→Dj)) ∩ (
⋂

k∈K ϕk), then

(
⋂

i∈I′ Bi)∩ (
⋂

h∈H′(
⋂

l∈L(ψh)′ ζ
(ψh)
l )) ≤5 ζ (ϕk)

m whereI ′ = {i∈I | ξ(ϕk)
m ≤5 Ai},

H ′ = {h∈H | ξ(ϕk)
m ≤5 ξ

(ψh)
l for somel∈L(ψh)}, L(ψh)′ = {l∈L(ψh) | ξ(ϕk)

m ≤5

ξ
(ψh)
l }.

Proposition 7

(1) Type preorders of Figure 3 are beta.
(2) Type preorders of Figure 3 areν-sound.

PROOF. (1) For5∈{Ba, CDV, EHR,AO,BCD,Pl, En} we can prove, by induc-
tion on the definition of≤5, that

(
⋂

i∈I

(Ai→Bi)) ∩ (
⋂

h∈H

ψh) ≤5 (
⋂

j∈J

(Cj →Dj)) ∩ (
⋂

k∈K

ξk) ⇒
⋂

i∈I′

Bi ≤5 Dj,

whereI ′ = {i∈I | Cj ≤5 Ai}.

The preordersΣ5 for 5∈{HL, Sc,Pa, CDZ,HR,DHM} are beta by Lemma 6.

(2) For ΣEHR one can easily show, by induction on≤EHR, that ν ≤EHR A
implies thatA is an intersection ofν.

Example 8 An example of a non-beta preorder isΣ♦, defined by
�
♦ = {Ω,♦,♥}

and♦ = BCD ∪ {(♦)}, where

(♦) A ≤ A[♦ := ♥].

Σ♦ is not beta, since♦→♦ ≤♦ ♥→♥, but♥6≤♦♦.

NOTATION. We write “the type preorderΣ validates5” to mean that all axioms
and rules of5 are admissible inΣ.
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In order to characterise the invariance of typing underη-expansion, we need to
introduce a further condition on type preorders, which essentially says that each
atomic type either is greater than or equal to a type which canbe deduced for all
terms which are abstractions (see Definition 16), or it is between two intersections
of “strictly related” arrow types, as specified in the following definition.

Definition 9 (Eta Preorders) A type preorderΣ is eta iff for all ψ∈
�

Σ one of
these two conditions hold:

• ν≤Σψ
• there exist non-empty families of types{Ai, Bi}i∈I , {Di,j, Ei,j}j∈Ji in �(

�
Σ)

such that

⋂

i∈I(Ai→Bi)≤Σψ ≤Σ
⋂

i∈I′(
⋂

j∈Ji(Di,j →Ei,j)) &

∀i∈I ′. Ai ≤Σ
⋂

j∈JiDi,j &
⋂

j∈Ji Ei,j ≤Σ Bi,

whereI ′ = {i∈I | Bi 6∼Σ Ω}.

It is easy to verify that if eitherΩ6 ∈
�

Σ andΣ validatesCDV or Ω∈
�

Σ andΣ vali-
datesAO, then the condition of the above definition simplifies to the requirement
that all atomic types are either greater thanν or greater thanΩ → Ω, or they are
equivalent to a suitable intersection of arrow types, namely

∀ψ∈
�

Σ.ν ≤Σ ψ or Ω → Ω ≤Σ ψ or ∃I, {Ai, Bi}i∈I .
⋂

i∈I(Ai→Bi)∼Σψ.

The following proposition singles out all type preorders ofFigure 3 which are eta:
the proof is trivial.

Proposition 10 If 5∈{HL, EHR,AO, Sc,Pa, CDZ,DHM}, thenΣ5 is a eta pre-
order.

3 Intersection Type Assignments

We are now ready to introduce the crucial notion ofintersection type assignment
system. First we need a few preliminary definitions.

Definition 11 (1) AΣ-basisis a set of statements of the shapex:B, whereB∈�(
�

Σ).
All term variables occurring in aΣ-basis are distinct.

(2) An intersection-type assignment systemrelative toΣ, denoted byλ∩Σ, is a
formal system for deriving judgements of the formΓ `Σ M : A, where the
subjectM is aλ-term, thepredicateA is in �(

�
Σ), andΓ is aΣ-basis.

We shall considerλ-terms up toα-conversion and we shall assume the Barendregt
convention on variables [8] to be fulfilled. The Barendregt convention for judg-
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(Ax) Γ, x:A `Σ
B x:A

(→ I)
Γ, x:A `Σ

B M : B

Γ `Σ
B λx.M : A→B

(→E)
Γ `Σ

B M : A→ B Γ `Σ
B N : A

Γ `Σ
B MN : B

(∩I)
Γ `Σ

B M : A Γ `Σ
B M : B

Γ `Σ
B M : A ∩ B

(≤)
Γ `Σ

B M : A A ≤Σ B

Γ `Σ
B M : B

Fig. 4. The Axioms and Rules of the Basic Type Assignment System.

mentsΓ `Σ M : A implies that variables occurring in theΣ-basisΓ cannot occur
bound in the termM .

NOTATION. If Γ is aΣ-basis thenx∈Γ is short for(x : A)∈Γ for someA.

If Γ is aΣ-basis andA∈�(
�

Σ) thenΓ, x : A is short forΓ ∪ {x : A} whenx /∈ Γ.

WhenΣ = Σ5 we shall denoteλ∩Σ and`Σ by λ∩5 and`5, respectively.

Various type assignment systems can be defined, each of them parametrized with a
particular type preorderΣ. The simplest system is given in the following definition.

Definition 12 (Basic Type Assignment System)
Given a type preorderΣ, the axioms and rules of thebasic type assignment system,
denoted byλ∩Σ

B , for deriving judgementsΓ `Σ
B M : A, are shown in Figure 4.

Example 13 Self-application can be easily typed inλ∩Σ
B , as follows.

x:(A→B) ∩ A `Σ
B x:(A→B) ∩ A

(≤)
x:(A→B) ∩ A `Σ

B x:A→B

x:(A→B) ∩ A `Σ
B x:(A→B) ∩ A

(≤)
x:(A→B) ∩ A `Σ

B x:A
(→E)

x:(A→B) ∩ A `Σ
B xx:B

(→ I)
`Σ
B λx.xx : (A→B) ∩ A→B

If Ω∈
�

, a natural choice is to setΩ as the universal type of allλ-terms. This
amounts modifying the basic type assignment system by adding a suitable axiom
for Ω.

Definition 14 (Ω-type Assignment System)
Given a type preorderΣ withΩ∈

�
Σ, the axioms and rules of theΩ-type assignment

system(denotedλ∩Σ
Ω), for deriving judgements of the formΓ `Σ

Ω M : A, are those

11



of the basic one, plus the axiom

(Ax-Ω) Γ `Σ
Ω M : Ω.

Example 15 Also non-strongly normalising terms can be typed inλ∩Σ
Ω even with

a type different fromΩ. Note the usage of the axiom(Ax-Ω). Let∆ ≡ λx.xx.

x:A, y:Ω `Σ
Ω x : A

(→ I)
y:Ω `Σ

Ω λx.x : A→A
(→ I)

`Σ
Ω λyx.x : Ω→A→A `Σ

Ω ∆∆ : Ω
(→E)

`Σ
Ω (λyx.x)(∆∆) : A→A

Analogously to the case ofΩ, whenν∈
�

, it is natural to considerν as the universal
type for abstractions, hence modifying the basic system by adding a special axiom
for ν.

Definition 16 (ν-type Assignment System)
Given a type preorderΣ with ν∈

�
Σ, the axioms and rules of theν-type assignment

system(denotedλ∩Σ
ν ), for deriving judgements of the formΓ `Σ

ν M : A, are those
of the basic one, plus the axiom

(Ax-ν) Γ `Σ
ν λx.M : ν.

Example 17 Axiom(Ax-ν) allows again to type non-strongly normalising terms.
Notice that the term of Example 15 is not typable inλ∩EHR

ν , as proved in [18].

x:A, y:ν `Σ
ν x : A

(→ I)
y:ν `Σ

ν λx.x : A→A
(→ I)

`Σ
ν λyx.x : ν →A→A `Σ

ν λz.∆∆ : ν
(→E)

`Σ
ν (λyx.x)(λz.∆∆) : A→A

For simplicity we assume the symbolsΩ andν to be reserved for the universal type
constants respectively used in the systemsλ∩Σ

Ω andλ∩Σ
ν , i.e. we forbidΩ∈

�
Σ or

ν∈
�

Σ when we deal withλ∩Σ
B .

NOTATION. In the following,λ∩Σ will range overλ∩Σ
B , λ∩Σ

Ω andλ∩Σ
ν . More pre-

cisely, we shall assume thatλ∩Σ stands forλ∩Σ
Ω wheneverΩ∈

�
Σ, for λ∩Σ

ν when-
everν∈

�
Σ, and forλ∩Σ

B otherwise. Similarly, for̀ Σ. If there is no danger of con-
fusion, we write simplỳ for `Σ.

The subterm property does not hold in general forλ∩Σ
ν . In fact,λx.M is typable

also whenM is not typable. Moreover, inλ∩Σ
Ω andλ∩Σ

ν , a judgementΓ `Σ M : A
does not implyFV (M) ⊆ Γ.

12



One of the most interesting features of intersection type systems is that of enabling
precise characterisation results of many important sets ofλ-terms, among which the
one of Strongly-Normalizing terms. Such a result is stated in the following theorem
and it will be used in the next section (for a proof see [17].3 )

Theorem 18 (Characterisation of Strongly Normalising Terms) Aλ-term M is
strongly normalising iff for all type preordersΣ, there existA∈�(

�
Σ) and a

Σ-basisΓ such thatΓ `Σ
B M : A.

We end this subsection by defining the union betweenΣ-basis which requires some
care in the presence of the intersection type constructor.

Definition 19 Γ1 ] Γ2 = {(x:A) | (x:A)∈Γ1 andx /∈ Γ2} ∪

{(x:A) | (x:A)∈Γ2 andx /∈ Γ1} ∪

{(x:A1∩A2) | (x:A1)∈Γ1 and(x:A2)∈Γ2}

In the rest of this section we shall introduce a few relevant properties of intersection
types, needed for our characterisation results in the following section.

3.1 Admissible Rules

Many interesting type assignment rules can be proved to be admissible.

Proposition 20 (Admissible Rules)For any type preorderΣ, the following rules
are admissible in the intersection type assignment systemλ∩Σ.

(∩El)
Γ `Σ M : A ∩ B

Γ `Σ M : A
(∩Er)

Γ `Σ M : A ∩ B

Γ `Σ M : B

(W)
Γ `Σ M : A x /∈ Γ

Γ, x:B `Σ M : A
(S)

Γ, x:B `Σ M : A x /∈ FV (M)

Γ `Σ M : A

(C)
Γ, x:B `Σ M : A Γ `Σ N : B

Γ `Σ M [x := N ] : A
(≤ L)

Γ, x:B `Σ M : A C ≤Σ B

Γ, x:C `Σ M : A

In the following we shall freely use the rules of the above Proposition.

3 The type systems considered in [17] are induced by type theories instead of type pre-
orders, but the arguments given there to show the characterisation of strongly normalising
terms extend without changes to type preorders.
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3.2 Generation Lemmata

We introduce now a few properties enabling to “reverse” someof the rules of the
type assignment systemsλ∩Σ, so as to achieve some form of generation (or inver-
sion) lemmas (see Theorems 21 and 22).

Such properties are not trivial. For instance, for the arrowelimination rule, in gen-
eral we can only say that whenΓ `Σ MN : A, then there are a non-empty, finite set
I and typesBi, Ci, such that for eachi∈I, Γ `Σ M : Bi→Ci, Γ `Σ N : Bi, and
moreover

⋂

i∈I Ci ≤Σ A. Reasoning similarly on the rule(→ I), one can conclude
again that it cannot be reversed. More formally, we get the following theorem.

NOTATION. When we write “...assumeA 6∼Σ Ω...” we mean that this condition
is always true when we deal with̀Σ

B and`Σ
ν , while it must be checked for̀Σ

Ω.
Similarly, the conditionν 6≤Σ A must be checked just for̀Σν .

Theorem 21 (Generation Lemma I) LetΣ be a type preorder.

(1) AssumeA 6∼Σ Ω. ThenΓ `Σ MN : A iff Γ `Σ M : Bi→Ci, Γ `Σ N : Bi,
and

⋂

i∈I Ci ≤Σ A for some non-empty setI and typesBi, Ci∈�(
�

Σ).
(2) Assumeν 6≤Σ A. ThenΓ `Σ λx.M : A iff Γ, x:Bi `Σ M : Ci, and

⋂

i∈I(Bi→Ci) ≤Σ A for some non-empty setI and typesBi, Ci∈�(
�

Σ).

PROOF. The proof of each (⇐) is easy. So we only treat (⇒).

(1) By induction, on derivations. The only interesting caseis whenA ≡ A1 ∩ A2

and the last applied rule is (∩I):

(∩I)
Γ `Σ MN : A1 Γ `Σ MN : A2

Γ `Σ MN : A1 ∩ A2
.

The conditionA6∼ΣΩ implies that we cannot haveA1 ∼Σ A2 ∼Σ Ω. We do the
proof forA1 6∼ΣΩ andA2 6∼ΣΩ, the other cases can be treated similarly. By induc-
tion, there areI, Bi, Ci, J,Dj, Ej such that

∀i∈I. Γ `Σ M : Bi→Ci, Γ `Σ N : Bi,

∀j∈J. Γ `Σ M : Dj →Ej , Γ `Σ N : Dj,
⋂

i∈I Ci ≤Σ A1 &
⋂

j∈J Ej ≤Σ A2.

So we are done since(
⋂

i∈I Ci) ∩ (
⋂

j∈J Ej) ≤Σ A.

(2) The proof is very similar to the proof of (1). It is again byinduction on deriva-
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tions and again the only interesting case is when the last applied rule is (∩I):

(∩I)
Γ `Σ λx.M : A1 Γ `Σ λx.M : A2

Γ `Σ λx.M : A1 ∩A2
.

The conditionν 6≤ΣA implies that we cannot haveν ≤Σ A1 andν ≤Σ A2. We do
the proof forν 6≤ΣA1 andν 6≤ΣA2. By induction, there areI, Bi, Ci, J,Dj , Ej such
that

∀i∈I. Γ, x:Bi `
Σ M : Ci, ∀j∈J. Γ, x:Dj `

Σ M : Ej ,
⋂

i∈I(Bi→Ci) ≤Σ A1 &
⋂

j∈J(Dj →Ej) ≤Σ A2.

So we are done, since(
⋂

i∈I(Bi→Ci)) ∩ (
⋂

j∈J(Dj →Ej)) ≤Σ A. The other two
cases are easier. For instance, ifν 6≤ΣA1 and ν ∼Σ A2, it is sufficient to take
⋂

i∈I(Bi→Ci) above to conclude.

Using the properties introduced in Definition 4, we can give now a rather powerful
generation lemma forλ∩Σ, which is one of the essential ingredients for the proofs
of our results. We use the notion of “validation” introducedat page 9.

Special cases of this theorem have been previously proved in[9], [12], [11], [24],
and [18].

Theorem 22 (Generation Lemma II) LetΣ be a type preorder.

(1) AssumeA6∼ΣΩ. ThenΓ `Σ x : A iff (x:B)∈Γ andB ≤Σ A for some
B∈�(

�
Σ).

(2) AssumeA6∼ΣΩ and letΣ validateCDV. ThenΓ `Σ MN : A iff Γ `Σ M :
B→A, andΓ `Σ N : B for someB∈�(

�
Σ).

(3) LetΣ beν-sound and beta. ThenΓ `Σ λx.M : B→C iff Γ, x:B `Σ M : C.

PROOF. The proof of each (⇐) is easy. So we only treat (⇒).

(1) Easy by induction on derivations, since only the axioms (Ax), (Ax-Ω), and
the rules(∩I), (≤) can be applied. Notice that the conditionA6∼ΣΩ implies that
Γ `Σ x : A cannot be obtained just using axioms (Ax-Ω).

(2) Let I, Bi, Ci be as in Theorem 21(1). Applying rule(∩I) to Γ `Σ M : Bi→Ci
we can deriveΓ `Σ M :

⋂

i∈I(Bi→Ci), so by rule(≤) we haveΓ `Σ M :
⋂

i∈I Bi→
⋂

i∈I Ci. In fact, by rule (η) and axiom (→ -∩) we get
⋂

i∈I(Bi→Ci) ≤Σ
⋂

i∈I(
⋂

i∈I Bi→Ci) ≤Σ
⋂

i∈I Bi→
⋂

i∈I Ci. We can chooseB =
⋂

i∈I Bi and con-
cludeΓ `Σ M : B→A, since

⋂

i∈I Ci ≤Σ A.

(3) By theν-soundness ofΣ, we cannot haveν∼ΣB→C. Let I, Bi, Ci be as in
Theorem 21(2), whereA ≡ B→C. Then

⋂

i∈I(Bi→Ci) ≤Σ B→C implies that
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⋂

i∈J Ci ≤Σ C whereJ = {i∈I | B ≤Σ Bi}, sinceΣ is beta. FromΓ, x:Bi `
Σ

M : Ci we can deriveΓ, x:B `Σ M : Ci using rule(≤ L), so by(∩I) we have
Γ, x:B `Σ M :

⋂

i∈J Ci. Finally, applying rule(≤), we can concludeΓ, x:B `Σ

M : C.

4 Characterisation of Subject Reduction and Expansion

In the literature, to which we have provided many referencesin the previous sec-
tions, many models for theλ-calculus and a number of its restrictions have been
shown to be finitary representable by means of (intersection) types. We now ad-
dress, from the “intersection type point of view”, the generic requirements(a) and
(b) concerning soundness discussed in the introduction. In particular, we shall char-
acterise those intersection type systems in which types arepreserved under various
notions of conversions:β, η, together with some of theirrestrictionsinspired by
λ-calculi considered in the literature.

Let us first give the definitions of these restricted redexes.

Definition 23 (Restricted Redexes)

(1) A redex(λx.M)N is a varβ-redexif N is a variable.
(2) A redex(λx.M)N is a funβ-redexif N is an abstraction.
(3) A redex(λx.M)N is an idβ-redexif x∈FV (M).
(4) A redex(λx.M)N is a normβ-redex if N is a closed strongly normalising

term.

The “call-by-value”λ-calculus is obtained by restricting tovarβ- andfunβ-redexes
(usually calledβv-redexes) [27], theλI -calculus by allowing to abstract only vari-
ables which occur free in the bodies (in this way we only get a proper subset of
the set ofidβ-redexes, whose elements are usually calledβI -redexes) [13] and the
λKN-calculus by restricting tovarβ-, idβ- andnormβ-redexes [23].

We shall deal now with rules of the form

(R-exp)
M →R N Γ ` N : A

Γ `M : A
(R-red)

M →R N Γ `M : A

Γ ` N : A

where→R denotes the reduction relation obtained by restricting thecontraction
to the set ofR-redexes. Admissibility of the above rules in a type assignment is
usually referred to assubject expansionandsubject reduction, respectively.

Theorem 24 (Characterisation of SubjectR-conversion)

(1) If Γ `Σ M [x := N ] : A and Γ `Σ N : B, thenΓ, x : B′ `Σ M : A and
Γ `Σ N : B′ for someB′∈�(

�
Σ).
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(2) (R-expansion) Rule (R-exp) is admissible inλ∩Σ iff for all R-redexes
(λx.M)N and for all contextsΓ:

N is typable inΓ wheneverM [x := N ] is typable inΓ.

(3) (R-reduction) Rule (R-red) is admissible inλ∩Σ iff rule (→ I) can be re-
versed forR-redexes, i.e. for allΓ,M,A,B such that(λx.M)N is a R-redex
for someN :

Γ `Σ λx.M : B→A ⇒ Γ, x:B `Σ M : A.

PROOF. (1) If A ∼Σ Ω we can chooseB′ = Ω. Otherwise the proof is by struc-
tural induction onM .

If M ≡ y 6= x we can chooseB′ = B.

If M ≡ x, thenM [x := N ] ≡ N and we can chooseB′ = A.

If M ≡M1M2 then, by Theorem 21(1), there areI, Ci, Di such thatΓ `Σ M1[x :=
N ] : Ci→Di, Γ `Σ M2[x := N ] : Ci, for all i∈I, and

⋂

i∈I Di ≤Σ A. By
induction, there areB(1)

i , B(2)
i such thatΓ, x : B

(1)
i `Σ M1 : Ci→Di, Γ `Σ N :

B
(1)
i , Γ, x : B

(2)
i `Σ M2 : Ci andΓ `Σ N : B

(2)
i for i∈I. Then we can choose

B′ =
⋂

i∈I(B
(1)
i ∩ B

(2)
i ). By rule (≤ L), we getΓ, x : B′ `Σ M1 : Ci→Di,

Γ, x : B′ `Σ M2 : Ci and, by rule (∩ I), Γ `Σ N : B′. So we conclude using rules
(→ E), (∩ I), and (≤).

If M ≡ λx.M ′ andν ≤Σ A then we can chooseB′ = B since by rule (ν) Γ, x :
B `Σ λx.M ′ : ν and we conclude using rule (≤). Otherwise, by Theorem 21(2),
there areI, Ci, Di such thatΓ, y : Ci `Σ M ′[x := N ] : Di, for all i∈I and
⋂

i∈I(Ci→Di) ≤Σ A. By induction, there areBi such thatΓ, y : Ci, x : Bi `
Σ

M ′ : Di andΓ `Σ N : Bi, for i∈I. ChoosingB′ =
⋂

i∈I Bi, we get, by rule (≤ L),
Γ, y : Ci, x : B′ `Σ M ′ : Di, and, by rule (∩ I), Γ `Σ N : B′. We conclude using
rules (→ I), (∩ I) and (≤).

(2) (⇒) Clearly, if N is not typable in the contextΓ then also(λx.M)N has no
type inΓ by Theorem 21(1).

(⇐) It suffices to show thatΓ `Σ M [x := N ] : A impliesΓ `Σ (λx.M)N : A
whenever(λx.M)N is anR-redex. By hypothesis,Γ `Σ N : B for someB and
then, by point (1)Γ, x : B′ `Σ M : A andΓ `Σ N : B′ for someB′. We conclude
using rules (→ I) and (→ E).

(3) (⇒) AssumeΓ `Σ λx.M : B→A, which impliesΓ, y:B `Σ (λx.M)y : A
by rules (W) and (→E), for a freshy. The admissibility of rule (R-red) gives us
Γ, y:B `Σ M [x := y] : A. HenceΓ, x:B `Σ M : A.
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(⇐) It suffices to show thatΓ `Σ (λx.M)N : A impliesΓ `Σ M [x := N ] : A
whenever(λx.M)N is anR-redex. The caseA ∼Σ Ω is trivial for λ∩Σ

Ω. Otherwise,
by Theorem 21(1), there exists a finite setI and typesBi, Ci such thatΓ `Σ λx.M :
Bi→Ci, Γ `Σ N : Bi and

⋂

i∈I Ci ≤Σ A. By hypothesis, we getΓ, x:Bi `
Σ M :

Ci. ThenΓ `Σ M [x := N ] : Ci follows by an application of rule (C), and so we
can concludeΓ `Σ M [x := N ] : A using rules (∩I) and (≤).

By Theorems 22(3) and 24(3) we immediately get a condition which assures Sub-
jectβ-reduction.

Corollary 25 If Σ is ν-sound and beta then rule (β-red) is admissible inλ∩Σ.

The condition of Theorem 24(2) above is immediately met inλ∩Σ
Ω, in λ∩Σ

B when
x∈FV (M) and inλ∩Σ

ν whenN is an abstraction. We can discuss the admissibility
and non-admissibility of restrictedβ-expansions for our type systems.

Corollary 26

(1) Rule (varβ-exp) is admissible in allλ∩Σ
Ω, but never inλ∩Σ

B andλ∩Σ
ν .

(2) Rule (funβ-exp) is admissible in allλ∩Σ
Ω andλ∩Σ

ν , but never inλ∩Σ
B .

(3) Rule (idβ-exp) is admissible in allλ∩Σ
B andλ∩Σ

Ω, but never inλ∩Σ
ν .

(4) Rule (normβ-exp) is admissible in allλ∩Σ.
(5) Rule (β-exp) is admissible in allλ∩Σ

Ω, but never inλ∩Σ
B andλ∩Σ

ν .

PROOF. Each of the five admissibilities but (4) follows from Theorem24(2).

Item (4) is a consequence of Theorem 18, stating that each strongly normalising
term is typable in all intersection type systems from a suitable basis. So all closed
strongly normalising terms are typable in all intersectiontype systems starting from
the empty basis.

For the non-admissibility of rules (varβ-exp) and (β-exp) in λ∩Σ
B and inλ∩Σ

ν ,
notice that we can always derivèΣ λx.x : A→A, but by the Generation Lemmas
I and II (Theorems 21(1) and 22(1)) we cannot derive the same type for(λyx.x)z
from the empty basis without using (Ax-Ω).

An example showing that (funβ-exp) is not admissible inλ∩Σ
B is`Σ

B λx.x : A→ A
and 6`Σ

B (λyx.x)(λt.z) : A→ A.

An example showing that (idβ-exp) is not admissible inλ∩Σ
ν is `Σ

ν λx.z : ν and
6`Σ
ν (λyx.y)z : ν. Rule (idβ-exp) is not admissible also for terms of theλI -calculus

since`Σ
ν λx.zx : ν and 6`Σ

ν (λyx.yx)z : ν.

Notice that there areβ-redexes that, without beingnormβ-redexes, are typable
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whenever their contracta are. As an example take(λx.y)y.

We end this section with the characterisation of Subject Reduction and Expansion
for theη-rule.

Theorem 27 (Characterisation of Subjectη-conversion)

(1) Rule (η-exp) is admissible inλ∩Σ iff Σ is eta.
(2) Rule (η-red) is admissible inλ∩Σ

B iff Σ validatesCDV, in λ∩Σ
Ω iff Σ

validatesBCD, and it is never admissible inλ∩Σ
ν .

PROOF. (1) (⇒) Let ♦∈
�

Σ be a constant that does not satisfy the first condition
in Definition 9, i.e.ν 6≤Σ♦.

We can derivex:♦ `Σ x : ♦. To derivex:♦ `Σ λy.xy : ♦ by Theorem 21(2) we
needI, Ai, Bi such thatx:♦, y:Ai `Σ xy : Bi for all i∈I and

⋂

i∈I(Ai→Bi) ≤Σ ♦.
Let I ′ = {i∈I | Bi 6∼ΣΩ}. For anyi∈I ′, by Theorem 21(1) we getx:♦, y:Ai `Σ x :
Di,j →Ei,j, x:♦, y:Ai `Σ y : Di,j, and∩j∈JiEi,j ≤Σ Bi for someJi, Di,j, Ei,j. By
Theorem 22(1) we have♦ ≤Σ Di,j →Ei,j andAi ≤Σ Di,j for all i∈I ′ andj∈Ji.
So we conclude

⋂

i∈I(Ai→Bi)≤Σ♦ ≤Σ
⋂

i∈I′(
⋂

j∈Ji(Di,j →Ei,j))
∀i∈I ′. Ai ≤Σ

⋂

j∈Ji Di,j &
⋂

j∈Ji Ei,j ≤Σ Bi.

(⇐) The proof thatΓ `Σ M : A impliesΓ `Σ λx.Mx : A, wherex is fresh, is
by induction on the structure ofA. The unique non-trivial case is whenA ≡ ψ is a
type constant not greater thanν. In this case we use the fact thatΣ is eta in order to
do the derivation discussed in the proof of (⇒). In details, suppose thatΓ `Σ M : ψ
for someψ∈

�
Σ such thatν 6≤Σψ and moreover:

⋂

i∈I(Ai→Bi)≤Σψ ≤Σ
⋂

i∈I′(
⋂

j∈Ji(Di,j →Ei,j))
∀i∈I ′. Ai ≤Σ

⋂

j∈Ji Di,j &
⋂

j∈Ji Ei,j ≤Σ Bi,

whereI ′ = {i∈I | Bi 6∼ΣΩ}. By rule (≤), we can deriveΓ `Σ M : Di,j →Ei,j
for all i∈I ′, j∈Ji, and soΓ, x:Di,j `

Σ Mx : Ei,j by rule (→E). From rules (≤ L),
(∩I) and (≤) we getΓ, x:Ai `Σ Mx : Bi for all i∈I ′. Consider nowi∈I \ I ′. In
such a case, sinceBi∼ΣΩ, we get immediately, using axiom(Ax-Ω) and rule (≤),
Γ, x:Ai `

Σ Mx : Bi. Therefore, for anyi∈I, we getΓ `Σ λx.Mx : Ai→Bi using
rule (→ I). So we can conclude by (∩I) and (≤) thatΓ `Σ λx.Mx : ψ.

(2) (⇒) Let us assume thatΣ does not validate axiom (→ -∩), i.e. that there are
typesA,B,C such that(A→B) ∩ (A→C) 6≤Σ A→B ∩ C. We can derive
x:(A→B) ∩ (A→C) `Σ

B λy.xy : A→B ∩ C using rules(≤), (→E), (∩I),
and (→ I), but x : A→B ∩ C cannot be derived fromx:(A→B) ∩ (A→C) by
Theorem 22(1). Now suppose thatΣ does not validate rule (η), i.e. that there are
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typesA,B,C,D such thatA ≤Σ B andC ≤Σ D but B→C 6≤Σ A→D. We
can derivex:B→C `Σ

B λy.xy : A→D using rules (≤), (→E), and (→ I), but
x:B→C 6`Σ

Bx : A→D by Theorem 22(1).

If Ω∈
�

Σ we getx:Ω `Σ
Ω λy.xy : Ω→Ω by axiom (Ax-Ω) and rule (→ I). By

Theorem 22(1) we can derivex:Ω `Σ
Ω x : Ω→Ω iff Ω ≤Σ Ω→Ω, i.e. iff Σ

validates axiom (Ω-η).

If ν∈
�

Σ we get`Σ
ν λy.xy : ν by axiom (Ax-ν), but we cannot derivex : ν from

the empty basis by Theorem 22(1).

(⇐) We prove that under the given conditions on type preordersΓ `Σ λx.Mx : A
andx /∈ FV (M) imply Γ `Σ M : A. We give the proof forλ∩Σ

Ω, that one forλ∩Σ
B

being similar and simpler. By Theorem 21(2)Γ `Σ
Ω λx.Mx : A implies that there

areI, Bi, Ci such thatΓ, x:Bi `
Σ
Ω Mx : Ci and

⋂

i∈I(Bi→Ci) ≤Σ A. If for somei
we getCi ∼Σ Ω, then we can obtainBi→Ci ∼Σ Ω by axiom (Ω-η) and rule (η).
Therefore we can forget thoseBi→Ci. OtherwiseΓ, x:Bi `

Σ
Ω Mx : Ci implies

by Theorem 22(2) and rule (S) thatΓ `Σ
Ω M : Di→Ci, andΓ, x:Bi `

Σ
Ω x : Di,

for someDi. By Theorem 22(1) we getBi ≤Σ Di, so we can deriveΓ `Σ
Ω M :

Bi→Ci using rule (≤), sinceDi→Ci ≤Σ Bi→Ci by rule (η). Rule (∩I) implies
Γ `Σ

Ω M :
⋂

i∈I(Bi→Ci). So we can concludeΓ `Σ
Ω M : A using rule (≤).

5 Filter λ-structures and Filter Models

In this section we shall see how the results obtained in the previous sections can
be used to prove characterisation results concerning domains defined by means
of intersection types, the so-called filterλ-structures. In particular, necessary and
sufficient conditions will be given that characterize thosefilter λ-structures that are
also models for the (restricted)λ-calculi.

Let us begin with a short discussion about how it is possible to interpret types.
There are essentiallytwo semantics for intersection types.

One is theset-theoreticalsemantics, originally introduced in [9], generalizing the
one given by Scott for simple types. The meanings of types aresubsets of the do-
main of discourse, arrow types are defined aslogical predicatesand intersection is
set-theoretic intersection.

The second semantics, which arises in the wake of Stone Duality results (see [1],
[12], [32]), views types ascompact elementsof Plotkin’sλ-structures [28]. Accord-
ing to this interpretation, the typeΩ denotes the least element, intersections denote
joins of compact elements, and arrow types allow to internalize the space of con-
tinuous endomorphisms. By duality, type preorders give rise tofilter λ-structures,
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where the interpretation ofλ-terms can be given through a finitary logical descrip-
tion.

In order to introduce filterλ-structures, let us give the appropriate notion of filter
over a type preorder. This is a particular case of filter over ageneric>-meet semi-
lattice (see [25]).

Definition 28 (Σ-filters) Let Σ be a type preorder.

(1) AΣ-filter (or a filter over�(
�

Σ)) is a setΞ ⊆ �(
�

Σ) such that
(a) if Ω∈

�
Σ thenΩ∈Ξ;

(b) if A ≤Σ B andA∈Ξ, thenB∈Ξ;
(c) if A,B∈Ξ, thenA ∩ B∈Ξ.

(2) FΣ the set ofΣ-filters over�(
�

Σ).
(3) If Ξ ⊆ �(

�
Σ), ↑Ξ denotes theΣ-filter generated byΞ.

(4) A Σ-filter is principal if it is of the shape↑{A}, for some typeA. We shall
denote↑{A} simply by↑A.

It is well known thatFΣ is anω-algebraic lattice, whose poset of compact (or finite)
elements is isomorphic to the reversed poset obtained by quotienting the preorder
on�(

�
Σ) by ∼Σ. That means that compact elements are the filters of the form↑A

for some typeA, the top element is�(
�

Σ), and the bottom element is↑Ω when
Ω∈

�
Σ and∅ otherwise. Moreover, the join of two filters is the filter induced by

their union and the meet of two filters is their intersection,i.e.:

Ξ t Υ = ↑(Ξ ∪ Υ)

Ξ u Υ = Ξ ∩ Υ.

We now turn the space of filters into an applicative structure.

Definition 29 (Application) Application · : FΣ ×FΣ → FΣ is defined as

Ξ · Υ = ↑{B | ∃A∈Υ.A→ B∈Ξ}.

Taking the Stone duality view-point, the interpretation ofterms coincides with the
sets of types which are deducible for them:

Definition 30 For anyλ-termM and environmentρ : V ar → FΣ \ {∅},

[[M ]]Σρ = {A | ∃Γ |= ρ. Γ `Σ M : A},

whereV ar is the set of term variables andΓ |= ρ if and only if(x : B)∈Γ implies
B∈ρ(x).

We callfilter λ-structurethe triple〈FΣ, ·, [[ ]]Σ〉.
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By rules (Ω), (≤) and (∩I), the interpretations of allλ-terms are filters.

Dropping the empty set from the codomain of environments is necessary for ob-
taining models. First of all, notice that the empty set is a filter only if Ω /∈

�
Σ.

Clearly, any reasonable interpretation ofλ-terms must give the same meaning to
the termsz and(λy.z)x. If we would allowρ(z) = Ξ 6= ∅ andρ(x) = ∅ we would
get [[z]]Σρ = Ξ and[[(λy.z)x]]Σρ = ∅: in fact no type is derivable forx from a basis
which does not containx whenΩ /∈

�
Σ. This example is obviously related to the

fact that rule (idβ-exp) is admissible only whenΩ∈
�

Σ.

Remark 31 In the literature (see for instance [16]) filterλ-structures are often
referred to as triples〈FΣ,FΣ,GΣ〉 where the mapsFΣ : FΣ → [FΣ →FΣ] and
G

Σ : [FΣ →FΣ]→FΣ are defined by:

FΣ(Ξ) = λλΥ∈FΣ.Ξ · Υ;

GΣ(f) =











↑{A→B | B∈f(↑A)} t ↑ν if ν∈
�

↑{A→B | B∈f(↑A)} otherwise.

Actually our definition of filterλ-structure coincides with this last one, since ap-
plication “ ·” allows to recover bothFΣ andGΣ. Moreover, the interpretation[[ ]]Σ

coincides with the interpretation ofλ-terms induced in the standard way byFΣ and
GΣ. We prefer here the definition of filterλ-structures as triples〈FΣ, ·, [[ ]]Σ〉 since
it is closer to the syntactic perspective of the previous sections.

The notion of restricted redexes introduced in Definition 23leads us to consider
correspondingly notions of restrictedλ-models: first we adapt the classical defi-
nition of λ-model à la Hindley-Longo [21] to encompass the various notions of
reduction, then we characterise the filter structures whichinduce these models. To
accommodate “call-by-value”λ-calculus we allow the codomains of environments
to be proper subsets of the whole domains of models.

Definition 32 (λ-models) A model for the (restricted)λ-calculusλR (i.e. of the
calculus whose redexes are exactly theR-redexes) consists of a triple〈D, ·, [[ ]]D〉
such thatD is a set,· : D × D → D, Env :V ar → V for someV ⊆ D and the
interpretation function[[ ]]D : Λ × Env→ D satisfies:

(1) [[x]]Dρ = ρ(x);
(2) [[MN ]]Dρ = [[M ]]Dρ · [[N ]]Dρ ;
(3) [[λx.M ]]Dρ · [[N ]]Dρ = [[M ]]Dρ[x:=[[N ]]Dρ ] for all R-redexes(λx.M)N ;

(4) If ρ(x) = ρ′(x) for all x∈FV(M), then[[M ]]Dρ = [[M ]]Dρ′ ;
(5) If y /∈ FV(M), then[[λx.M ]]Dρ = [[λy.M [x := y]]]Dρ ;
(6) If ∀d∈D.[[M ]]Dρ[x:=d] = [[N ]]Dρ[x:=d], then[[λx.M ]]Dρ = [[λx.N ]]Dρ .
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The restricted model〈D, ·, [[ ]]D〉 is extensionalif moreover whenx6 ∈FV(M):

[[λx.Mx]]Dρ = [[M ]]Dρ .

Actually, using the Generation Lemmata, we can prove that all filter λ-structures
satisfy all the points of the previous definition but the third one.

A direct counterexample to the third point is easy. Considering R as the set ofβ-
redexes, take for instance the preorderΣ† defined by

�
† = {Ω, ϕ}, and† = {(†)},

where
(†) Ω→Ω ∼ Ω→ϕ

Because of(†) and (≤), we have`†
Ω λx.x : Ω→ϕ. Let ρ(y) = ↑Ω. Then, by

(→E), we get̀ †
Ω (λx.x)y : ϕ. So

[[(λx.x)y]]†ρ = {A | ∃Γ |= ρ. Γ `†
Ω (λx.x)y : A} by definition of interpretation

⊇ ↑ϕ by above

6= ↑Ω sinceϕ /∈ ↑Ω

= [[y]]†ρ.

Lemma 33 For all type preordersΣ the interpretation function[[ ]]Σ satisfies con-
ditions (1), (2), (4), (5), (6) of Definition 32.

PROOF. (1) follows immediately from Definition 30 and Theorem 22(1).

(2) LetA∈[[MN ]]Σρ . The caseA ∼Σ Ω is trivial. Otherwise there exists aΣ-basis
Γ such thatΓ |= ρ andΓ `Σ MN : A. By Theorem 21(1), there existI, and
Bi, Ci∈�(

�
Σ) such thatΓ `Σ M : Bi → Ci, Γ `Σ N : Bi for all i∈I, and

⋂

i∈I Ci ≤Σ A. HenceBi∈[[N ]]Σρ andBi → Ci∈[[M ]]Σρ , for all i∈I. By definition of
application, it followsCi∈[[M ]]Σρ ·[[N ]]Σρ for all i∈I, and this impliesA∈[[M ]]Σρ ·[[N ]]Σρ ,
being[[M ]]Σρ · [[N ]]Σρ a filter.

Let nowA∈[[M ]]Σρ · [[N ]]Σρ . Then there existI, andBi, Ci∈�(
�

Σ) such thatBi →
Ci∈[[M ]]Σρ ,Bi∈[[N ]]Σρ , for all i∈I, and

⋂

i∈I Ci ≤Σ A. Hence there existΣ-bases,Γi
andΓ′

i, such thatΓi |= ρ, Γ′
i |= ρ, and moreoverΓi `Σ M : Bi → Ci, Γ′

i `
Σ N : Bi.

Consider theΣ-basisΓ′′ = ]i∈I(Γi ] Γ′
i). We haveΓ′′ |= ρ, Γ′′ `Σ M : Bi → Ci

andΓ′′ `Σ N : Bi. Using rules(→E), (∩I) and(≤) we deduceΓ′′ `Σ MN : A,
so we concludeA∈[[MN ]]Σρ .

(4) and (5) are trivial.

(6) Suppose that the premise holds andA∈[[λx.M ]]Σρ . The caseν ≤Σ A is trivial.
Otherwise there is aΣ-basisΓ such thatΓ |= ρ andΓ `Σ λx.M : A. Sincex /∈
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FV(λx.M), by rule (S) we can assumex /∈ Γ. By Theorem 21(2) there existI and
Bi, Ci∈�(

�
Σ) such thatΓ, x : Bi `

Σ M : Ci for all i∈I. ThenCi∈[[M ]]Σρ[x:=↑Bi]
:

by the premise this impliesCi∈[[N ]]Σρ[x:=↑Bi]
, and soΓi, x : Bi `Σ N : Ci for

someΣ-basisΓi such thatΓi |= ρ. ChoosingΓ′ = ]i∈IΓi, we haveΓ′ |= ρ and
Γ′, x : Bi `Σ N : Ci for all i∈I. Using rules(→ I), (∩I) and (≤) we deduce
Γ′ `Σ λx.N : A, so we conclude[[λx.M ]]Σρ ⊆ [[λx.N ]]Σρ . Similarly, one can prove
[[λx.N ]]Σρ ⊆ [[λx.M ]]Σρ .

Due to the previous lemma, a filterλ-structure is amodel(i.e. afilter model) of the
λ-calculusλR iff the interpretation function[[ ]]Σ equates theR-redexes with their
contracta, that is it satisfies the condition (3) of Definition 32:

[[(λx.M)N ]]Σρ = [[M ]]Σρ[x:=[[N ]]Σρ ] for all R-redexes(λx.M)N.

For the successive development it is handy to split the abovecondition in the fol-
lowing two conditions on type assignment systems which are similar to the rules
(R-exp) and (R-red).

Definition 34 (1) Condition(R-[[exp]]): for all x,M,N,Γ, ρ, if (λx.M)N is an
R-redex,Γ `Σ M [x := N ] : A, andΓ |= ρ, then there is aΣ-basisΓ′ such
thatΓ′ |= ρ andΓ′ `Σ (λx.M)N : A.

(2) Condition(R-[[red]]): for all x,M,N,Γ, ρ, if (λx.M)N is anR-redex,Γ `Σ

(λx.M)N : A, andΓ |= ρ, then there is aΣ-basisΓ′ such thatΓ′ |= ρ and
Γ′ `Σ M [x := N ] : A.

Clearly these conditions are more permissive than the corresponding rules: i.e. the
admissibility of the rule implies the validity of the condition, but not vice versa.

Theorem 35 (1) Condition(varβ-[[exp]]) holds in allλ∩Σ.
(2) Condition(funβ-[[exp]]) holds in allλ∩Σ

Ω andλ∩Σ
ν , and inλ∩Σ

B proviso that
for all ρ, x,M there are aΣ-basisΓ and a typeA∈�(

�
Σ) such thatΓ |= ρ

andΓ `Σ
B λx.M : A.

(3) Condition(idβ-[[exp]]) holds in allλ∩Σ
B andλ∩Σ

Ω, and inλ∩Σ
ν proviso that for

all ρ,M there are aΣ-basisΓ and a typeA∈�(
�

Σ) such thatΓ |= ρ and
Γ `Σ

ν M : A.
(4) Condition(normβ-[[exp]]) holds in allλ∩Σ.
(5) Condition(β-[[exp]]) holds in allλ∩Σ

Ω, and inλ∩Σ
B andλ∩Σ

ν proviso that for
all ρ,M there are aΣ-basisΓ and a typeA∈�(

�
Σ) such thatΓ |= ρ and

Γ `Σ M : A.

PROOF. Admissibility of rule (R-exp) implies validity of condition(R-[[exp]]),
hence by Corollary 26 we have that:
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• condition(funβ-[[exp]]) holds in allλ∩Σ
Ω andλ∩Σ

ν ;
• condition(idβ-[[exp]]) holds in allλ∩Σ

B andλ∩Σ
Ω;

• condition(normβ-[[exp]]) holds in allλ∩Σ;
• condition(β-[[exp]]) holds in allλ∩Σ

Ω.

For the remaining cases, notice thatΓ |= ρ andΓ′ |= ρ imply Γ ] Γ′ |= ρ by
definition of |=. Moreover, ifΓ `Σ M : A we getΓ ] Γ′ `Σ M : A by rules (≤
L) and (W) for all Γ′. Therefore, by Theorem 24(2), condition(R-[[exp]]) can be
rewritten as follows:

for all x,M,N,Γ, ρ, if (λx.M)N is anR-redex,Γ `Σ M [x := N ] : A, andΓ |= ρ,
then there are aΣ-basisΓ′ and a typeB∈�(

�
Σ) such thatΓ′ |= ρ and

Γ′ `Σ N : B.

(1) We get{x:B} `Σ x : B for all B∈ρ(x): recall that by definitionρ(x) is never
empty for allρ andx.

(2) The condition forλ∩Σ
B is clearly sufficient. It is also necessary:(λyz.z)(λx.M)

is a funβ-redex for allx,M and`Σ
B λz.z : A→A.

(3) The condition forλ∩Σ
ν is clearly sufficient. It is also necessary:(λyz.y)M is an

idβ-redex for allM and`Σ
ν λz.M : ν.

(4) The condition forλ∩Σ
B andλ∩Σ

ν is clearly sufficient. It is also necessary since
(λyz.z)M is aβ-redex for allM and`Σ λz.z : A→A.

If (λx.M)N being anR-redex implies that so is(λx.M)y, for a fresh variabley,
then condition(R-[[red]]) is equivalent to:

Condition(R-[[red]]-∗): for all x,M,Γ, ρ, if (λx.M)N is anR-redex for someN ,
Γ `Σ λx.M : B→A, andΓ |= ρ, then there is aΣ-basisΓ′ such thatΓ′ |= ρ and

Γ′, x:B `Σ M : A.

as proved in the following Theorem.

Theorem 36 Conditions(R-[[red]]) and(R-[[red]]-∗) are equivalent, proviso(λx.M)N
being anR-redex implies that so is(λx.M)y, for a fresh variabley.

PROOF. (⇒) Let (λx.M)N be anR-redex for someN . AssumeΓ `Σ λx.M :
B→A, which impliesΓ, y:B `Σ (λx.M)y : A by rule (→E) for a freshy. Notice
that by assumption(λx.M)y is aR-redex. Notice also thatΓ |= ρ impliesΓ, y:B |=
ρ[y := ↑B]. By condition(R-[[red]]) there isΓ′ |= ρ[y := ↑B] such thatΓ′ `Σ

M [x := y] : A. Let Γ′′ = {z:C∈Γ′ | z 6= y}: by constructionΓ′′ |= ρ and by rule
(≤ L) Γ′′, y:B `Σ M [x := y] : A. HenceΓ′′, x:B `Σ M : A.
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(⇐) Let Γ `Σ (λx.M)N : A and(λx.M)N be anR-redex. The caseA ∼Σ Ω is
trivial for λ∩Σ

Ω. Otherwise, by Theorem 21(1), there exists a finite setI and types
Bi, Ci such thatΓ `Σ λx.M : Bi→Ci, Γ `Σ N : Bi and

⋂

i∈I Ci ≤Σ A. By
condition(R-[[red]]-∗) there areΓ′

i such thatΓ′
i |= ρ andΓ′

i, x:Bi `
Σ M : Ci for

all i∈I. Let Γ′′ = Γ ] (
⊎

i∈I Γi): we getΓ′′ |= ρ by definition of |=. We deduce
by (≤ L) and (W) Γ′′, x:Bi `Σ M : Ci and Γ′′ `Σ N : Bi for all i∈I. Then
Γ′′ `Σ M [x := N ] : Ci follows by an application of rule (C), and so we can
concludeΓ′′ `Σ M [x := N ] : A using rules (∩I) and (≤).

Remark that the condition of previous theorem is satisfied when the set ofR-
redexes includes the set ofvarβ-redexes.

We end the section by giving the characterisations of the type preorders inducing
models of (restricted)λ-calculi. These characterisations, which are generalisations
of the corresponding result in [11], follow easily from Theorems 35 and 36.

Theorem 37 (Characterisations of (Restricted) Filter Models) 〈FΣ, ·, [[ ]]Σ〉 is a
model of the

(1) “call-by-value” λ-calculus iff for allΓ, x,M,A,B, ρ:
(a) if Γ `Σ λx.M : A→B andΓ |= ρ thenΓ′, x : A `Σ M : B andΓ′ |= ρ

for someΣ-basisΓ′;
(b) [[λx.M ]]Σρ 6= ∅;

(2) λI -calculus iff for allΓ, x,M,A,B, ρ such thatx∈FV (M):
(a) if Γ `Σ λx.M : A→B andΓ |= ρ thenΓ′, x : A `Σ M : B andΓ′ |= ρ

for someΣ-basisΓ′;
(b) if ν∈

�
Σ then[[M ]]Σρ 6= ∅;

(3) λKN-calculus iff for allΓ, x,M,A,B, ρ:
(a) if Γ `Σ λx.M : A→B andΓ |= ρ thenΓ′, x : A `Σ M : B andΓ′ |= ρ

for someΣ-basisΓ′;
(b) if ν∈

�
Σ then[[M ]]Σρ 6= ∅;

(4) wholeλ-calculus iff for allΓ, x,M,A,B, ρ:
(a) if Γ `Σ λx.M : A→B andΓ |= ρ thenΓ′, x : A `Σ M : B andΓ′ |= ρ

for someΣ-basisΓ′;
(b) [[M ]]Σρ 6= ∅.

PROOF. First of all notice that all considered calculi satisfy the condition of The-
orem 36. More precisely in all these calculi but in theλI -calculus the set of redexes
includes the set ofvarβ-redexes. Instead for all variablesy we have that(λx.M)y
is aβI -redex whenever(λx.M)N is aβI -redex.

Condition(a) specialises condition(R-[[red]]-∗) for the considered restrictions of
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λ-calculus, and therefore by Theorem 36,(a) is necessary and sufficient to assure:

[[(λx.M)N ]]Σρ ⊆ [[M ]]Σρ[x:=[[N ]]Σρ ].

Taking into account that[[M ]]Σρ 6= ∅ iff there areΓ |= ρ, A such thatΓ `Σ M : A,
Theorem 35 implies that condition(b) is necessary and sufficient to assure:

[[M ]]Σρ[x:=[[N ]]Σρ ] ⊆ [[(λx.M)N ]]Σρ .

As an immediate consequence of Theorem 37(4) and Theorem 22(3), 〈FΣ, ·, [[ ]]Σ〉
is aλ-model wheneverΣ is a beta theory andΩ∈

�
Σ.

We can also characterise filter models which are extensionalusing Theorem 27.
Note that for theη-rule the possibility of changing basis (in agreement with afixed
environment) plays a role only ifν∈

�
, since in all other cases the sub-formula

property holds andη-convertible terms have the same set of free variables.

Theorem 38 (Characterisation of extensional (restricted)filter models) Let Σ
be a type preorder. The filterλ-structure〈FΣ, ·, [[ ]]Σ〉 is an extensional filter model
of the restrictedλ-calculusλR iff it is a model ofλR, Σ is an eta type preorder
which validatesCDV, and moreover ifΩ∈

�
Σ thenΣ validates axiom (Ω-η), if ν∈

�
Σ

thenν∈[[M ]]Σρ for all M, ρ.

PROOF. (⇒) Letϕ∈
�

Σ be a constant that satisfies neither conditions of Definition
9. One can show thatϕ/∈[[λy.xy]]Σρ[x:=↑ϕ]: this implies thatΣ must be eta.

We haveA → B ∩ C∈[[λy.xy]]Σρ[x:=↑(A→B)∩(A→C)] for all A,B,C, butA → B ∩
C∈↑(A → B) ∩ (A → C) only if Σ validates axiom (→-∩). Similarly, one can
show thatΣ must validate axiom (η) always, and axiom (Ω-η) whenΩ∈

�
Σ. Lastly if

ν∈
�

Σ thenν∈[[λx.Mx]]Σρ for allM, ρ by axiom(Ax-ν): therefore we needν∈[[M ]]Σρ
for all M, ρ.

(⇐) follows from Theorem 27, but for the caseν∈
�

Σ, in whichν is harmless being
contained in the interpretations of all terms.

Using Proposition 7(1), Lemma 21 and previous theorems we get:

• 〈F5, ·, [[ ]]5〉 with 5∈{Ba, CDV} is a model of theλI -calculus,
• 〈F5, ·, [[ ]]5〉 with 5∈{HL,HR} is an extensional model of theλI -calculus,
• 〈FEHR, ·, [[ ]]EHR〉 is a model of the “call-by-value”λ-calculus,
• 〈F5, ·, [[ ]]5〉 with 5∈{AO,BCD,Pl, En} is a model of the wholeλ-calculus,
• 〈F5, ·, [[ ]]5〉with5∈{Sc,Pa, CDZ,DHM} is an extensional model of the whole
λ-calculus.
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Let Σ♦ be the preorder defined in example 8: [4] proves that it induces a model of
the wholeλ-calculus by showing condition (4)(a) of Theorem 37.

6 Conclusion

When stepping into the world ofλ-calculus semantics, intersection type systems
turn out to be a useful “vehicle” to move around, since they provide a finitary way
to describe and analyse particular classes of models. By simply adding a single
constant or condition on a type preorder, a different semantical domain is charac-
terized. One is then naturally induced to expect that intersection types will provide,
in the long run, a sort of tailor shop in which particular domains can be tailored for
any specific need.

In the present paper we have provided characterisation results concerning intersec-
tion type systems for theλ-calculus, for a number of its restrictions and for their
corresponding extensional versions. Some results characterise those intersection
type systems for which typing invariance holds w.r.t.β- andη-conversion. Filter
λ-structures induced by intersection type preorders have been shown to provide
models for the wholeλ-calculus and for a number of relevant “restricted”λ-calculi
whenever particular conditions on the type preorders are fulfilled. These character-
isations have an interestper sein the syntactic theory of intersection types. How-
ever, the paper keeps also a general perspective, since expansion/reduction results
are parametric over the set of restricted redexes. Therefore we have a basis for fur-
ther analysis: whenever operational investigation will point at new sets of restricted
redexes, the present paper’s results will provide a useful preliminary tool for isolat-
ing conversion properties, thus characterising the corresponding filter models.
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