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Abstract

These notes provide a brief introduction to topological groups with a special emphasis on Pontryagin-van Kam-
pen’s duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of
the theorem following the line from [57, 67]. According to the classical tradition, the structure theory of the locally
compact abelian groups is built parallelly.

1 Introduction

Let L denote the category of locally compact abelian groups and continuous homomorphisms and let T = R/Z be the

unit circle group. For G ∈ L denote by Ĝ the group of continuous homomorphisms (characters) G→ T equipped with
the compact-open topology. Then the assignment

G 7→ Ĝ

is a contravariant endofunctor ̂: L → L. The celebrated Pontryagin-van Kampen duality theorem ([122]) says that this

functor is, up to natural equivalence, an involution i.e.,
̂̂
G ∼= G and this isomorphism is “well behaved” (see Theorem

12.5.4 for more detail). Moreover, this functor sends compact groups to discrete ones and viceversa, i.e., it defines
a duality between the subcategory C of compact abelian groups and the subcategory D of discrete abelian groups.
This allows for a very efficient and fruitful tool for the study of compact abelian groups, reducing many problems
related to topological properties of these group to the related problems concerning algebraic properties in the category
of discrete groups. The reader is advised to give a look at the Mackey’s beautiful survey [114] for the connection of
charactres and Pontryagin-van Kampen duality to number theory, physics and elsewhere. This duality inspired a huge
amount of related research also in category theory, a brief comment on a specific categorical aspect (uniqueness and
representability) can be found in §8.1 of the Appendix.

The aim of these notes is to provide a self-contained proof of this remarkable duality theorem, providing all necessary
steps, including basic background on topological groups and the structure theory of locally compact abelian groups.
Peter-Weyl’s theorem asserting that the continuous characters of the compact abelian groups separate the points of the
groups (see Theorem 11.2.1) is certainly the most important tool in proving the duality theorem. The Peter-Weyl’s
theorem is valid for arbitrary compact groups, but then continuous characters must be replaced by finite-dimensional
unitary representations and the usual proof of the theorem in this general case involves Haar integration. In the case
of abelian groups the irreducible ones turn out the be one-dimensional, i.e., continuous characters. We prefer here
a different approach. Namely, Peter-Weyl’s theorem in the abelian case can be obtained as an immediate corollary
of a theorem of Følner (Theorem 10.3.5) whose elementary proof uses nothing beyond elementary properties of the
finite abelian groups, a local version of the Stone-Weierstraß approximation theorem proved in §2 and the Stone-Čech
compactification of discrete spaces. As another application of Følner’s theorem we describe the precompact groups (i.e.,
the subgroups of the compact groups) as having a topology generated by continuous characters. As a third application
of Følner’s theorem one can obtain the existence of the Haar integral on locally compact abelian groups for free (see
Theorem 11.4.21, the proof follows [57, §2.4, Theorem 2.4.5]).

The notes are organized as follows. In Section 2 we recall basic results and notions on abelian groups and general
topology, which will be used in the rest of the paper. Section 3 contains background on topological groups, starting
from scratch. Various ways of introducing a group topology are considered (§3.2), of which the prominent one is by
means of characters (§3.2.3). In §4.3 we recall the construction of Protasov and Zelenyuk [131] of topologies arising
from a given sequence that is required to be convergent to 0.

In §4.1 we discuss separation axioms and metrizability of topological groups. Connectedness and related properties
in topological groups are discussed in §4.2.

In §5 the Markov’s problems on the existence of non-discrete Hausdorff group topologies is discussed. In §5.1
we introduce two topologies, the Markov topology and the Zariski topology, that allow for an easier understanding of

i



Markov’s problems. In §5.2 we describe the Markov topology of the infinite permutation groups, while §5.3 contains the
first two examples of non-topologizable groups, given by Shelah and Ol′shanskii, respectively. The problems arising in
extension of group topologies are the topic of §5.4. Several cardinal invariants (weight, character and density character)
are introduced in §6.1, whereas §6.2 discuses completeness and completions. Further general information on topological
groups can be found in the monographs or surveys [4, 36, 37, 38, 57, 106, 119, 122].

Section 7 is dedicated to specific properties of the (locally) compact groups used essentially in these notes. The most
important property of locally compact group we recall in §7.3 is the open mapping theorem. §7.4 is dedicated to the
minimal and the totally minimal groups, which need not be locally compact , yet satisfy the open mapping theorem.

In §8 we recall (with complete proofs) the structure of the closed subgroups of Rn as well as the description of the
closure of an arbitrary subgroup of Rn. These groups play an important role in the whole theory of locally compact
abelian groups.

Section 9 starts with §9.1 dedicated to big (large) and small subsets of abstract groups. In §9.2.1 we give an internal
description of the precompact groups using the notion of a big set of a group and we show that these are precisely
the subgroups of the compact groups. Moreover, we define a precompact group G+ that “best approximates” G. Its
completion bG, the Bohr compactification of G, is the compact group that “best approximates” G. Here we introduce
almost periodic functions and briefly comment their connection to the Bohr compactification of G. In §9.2.2 we establish
the precompactness of the topologies generated by characters. In §9.3 we recall (without proofs) some relevant notions
in the non-abelian case, as Haar integral, unitary representation, etc., that play a prominent role in the general theory
of topological groups, but are not used in this exposition. The Haar integral in locally compact abelian groups is built
in §11.4.3.

In §10 prepares all ingredients for the proof of Følner’s theorem (see Theorem 10.3.5). This proof, follows the line of
[57]. An important feature of the proof is the crucial idea, due to Prodanov, to eliminate all discontinuous characters in
the uniform approximation of continuous functions via linear combinations of characters obtained by means of Stone-
Weierstraß approximation theorem. This step is ensured by Prodanov’s lemma 10.3.1, which has many other relevant
applications towards independence of characters and the construction of the Haar intergral for LCA groups. The last
subsection contains the final stage of the proof of Følner’s theorem.

In Section 11 gives various applications of Følner’s theorem. The first one is a description of the precompact group
topologies of the abelian groups (§10.1). The main application of Følner’s theorem is an immediate proof of Peter-
Weyl’s theorem (in §11.2). To the structure of the compactly generated locally compact abelian groups is dedicated
§11.3. Applications of these structure theorems are given in §11.4.3. In §11.3 we provide useful information on the
dual of a locally compact abelian group, to be used in Section 12. §11.4 is dedicated to the almost periodic functions
of the abelian group. As another application of Følner’s theorem we give a proof of Bohr - von Neumann’s theorem
describing the almost periodic functions as uniform limits of linear combinations of characters. Among other things, we
obtain as a by-product of Prodanov’s approach an easy construction of the Haar integral for almost periodic functions
on abelian groups, in particular for all continuous functions on a compact abelian group (§11.4.2). In §11.4.3 we build
a Haar integral on arbitrary locally compact abelian groups, using the construction from §11.4.2 in the compact case.
In §11.5 we consider a precompact version of the construction form §4.3 of topologies making a fixed sequence converge
to 0.

Section 12 is dedicated to Pontryagin-van Kampen duality. In §§12.1-12.3 we construct all tools for proving the
duality theorem 12.5.4. More specifically, §§12.1 and 12.2 contain various properties of the dual groups that allow for
an easier computation of the dual in many cases. Using further the properties of the dual, we see in §12.3 that many

specific groups G satisfy the duality theorem, i.e., G ∼= ̂̂
G. In §12.4 we stress the fact that the isomorphism G ∼= ̂̂

G is

natural by studying in detail the natural transformation ωG : G→ ̂̂
G connecting the group with its bidual. It is shown

in several steps that ωG is an isomorphism, considering larger and larger classes of locally compact abelian groups G
where the duality theorem holds (elementary locally compact abelian groups, compact abelian groups, discrete abelian
groups, compactly generated locally compact abelian groups). The last step uses the fact that the duality functor
is exact, this permits us to use all previous steps in the general case. As an immediate application of the duality
theorem we obtain the main structure theorem for the locally compact abelian groups, a complete description of the
monothetic compact groups, the torsion compact abelian groups, the connected compact abelian groups with dense
torsion subgroup, etc.

In the Appendix we dedicate some time to several topics that are not discussed in the main body of the notes:
uniqueness of the duality, dualities for non-abelian or non-locally compact-groups, pseudocompact groups and finally,
some connection to the topological properties of compact group and dynamical systems.

A large number of exercises is given in the text to ease the understanding of the basic properties of group topologies
and the various aspects of the duality theorem.

These notes are born out of three courses in the framework of the PhD programs at the Department of Math-
ematics at Milan University, the Department of Geometry and Topology at the Complutense University of Madrid
and Department of Mathematics at Nanjing Normal University held in 2006, 2007 and 2016, respectively. Among the
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participants there were various groups, interested in different fields. To partially satisfy the interest of the audience I
included various parts that can be eventually skipped, at least during the first reading. For example, the reader who
is not interested in non-abelian groups can skip §§3.2.4, the entire §5 and take all groups abelian in §§3,4, 6 and 7
(conversely, the reader interested in non-abelian groups or rings may dedicate more time to §§3.2.4, 5 and consider the
non-abelian case also in the first half of §7.2, see the footnote at the beginning of §7.2). For the category theorists
§§7.3, 8, 9.2–9.3 may have less interest, compared to §§3-6, 7.2, 9.1, 10.1-10.4 and 11.1-11.2. Finally, those interested
to get as fast as possible to the proof of the duality theorem can skip §§3.2.3, 3.2.4 and 4.3-6.2 (in particular, the route
§§8–10 is possible for the reader with sufficient knowledge of topological groups).

Several favorable circumstances helped in creating these notes. My sincere thanks go to my colleagues E. Mart́ın-
Peinador, M. J. Chasco, M. G. Bianchi, Wei He, L. Außenhofer, X. Domı́ngues, M. Bruguera, S. Trevijano, and E.
Pacifici who made these courses possible. The younger participants of the course motivated me with their constant
activity and challenging questions. I thank them for their interst and patience. Thanks are due to George Bergman,
who kindly pointed out an error in the proof of Theorem 4.3.4.

This notes are dedicated to the memory of my teacher, Professor Ivan Prodanov, whose original contributions to
Pontryagin-van Kampen duality and its applications can hardly by overestimated. The line adopted here in the proof
of Pontryagin-van Kampen duality theorem follows his approach from [127, 128] and [57] (see also the recent [67]).

The course of Topological groups (Topologia 2) started in the academic year 1998/99. The lectures notes (in Italian)
of that course, merged to a preliminary much shorter version of §§10–12, kindly prepared by Anna Giordano Bruno in
2005, became the backbone of these notes around May/June 2007, available on-line on https://users.dimi.uniud.it/

∼dikran.dikranjan/ITG.pdf. Since then, they were periodically up-dated and some more material was gradually
added over the years.

Udine, February 26, 2016

Dikran Dikranjan
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2 BACKGROUND ON ABSTRACT GROUPS, TOPOLOGICAL SPACES AND CATEGORY THEORY 1

Notation and terminology

We denote by P, N and N+ respectively the set of primes, the set of natural numbers and the set of positive integers.
The symbol c stands for the cardinality of the continuum. The symbols Z, Q, R, C will denote the integers, the
rationals, the reals and the complex numbers, respectively.

The quotient T = R/Z is a compact divisible abelian group, topologically isomorphic to the unitary circle S (i.e.,
the subgroup of all z ∈ C with |z| = 1). For S we use the multiplicative notation, while for T we use the additive
notation.

For a topological group G we denote by c(G) the connected component of the identity eG in G. If c(G) is trivial, the
group G is said to be totally disconnected. If M is a subset of G then 〈M〉 is the smallest subgroup of G containing M

and M is the closure of M in G. The symbol w(G) stands for the weight of G. Moreover G̃ stands for the completion
of a Hausdorff topological abelian group G (see §6.2).

2 Background on abstract groups, topological spaces and category the-
ory

2.1 Background on groups

Generally a group G will be written multiplicatively and the neutral element will be denoted by eG, simply e or 1 when
there is no danger of confusion. For abelian groups we use additive notation, consequently 0 will denote the neutral
element in such a case.

For a subset A,A1, A2, . . . , An of a group G we write

A−1 = {a−1 : a ∈ A}, and A1A2 . . . An = {a1 . . . an : ai ∈ Ai, i = 1, 2, . . . , n} (∗)

and we write An for A1A2 . . . An if all Ai = A. Moreover, for A ⊆ G we denote by cG(A) the centralizer of A, i.e., the
subgroup {x ∈ G : xa = ax for every a ∈ A}.

For a family {Gi : i ∈ I} of groups we denote by
∏
i∈I Gi the direct product G of the groups Gi. The underlying set

of G is the Cartesian product
∏
i∈I Gi and the operation is defined coordinatewise. For x = (xi) ∈

∏
i∈I Gi the support

of x is the set {i ∈ I : xi 6= eGi}. The direct sum
⊕

i∈I Gi is the subgroup of
∏
i∈I Gi consisting of all elements of

finite support. If all Gi are isomorphic to the same group G and |I| = α, we write
⊕

αG (or G(α), or
⊕

I G) for the
direct sum

⊕
i∈I Gi.

Clearly, the counterpart of (*) will be −A and A1 +A2 + . . .+An (and nA for An).
A standard reference for abelian groups is the monograph [80]. We give here only those facts or definitions that

appear very frequently in the sequel.
For abelian groups G,H we denote by Hom (G,H) the group of all homomorphisms from G to H where the

operation is defined pointwise. The group Hom (G,T) will be written additively. Sometimes the multiplicative form
G∗ = Hom (G,S) ∼= Hom (G,T) will be used as well, when necessary (e.g., concerning easier computation in C, etc.).
We call the elements of Hom (G,T) ∼= Hom (G,S) characters.

2.1.1 Torsion groups and torsion-free groups

For m ∈ N+, we use Zm or Z(m) for the finite cyclic group of order m. Let G be an abelian group and m ∈ N+ let

G[m] = {x ∈ G : mx = 0} and mG = {mx : x ∈ G}.

Then the torsion elements of G form a subgroup of G denoted by t(G). The increasing union
⋃
nG[pn] is a subgroup

of G that we denote by tp(G) and call p-primary component of G. It is not hard to check that t(G) =
⊕

p∈P tp(G).
For an abelian group G and a prime number p the subgroup G[p] is a vector space over the finite field Z/pZ. We

denote by rp(G) its dimension over Z/pZ and call it p-rank of G. The socle of G is the subgroup Soc(G) =
⊕

p∈PG[p].
Note that the non-zero elements of Soc(G) are precisely the elements of square-free order of G.

Let us start with the structure theorem for finitely generated abelian groups.

Theorem 2.1.1. If G is a finitely generated abelian group, then G is a finite direct product of cyclic groups. Moreover,
if G has m generators, then every subgroup of G is finitely generated as well and has at most m generators.

Definition 2.1.2. An abelian group G is

(a) torsion if t(G) = G (a p-group, for a prime p, if tp(G) = G);

(b) torsion-free if t(G) = 0;
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(c) bounded if mG = 0 for some m > 0.

Example 2.1.3. (a) The groups Z, Q, R, and C are torsion-free. The class of torsion-free groups is stable under
taking direct products and subgroups.

(b) The groups Zm and Q/Z are torsion. The class of torsion groups is stable under taking direct sums, subgroups
and quotients.

(c) Let m1,m2, . . . ,mk > 1 be naturals and let α1, α2, . . . , αk be cardinal numbers. Then the group
⊕k

i=1 Z
(αi)
mi is

bounded. According to a theorem of Prüfer every bounded abelian group has this form [80]. This generalizes the
Frobenius-Stickelberger theorem about the structure of the finite abelian groups (see Theorem 2.1.1).

2.1.2 Free abelian groups

A subset X of an abelian group G is independent, if
∑n
i=1 kixi = 0 with ki ∈ Z and distinct elements xi of X,

i = 1, 2, . . . , n, imply k1 = k2 = . . . = kn = 0. The maximum size of an independent subset of G is called free-rank of
G and denoted by r0(G) (see Exercise 2.1.5 for the correctness of this definition).

The next pair of exercises takes care of the correctness of the definition of r0(G).

Exercise 2.1.4. For a torsion-free abelian group H prove that:

(a) there exists a linear space D(H) over the field Q containing H as a subgroup and such that D(H)/H is torsion;

(b) for H and D(H) as in (a) prove that a subset X in H is independent (resp., maximal independent) iff it is linearly
independent (resp., a base) in the Q-vector space D(H);

(c) conclude from (b) that all maximal independent subsets of H have the same size (namely, dimQ(H)).

Hint. (a) Consider the relation ∼ in X = H × N+ defined by (h, n) ∼ (h′, n′) precisely when n′h = nh′. Then the
quotient set D(H) = X/ ∼ carries a binary operation defined by (h, n) + (h′, n′) = (n′h+ nh′)/nn′. Show that D(H)
is the desired linear space.

Exercise 2.1.5. For an abelian group G and the canonical homomorphism f : G→ G/t(G) prove that:

(a) if X is a subset of G, then X is independent iff f(X) is independent;

(b) conclude from (a) and Exercise 2.1.4 that all maximal independent subsets of any abelian group have the same
size.

(c) r0(G) = r0(G/t(G)) for every abelian group G.

An abelian group G is free , if G has an independent set of generators X. In such a case G ∼=
⊕
|X| Z, the

isomorphism defined by G 3 g 7→ (kx)x∈X , where g =
∑
x∈X kxx (note that only finitely many kx 6= 0, so effectively

(kx)x∈X ∈
⊕
|X| Z).

Lemma 2.1.6. An abelian group G is free iff G has a set of generators X such that every map f : X → H to an
abelian group H can be extended to a homomorphism f̄ : G→ H.

Proof. Let F =
⊕

X Z be the free group of |X|-many generators and let ex denote the generator of the x-th copy of Z
in F . The set S = {ex : x ∈ X} generates F . Every map f : S → G to an abelian group G extends to a homomorphism
f̄ : F → G by letting f̄(

∑n
i=1 kiexi) =

∑n
i=1 kif(exi).

Now assume that the group G has a set of generators X with the above property. To prove that G is free, it suffices
to show that X is independent. As above, let F =

⊕
X Z be the free group of |X|-many generators, where ex denotes

the generator of the x-th copy of Z in F , so that S = {ex : x ∈ X} is an independent set of generators of F . Define
f : X → F by f(x) = ex and let f̄ : G→ H be its extension. Since f(X) = S is independent in F , we deduce that X
is independent as well.

We collect here some useful properties of the free abelian groups.

Lemma 2.1.7. (a) Every abelian group is (isomorphic to) a quotient group of a free group.

(b) If G is an abelian group such that for a subgroup H of G the quotient group G/H is free, then H is a direct
summand of G.

(c) A subgroup of a free abelian group is free.
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Proof. (a) follows from Lemma 2.1.6. To prove (b), fix an independent set of generators X of G/H and let q : G→ G/H
be the quotient homomorphism. For every x ∈ X pick an element s(x) ∈ G such that q(s(x)) = x. Let f : G/H → f
be the homomorphism extending s. Then q ◦ f = idG/H as q ◦ s = idX . This implies that H ∩ f(G/H) = {0} and
H + f(G/H) = G. Hence, G = H ⊕ f(G/H).

For a proof of (c) see [80].

2.1.3 Divisible abelian groups

Definition 2.1.8. An abelian group G is said to be

(a) divisible if G = mG for every m > 0;

(b) p-divisible, for p ∈ P, if G = mG.

As nG ∩mG = mnG whenever n,m are co-prime, it is clear that a group is divisible if and only if it is p-divisible
for every prime p.

Example 2.1.9. (a) The groups Q, R, C, and T are divisible.

(b) For p ∈ P we denote by Z(p∞) the Prüfer group, namely the p-primary component of the torsion group Q/Z (so
that Z(p∞) has generators cn = 1/pn + Z, n ∈ N). The group Z(p∞) is divisible.

(c) The class of divisible groups is stable under taking direct products, direct sums and quotients. In particular,
every abelian group has a maximal divisible subgroup div(G).

(d) [80] Every divisible group G has the form (
⊕

r0(G) Q)⊕ (
⊕

p∈P Z(p∞)(rp(G))).

If X is a set, a set Y of functions of X to a set Z separates the points of X if for every x, y ∈ X with x 6= y, there
exists f ∈ Y such that f(x) 6= f(y). Now we see that the characters separate the points of a discrete abelian groups.

Theorem 2.1.10. Let G be an abelian group, H a subgroup of G and D a divisible abelian group. Then for every
homomorphism f : H → D there exists a homomorphism f : G→ D such that f �H= f .

If a ∈ G \H and D contains elements of arbitrary finite order, then f can be chosen such that f(a) 6= 0.

Proof. Let H ′ be a subgroup of G such that H ′ ⊇ H and suppose that g : H ′ → D is such that g �H= f . We prove
that for every x ∈ G, defining N = H ′ + 〈x〉, there exists g : N → D such that g �H′= g. There are two cases.

If 〈x〉 ∩ H ′ = {0}, then define g(h + kx) = g(h) for every h ∈ H ′ and k ∈ Z. Then g is a homomorphism. This
definition is correct because every element of N can be represented in a unique way as h+kx, where h ∈ H ′ and k ∈ Z.

If C = 〈x〉∩H ′ 6= {0}, then C is cyclic, being a subgroup of a cyclic group. So C = 〈lx〉 for some l ∈ Z. In particular,
lx ∈ H ′ and we can consider the element a = g(lx) ∈ D. Since D is divisible, there exists y ∈ D such that ly = a.
Now define g : N → D putting g(h+ kx) = g(h) + kx for every h+ kx ∈ N , where h ∈ H ′ and k ∈ Z. To see that this
definition is correct, suppose that h+kx = h′+k′x for h, h′ ∈ H ′ and k, k′ ∈ Z. Then h−h′ = k′x−kx = (k′−k)x ∈ C.
So k − k′ = sl for some s ∈ Z. Since g : H ′ → D is a homomorphism and lx ∈ H ′, we have

g(h)− g(h′) = g(h− h′) = g(s(lx)) = sg(lx) = sa = sly = (k′ − k)y = k′y − ky.

Thus, from g(h)−g(h′) = k′y−ky we conclude that g(h)+ky = g(h′)+k′y. Therefore g is correctly defined. Moreover
g is a homomorphism and extends g.

Let M be the family of all pairs (Hi, fi), where Hi is a subgroup of G containing H and fi : Hi → D is a
homomorphism extending f : H → D. For (Hi, fi), (Hj , fj) ∈ M let (Hi, fi) ≤ (Hj , fj) if Hi ≤ Hj and fj extends
fi. In this way (M,≤) is partially ordered. Let {(Hi, fi)}i∈I a totally ordered subset of (M,≤). Then H0 =

⋃
i∈I Hi

is a subgroup of G and f0 : H0 → D defined by f0(x) = fi(x) whenever x ∈ Hi, is a homomorphism that extends fi
for every i ∈ I. This proves that (M,≤) is inductive and so we can apply Zorn’s lemma to find a maximal element
(Hmax, fmax) of (M,≤). Using the first part of the proof, we can conclude that Hmax = G.

Suppose now that D contains elements of arbitrary finite order. If a ∈ G \H, we can extend f to H + 〈a〉 defining
it as in the first part of the proof. If 〈a〉 ∩H = {0} then f(h + ka) = f(h) + ky for every k ∈ Z, where y ∈ D \ {0}.
If 〈a〉 ∩H 6= {0}, since D contains elements of arbitrary order, we can choose y ∈ D such that f(h+ ka) = f(h) + ky
with y 6= 0. In both cases f(a) = y 6= 0.

Corollary 2.1.11. Let G be an abelian group and H a subgroup of G. If χ ∈ Hom (H,T) and a ∈ G \H, then χ can
be extended to χ ∈ Hom (G,T), with χ(a) 6= 0.

Proof. In order to apply Theorem 2.1.10 it suffices to note that T has elements of arbitrary finite order.
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Corollary 2.1.12. If G is an abelian group, then Hom (G,T) separates the points of G.

Proof. If x 6= y in G, then a = x− y 6= 0 so there exists χ ∈ Hom (G,T) with χ(a) 6= 0, i.e., χ(x) 6= χ(y).

Corollary 2.1.13. If G is an abelian group and D a divisible subgroup of G, then there exists a subgroup B of G such
that G = D×B. Moreover, if a subgroup H of G satisfies H ∩D = {0}, then subgroup B can be chosen to contain H.

Proof. Since the first assertion can be obtained from the second one with H = {0}, let us prove directly the second
assertion.

Since H ∩D = {0}, we can define a homomorphism f : D +H → D by f(x+ h) = x for every x ∈ D and h ∈ H.
By Theorem 2.1.10 we can extend f to f : G → G. Then put B = ker f and observe that H ⊆ B, G = D + B and
D ∩B = {0}; consequently G ∼= D ×B.

Call a subgroup H of a not necessarily abelian group G essential, if every non-trivial normal subgroup of G non-
trivially meets H.

Exercise 2.1.14. Prove that for every abelian group G there exists a divisible abelian group D(G) containing G as an
essential subgroup. If D′(G) is another group with the same properties, then there exists an isomorphism i : D(G) →
D′(G) such that i �G)idG.

The divisible group D(G) defined above is called divisible hull of G. When G is torsion-free, then D(G) is torsion-free
as well, so it is a Q-linear space (it coincides with the group D(G) built in Exercise 2.1.4).

Exercise 2.1.15. Prove that:

(a) D(Zp) = Z(p∞) for every prime p.

(b) G = D(Soc(G)) for every torsion divisible group G.

2.1.4 Reduced abelian groups

Definition 2.1.16. An abelian group G is reduced if the only divisible subgroup of G is the trivial one.

Example 2.1.17. It is easy to see that every free abelian group is reduced. Moreover, every bounded torsion group is
reduced as well. Finally, every proper subgroup of Q is reduced.

Exercise 2.1.18. Prove that

(a) subgroups, as well as direct products of reduced groups are reduced.

(b) every abelian group is a quotient of a reduced group.

(Hint. (a) is easy, for (b) use Fact 2.1.7 and Example 2.1.17.)

A group G is said to be residually finite, if G us isomorphic to a subgroup of a direct product of finite groups. The
Ulm subgroup G1 of an abelian group G is defined by G1 :=

⋂∞
n=1 nG.

Exercise 2.1.19. Prove that

(a) a group G is residually finite if and only if the intersection of all normal subgroups of G of finite index is trivial;

(b) every residually finite abelian group is reduced;

(c) an abelian group G is residually finite if and only if G1 = {0};

(d) a torsion-free abelian group is reduced if and only if G1 = {0}.

Item (d) of the above exercise allows us to conclude that for torsion-free abelian groups the notions “reduced” and
“residually finite” coincide. This fails to be true for torsion abelian groups.

Now we obtain as a consequence of Corollary 2.1.13 the following important factorization theorem for arbitrary
abelian groups.

Theorem 2.1.20. Every abelian group G can be written as G = div(G)×R, where R is a reduced subgroup of G.

Proof. By Corollary 2.1.13 there exists a subgroup R of G such that G = div(G)× R. To conclude that R is reduced
it suffices to apply he definition of div(G).
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In particular, this theorem implies that every abelian p-group G can be written as G = (
⊕

κ Z(p∞)) × R, where
κ = rp(div(G)) and R is a reduced p-group.

Clearly, direct sums of cyclic groups is a reduced group. The following notion is important in the study of reduced
p-groups, as allows to “approximate” them appropriately via direct sums of cyclic subgroups.

Definition 2.1.21. Let G be a p-group. Then a basic subgroup of G is a subgroup B of G with the following properties:

(a) B is a direct sum of cyclic subgroups;

(b) B is pure (i.e., pnG ∩B = pnB for every n ∈ N),

(c) G/B is divisible.

It can be proved that every abelian p-group admits a basic subgroup ([80]).

Example 2.1.22. If an abelian p-group has a bounded basic subgroup B, then B splits off as a direct summand, so
G = B ⊕D, where D ∼= G/B is divisible. (Indeed, if pnB = 0, then by (b) we get pnG ∩ B = 0. On the other hand,
by (c), G = pnB +B, so this sum is direct.)

In partcular, if rp(G) < ∞ and G is infinite, then G contains a copy of the group Z(p∞). Indeed, fix a basic
subgroup B of G. Then rp(B) ≤ rp(G) is finite, so B is bounded (actually, finite). Hence G = B⊕D with D ∼= Z(p∞)k

with k ≤ rp(G). Since B is finite, necessarily k > 0, so G contains a copy of the group Z(p∞).

The ring of endomorphisms of the group Z(p∞) will be denoted by Jp, it is isomorphic to the inverse limit lim
←−

Z/pnZ
of the finite rings Z/pnZ, known also as the ring of p-adic integers. The field of quotients of Jp is called field of p-adic
numbers) and will be denoted by Qp. Sometimes we shall consider only the underlying groups of these rings and will
simply speak of “the group p-adic integers”, or “the group p-adic numbers”.

2.1.5 Extensions of abelian groups

Definition 2.1.23. Let A and C be abelian groups. An abelian group B is said to be an extension of A by C if B has
a subgroup A′ ∼= A such that B/A′ ∼= C.

In such a case, if i : A → B is the injective homomorphism with i(A) = A′ and B/A′ ∼= C, we shall briefly denote
this by the diagram

0 −−−−→ A
i−−−−→ B

q−−−−→ C −−−−→ 0, (1)

where q is the composition of the canonical homomorphism B → B/i(A) and the isomorphism B/i(A) ∼= C. More
generally, we shall refer to (1), as well as to any pair of group homomorphisms i : A → B and q : B → C with
ker q = i(A), ker i = 0 and Cokerq = 0, speaking of a short exact sequence.

Example 2.1.24. A typical extension of a group A by a group C is the direct sum B = A ⊕ D. This extension we
call trivial extension.

(a) There may exist non-trivial extenisons, e.g. Z is a non-trivial extension of Z and Z2.

(b) In some cases only trivial extensions are available of A by C (e.g., for A = Z2 and C = Z3, for more examples
see Exercise 2.1.33).

A property G of abelian groups is called stable under extension (or, three space property), if every group B that is
an extension of groups both having G, necessarily has G.

Exercise 2.1.25. Prove that the following properties of the abelian groups are stable under extension:
(a) torsion;
(b) torsion-free;
(c) divisible;
(d) reduced;
(e) p-torsion;
(f) having no non-trivial p-torsion elements.
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Lemma 2.1.26. Assume that the two horizontal rows are exact in the following commutative diagram

0 −−−−→ G1
i1−−−−→ G

q1−−−−→ G2 −−−−→ 0

f1

y yf yf2
0 −−−−→ H1 −−−−→

i2
H −−−−→

q2
H2 −−−−→ 0

(∗)

If the homomorphism f1and f2 and surjective (injective), then also f is surjective (injective).

Proof. Assume that both f1 and f2 are surjective. Since the second row is exact, we have ker q2 = Imi2. We prove
now that

ker q2 = Imi2 ≤ f(G).

Indeed, if x ∈ H1, then i2(x) ∈ i2(f1(G1)) = f(i1(G1)) ≤ f(G) by the surjectivity of f1. This proves (*). Now to
check the surjectivity of f pick y ∈ H. Then q2(y) ∈ f2(q1(G)) = q2(f(G)) by the surjectivity of f2 and q1. Therefore,
q2(x) = q2(z) for some z ∈ f(G). This yields x ∈ z + ker q2 ≤ f(G) + f(G) = f(G), by (*).

Now assume that both f1 and f2 are injective. To prove that f is injective, assume that f(x) = 0 for some x ∈ G.
Then 0 = q2(f(x)) = f2(q1(x)))0. By the injectivity of f2 we deduce that q1(x) = 0. Hence, x ∈ i1(G1). Let x = i1(y)
for some y ∈ G1. So f(x) = f(i1(y)) = i2(f1(y)) = 0. As both i2 and f1 are injective, we deduce that y = 0. Therefore,
x = 0.

Let us find a description of an extension B of given groups A and B. Suppose for simplicity that A is a subgroup
of B and C = B/A. Let q : B → C = B/A be the canonical map. Since it is surjective one can fix a section s : C → B
(namely a map such that q(s(c)) = c for all c ∈ C) with s(0) = 0. For b ∈ B the element r(b) = b− s(q(b)) belongs to
A. This defines a map r : B → A such that r �A= idA. Therefore, every element b ∈ B is uniquely described by the
pair (q(b), r(b)) ∈ C × A by b = s(q(b)) + r(b). Hence, every element b ∈ B can be encoded in a unique way by a pair
(c, a) ∈ C ×A. If s is a homomorphism, the image s(C) is a subgroup of B and B ∼= s(C)×A splits. From now on we
consider the case when s is not a homomorphism. Then, for c, c′ ∈ C, the element f(c, c′) := s(c) + s(c′)− s(c+ c′) ∈ B
need not be zero, but certainly belongs to A, as q is a homomorphism. This defines a function f : C ×C → A uniquely
determined by the extension B and the choice of the section s.

The commutativity and the associativity of the operation in B yield:

f(c, c′) = f(c′, c) and f(c, c′) + f(c+ c′, c′′) = f(c, c′ + c′′) + f(c′, c′′) (1)

for all c, c′, c′′ ∈ C. As the section s satisfies s(0) = 0, one has also

f(c, 0) = f(0, c) = 0 for all c ∈ C. (2)

A function f : C × C → A satisfying (1) and (2) is called a factor set (on C to A).
The proof of the next proposition is left to the reader.

Proposition 2.1.27. Every factor set f on C to A gives rise to an extension B of A by C defined in the following
way. The support of the group is B = C ×A, with operation

(c, a) + (c′, a′) = (c+ c′, a+ a′ + f(c, c′)) for c, c′ ∈ C, a, a′ ∈ A

and subgroup A′ = {0} × A ∼= A, such that B/A′ ∼= C. Letting s(c) = (c, 0) defines a section s : C → B giving rise to
exactly the initial factor set f .

Let us note that the subset C ′ = C × {0} ∼= C = s(C) need not be a subgroup of B.
This proposition shows that one can obtain a description of the extension of a given pair of groups A, C by studying

the factor sets f on C to A. The trivial extension is determined by the identically zero function f , if the section s(c) = c
is chosen. More precisely one has:

Example 2.1.28. It is easy to see that every section s : C → B with s(0) = 0 of the trivial extension B = C ⊕ A is
defined by s(c) = c+ h(c) for c ∈ C, where h : C → A is map with h(0) = 0 (here we identify C,A with subgroups of
C ⊕A). The factor set associated to this section is obtained, for c, c′ ∈ C, by

f(c, c′) = h(c) + h(c′)− h(c+ c′). (1)
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If s1, s2 : C → B are two sections of the same extension B of A by C, then for every c ∈ C one has h(c) :=
s1(c)− s2(c) ∈ A, i.e., one gets a function h : C → A, such that s1 − s2 = h. One can see that the factor set f1 and f2
corresponding to s1 and s2 satisfy:

f1(c, c′)− f2(c, c′) = h(c) + h(c′)− h(c+ c′). (2)

This motivates the following definition:

Definition 2.1.29. Call two factor sets f1, f2 : C × C → B equivalent if (2) holds for some map h : C → A.

Definition 2.1.30. Call two extensions B1, B2 of A by C equivalent if there exists a homomorphism ξ : B1 → B2 so
that the following diagram, where both horizontal rows describe the respective extension,

0 −−−−→ A
i1−−−−→ B1

q1−−−−→ C −−−−→ 0

idA

y yξ yidA
0 −−−−→ A −−−−→

i2
B2 −−−−→

q2
C −−−−→ 0

is commutative.
We leave the proof of the next theorem toe the reader.

Theorem 2.1.31. In the above notation:

(a) the homomorphism ξ in the above definition is necessarily an isomorphisms, provided it exists;

(b) the extensions B1 and B2 are equivalent iff the factor sets f1, f2 are equivalent.

The above theorem gives a description of the set Ext(C,A) of all equivalence classes of extensions of A by C
establishing a bijection with the set of all equivalence classes of factor sets. One can prove that Ext(C,A) carries a
structure of abelian group (see [112]). We provide a different argument below, using the bijection between Ext(C,A)
and the equivalence classes of factor sets from Theorem 2.1.31.

For the reader who is not familiar with cohomology we recall briefly the definition of the cohomology group H2(C,A)
that is nothing else but the set of equivalence classes of factor sets. Since H2(C,A) carries a natural structure of an
abelian group, this provides a group structure also on Ext(C,A) via the bijection from Theorem 2.1.31.

For n > 0, let Kn(C,A) denote the set if all maps Cn → A, the elements of Kn(C,A) are named n-cochains. Define
the co-boundary operator dn : Kn(C,A)→ Kn+1(C,A) by

dnf(c0, c1, . . . , cn) = f(c1, . . . , cn)− f(c0 + c1, c2, . . . , cn) + f(c0, c1 + c2, . . . , cn) + (−1)n+1f(c0, c2, . . . , cn−1).

Then dn+1 ◦ dn = 0 for all n, so that ker dn contains Im dn−1. Call the elements of ker dn n-cocycles and the elements
of Im dn−1 n-coboundaries. Let Hn(C,A) = ker dn/Im dn−1, the n-the cohomology group of C with coefficients on A.

Theorem 2.1.32. Ext(C,A) is isomorphic to the cohomology group H2(C,A).

Proof. We have to prove that:

(a) f ∈ K2(C,A) is a 2-cocycle precisely when f satisfies the equation (1);

(b) two cocylces f1 and f2 give rise to the same extension iff (†) holds.

Indeed, each extension B is determined by its factor set f , that is a map C2 → A, i.e., an element of the group K2(C,A)
of all 2-cochains (these are the maps C × C → A). Let d2 : K2(C,A)→ K3(C,A) be the co-boundary operator. Then
the equation (1), written as

d2f(c, c′, c′′) = f(c′, c′′)− f(c+ c′, c′′) + f(c, c′ + c′′)− f(c, c′) = 0

wintesses that d2f = 0, i.e., f is a cocycle in K2(C,A). Finally, by Exercise 2.1.31 two cocylces f1 and f2 give rise to
the same extension iff (†) holds. Since h(c) + h(c′) − h(c + c′) = d1(c, c′) for h ∈ K1(C,A) and the coboundary map
d1 : K1(C,A) → K2(C,A), (†) says that f1 − f2 is a coboundary in K2(C,A). Therefore, these two cocycles give rise
to the same element in H2(C,A).

In the sequel, using the fact that Ext(C,A) is a group, we write Ext(C,A) = 0 to say that there are only trivial
extensions of A by C.
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Exercise 2.1.33. Prove that Ext(C,A) = 0 in the following cases:

(a) A is divisible;

(b) C is free.

(c) both A and C are torsion and for every p either rp(A) = 0 or rp(C) = 0;

(d∗) (Theorem of Prüfer) C is torsion free and A has finite exponent.

Hint. For (a) use Exercise 2.1.13, for (b) – Exercise 2.1.6. For (c) deduce first that every extension B of A by C is
torsion and then argue using the hypothesis on rp(A) and rp(C). A proof of (d∗) can be found in [80].

2.2 Background on topological spaces

For the sake of completeness we recall here some frequently used notions and notations from topology.

2.2.1 Basic definitions

We start with the definition of a filter and a topology.

Definition 2.2.1. Let X be a set. A family F of non-empty subsets of X is said

(a) to have the finite intersection property, if F1 ∩ F2 ∩ . . . ∩ Fn 6= ∅ for any n-tuple F1, F2, . . . , Fn ∈ F , n > 1.

(b) to be a filterbase if for A,B ∈ F there exists C ∈ F such that C ⊆ A ∩B;

(c) A filterbase F is called a filter if F ⊆ F ′ and F ∈ F yield F ′ ∈ F ;

(d) A filter F is called an ultrafilter if F ⊆ F ′ for some filter F ′ yields F ′ = F .

Clearly, every filter is a filterbase, while every filterbase has the finite intersection property. If F has the finite
intersection property, then the family F∗ of all finite intersection F1 ∩ F2 ∩ . . . ∩ Fn 6= ∅, with F1, F2, . . . , Fn ∈ F , is a
filter-base.

For a set X a subfamily B of P(X) is called a σ-algebra on X if X ∈ B and B is closed under taking complements
and countable unions.

Exercise 2.2.2. Let f : X → Y be a map. Prove that

(a) if F is a filter on X, then f(F) = {f(F ) : F ∈ F} is a filter-base in Y ;

(b) if f is surjective1 and F is a filter on Y , then f−1(F) = {f−1(F ) : F ∈ F} is a filter-base in X.

Exercise 2.2.3. Let X be a non-empty set. Prove that every filter F on X is contained in some ultrafilter.

(Hint. Apply Zorn’s lemma to the ordered by inclusion set of all filters of X containing F .)

Definition 2.2.4. Let X be a set. A family τ of subsets of X is called a topology on X if

(c1) X, ∅ ∈ τ ,

(c2) {U1, . . . , Un} ⊆ τ ⇒ U1 ∩ ... ∩ Un ∈ τ ,

(c3) {Ui : i ∈ I} ⊆ τ ⇒
⋃
i∈I

Ui ∈ τ .

The pair (X, τ) is called a topological space and the members of τ are called open sets, the complement of an open
set is called closed. A set that is simultaneously closed and open is called clopen. For x ∈ X a neighborhood of x is
any subset of X containing an open set U 3 x. The neighborhoods of a point x form a filter V(x) in X. We say that a
filter F on X converges to x ∈ X when V(x) ⊆ F . We also say that x is a limit point of F . In case every member of
F meets every neighborhood of x we say that x is an adherent point of F and we write x ∈ adF .

Exercise 2.2.5. Prove that if x is an adherent point of an ultrafilter U , then x is also a limit point of U .

1or more generally, F ∪ {f(X)} has the finite intersection property.
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For a subset M of a space X we denote by M is the closure of M in X, namely the set of all points x ∈ X such that
every U ∈ V(x) meets M . (Obviously, M is closed iff M = M .) The set M is called dense if M = X. A topological
space X is separable, if X has a dense countable subset.

For a subset M of a space X we denote by Int (M) the interior of M in X, namely the set of all points x ∈M such
that every x ∈ U ⊆ M for some U ∈ τ . (Obviously, M is open iff Int (M) = M .) An open set is said to be regular
open if it coincides with the interior of its closure.

Exercise 2.2.6. For a subset M of a space X prove that

(a) M is the smallest closed subset of X containing M .

(b) Int (M) is the largest open subset of X contained in M .

Let (X, τ) be a topological space and let Y be a subset of X. Then Y becomes a topological space when endowed
with the topology induced by X, namely τ �Y = {Y ∩ U : U ∈ τ}.

For a topological space (X, τ) a family ∅ 6∈ B ⊆ τ is a base of a the space X, if for every x ∈ X and for ev-
ery x ∈ U ∈ τ there exists B ∈ B such that x ∈ B ⊆ U . The symbol w(X) stands for the weight of X, i.e.,
w(X) = min{|B| : B is a base of X}. We say that a family ∅ 6∈ B ⊆ τ is a prebase of a the space X, if the the family
B∗ of all finite non-empty intersections of members of B is a base of X.

Examples: (1) For every set X the discrete topology has as open sets all subsets of X; the indiscrete topology has as
open sets only the sets X and ∅.

(2) The canonical topology attached to the Euclidean space Rn (n ≥ 1) is defined by the collection of sets U such
that, if x ∈ U , then {y ∈ Rn : ‖y − x‖ < r} ⊆ U for some r > 0.

More general examples can be obtained as follows. We need to recall first the definition of a pseudometric on a set
X. This is a map d : X ×X → R+ such that for all x, y, z ∈ X one has:

(1) d(x, x) = 0;

(2) d(x, y) = d(y, x);

(3) d(x, z) ≤ d(x, y) + d(y, z).

In case d(x, y) = 0 always implies x = y, the function d is called a metric. A set X provided with a metric d
is called a metric space and we usually denote a metric space by (X, d). For a point x ∈ X and ε > 0 the set
Bε(x) = {y ∈ X : d(y, x) < ε} is called the open disk (open ball) with center x and radius ε.

Example 2.2.7. Let (X, d) be a metric space. The family B of all open disks {Bε(x) : x ∈ X, ε > 0} is a base of a
topology τd on X called the metric topology of (X, d).

For a topological space (X, τ) denote by B(X) the σ-algebra generated by τ ⊆ B(X). The members of B(X) are
called Borel sets. Some of the Borel sets of X have special names:

Definition 2.2.8. A subset A of a topologcal space X is said to be Gδ-dense, if every non-empty Gδ subset of X meets
A.

The set T (X) of all topologies on a given set X is ordered by inclusion. For two topologies τ1 ⊆ τ2 on X we write
sometimes τ1 ≤ τ2 and say that τ1 is coarser than τ2, while τ2 is finer than τ1.

Let {τi : i ∈ I} be a family of topologies on a set X. Then the intersection
⋂
i∈I τi is a topology on X and it

coincides with the infimum τ = infi∈I τi of the family {τi : i ∈ I}, i.e., it is the finest topology on X contained in every
τi, i ∈ I.

On the other hand, the supremum τ = supi∈I τi is the topology on X with base
⋃
i∈I τi, i.e., a basic neighborhood of

a point x ∈ X is formed by the family of all finite intersection U1∩U2∩ . . .∩Un, where Uk ∈ Vτik (x), for k = 1, 2, . . . , n.
This is the smallest topology on X that contains all topologies τi, i ∈ I. In this way (T (X), inf, sup) becomes a complete
lattice with top element the discrete topology and bottom element the indiscrete topology.

2.2.2 Separation axioms and other properties of the topological spaces

Now we recall the so called separation axioms for topological spaces:

Definition 2.2.9. A a topological space X is
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(a) a T0-space, if for every pair of distinct points x, y ∈ X there exists an open set U such that either x ∈ U, y 6∈ U ,
or y ∈ U, x 6∈ U ;

(b) a T1-space, if for every pair of distinct points x, y ∈ X there exist open sets U and V such that x ∈ U, y 6∈ U and
y ∈ V, x 6∈ V (or, equivalently, every singleton of X is closed);

(c) a T2-space (or, a Hausdorff space) , if for every pair of distinct points x, y ∈ X there exist disjoint open sets U ,
V such that x ∈ U and y ∈ V .

Moreover,

(d) a T0 space X is called a T3-space (or, a regular space), if for every x ∈ X and every open set x ∈ U in X there
exists a an open set V such that x ∈ V ⊆ V ⊆ U ;

(e) a T0 space X is called a T3.5-space (or, a Tychonov space), if for every x ∈ X and every open set x ∈ U in X
there exists a continuous function f : X → [0, 1] such that f(x) = 1 and f(y) = 0 for all y ∈ X and y 6∈ U ;

(f) a T0 space X is called a T4-space (or, a normal space), if for every pair of closed disjoint sets F,G in X there
exists a pair of open disjoint sets U, V in X such that F ⊆ U and G ⊆ V .

The following implications hold true between these properties

T0 ←− T1 ←− T2 ←− T3 ←− T3.5 ←− T4.

While the first four implications are more or less easy to see, the last implication T4 → T3.5 requires the following deep
fact:

Theorem 2.2.10. (Urysohn Lemma) Let X be a normal space. Then for every pair of closed disjoint sets F,G in X
there esists a continuous function f : X → [0, 1] such that f(F ) = 1 and f(G) = 0.

A T0 topological space X having a base of clopen sets is called zero-dimensional, denoted by dim X = 0. Obviosuly,
zero-dimensional spaces are T3.5. All these properties (beyond T4) are preserved by taking subspaces.

For the sake of completeness we recall here some frequently used properties of topological spaces. Most of them are
related to compactness. A family U = {Ui : i ∈ I} of non-empty open sets is an open cover of X if X =

⋃
i∈I Ui. A

subfamily {Ui : i ∈ J}, J ⊆ I, is a subcover of U if X =
⋃
i∈J Ui.

Definition 2.2.11. A topological space X is

• compact if for every open cover of X there exists a finite subcover;

• countably compact if for every countable open cover of X there exists a finite subcover;

• Lindelöff if for every open cover of X there exists a countable subcover;

• pseudocompact if every continuous function X → R is bounded;

• locally compact if every point of X has compact neighborhood in X;

• σ-compact if X is the union of countably many compact subsets;

• hemicompact if X is σ-compact and has a countable family of compact subsets such that every compact set of X
is contained in one of them;

• Baire space, if any countable intersection of dense open sets of X is still dense2;

• of first category, if X =
⋃∞
n=1An and every An is a closed subset of X with empty interior;

• of second category, if X is not of first category;

• connected if every proper open subset of X with open complement is empty.

Example 2.2.12. Let B be a subset of Rn equipped with the usual metric topology. Then B is compact iff B is closed
and bounded (i.e., B has finite diameter).

2if any countable intersection of dense Gδ-sets of X is still a dense Gδ-set
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Obviously, a space is compact iff it is both Lindelöff and countably compact. Compact spaces are locally compact
and σ-compact.

Compactness-like properties “improve” separation properties in the following sense:

Theorem 2.2.13. (a) Every Hausdorff compact space is normal.

(b) Every regular Lindelöff space is normal.

(c) Every Hausdorff locally compact space is Tychonov.

It follows from item (a) of Theorem 2.2.13 that every subspace of a compact Hausdorff space is necessarily a
Tychonov space. According to Tychonov’s embedding theorem every Tychonov space X is a subspace of a compact
space K, so taking the closure Y of X in K one obtains also a compact space Y containing X as a dense subspace, i.e.,
a compactification of X.

2.2.3 Relations between the various generalizations of compactness

In the sequel we show the other relations between these properties (see the diagram below for all implications between
them).

Lemma 2.2.14. If X is a σ-compact space, then X is a Lindelöff space.

Proof. Let X =
⋃
α∈I Uα. Since X is σ-compact, X =

⋃∞
n=1Kn where each Kn is a compact subset of X. Thus for

every n ∈ N+ there exists a finite subset Fn of I such that Kn ⊆
⋃
n∈Fn Un. Now I0 =

⋃∞
n=1 Fn is a countable subset

of I and Kn ⊆
⋃
α∈I0 Uα for every N ∈ N+ yields X =

⋃
α∈I0 Uα.

Lemma 2.2.15. If X is a dense countably compact subspace of a regular space Y , then X is Gδ-dense in Y .

Proof. Let O be a non-empty Gδ subset of Y . Then there exists y ∈ O and O =
⋂∞
n=1 Un, where each Un is open

in Y . By the regularity of Y we can find for each n an open set Vn of Y such that y ∈ Vn ⊆ V n ⊆ Un. Since
Wn = U1 ∩ . . . ∩ Un 6= ∅ is open, X ∩Wn 6= ∅. Therefore Fn = X ∩ V 1 ∩ . . . ∩ V n 6= ∅ for each n. Since X is countably
compact, also ⋂

n

Fn = X ∩
⋂
n

V n ⊆ X ∩
⋂
n

Un = X ∩O

is non-empty.

Let us start with a criterion for (countable) compactness.

Lemma 2.2.16. Let X be a topological space.

(a) X is (countably) compact iff every (countable) family of closed sets with the finite intersection property has a
non-empty intersection.

(b) X is compact iff every ultrafilter of X is convergent.

Proof. For the proof (a) note that every family F of closed sets with the finite intersection property having empty
intersection corresponds to an open cover of X without finite subcovers (simply take the complement of the members
of F).

(b) Follows from (a) and Exercise 2.2.5.

Theorem 2.2.17. [Arhangel′skij] If X is a countable compact space, then X is metrizable. In particular, a countably
infinite compact space has a non-trivial convergent sequences.

Proof. Obviously, X is normal. On the other hand, X has countable pseudocharacter, so X is first countable (being
compact). Hence, X is second countable, as well. By Urysohn metrization theorem, X is metrizable.

Here comes a criterion for pseudocompactness.

Theorem 2.2.18. Let X be a Tychonov space. Prove that the following are equivalent:
(a) X is pseudocompat;
(b) every locally finite family of non-empty open sets is finite;
(c) for every chain of non-empty open sets V1 ⊇ V2 ⊇ . . . in Y with

V n ⊆ Vn−1 for every n > 1 (∗)

one has
⋂
n Vn 6= ∅.
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Proof. (a)→ (b) Assume that {Vnn ∈ N} is an infinite locally finite family of non-empty open sets. Fix a point xn ∈ Vn
for every n ∈ N. Since X is Tychonov, there exists a continuous function fn : X → [0, 1] such that fn vanishes on
X \ Vn and fn(xn) = 1. Define a function f : X → R by f(x) =

∑
n nfn(x), for x ∈ X. Since the family {Vnn ∈ N} is

locally finite and each fn is continuous, f is continuous as well. Obviously, f is unbounded, as f(xn) = n, for n ∈ N.
This contradicts the pseudocompactness of X.

(b) → (c) is obvious.
(c) → (a) Assume that f : X → R is an unbounded continuous function. Then for every n ∈ N the open set

Vn = f−1(R \ [−n, n]) is non-empty and obviously (*) and
⋂
n Vn = ∅ hold, a contradiction.

Remark 2.2.19. Using the above criterion, one can prove the obvious counterpart of Lemma 2.2.15 for Tychonov
spaces: If X is a dense pseudocompact subspace of a Tychonov space Y , then X is Gδ-dense in Y For a proof argue
as in the proof of Lemma 2.2.15, starting with a non-empty Gδ subset O of Y , presented as the intersection of a chain
of open sets V1 ⊇ V2 ⊇ . . . in Y with (*). Then Un = X ∩ Vn is an open set of X with Un = V n in view of the density

of X in Y . So U
X

n = X ∩Un = X ∩ V n ⊆ X ∩ Vn−1 = Un−1. So,
⋂
n U

X

n =
⋂
n Un 6= ∅, by Theorem 2.2.18. Therefore,

X ∩O = X ∩
⋂
n

Vn =
⋂
n

Un =
⋂
n

Un 6= ∅.

Exercise 2.2.20. If a Tichonov space X is a Gδ-dense subspace of βX, then X is pseudocompact.

In the next exercise we resume 2.2.19 and 2.2.20:

Exercise 2.2.21. A Tichonov space X is pseudocompact if and only if X is Gδ-dense in βX.

A Baire space X is of second category. Indeed, assume that X =
⋃∞
n=1An such that every An is closed with empty

interior. Then the sets Dn = X \ An are open and dense in X. Then
⋂∞
n=1Dn is dense, in particular non-empty, so

X 6=
⋃∞
n=1An, a contradicton.

According to the Baire category theorem complete metric spaces are Baire. Now we prove that also locally compact
spaces are Baire spaces.

Theorem 2.2.22. A Hausdorff locally compact space X is a Baire space.

Proof. Suppose that the sets Dn are open and dense in X. We show that
⋂∞
n=1Dn is dense. To this end fix an arbitrary

open set V 6= ∅. According to Theorem 2.2.13, a Hausdorff locally compact space is regular. Hence there exists an open
set U0 6= ∅ with U0 compact and U0 ⊆ V . Since D1 is dense, U0 ∩D1 6= ∅. Pick x1 ∈ U0 ∩D1 and an open set U1 3 x1
in X with U1 compact and U1 ⊆ U0 ∩D1 . Proceeding in this way, for every n ∈ N+ we can find an open set Un 6= ∅
in G with Un compact and Un ⊆ Un−1 ∩ Dn. By the compactness of every Un there exists a point x ∈

⋂∞
n=1 Un.

Obviously, x ∈ V ∩
⋂∞
n=1Dn.

The above proof works also in the case of complete meric spaces, but the neighborhoodd Un must be chose each
time with diamBn ≤ 1/n. Then Cantor’s theorem (for complete metric spaces) guarantees

⋂∞
n=1 Un 6= ∅.

Exercise 2.2.23. Let Y be a Baire space and X be a Gδ-dense subspace of Y . Then X is a Baire space as well.

Theorem 2.2.24. Every countably compact Tychonov space is a Baire space.

Proof. Let X be a countably compact Tychonov space. Take any compactification Y of X. Then Y is a Baire space
by Theorem 2.2.22. Since Y is regular (Theorem 2.2.13), every non-empty Gδ subset of Y meets X by Lemma 2.2.15.
Now Exercise 2.2.23 applies.

According to Exercise 2.2.21), a Tichonov space X is pseudocompact iff X is Gδ-dense in βX. Combining with
Exercise 2.2.23, we conclude that pseudocompact spaces are Baire.

In the next diagram we collect all implications between the properties we have discussed so far.

Lindelöf σ-compactoo hemicompactoo compact

rrffffff
ffffff

ffffff
ffffff

ffffff
ffff
oo

��

// loc.compact // Baire // 2d categ.

Lindelöf+count.compact

OO

//

22ffffffffffffffffffffffffffffffffff
count.compact

44iiiiiiiiiiiiiiiiiiiiiiii
// pseudocompact

OO

The metric countably compact spaces are compact.

Exercise 2.2.25. Locally compact σ-compact spaces X are hemicompact.
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(Hint. Use the definitions. If X is Hausdorff, then X is Tychonov by Theorem 2.2.13 (c), so one can consider the
one-point compactification of X.)

Most of these properties are preserved by taking closed subspaces:

Lemma 2.2.26. If X is a closed subspace of a space Y , then X is compact (resp., Lindelöff, countably compact,
σ-compact, locally compact) whenever Y has the same property.

Now we discuss preservation of properties under unions.

Lemma 2.2.27. Let X be a topological space and assume X =
⋃
i∈I Xi, where Xi are subspaces of X.

• If I is finite and each Xi is (countably) compact, then X is (countably) compact.

• If I is countable and each Xi is σ-compact (resp., Lindelöff), then X has the same property.

• If
⋂
i∈I Xi 6= ∅ and each Xi is connected, then X is connected.

For every topological space X and x ∈ X there is a largest connected subset x ∈ Cx ⊆ X, called connected component
of x in X. It is always a closed subset of X and X =

⋃
x∈X Cx is a partition of X. The space X is called totally

disconnected if all connected components are singletons. Obviously, zero-dimensional spaces are totally disconnected
(as every point is an intersection of clopen sets). Both properties are preserved by taking subspaces.

In a topological space X the quasi-component of a point x ∈ X is the intersection of all clopen sets of X containing
x.

Lemma 2.2.28. (Shura-Bura) In a compact space X the quasi-components and the connected components coincide.

Theorem 2.2.29. (Vedenissov) Every totally disconnected locally compact space is zero-dimensional.

2.2.4 Properties of the continuous maps

Here we recall properties of maps:

Definition 2.2.30. For a map f : (X, τ)→ (Y, τ ′) between topological spaces and a point x ∈ X we say that:

(a) f is continuous at x if for every neighborhood U of f(x) in Y there exists a neighborhood V of x in X such that
f(V ) ⊆ U ;

(b) f is open at x ∈ X if for every neighborhood V of x in X there exists a neighborhood U of f(x) in Y such that
f(V ) ⊇ U ;

(c) f is continuous (resp., open) if f is continuous (resp., open) at every point x ∈ X;

(d) f is closed if the subset f(A) of Y is closed for every closed subset A ⊆ X;

(e) f is perfect if f is closed and f−1(y) is compact for all y ∈ Y ;

(f) f is a homeomorphism if f is continuous, open and bijective.

In item (a) and (b) one can limit the test to only basic neighborhoods. A topological space X is homogeneous, if
for every pair of points x, y ∈ X there exists a homeomorphism f : X → X such that f(x) = y.

Let {Xi}i∈I be a family of topological spaces. Consider the Cartesian product X =
∏
i∈I Xi with its canonical

projections pi : X → Xi, i ∈ I. Then X usually carries the product topology (or Tichonov topology), having as a base B
the family

⋂
{p−1i (Ui) : (∀ i ∈ J)Ui open in Xi}, where J runs over the finite subsets of I. When X is equipped with

this topology the projections pi are both open and continuous.
Some basic properties relating spaces to continuous maps are collected in the next lemma:

Lemma 2.2.31. If f : X → Y is a continuous surjective map, then Y is compact (resp., Lindelöff, countably compact,
σ-compact, connected) whenever X has the same property.

A partially ordered set (A,≤) is directed if for every α, β ∈ A there exists γ ∈ A such that α ≤ γ and β ≤ γ. A
subset B of A is cofinal, if for every α ∈ A there exists β ∈ B with α ≤ β.

A net in a topological space X is a map from a directed set A to X. We write xα for the image of α ∈ A so that
the net can be written in the form N = {xα}α∈A. A subnet of a net N is S = {xβ}β∈B such that B is a cofinal subset
of A.

A net {xα}α∈A in X converges to x ∈ X if for every neighborhood U of x in X there exists β ∈ A such that α ∈ A
and β ≤ α implies α ∈ U .
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Lemma 2.2.32. Let X be a topological space.

(a) If Z is a subset of X, then x ∈ Z if and only if there exists a net in Z converging to x.

(b) X is compact if and only if every net in X has a convergent subnet.

(c) A map f : X → Y (where Y is a topological space) is continuous if and only if f(xα)→ f(x) in Y for every net
{xα}α∈A in X with xα → x.

(d) The space X is Hausdorff if and only if every net in X converges to at most one point in X.

By βX we denote the Čech-Stone compactification of a topological Tychonov space X, that is the compact space βX
together with the dense immersion i : X → βX, such that for every function f : X → [0, 1] there exists fβ : βX → [0, 1]
which extends f (this is equivalent to ask that every function of X to a compact space Y can be extended to βX).
Here βX will be used mainly for a discrete space X.

The next theorem shows that many of the properties of the topological spaces are preserved under products. As far
as compactness is concerned, this is known as Tichonov Theorem:

Theorem 2.2.33. Let X =
∏
i∈I Xi. Then

(a) X is compact (resp., connected, totally disconnected, zero-dimensional, T0, T1, T2, T3, T3.5) iff every space Xi

has the same property.

(b) if I is finite, the same holds for local compactness and σ-compactness.

Let us mention here that countable compactness as well as Lindelöff property are not stable even under finite
products.

For a set X we denote by B(X) (Br(X), B+(X)) the algebra of all bounded complex-valued (resp., real-valued,
non-negative real-valued) functions on X. If X is also a topological space, we denote by C(X) (C0(X)) the space of all
continuous complex-valued functions on X (with compact support, i.e., functions vanishing out of a compact subset of
X). Moreover, we let Cr0(X) = C0(X) ∩Br(X) and C+

0 (X) = C0(X) ∩B+(X). Note, that C0(X) ⊆ B(X)

Let X be a topological space. If f ∈ C(X) let

‖f‖∞ = sup{|f(x)| : x ∈ X}.

Theorem 2.2.34 (Stone-Weierstraß theorem). Let X be a compact topological space. A C-subalgebra A of C(X)
containing all constants and closed under conjugation is dense in C(X) for the norm ‖ ‖∞ if and only if A separates
the points of X.

We shall need in the sequel the following local form of Stone-Weierstraß theorem.

Corollary 2.2.35. Let X be a compact topological space and f ∈ C(X). Then f can be uniformly approximated by a
C-subalgebra A of C(X) containing all constants and closed under the complex conjugation if and only if A separates
the points of X separated by f ∈ C(X).

Proof. Denote by G : X → CA the diagonal map of the family {g : g ∈ A}. Then Y = G(X) is a compact subspace of
CA and by the compactness of X, its subspace topology coincides with the quotient topology of the map G : X → Y .
The equivalence relation ∼ in X determined by this quotient is as follows: x ∼ y for x, y ∈ X by if and only if
G(x) = G(y) (if and only if g(x) = g(y) for every g ∈ A). Clearly, every continuous function h : X → C, such that
h(x) = h(y) for every pair x, y with x ∼ y, can be factorized as h = h ◦ q, where h ∈ C(Y ). In particular, this
holds true for all g ∈ A and for f (for the latter case this follows from our hypothesis). Let A be the C-subalgebra
{h : h ∈ A} of C(Y,C). It is closed under the complex conjugation and contains all constants. Moreover, it separates
the points of Y . (If y 6= y′ in Y with y = G(x), y′ = G(x′), x, x′ ∈ X, then x 6∼ x′. So there exists h ∈ A with
h(y) = h(x) 6= h(x′) = h(y′). Hence A separates the points of Y .) Hence we can apply Stone - Weierstraß theorem
2.2.34 to Y and A to deduce that we can uniformly approximate the function f by functions of A. This produces
uniform approximation of the function f by functions of A.

2.3 Background on categories and functors

Definition 2.3.1. A category X consists of

• a class Ob(X ) whose elements X are called objects of the category;
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• a class Hom (X ) whose elements are sets Hom (X1, X2), where (X1, X2) varies among the ordered pairs of object
of the category, the elements φ : X1 → X2 (written shortly as φ) of Hom (X1, X2) are called morphisms with
domain X1 and codomain X2;

• an associative composition law

◦ : Hom (X2, X3)× Hom (X1, X2)→ Hom (X1, X3),

for every ordered triple (X1, X2, X3) of objects of the category, that associates to every pair of morphisms (φ, ψ)
from Hom (X2, X3)× Hom (X1, X2), a morphism φ ◦ψ ∈ Hom (X1, X3) called composition of φ and ψ.

The following conditions must be satisfied:

1. the sets Hom (X,X ′) and Hom (Y, Y ′) are disjoint if the pairs of objects (X,X ′) and (Y, Y ′) do not coincide;

2. for every object X there exists a morphism 1X : X → X in Hom (X,X) such that 1X ◦α = α e β ◦1X = β for
every pair of morphisms α ∈ Hom (X ′, X) and β ∈ Hom (X,X ′).

Example 2.3.2. In the sequel we make use of the following categories:

• Set – sets and maps,

• VectK – vector spaces over a field K and linear maps,

• Grp – groups and group homomorphisms,

• AbGrp – abelian groups and group homomorphisms,

• Rng – rings and ring homomorphisms,

• Rng1 – unitary rings and homomorphisms of unitary rings,

• Top – topological spaces and continuous maps,

A morphism f : X → Y in a category A is an isomorphism, if there exists a morphism g : Y → X such that
g ◦ f = idX and f ◦ g = idY .

Consider two categories A and B. A covariant [contravariant] functor F : A → B assigns to each object A ∈ A
an object FA ∈ B and to each morphism f : A → A′ in A a morphism Ff : FA → FA′ [Ff : FA′ → FA] such that
FidA = idFA and F (g ◦ f) = Fg ◦ Ff [F (g ◦ f) = Ff ◦ Fg] for every morphism f : A→ A′ and g : A′ → A′′ in A.

If F : A → B and G : B → C are functors, one can define a functor G ◦ F : A → C by letting (G ◦ F )A = G(FA)
for every object A in A and (G ◦ F )f = G(Ff) for every arrow f in A. It is easy to see that functor G ◦ F is
covariant whenever both functors are simultaneously covariant or contravariant. If one of them is covariant and the
other contravariant, then the functor G ◦ F is contravariant.

A functor T : A → B defines a map

Hom (X,X ′)→ Hom (T (X), T (X ′))

for every pair of objects of the category A. We say that F is faithful if these maps are injective, full if they are surjective.

Example 2.3.3. A category A is called concrete if it admits a faithful functor U : A → Set (in such a case the functor
is called forgetful). All examples above are concrete categories.

Exercise 2.3.4. Build forgetful functors VectK → AbGrp and Rng→ AbGrp.

Let F, F ′ : A → B be covariant functors. A natural transformation γ from F to F ′ assigns to each A ∈ A a
morphism γA : FA→ F ′A such that for every morphism f : A→ A′ in A the following diagram is commutative

FA
Ff−−−−→ FA′

γA

y yγA′
F ′A −−−−→

F ′f
F ′A′

A natural equivalence is a natural transformation γ such that each γA is an isomorphism.
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3 General properties of topological groups

3.1 Definition of a topological group

Let us start with the following fundamental concept:

Definition 3.1.1. Let G be a group.

• A topology τ on G is said to be a group topology if the map f : G×G→ G defined by f(x, y) = xy−1 is continuous.

• A topological group is a pair (G, τ) of a group G and a group topology τ on G.

If τ is Hausdorff (resp., compact, locally compact, connected, etc.), then the topological group (G, τ) is called
Hausdorff (resp., compact, locally compact, connected, etc.). Analogously, if G is cyclic (resp., abelian, nilpotent, etc.)
the topological group (G, τ) is called cyclic (resp. abelian, nilpotent, etc.). Obviously, a topology τ on a group G is a
group topology iff the maps

µ : G×G→ G and ι : G→ G

defined by µ(x, y) = xy and ι(x) = x−1 are continuous when G×G carries the product topology.
Here are some examples, starting with two trivial ones: for every group G the discrete topology and the indiscrete

topology on G are group topologies. Non-trivial examples of a topological group are provided by the additive group R
of the reals and by the multiplicative group S of the complex numbers z with |z| = 1, equipped both with their usual
topology. This extends to all powers Rn and Sn. These are abelian topological groups. For every n the linear group
GLn(R) equipped with the topology induced by Rn2

is a non-abelian topological group. The groups Rn and GLn(R)
are locally compact, while S is compact.

Example 3.1.2. For every prime p the group Jp of p-adic integers carries the topology induced by
∏∞
n=1 Z(pn), when

we consider it as the inverse limit lim
←−

Z/pnZ. The same topology can be obtained also when we consider Jp as the ring

of all endomorphims of the group Z(p∞). Now Jp embeds into the product Z(p∞)Z(p
∞) carrying the product topology,

while Z(p∞) is discrete. We leave to the reader the verification that this is a compact group topology on Jp. Basic
open neighborhoods of 0 in this topology are the subgroups pnJp of (Jp,+) (actually, these are ideals of the ring Jp)
for n ∈ N. The field Qp becomes a locally compact group by declaring Jp open in Qp (i.e., an element x ∈ Qp has as
typical neighborhoods the cosets x+ pnJp, n ∈ N).

Other examples of group topologies will be given in §3.3.

If G is a topological group written multiplicatively and a ∈ G, then the left translation x at7→ ax, the right translation

x
ta7→ xa, as well as the internal automorphism x 7→ axa−1 are homeomorphisms. Consequently, the group G is discrete

iff the point eG is isolated, i.e., the singleton {eG} is open. In the sequel aM will denote the image of a subset M ⊆ G
under the (left) translation x 7→ ax, i.e., aM := {am : m ∈ M}. This notation will be extended also to families of
subsets of G, in particular, for every filter F we denote by aF the filter {aF : F ∈ F}.

Making use of the homeomorphisms x 7→ ax one can prove:

Exercise 3.1.3. Every topological group is a homogeneous topological space.

Example 3.1.4. For every n the group GLn(C) equipped with the topology induced from Cn2

, is a topological group.
Indeed, the known formulas for multiplication and inversion of matrices immediately show that both operations are
continuous.

For a topological group G and g ∈ G we denote by VG,τ (g) the filter of all neighborhoods of the element g of G.
When no confusion is possible, we shall write briefly also VG(g), Vτ (g) or even V(g). Among these filters the filter
VG,τ (eG), obtained for the neutral element g = 1, plays a central role. It is useful to note that for every a ∈ G the filter
VG(a) coincides with aVG(eG) = VG(eG)a. More precisely, we have the following:

Theorem 3.1.5. Let G be a group and let V(eG) be the filter of all neighborhoods of eG in some group topology τ on
G. Then:

(a) for every U ∈ V(eG) there exists V ∈ V(eG) with V · V ⊆ U ;

(b) for every U ∈ V(eG) there exists V ∈ V(eG) with V −1 ⊆ U ;

(c) for every U ∈ V(eG) and for every a ∈ G there exists V ∈ V(eG) with aV a−1 ⊆ U.

Conversely, if V is a filter on G satisfying (a), (b) and (c), then there exists a unique group topology τ on G such
that V coincides with the filter of all τ -neighborhoods of eG in G.
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Proof. To prove (a) it suffices to apply the definition of the continuity of the multiplication µ : G × G → G at
(eG, eG) ∈ G × G. Analogously, for (b) use the continuity of the map ι : G → G at eG ∈ G. For item (c) use the
continuity of the internal automorphism x 7→ axa−1 at eG ∈ G.

Let V be a filter on G satisfying all conditions (a), (b) and (c). Let us see first that every U ∈ V contains eG. In
fact, take W ∈ V with W ·W ⊆ U and choose V ∈ V(eG) with V ⊆W and V −1 ⊆W . Then eG ∈ V · V −1 ⊆ U .

Now define a topology τ on G whose open sets O are defined by the following property:

τ := {O ⊆ G : (∀a ∈ O)(∃U ∈ V) such that aU ⊆ O}.

Let us check that that τ is a topology on G. Obviously ∅, G ∈ τ and τ is stable under arbitrary unions. Assume
O1, O2 ∈ τ . If O1 ∩ O2 = ∅ then O1 ∩ O2 ∈ τ . Otherwise pick an element x ∈ O1 ∩ O2 and find Vi ∈ V such that
xOi ⊆ O1 for i = 1, 2. Then V := V1 ∩ V2 ∈ V and xV ⊆ O1 ∩O2.

Let us see now that for every g ∈ G the filter gV coincides with the filter V(G,τ)(g) of all τ -neighborhoods of g in
(G, τ). The inclusion gV ⊇ V(G,τ)(g) is obvious. Assume U ∈ V. To see that gU ∈ V(G,τ)(g) we have to find a τ -open
O ⊆ gU that contains g. Let O := {h ∈ gU : (∃W ∈ V) hW ⊆ gU}. Obviously g ∈ O. To see that O ∈ τ pick x ∈ O.
Then there exists W ∈ V with xW ⊆ gU . Let V ∈ V with V · V ⊆W , then xV ⊆ O since xvV ⊆ gU for every v ∈ V .

We have seen that τ is a topology on G such that the τ -neighborhoods of any x ∈ G are given by the filter xV. It
remains to see that τ is a group topology. To this end we have to prove that the map f defined by (x, y) 7→ xy−1 is
continuous. Fix x, y and pick a U ∈ V. By (c) there exists a W ∈ V with Wy−1 ⊆ y−1U . Now choose V ∈ V with
V ·V −1 ⊆W . Then O = xV ×yV is a neighborhood of (x, y) in G×G and f(O) ⊆ xV ·V −1y−1 ⊆ xWy−1 ⊆ xy−1U .

In the above theorem one can take instead of a filter B also a filter base. For example, some authors prefer the
characterize the base B of V(eG) formed by the open neighborhoods. In such a case one has to add the (a)–(c) also the
following property

(d) (∀U ∈ B)(∀x ∈ U)(∃V ∈ B)V x ⊆ U .

A neighborhood U ∈ V(eG) is symmetric, if U = U−1. Obviously, for every U ∈ V(eG) the intersection U ∩ U−1 ∈
V(eG) is a symmetric neighborhood, hence every neighborhood of eG contains a symmetric one.

Let G and H be topological groups and let f : G→ H be a homomorphism. If f is simultaneously an isomorphism
and a homeomorphism, then f is called a topological isomorphism.

Remark 3.1.6. Due to the homogeneity of topological groups, a homomorphism f : G → H is continuous iff it is
continuous at 1G, i.e., if for every U ∈ VH(1H) there exists V ∈ VG(1G) such that f(V ) ⊆ U .

The group topology τ built in Theorem 3.1.5 starting from a filter V on G with the properties (a)-(c) was defined by
letting the neighborhood filter at g ∈ G to be the filter gV = Vg. The coincidence of these two filters is ensured /actually,
equivalent to) property (c). In case (c) fails, one obtains two topologies τr and τl on G (having as neighborhood base
at g ∈ G the filter Vg and gV, respectively), such that for the pair (G, τr) all right translations x 7→ xg are continuous
(actually, homeomorphisms), and all left translations x 7→ gx are continuous for the pair (G, τr). Pairs with this
property are called right topological groups (left topological groups, respectively). A pair (G, τ) that is simultaneously a
left and a right topological group is called a semi-topological group. The filter of neighborhoods of the neutral element of
a semi-topological group satisfies (c), and every filter with the property (c) on a group G gives rise to a semi-topological
group topology τ on G, defined as above.

The right topological groups were introduced by Namioka [117] and largely used since then. Robert Ellis, in his
two fundamental papers [74, 75] proved that locally compact semitopological groups are topological. Later this was
generalized by A. Bouziad to Čech-complete groups.

Along with right topological groups, left topological groups and semi-topological groups, one can find in the literature
also the following weak versions of the notion of a topological group. A pair (G, τ) is called a:

(a) quasitopological group – when the multiplication map is separately continuous in both variables and the inverse
map is continuous (i.e., it is a semitopological group such that the inverse is continuous);

(b) paratopological group – when the multiplication map is jointly continuous in both variables

The filter of neighborhoods of the neutral element of a quasitopological (paratopological) group is characterized
with the properties (b) and (c) ((a) and (c), resp.).

For paratopological groups, having some compact-like properties (as pseudocompactness, etc.), one has analogues
of Ellis’ theorem. More details on this issue can be found in the survey [140] and the monograph [3].
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3.2 Comparing group topologies

The family L(G) of all group topologies on a group G is naturally ordered by inclusion, having as a top element the
discrete topology of G and as bottom element the indiscrete topology of G. Due to Theorem 3.1.5 one can describe
the poset L(G) by the poset F(G) of all filters V on G satisfying conditions (a)-(c) form the theorem. The poset F(G)
is ordered again by inclusion (of filters) and very often we simply study F(G) in place of the more complicated poset
L(G).

If {τi : i ∈ I} is a family of group topologies on a group G, then their supremum τ = supi∈I τi, taken in the larger
lattice T (G), is a group topology on G with a base of neighborhoods of eG formed by the family of all finite intersection
U1 ∩ U2 ∩ . . . ∩ Un, where Uk ∈ Vτik (eG) for k = 1, 2, . . . , n and the n-tuple i1, i2, . . . , in runs over all finite subsets of
I. Since the poset L(G) has a bottom element, this proves that L(G) is a complete lattice. Nevertheless, L(G) is not
a sublattice of the complete lattice T (G). Indeed, the intersection of group topologies need not be a group topology
(examples will be given below).

Exercise 3.2.1. If G is an abelian group and τ1, τ2 ∈ L(G), prove that the family {U1 + U2 : Ui ∈ V(G,τi)(0), i = 1, 2}
is a base of the filter V(G,inf{τ1,τ2})(0).

Exercise 3.2.2. If (an) is a sequence in G such that an → eG for every member τi of a family {τi : i ∈ I} of group
topologies on a group G, then an → eG also for the supremum supi∈I τi.

3.3 Examples of group topologies

Now we give several series of examples of group topologies, introducing them by means of the filter V(eG) of neighbor-
hoods of eG as explained above. However, in all cases we avoid to treat the whole filter V(1) and we prefer to deal with
an essential part of it, namely a base. Let us recall the precise definition of a base of neighborhoods.

Definition 3.3.1. Let G be a topological group. A family B ⊆ V(eG) is said to be a base of neighborhoods of eG (or
briefly, a base at 1) if for every U ∈ V(eG) there exists a V ∈ B contained in U (such a family will necessarily be a
filterbase).

3.3.1 Linear topologies

Let V = {Ni : i ∈ I} be a filter base consisting of normal subgroups of a group G. Then V satisfies (a)–(c), hence
generates a group topology on G having as basic neighborhoods of a point g ∈ G the family of cosets {gNi : i ∈ I}.
Group topologies of this type will be called linear topologies. Let us see now various examples of linear topologies.

Example 3.3.2. Let G be a group and let p be a prime:

• the pro-finite topology, with {Ni : i ∈ I} all normal subgroups of finite index of G;

• the pro-p-finite topology, with {Ni : i ∈ I} all normal subgroups of G of finite index that is a power of p;

• the p-adic topology, with I = N and for n ∈ N, Nn is the subgroup (necessarily normal) of G generated by all
powers {gpn : g ∈ G}.

• the natural topology (or Z-topology), with I = N and for n ∈ N, Nn is the subgroup (necessarily normal) of G
generated by all powers {gn : g ∈ G}.

• the pro-countable topology, with {Ni : i ∈ I} all normal subgroups of at most countable index [G : Ni].

When G is an abelian group, then the basic subgroup Nn defining the p-adic topology of G has the form Nn = pnG.
Analogously, the basic subgroup Nn defining the natural topology of G has the form Nn = nG.

Exercise 3.3.3. Let G be a group. Prove that

(a) the profinite topology of G is discrete (resp., indiscrete) iff G is finite (G has no subgroups of finite index); in
case G is abelian, the profinite topology of G is indiscrete iff G is divisible;

(b) the pro-p-finite topology of G is discrete (resp., indiscrete) iff G is a finite p-group (resp., G has no subgroups of
index power of p);

(c) the p-adic topology of G is discrete (resp., indiscrete) iff G is a p-group of finite exponent (G is p-divisible);

(d) the natural topology of G is discrete (resp., indiscrete) iff G is a group of finite exponent (G is divisible);
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(e) the pro-countable topology of G is discrete (resp., indiscrete) iff G is countable (G has no subgroups of finite
index); in case G is abelian, the pro-countable topology of G is indiscrete iff G is trivial;

(f) if m and k are co-prime integers, then mG ∩ kG = mkG; hence the natural topology of G coincides with the
supremum of all p-adic topologies of G.

Lemma 3.3.4. Let f : G → H be a homomorphism of groups. Then f is continuous when both groups are equipped
with their profinite (resp., pro-p-finite, p-adic, natural, pro-countable) topology.

Proof. Let N be a subgroup of finite index of H. Then obviously f−1(N) is a subgroup of finite index of G. The other
cases are similar.

This lemma shows that the above mentioned topologies have a “natural” origin, whatever this may mean. Here
comes a definition that makes this idea more precise.

Definition 3.3.5. Assume that every abelian group G is equipped with a group topology τG such that every group
homomorphism f : (G, τG)→ (H, τH) is continuous. Then we say that the class of topologies {τG : G ∈ AbGrp} is a
functorial topology.

The next simple construction belongs to Taimanov. Now neighborhoods of eG are subgroups, that are not necessarily
normal.

Exercise 3.3.6. Let G be a group with trivial center. Then G can be considered as a subgroup of Aut (G) making use
of the internal automorphisms. Identify Aut (G) with a subgroup of the power GG and equip Aut (G) with the group
topology τ induced by the product topology of GG, where G carries the discrete topology. Prove that:

• the filter of all τ -neighborhoods of eG has as base the family of centralizers {cG(F )}, where F runs over all finite
subsets of G;

• τ is Hausdorff;

• τ is discrete iff there exists a finite subset of G with trivial centralizer.

Furstenberg used the natural topology ν of Z (see Example 3.3.2) to find a new proof of the infinitude of prime
numbers.

Exercise 3.3.7. Prove that there are infinitely many primes in Z using the natural topology ν of Z.

(Hint. If p1, p2, . . . , pn were the only primes, then consider the union of the open subgroups p1Z, . . . , pnZ of (Z, ν)
and use the fact that every integer n 6= 0,±1 has a prime divisor, so belongs to the closed set F =

⋃n
i=1 piZ. Therefore

the set {0,±1} = Z \ F is open, so must contain a non-zero subgroup mZ, a contradiction.)

3.3.2 Topologies generated by characters

Let (G,+) be an abelian group. A character of G is a homomorphism χ : G → S. For a character χ and δ > 0 let
UG(χ; δ) := {x ∈ G : |Arg (χ(x))| < δ}.

Example 3.3.8. (a) For a fixed character χ the family B = {UG(χ; π
n+1 ) : n ∈ N}, where the argument Arg (z) of a

complex number z is taken in (−π, π], is a filter base satisfying conditions (a) – (c) of Theorem 3.1.5. We denote by Tχ
the group topology on G generated by B. Then χ : (G, Tχ)→ S is continuous, so kerχ is a closed subgroup of (G, Tχ)
contained in UG(χ; δ) for every δ > 0. On the other hand, every subgroup of G contained in UG(χ;π/2) is contained in
kerχ as well (since S+ = {z ∈ S : Re z ≥ 0} contains no non-trivial subgroups).

(b) With G and χ as above, consider n ∈ Z. Then Tχn ⊆ Tχ, where the character χn : G → T is defined by
(χn)(x) := (χ(x))n. Obviously, Tχ−1 = Tχ. One can show that for χ, ξ ∈ Z∗ with kerχ = ker ξ = 0 the equality Tχ = Tξ
holds true if and only if ξ = χ±1.

For characters χi, i = 1, . . . , n, of G and δ > 0 let

UG(χ1, . . . , χn; δ) := {x ∈ G : |Arg (χi(x))| < δ, i = 1, . . . , n}, (1)

One can describe (1) alternatively, using the target group T instead of S. In such a case characters ξi : G→ T must
be used and the inequality |Arg (χi(x))| < δ must be replaced by ‖ξi(x)‖ < δ/2π, where for z = r + Z ∈ T = R/Z one
has ‖z‖ = ‖r + Z‖ = d(r,Z) = min{(d(r,m) : m ∈ Z} and d is the usual metric in R.
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Example 3.3.9. Let G be an abelian group and let H be a family of characters of G. Then the family

{UG(χ1, . . . , χn; δ) : δ > 0, χi ∈ H, i = 1, . . . , n}

is a filter base satisfying the conditions (a)–(c) of Theorem 3.1.5, hence it gives rise to a group topology TH on G. Since
UG(χ1, . . . , χn; δ) =

⋂n
i=1 UG(χi; δ), TH coincides with the supremum sup{Tχ : χ ∈ H}.

(a) The assignment H 7→ TH is monotone, i.e., if H ⊆ H ′ then TH ⊆ TH′ .
(b) By item (b) of Example 3.3.8, T〈χ〉 = Tχ. This suggests the equation T〈H〉 = TH for every family H. Indeed, the

inclusion ⊇ follows from monotonicity. Let χ1, χ2 ∈ H. Then one can easily show that UG(χ1χ2; δ) ⊆ UG(χ1, χ2; δ/2).
Thus Tχ1χ2

⊆ TH . Along with item (b) of Example 3.3.8 this proves that T〈H〉 ⊆ TH .

We refer to the group topology TH as topology generated by the characters of H. Due to the equation T〈H〉 = TH ,
it is worth studying the topologies TH when H is a subgroup of G∗. The topology TG∗ , generated by all characters of
G, is called Bohr topology of G and the topological group (G, TG∗) will often be written shortly as G#.

Lemma 3.3.10. Let f : G → H be a homomorphism of abelian groups. Then f is continuous when both groups are
equipped with their Bohr topology (i.e., f : G# → H# is continuous).

Proof. Let χ1, . . . , χn ∈ H∗ and δ > 0. Then f−1(UH(χ1, . . . , χn; δ)) = UG(χ1 ◦ f, . . . , χn ◦ f ; δ) is a neighborhood of 0
in G#.

For an abelian group G some of the linear topologies on G are also generated by appropriate families of characters.

Proposition 3.3.11. The profinite topology of an abelian group G is contained in the Bohr topology of G.

Proof. If H is a subgroup of G of finite index, then G/H is finite, so has the form C1 × . . . × Cn, where each Cn is
a finite cyclic group. Let q : G → G/H be the quotient map, let pi : C1 × . . . × Cn → Ci be the i-th projection, let
qi = pi ◦ q : G → Ci. and let Hi = ker qi. Then G/Hi

∼= Ci. Moreover, we can identify each Ci with the unique
cyclic subgroup of T of order mi = |Ci|, so that we can consider qi : G → Ci ↪→ T as a character of G. Then
Hi = ker qi = UG(qi; 1/2mi) ∈ TG∗ . To end the proof note that H =

⋂n
i=1Hi ∈ TG∗ .

Call a character χ : G→ T torsion if there exists n > 0 such that χ vanishes on the subgroup nG := {nx : x ∈ G}.
Equivalently, the character χ is a torsion element of the group G∗, i.e., if o(χ) = n, then χn coincides with the trivial
character. This occurs precisely when the subgroup χ(G) of S is finite cyclic. Therefore, G∗ is torsion-free when G is
divisible.

Lemma 3.3.12. If H is a family of characters of an abelian group G, then the topology TH is contained in the pro-finite
topology of G iff every character of H is torsion.

Proof. Note that for a torsion character χ the basic neighborhood UG(χ;π/2) contains a closed subgroup kerχ of finite
index (as χ(G) ∼= G/ kerχ is finite). Hence kerχ is open, so a neighborhood of 0 in the pro-finite topology. Therefore,
TH is contained in the pro-finite topology of G.

Now assume that TH is contained in the pro-finite topology of G. Then for any χ ∈ H the basic Tχ-neighborhood
UG(χ;π/2) must contain a finite-index subgroup N of G. Then N ⊆ kerχ by Example 3.3.9 (b). Thus kerχ has finite
index, consequently χ is torsion.

Exercise 3.3.13. Let G be an abelian group.

1. Give an example of a group G where profinite topology of G and the Bohr topology of G differ.

2. Let H be the family of all torsion characters χ of G. Prove that the topology TH coincides with the pro-finite
topology on G.

3. Let H be the family of all characters χ of G such that the subgroup χ(G) is finite and contained in the subgroup
Z(p∞) of T. Prove that the topology TH coincides with the pro-p-finite topology on G.

(Hint. 2. The above lemma implies that TH is contained in the pro-finite topology on G. For the proof of the other
inclusion it remains to argue as in the proof of Proposition 3.3.11 and observe that the characters appearing there are
torsion.)

Theorem 3.3.14. The Bohr topology of an abelian group G coincides with the profinite topology of G iff G is bounded
torsion.
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Proof. If G is bounded torsion, of exponent m, then every character of G is torsion, so Lemma 3.3.12 applies. Assume
that the Bohr topology of G coincides with its profinite topology. According to Lemma 3.3.12 G∗ is torsion. This
immediately implies that G is torsion. If rp(G) 6= 0 for infinitely many primes, then we find a subgroup G1 of G
isomorphic to

⊕∞
n=1 Zpn , where pn are distinct primes. Then take an embedding j : G1 → S and extend j to a

character of the whole group G. It cannot be torsion, a contradiction. If only finitely many rp(G) > 0, then at least one
of the primary components tp(G) is infinite. If rp(G) <∞, then tp(G) contains a copy of the group Z(p∞) by Example
2.1.22. Now take an embedding j : Z(p∞)→ S and extend j to a character of the whole group G. It cannot be torsion,
a contradiction. If rp(G) is infinite and tp(G) contains no copies of the group Z(p∞), then either tp(G) is bounded,
or there exists a subgroup of tp(G) isomorphic to L =

⊕
n Z(pn). It is easy to build a surjective homomorphism

h : L→ Z(p∞) ⊆ S. Now extend h to a character h1 : G→ S. Obviously, h1 is not torsion, a contradiction.

Exercise 3.3.15. The Bohr topology of an abelian group G coincides with its pro-p-finite topology of G iff G is a
bounded p-group.

3.3.3 Pseudonorms and invariant pseudometrics in a group

According to Markov a pseudonorm in a group (G, ·) is a map v : G→ R such that for every x, y ∈ G:

(1) v(eG) = 0;

(2) v(x−1) = v(x);

(3) v(xy) ≤ v(x) + v(y).

A pseudonorm with the additional property, v(x) = 0 iff x = eG is called a norm. Note that the values of a
pseudonorm are necessarily non-negative reals, since

0 = v(eG) = v(x−1x) ≤ v(x−1) + v(x) = v(x) + v(x) = 2v(x)

for every x ∈ G.
The norms defined in a (real) vector space are obviously norms of the underlying abelian group (although they have

a stronger property).
Every pseudonorm v generates a pseudometric dv on G defined by dv(x, y) := v(x−1y). This pseudometric is left

invariant in the sense that dv(ax, ay) = dv(x, y) for every a, x, y ∈ G. Conversely, every left invariant pseudometric
on G gives rise to a pseudonorm of G defined by vd(x) = d(x, eG). Obviously, this pseudonorm generates the original
left invariant pseudometric d (i.e., d = dvd). This defines a bijective correspondence between pseudonorms v and left
invariant pseudometrics dv.

Clearly dv is a metric iff v is a norm. Denote by τv the topology induced on G by this pseudometric. A base of
Vτv (eG) is given by the open balls {B1/n(eG) : n ∈ N+}.

Example 3.3.16. Let `2 denote the set of all sequences x = (xn) of real numbers such that the series
∑∞
n=1 x

2
n

converges. Then `2 has a natural structure of vector space (induced by the product RN ⊇ `2). Let ‖x‖ =
√∑∞

n=1 x
2
n.

This defines a norm of the abelian group (`2,+), that provides an invariant metric on `2 making it a metric space and
a topological group.

In order to build metrics generating the topology of a given topological group (G, τ) we need the following lemma
(for a proof see [102, 8.2], [119]). We say that a pseudometric d on G is continuous if the map d : G × G → R+ is
continuous. This is equivalent to have the topology induced by the metric d coarser than the topology τ (i.e., every
open set with respect to the metric d is τ -open).

Lemma 3.3.17. Let G be a topological group and let

U0 ⊇ U1 ⊇ . . . ⊇ Un ⊇ . . . (2)

be symmetric neighborhoods of 1 with U3
n ⊆ Un−1 for every n ∈ N. Then there exists a continuous left invariant

pseudometric d on G such that Un ⊆ B1/n(eG) ⊆ Un−1 for every n.

Exercise 3.3.18. Prove that in the previous lemma H =
⋂∞
n=1 Un is a closed subgroup of G with the property H =

{x ∈ G : d(x, eG) = 0}. In particular, d is a metric iff H = {eG}.

Remark 3.3.19. (a) If the chain (2) has also the property xUnx
−1 ⊆ Un−1 for every x ∈ G and for every n, the

subgroup H is normal and d defines a metric on the quotient group letting d̃(xH, yH) := d(x, y). The metric d̃ induces
the quotient topology on G/H (see §3.4).

(b) Assume U0 is a subgroup of G and all Un = U0 in (2). Then this stationary chain satisfies the hypothesis of the
lemma. The pseudometric d is defined as follows d(x, y) = 0 if xU0 = yU0, otherwise d(x, y) = 1.
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3.3.4 Function spaces as topological groups

The function spaces were the first instances of topological spaces. Since the target of the functions (the reals, the
complex number field, etc.) has usually (at least) a topological group structure itself, the functions spaces have a very
rich structure from both points of view (topology and algebra).

The norm ‖‖∞ defined on the space B(X) of all bounded complex-valued functions gives rise to an invariant metric
whose metric topology is a group topology. This topology takes the name uniform convergence topology.

Let X be a set and let Y be a topological space. The set of all maps X → Y , i.e., the Cartesian power Y X , often
carries also two weaker topologies. The pointwise convergence topology, has as a base all sets of the form {f ∈ Y X :
(∀x ∈ F )f(x) ∈ Ux}, where F is a finite subset of X and Ux (x ∈ F ) are non-empty open sets in Y . In case Y is a
topological group, this topology makes Y X a topological group.

The compact-open topology is defined on the set Z of all Y -valued (continuous) functions X → Y , where X is a
topological spaces and (Y, d) is a metric space. It has as a base of the filter of neighborhoods of f ∈ Z the family of
sets W (K, ε, f) = {g ∈ Z : d(f(x), g(x)) < ε}, where K ⊆ X is compact and ε > 0. In case Y is a topological group,
this topology makes Z a topological group. A base of neighborhoods of the constant function f = eY is given by the
sets W (K, ε) = {g ∈ Z : d(g(x), eY ) < ε}, where K ⊆ X is compact and ε > 0. Since finite sets are compact, this
topology is finer than the pointwise convergence topology.

These topologies have many applications in analysis and topological algebra. The compact-open topology will be
used to define the Pontryagin dual X̂ of an abelian topological group X, with target group Y = S.

Here comes a further specialization from algebra (module theory). Fix and V,U vector spaces over a field K. Now
consider on the space Hom(V,U) of all linear maps V → U the so called finite topology having as typical neighborhoods
of 0 all sets W (F ) = {f ∈ Hom(V,U) : (∀x ∈ F )f(x) = 0}, where F runs over all finite subsets of V . It is easy to see
that W (F ) is a linear subspace of V .

Exercise 3.3.20. (a) Prove that the finite topology of Hom(V,U) coincides with the pointwise convergence topology
when Hom(V,U) is considered as a subset of UV and U carries the discrete topology.

(b) Prove that if dimU <∞, then W (F ) has finite co-dimension in Hom(V,U) (i.e., dimHom(V,U)/W (F ) <∞).
Conclude that in this case Hom(V,U) is discrete iff dimV <∞ as well.

The finite topology is especially useful when imposed on the dual V ∗ = Hom(V,K) of the space V . Then the
continuous linear functionals V ∗ → K of the dual space V equipped with the finite topology (and K discrete) form a
subspace of the second dual V ∗∗ that is canonically isomorphic to the original space V via the usual evaluation map
V → V ∗∗. This fact is known as Lefschetz duality.

3.3.5 Transformation groups

We shall start with the basic example, the permutation groups.
Let X be an infinite set and let G briefly denote the group S(X) of all permutations of X. A very natural topology

on G is defined by taking as filter of neighborhoods of 1 = idX the family of all subgroups of G of the form

SF = {f ∈ G : (∀x ∈ F ) f(x) = x},

where F is a finite subset of X.
This topology can be described also as the topology induced by the natural embedding of G into the Cartesian

power XX equipped with the product topology, where X has the discrete topology.
This topology is also the point-wise convergence topology on G. Namely, if (fi)i∈I is a net in G, then fi converges

to f ∈ G precisely when for every x ∈ X there exists an i0 ∈ I such that for all i ≥ i0 in I one has fi(x) = f(x).

Exercise 3.3.21. If Sω(X) denotes the subset of all permutations of finite support in S(X) prove that Sω(X) is a
dense normal subgroup of G.

Exercise 3.3.22. Prove that S(X) has no proper closed normal subgroups.

Let (X, d) be a compact metric space. Then the group Homeo(X) of all homeomorphisms of X admits a norm
v defined by v(f) = sup{d(x, f(x)) + d(x, f−1(x)) : x ∈ X} for f ∈ Homeo(X). It defines an invariant metric in
Homeo(X) that makes it a topological group.



3 GENERAL PROPERTIES OF TOPOLOGICAL GROUPS 23

3.4 Subgroups and direct products of topological groups

Let G be a topological group and let H be a subgroup of G. Then H becomes a topological group when endowed with
the topology induced by G. Sometimes we refer to this situation by saying that H is a topological subgroup of G. It is
easy to see that the filter V �H= {H ∩ V : V ∈ Vτ (e)} in H satisfies (a)–(c) from Theorem 3.1.5, it coincides precisely
with the filter of neighborhoods of e in the topological group (H, τ �H).

If f : G→ f(G) ⊆ H is a topological isomorphism, where f(G) carries the topology induced by H, then f is called
topological group embedding, or shortly embedding. In such a case f(G) is a topological subgroup of G.

We start with two properties of the open subgroups.

Proposition 3.4.1. Let G be a topological group and let H be a subgroup of G. Then:

(a) H is open in G iff H has a non-empty interior;

(b) if H is open, then H is also closed;

Proof. (a) Let ∅ 6= V ⊆ H be an open set and let h0 ∈ V . Then 1 ∈ h−10 V ⊆ H = h−10 H. Now U = h−10 V is open,
contains 1 and h ∈ hU ⊆ H for every h ∈ H. Therefore H is open.

(b) If H is open then every coset gH is open and consequently the complement G \H is open. So H is closed.

Let us see now how the closure H of a subset H of a topological group G can be computed.

Lemma 3.4.2. Let H be a subset of G. Then with V = V(eG) one has

(a) H =
⋂
U∈V UH =

⋂
U∈V HU =

⋂
U,V ∈V UHV ;

(b) if H is a subgroup of G, then H is a subgroup of G; if H is a normal subgroup, then also H is a normal subgroup;

(c) N = {eG} is a closed normal subgroup.

(d) for x ∈ G, one has {x} = xN = Nx.

Proof. (a) For x ∈ G one has x 6∈ H iff there exists U ∈ V such that xU ∩ H = ∅ = Ux ∩ H. Pick a symmetric U ,
i.e., U = U−1. Then the latter property is equivalent to x 6∈ UH ∪HU . This proves H =

⋂
U∈V UH =

⋂
U∈V HU . To

prove the last equality in (a) note that the already established equalities yield⋂
U,V ∈V

UHV =
⋂
U∈V

(
⋂
V ∈V

UHV ) =
⋂
U∈V

UH ⊆
⋂
U∈V

U2H =
⋂
W∈V

WH = H.

(b) Let x, y ∈ H. According to (a), to verify xy ∈ H it suffices to see that xy ∈ UHU for every U ∈ V. This
follows from x ∈ UH and y ∈ HU for every U ∈ V. If H is normal, then for every a ∈ G and for U ∈ V there
exists a symmetric V ∈ V with aV ⊆ Ua and V a−1 ⊆ a−1U . Now for every x ∈ H one has x ∈ V HV −1, hence
axa−1 ∈ aV HV −1a−1 ⊆ UaHa−1U ⊆ UHU . This proves axa−1 ∈ H according to (a).

(c) follows from (b) with H = {eG}.

Corollary 3.4.3. If A,B are non-empty subsets of a topological group, then A · B ⊆ AB. If one of the sets is a
singleton, then A ·B = AB.

Proof. The inclusion follows from item (a) of the above lemma. (As A ·B ⊆ UABU for every U ∈ V.) In case B = {b}
is a singleton, AB = Ab = tb(A). Since tb is a homeomorphism, one has

A ·B = Ab = tb(A) = tb(A) = Ab ⊆ A ·B.

This proves the missing inlcusion.

Clearly A ·B is dense in AB, as it contains the dense subset AB of AB. Therefore, the equality A ·B = AB holds
true precisely when A · B is closed. We shall give examples showing that this often fails even in the group R. On the
other hand, we shall see that the equality holds true when B is compact.

Proposition 3.4.4. Let {Gi : i ∈ I} be a family of topological groups. Then the direct product G =
∏
i∈I Gi, equipped

with the product topology, is a topological group.

Proof. The filter V(eG) of all neighborhoods of eG in the product topology of G has a base of neighborhoods of the form
Uj1 × . . .× Ujn ×

∏
i∈I\J Gi, where J = {j1, . . . jn} varies among all finite subsets of I and Uj ∈ V(eGj ) for all j ∈ J .

Now it is easy to check that the filter V(eG) satisfies the conditions (a) – (c) from Theorem 3.1.5. For an arbitrary
element a ∈ G one can easily check that V(a) = aV(eG) = V(eG)a. Hence G is a topological group.
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Exercise 3.4.5. Let G = G1 ×G2. Identify G1 and G2 with the subgroups G1 × {e2} and {e1} ×G2, respectively, of
G. For a group topology τ on G denote by τi the topology induced on Gi by τ , i = 1, 2. Prove that τ is coarser than
the product topology τ1 × τ2 of G.

(Hint. Let W be a τ -neighborhood of the identity of G. Find a τ -neighborhood V of the identity of G such that
V 2 ⊆W . Now V ∩Gi is a τi-neighborhood of the identity of Gi for i = 1, 2, hence

τ1 × τ2 3 U = (V ∩G1)× (V ∩G2) = ((V ∩G1)× {e2}).({e1} × (V ∩G2)) ⊆ V 2 ⊆W,

therefore, W is also a τ1 × τ2-neighborhood of the identity of G.)

Theorem 3.4.6. Let G be an abelian group equipped with its Bohr topology and let H be a subgroup of G. Then:

(a) H is closed in G;

(b) the topological subgroup topology of H coincides with its Bohr topology.

Proof. (a) Consider the quotient G/H. Then for every non-zero element y of G/H there exists a character of G/H
that does not vanish at y by Corollary 2.1.12. Thus for every x ∈ G \H there exists a character χ : G→ T such that
χ(H) = 0 and χ(x) 6= 0. Since kerχ is closed in the Bohr topology of G and contains H, we conclude that x 6∈ H.

(b) The inclusion j : H# ↪→ G# is continuous by Lemma 3.3.10. To see that j : H# → j(H) is open take a basic
neighborhood UH(χ1, . . . , χn; δ) of 0 in H#, where χ1, . . . , χn ∈ H∗. By Theorem 2.1.10 each χi can be extended
to some character ξi ∈ G∗, hence UH(χ1, . . . , χn; δ) = H ∩ UG(ξ1, . . . , ξn; δ) is open in j(H). This proves that the
topological subgroup topology of H coincides with its Bohr topology.

Remark 3.4.7. In Lemma 3.3.10 we saw that if f : G→ H is a homomorphism of abelian groups, then f is continuous
when both groups are equipped with their profinite (resp., pro-p-finite, p-adic, natural, pro-countable) topology. The
above theorem shows that f is actually a topological embedding if f is simply the embedding of a subgroup and one
takes the Bohr topology in both groups. One can show that this fails for the profinite, pro-p-finite, p-adic or the natural
topology (take for example G = Q and H = Z).

3.5 Separation axioms

Making use of Lemma 3.4.2 we show now that for a topological group all separation axioms T0 – T3.5 are equivalent.

Proposition 3.5.1. Every topological group is a regular topological space. Moreover, for a topological group G the
following are equivalent:

(a) G is T0.

(b) {eG} = {eG}.

(c) G is Hausdorff;

(d) G is T3 (where T3 stands for ”regular and T1”).

Proof. To prove the first statement it sufficies to check the regularity axiom at eG. Let U ∈ V. Pick a V ∈ V such that
V 2 ⊆ U . Then V ⊆ V 2 ⊆ U by Lemma 3.4.2. This property proves the implication (b) → (d). Indeed, to see that (b)
→ (d) it suffices to deduce from (b) that G is a T1 space. This follows from the fact that all singletons {g} of G are
closed, as {eG} closed.

On the other hand, obviously (d) → (c) → (b). Therefore, the properties (b), (c) and (d) are equivalent and
obviously imply (a).

It remains to prove the implication (a) → (b). Let N = {x} and assume for a contradiction that there exists an
element x ∈ N , x 6= eG. Then {x} = xN = N according to Lemma 3.4.2 (d). Hence, eG ∈ {x}. This contradicts our
assumption that G is T0.

Let us see now that every T0 topological group is also a Tychonov space.

Theorem 3.5.2. Every Hausdorff topological group is a Tychonov space.
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Proof. Let F be a closed set with eG 6∈ F . Then we can find a chain (2) of open neighborhoods (Un) of eG as in
Lemma 3.3.17 such that F ∩ U0 = ∅. Let d be the pseudometric defined in Lemma 3.3.17 and let fF (x) = d(x, F )
be the distance function from F . This function is continuous in the topology induced by the pseudometric. By the
continuity of d it will be continuous also with respect to the topology of G. It suffices to note now that fF (F ) = 0,
while fF (1) = 1. This proves that the space G is Tychonov, as the pseudometric is left invariant, so the separation of
a generic point a ∈ G from a closed set F that does not contain a can be obtained by translating a to the origin and
applying the above argument.

Exercise 3.5.3. Let G be a group. Prove that the following are equivalent:

(a) the profinite topology of G is Hausdorff

(b) G is residually finite.

If G is abelian, then they are equivalent also to

(d) the natural topology of G is Hausdorff.

(e) G1 = {0}.

(Hint. Prove that for an abelian group G the subgroup G1 coincides with the intersection of all subgroups of finite
index of G.)

The above exercise allows one to obtain a purely topological proof of the fact that a reduced abelian group G has
no non-trivial divisible subgroups. Indeed, if D is a divisible subgroup of G, then equip G and D with their profinite
topologies. This will make the inclusion j : D ↪→ G continuous. Since D is indiscrete (so j(G) is an indiscrete subgroup
of G), while G is Hausdorff, this yealds that D = j(G) is trivial.

3.6 Quotients of topological groups

Let G be a topological group and H a normal subgroup of G. Consider the quotient G/H with the quotient topology,
namely the finest topology on G/H that makes the canonical projection q : G → G/H continuous. Since we have a
group topology on G, the quotient topology consists of all sets q(U), where U runs over the family of all open sets of
G (as q−1(q(U)) is open in G in such a case). In particular, one can prove the following important properties of the
quotient topology.

Lemma 3.6.1. Let G be a topological group, let H be a normal subgroup of G and let G/H be equipped with the quotient
topology. Then

(a) the canonical projection q : G→ G/H is open.

(b) If f : G/H → G1 is a homomorphism to a topological group G1, then f is continuous iff f ◦ q is continuous.

Proof. (a) Let U 6= ∅ be an open set in G. Then q−1(q(U)) = HU =
⋃
h∈H hU is open, since each hU is open.

Therefore, q(U) is open in G/H.
(b) If f is continuous, then the composition f ◦ q is obviously continuous. Assume now that f ◦ q is continuous. Let

W be an open set in G1. Then (f ◦ q)−1(W ) = q−1(f−1(W )) is open in G. Then f−1(W ) is open in G/H. Therefore,
f is continuous.

The next theorem is due to Frobenius.

Theorem 3.6.2. If G and H are topological groups, f : G → H is a continuous surjective homomorphism and
q : G → G/ ker f is the canonical homomorphism, then the unique homomorphism f1 : G/ ker f → H, such that
f = f1 ◦ q, is a continuous isomorphism. Moreover, f1 is a topological isomorphism iff f is open.

Proof. Follows immediately from the definitions of quotient topology and open map and Lemma 3.6.1.

As a first application of Theorem 3.6.2 we show that the quotient is invariant under isomorphism in the following
sense:

Corollary 3.6.3. Let G and H be topological groups and let f : G→ H be a topological isomorphism. Then for every
normal subgroup N of G the quotient H/f(N) is isomorphic to G/N .

Proof. Obviously q(N) is a normal subgroup of H and the surjective quotient homomorphism q : H → H/q(N) is
continuous and open by Lemma 3.6.1. Therefore, the composition h = q ◦ f : G → H/f(N) is a surjective continuous
and open homomorphism with kerh = N . Therefore, H/f(N) is isomorphic to G/N by Theorem 3.6.2.
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One can order continuous surjective homomorphisms with a common domain G saying that f : G→ H is projectiv-
elly bigger than f ′ : G→ H ′ when there exists continuous homomorphism ι : H → H ′ such that f ′ = ι ◦ f . In the next
proprosition we show, roughly speaking, that the projective order between continuous surjective open homomorphisms
with the same domain corresponds to the order by inclusion of their kernels.

Proposition 3.6.4. Let G,H1 and H2 be topological abelian groups and let χi : G → Hi, i = 1, 2, be continuous
surjective open homomorphisms. Then there exists a continuous homomorphism ι : H1 → H2 such that χ2 = ι ◦ χ1 iff
kerχ1 ≤ kerχ2. If kerχ1 = kerχ2 then ι will be a topological isomorphism.

Proof. The necessity is obvious. So assume that kerχ1 ≤ kerχ2 holds. By the homomorphism theorem applied to
χi there exists a topological isomorphismsji : G/ kerχi → Hi such that χi = ji ◦ qi, where qi : G → G/ kerχi is the
canonical homomorphism for i = 1, 2. As kerχ1 ≤ kerχ2 we get a continuous homomorphism t that makes commutative
the following diagram

G

q1zzvv
vv
vv
vv
v

χ1

uujjjj
jjjj

jjjj
jjjj

jjjj

q2 $$H
HH

HH
HH

HH
χ2

))TTT
TTTT

TTTT
TTTT

TTTT
T

H1

ι

66G/ kerχ1
j1

oo t //_______ G/ kerχ2
j2 // H2

Obviously ι = j2 ◦ t ◦ j−11 works. If kerχ1 = kerχ2, then t is a topological isomorphism, hence ι will be a topological
isomorphism as well.

Independently on its simplicity, Theorem 3.6.2 is very important since it produces topological isomorphisms as in
the above proof. Openness of the map f is its main ingredient, so from now on we shall be interested in providing
conditions that ensure openness (see also §4.1).

Lemma 3.6.5. Let X,Y be topological spaces and let ϕ : X → Y be a continuous open map. Then for every subspace
P of Y with P ∩ ϕ(X) 6= ∅ the restriction ψ : H1 → P of the map ϕ to the subspace H1 = ϕ−1(P ) is open.

Proof. To see that ψ is open choose a point x ∈ H1 and a neighborhood U of x in H1. Then there exists a neighborhood
W of x in X such that U = H1∩W . To see that ψ(U) is a neighborhood of ψ(x) in P it suffices to note that if ϕ(w) ∈ P
for w ∈W , then w ∈ H1, hence w ∈ H1 ∩W = U . Therefore ϕ(W ) ∩ P ⊆ ϕ(U) = ψ(U).

We shall apply this lemma when X = G and Y = H are topological group and ϕ = q : G→ H is a continuous open
homomorphism. Then the restriction q−1(P ) → P of q is open for every subgroup P of H. Nevertheless, even in the
particular case when q is surjective, the restriction H1 → ϕ(H1) of q to an arbitrary closed subgroup H1 of G need not
be open as the following example shows.

Example 3.6.6. Let G = T and N = 〈1/2〉 be the 2-element cyclic subgroup of G. Then the quotient map q : G→ G/N
is a continuous open homomorphism. Let now H1 = Z(3∞) be the Prüfer subgroup. The restriction q′ : H1 → q(H1) of
q is a continuous isomorphism. To see that q′ is not open it suffices to notice that the sequence xn =

∑n
k=1 1/3k in H1

is not convergent (as it converges to the point 1/2 ∈ T that does not belong to H1). On the other hand, q′(xn)→ 0 in
q(H1) since every neighborhood W of 0 in q′(H1) has the form U ∩H1, where U = q−1(V ) and V is a neighborhood of
0 in T. Hence U is an open set of T containing 0 and 1/2. Hence q′(xn) ∈ U for all sufficiently large n, thus q′(xn)→ 0
in q(H1).

In the next theorem we see some isomorphisms related to the quotient groups.

Theorem 3.6.7. Let G be a topological group, let N be a normal subgroup of G and let p : G→ G/N be the canonical
homomorphism.

(a) If H is a subgroup of G, then the homomorphism p1 : HN/N → p(H), defined by p1(xN) = p(x), is a topological
isomorphism.

(b) If H is a closed normal subgroup of G with N ⊆ H, then p(H) = H/N is a closed normal subgroup of G/N and
the map j : G/H → (G/N)/(H/N), defined by j(xH) = (xN).(H/N), is a topological isomorphism.

(c) If H is a subgroup of G, then the map s : H/H ∩N → (HN)/N, defined by s(x(H ∩N)) = xN , is a continuous
isomorphism. It is a topological isomorphism iff the restriction p �H : H → (HN)/N is open.

(Both in (a) and (b) the quotient groups are equipped with the quotient topology.)
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Proof. (a) As HN = p−1(p(H)) we can apply Lemma 3.6.5 and conclude that the restriction p′ : HN → p(H) of p is
an open map. Now Theorem 3.6.2 appplies to p′.

(b) Since H = HN , item (a) implies that the induced topology of p(H) coincides with the quotient topology of H/N .
Hence we can identify H/N with the topological subgroup p(H) of G/N . Since H = HN , the set (G/N) \ p(HN) =
p(G \ HN) is open, hence p(H) is closed. Finally note that the composition f : G → (G/N)/(H/N) of p with the
canonical homomorphism G/N → (G/N)/(H/N) is open, being the latter open. Applying to the open homomorphism
f with ker f = H Theorem 3.6.2 we can conclude that j is a topological isomorphism.

(c) To the continuous surjective homomorphism p �H : H → (HN)/N apply Theorem 3.6.2 to find a continuous
isomorphism s : H/H ∩N → (HN)/N , that is necessarily defined by s(x(H ∩N)) = xN . By the same theorem, s is a
topological isomorphism iff the map p �H : H → (HN)/N is open.

Example 3.6.6 shows that the continuous isomorphism s : H/H ∩ N → (HN)/N need not be open (take G = T,
H = Z(3∞) and N = 〈1/2〉, so that H ∩N = {0} and s : H → (H +N)/N = q(H) is not open).

Example 3.6.8. Let us see that for every m the quotient group T/Zm is isomorphic to T itself. To this end consider
the subgroup H = 〈1/m〉 of R containing N = Z. Then H/N ∼= Zm so that T/Zm = (R/Z)/(H/Z) ∼= R/H. Hence it
remains to note that R/H ∼= R/Z = T, as the automorphism φ : R→ R defined by φ(x) = x/m takes Z to H.

Here we consider the counterpart of Remark 3.4.7 for quotient groups:

Proposition 3.6.9. If f : G → H is a surjective homomorphism of abelian groups, then f is (continuous and) open
when both groups are equipped with their profinite (resp., pro-p-finite, p-adic, natural, pro-countable) topology.

Proof. For the profinite and for the pro-countable topology use that fact that for a subgroup N of G one has a surjective
homomorphism f1 : G/N → H/f(N) induced by f . The remaining cases are trivial.

Remark 3.6.10. We shall see in the sequel that if G is an abelian group equipped with its Bohr topology and H is
a subgroup of G, then the quotient topology of G/H coincides with the Bohr topology of G/H. Moreover, G has no
convergent sequences [57, §3.4].

3.7 The Hausdorff reflection of a topological group

For a topological group (G, τ) denote by core(G, τ), or simply by core(G), when the topology is clear, the intersection⋂
V(G,τ)(eG).

Proposition 3.7.1. Let (G, τ) be a topological group.

(a) core(G, τ) is a closed normal subgroup of G and coincides with the closure of {eG}.

(b) The quotient group hG := G/core(G, τ), equipped with the quotient topology, is a Hausdorff group.

(c) If f : (G, τ)→ H is a continuous homomorphism to a Hausdorff group H, then there exists a unique continuous
homomorphism f1 : hG→ H such that f1 ◦ q = f , where q : G→ hG is the canonical homomorphism.

The Hausdorff quotient group hG associated to (G, τ) is its best approximation of (G, τ) by Hausdorff groups, as
item (c) of the above proposition shows.

Let us see that the assignment G 7→ hG defines a functor from the category of all topological group to the subcategory
of Hausdorff groups:

Proposition 3.7.2. If f : (G, τ) → (H,σ) is a continuous homomorphism of topological groups, then the map hf :
hG→ hH defined by hf(xcore(G)) := f(x)core(H) is a continuous homomorphism commuting with the canonical maps
qG : G→ hG and qH : H → hH. If f is an embedding, then so is hf .

Proof. Since f(eG) = eH , item (a) of the abobe proposition implies that f(core(G)) ≤ core(H). This proves the
correctness of the definition of hf and the commutativity of the diagram

G
f−−−−→ H

qG

y yqH
hG −−−−→

hf
hH

.

The continuity of hf easily follows from the continuity of f , as hG and hH carry the quotient topologies.
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Now assume that f is an embedding. For simplicity we assume that G is simply a topological subgroup of H
and f is the inclusion. Then obvisouly core(G) = core(H) ∩ G, so that hf is injective. It remains to prove that
hf : hG→ q(G) = hf(hG) is open, when q(G) carries the topologies induced by hH. Let us see first that h := q �G is
open. To this end take a neighborhood W of eH then q(W ∩H) is a generaic neighborhood of e in q(G) equipped with
the quotient topology. Pick a symmetric neighborhood W1 of eH with W 2

1 ⊆W . Then

q(W1) ∩ q(H) ⊆ q(W ∩H) (3)

and this will prove that q(W ∩ H) isa neighborhood of e in q(G) equipped with the topology induced by hH. To
prove (3) pick w ∈ W1 such that q(w) ∈ q(W1) ∩ q(H), i.e., q(w) ∈ q(H). Then there exists h ∈ H such that
w = hy, where y ∈ ker q = core(H). As core(H) ⊆ W1, this implies that h ∈ W 2

1 ⊆ W , so h ∈ W ∩ H. Therefore,
q(w) = q(h) ∈ q(W ∩H) and (3) is proved.

In the next remark we collect further properties of the reflection functor h and the map qG:

Remark 3.7.3. We shall see in the sequel that:
(a) a group G is (locally) compact iff hG is locally compact.
(b) if H is a closed (oepn) subgroup of G, then so is q : G(H) in hG.
(c) If a continuous homomorphism f : (G, τ)→ (H,σ) of topological groups is open (closed), then so if hf .

3.8 Initial and final topologies

Let G be a group and let {Ki : i ∈ I} be a family of topological groups. For a given family F of group homomorphisms
fi : G → Ki one defines the initial topology of the family F as the coarsest group topology that makes continuous all
the homomorphisms fi ∈ F . Namely, the group topology on G obtained by taking as a filter-base of neighborhoods at
1G all finite intersections

⋂n
i=1 f

−1
i (Ui), where Ui ∈ VKi(1Ki), n ∈ N.

There are many instances of initial topologies:

Example 3.8.1. 1. For a topological group K and a subgroup G of K, the induced topology of G is the initial
topology of the inclusion map G ↪→ K.

2. For a family {Ki : i ∈ I} of topological groups, the product topology of G =
∏
i∈I Ki is the initial topology of

the family of the projections pi.

3. Let G be a group, let {Ki : i ∈ I} be the family of all finite quotient groups G/Ni of G equipped with the discrete
topology and let fi : G → Ki be the canonical homomorphism for i ∈ I. Then the pro-finite topology of G
coincides with the initial topology of the family (fi).

4. For a fixed prime p the pro-p-topology of a group G can be described in a similar manner as the pro-finite topology,
using the finite quotients G/Ni of G that are p-groups. The p-adic topology of G is obtained if instead of the all
finite quotient of G that are p-groups, one takes all quotients of G of finite exponent, that is a power of p.

5. To obtain the natural topology of a group G as the initial topology in the above sense, one has to make recourse
to all quotients of G of finite exponent.

6. The co-countable topology of a group G can be obtained as the initial topology in the above sense, if one takes
all countable quotients of G.

7. For a family H of characters fi : G → T, the initial topology of the family H coincides with the topology TH
defined in §3.3.2.

Now we define an inverse system of topological groups and inverse limit of such a system.

Definition 3.8.2. Let (I,≤) be a directed set.

(a) An inverse system of topological groups, indexed by (I,≤), is a family of {Gi : i ∈ I} topological groups and
continuous homomorphisms νij : Gj → Gi for every pair i ≤ j in I, such that for every triple i ≤ j ≤ k in I one
has νij ◦ νjk = νik.

(b) An inverse limit, of an inverse system as in (a) is a topological group G and a family of continuous homomorphisms
pi : G → Gi satisfying pi = νij ◦ pj for every pair i ≤ j in I, such that for every topological group H and every
family of continuous homomorphisms qi : H → Gi satisfying qi = νij ◦ qj for every pair i ≤ j in I there exists a
unique continuous homomorphism f : H → G such that qi = pi ◦ f for every i ∈ I.
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We denote by lim
←
Gi the inverse limit determined in item (b).

Exercise 3.8.3. (a) Prove that the inverse limit lim
←
Gi is uniquely determined up to isomorphism.

(b) Let {Gi : i ∈ I} and νij : Gj → Gi be as in (a) of the above definition. In the product H =
∏
i∈I Gi consider the

subgroup G = {x = (xi) ∈ H : νij(xj) = xi whenever i ≤ j} and denote by pi the restriction to G of the canonical
projection H → Gi. Prove that

(b1) G ∼= lim
←
Gi, i.e., the group G along with the family of projections pi is an inverse limit of {Gi : i ∈ I} and

νij : Gj → Gi.

(b2) the group G has the initial topology of the family of all projections G→ Gi.

Exercise 3.8.4. For G and fi : G→ Ki as above, let τi denote the initial topology of the single homomorphism fi ∈ F .
Then the initial topology of the family F coincides with supi∈I τi.

Exercise 3.8.5. For G and fi : G→ Ki as above, a homomorphism h : H → G is continuous w.r.t. the initial topology
of the family F on G iff all compostions fi ◦ h : H → Ki are continuous.

Lemma 3.8.6. If for G and fi : G→ Ki as above the homomorphisms fi ∈ F separate the points of G, then the initial
topology of the family F coincides with the topology induced on G by the injective diagonal map ∆F : G→

∏
i∈I Ki of

the family F , defined by ∆F (x) = (fi(x)) ∈
∏
i∈I Ki.

Exercise 3.8.7. Let G be a group and let T = {τi : i ∈ I} be a family of group topologies on G. Then sup{τi : i ∈ I}
coincides with the initial topology of the family F of all maps idG : G → (G, τi) and also with the topology induced on
G by the diagonal map ∆F : G→

∏
i∈I G = GI of the family F , i.e., (G, inf{τi : i ∈ I}) is topologically isomorphic to

the diagonal subgroup ∆ = {x = (xi) ∈ GI : xi = xj for all i, j ∈ I} of
∏
i∈I(Gi, τi).

LetG be a group and let {Ki : i ∈ I} be a family of topological groups. For a given family F of group homomorphisms
fi : Ki → G one defines the final topology of the family F as the finest group topology on G that makes continuous
all the homomorphisms fi ∈ F . The prominent example in this direction is the quotient topology of a quotient group
G = K/N of a topological group K. It coincides with the final topology of the quotient homomorphism q : K → G.

Exercise 3.8.8. For G and fi : Ki → G as above, a homomorphism h : G→ H is continuous w.r.t. the final topology
of the family F on G iff all compostions h ◦ fi : Ki → H are continous.

Exercise 3.8.9. (a) If V,U are vector spaces over a field K, then the finite toplogy of Hom(V,U) is the initial topology
of all linear maps f : V → U , when U is equipped with the discrete topology.

(b) If U = K = Zp is a finite field, then the finite topology of V ∗ coincides with the pro-finite topology of V ∗.

4 Closed subgroups, metrizability and connectedness

4.1 Closed subgroups

Theorem 4.1.1. If G is a Hausdorff topological group containing a dense abelian group, then G is abelian.

Proof. Let H be the dense abelian subgroup of H. Take x, y ∈ H. Then x = limi hi and y = limi gi, where h : i, g : i ∈
H. It is easy to see that [x, y] = limi[hi, gi] = eG as H is abelian. Then [x, y] = eG by the uniqueness of the limit in
Hausdorff groups (see Lemma 2.2.32(d)).

Exercise 4.1.2. Let G be a Hausdorff topological group. Prove that the centralizer of an element g ∈ G is a closed
subgroup. In particular, the center Z(G) is a closed subgroup of G.

Exercise 4.1.3. If G is a Hausdorff topological group containing a dense nilpotent group, then G is nilpotent.

Next we see that the discrete subgroups of the Hausdorff groups are always closed.

Proposition 4.1.4. Let G be a topological group and let H be a subgroup of G. If H is discrete and G is T1, then H
is closed.

Proof. Since H is discrete there exists U ∈ V(eG) with U ∩H = {eG}. Choose V ∈ V(eG) with V −1 · V ⊆ U . Then
|xV ∩ H| ≤ 1 for every x ∈ G, as h1 = xv1 ∈ xV ∩ H and h2 = xv2 ∈ xV ∩ H give h−11 h2 ∈ V −1 · V ∩ H = {eG},
hence h1 = h2. Therefore, if x 6∈ H one can find a neighborhood W ⊆ xV of x with W ∩H = ∅, i.e., x 6∈ H. Indeed, if
xV ∩H = ∅, just take W = xV . In case xV ∩H = {h} for some h ∈ H, one has h 6= x as x 6∈ H. Then W = xV \ {h}
is the desired neighborhood of x.
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Example 4.1.5. (a) Let H be a Hausdorff non-trivial group and let G = H ×N , where N is an indiscrete non-trivial
group. If H is discrete, then H × {eG} is a discrete dense (hence, non-closed) subgroup of G.

(b) In general, if H is a Hausdorff subgroup of a topological group G, then H ∩N = {eG} and H = H ·N , where
N = {eG}. Hence, one can identify H · {eG} with the Cartesian product H ×N , in an obvious way. If moreover H is
discrete, then the Cartesian product carries the product topology, where H is discrete and N is indiscrete (argue as in
the proof of Proposition 4.1.4).

Exercise 4.1.6. Prove that for every infinite set X and every group topology on the permutation group S(X) the
subgroups Sx = {f ∈ S(X) : f(x) = x}, x ∈ X, are either closed or dense. (Hint. Prove that Sx is a maximal subgroup
of S(X), see Fact 5.2.3.)

Now we relate proprieties of the quotient G/H to those of the subgroup H of G.

Lemma 4.1.7. Let G be a topological group and let H be a normal subgroup of G. Then:

(1) the quotient G/H is discrete if and only if H is open;

(2) the quotient G/H is Hausdorff if and only if H is closed.

Proof. let q : G→ G/H denote the quotient homomorphism. (1) If G/H is discrete, then H = q−1(1G/H) is open since
the singleton {1G/H} is open. Conversely, if H is open, then {1G/H} = q(H) is open since the map q is open.

(2) If G/H is Hausdorff, then H = q−1(1G/H) is closed since the singleton {1G/H} is closed. Conversely, if H is
closed, then {1G/H} = q(H) is closed by Theorem 3.6.7.

Lemma 4.1.8. Let (G, τ) be a topological group and let N denote the closure of {eG}. Then:

(1) N is an indiscrete closed normal subgroup of G and the quotient G/N is Hausdorff,

(2) τ coincides with the initial topology of G w.r.t. the quotient map G→ G/N ;

(3) every continuous homomorphism f : G → H, where H is a Hausdorff group, factorizes through the quotient
G→ G/N .

Proof. (1) Since N is contained in every neighborhood of 1, closed normal subgroup N of G is indiscrete. The last
assertion follows from item (2) of the previous lemma.

(2) Let V ∈ V(eG) be open. Then N ⊆ V . Fix arbitrarily v ∈ V . Then there exits U ∈ V(1) such that xU ⊆ V .
Since N ⊆ U ⊆ V , we conclude that xN ⊆ V . This proves that V N ⊆ V . On the other hand, V ⊆ V N , hence
V = V N = q−1(q(N)). Hence τ coincides with the initial topology w.r.t. the quotient map G→ G/N .

(3) Let L = ker f . Then L is a closed normal subgroup of G, so L ≥ N . By Frobenius theorem there exists
a continuous injective homomorphism f1 : G/L → H, such that f = f1 ◦ π, where π : G → G/L is the quotient
homomorphism. By L ≥ N there exists a homomorphism h : G/N → G/L such that π = h ◦ q. Moreover, h
is continuous by the continuity of π = h ◦ q. Now the composition η = f1 ◦ h : G/N → H provides the desired
factorization f = η ◦ q.

This lemma shows that the properties of G are easily determined from the corresponding properties of the Hausdorff
quotient G/N . This is why, it is not restrictive to work mainly with Hausdorff groups. Therefore, most often the
topological groups in the sequel will be assumed to be Hausdorff.

The next example shows that the closed subgroups of R have a very simple description. The closed subgroups of
Rn will be described in §8.1.

Example 4.1.9. For a proper closed subgroup H of R the following properties are equivalent:

(a) H is cyclic;

(b) H is discrete;

(c) H is closed.

Indeed, it is easy to see that cyclic subgroups of R are discrete, so (a) → (b). By Proposition 4.1.4 (b) → (c).
To prove (c) → (a) assume that H is a proper closed non-trivial subgroup of R. Let h0 be the greatest lower bound

of the set {h ∈ H : h > 0}. Assume that h0 = 0. Then for every ε > 0 there exists h ∈ (0, ε) ∩H. Therefore, H hits
every open interval of R of lenght ≤ 2ε. This proves that H is dense in R, a contradiction. Therefore, h0 > 0. Now it is
easy to see that that H = 〈h0〉. Indeed, for a positive h ∈ H pick the greatest integer m such that mh0 ≤ h < (m+1)h0.
Then 0 ≤ h−mh0 < h0 and h−mh0 ∈ H. Hence h−mh0 = 0. Therefore, h ∈ 〈h0〉.



4 CLOSED SUBGROUPS, METRIZABILITY AND CONNECTEDNESS 31

Consequently, a subgroup of R is dense iff it is not cyclic. This gives easy examples of closed subgroups H1, H1 of R
such that H1 +H2 is not closed, actually it is dense in R. Indeed, suhc H1, H2 are necessarily cyclic. Take H1 = Z and
H2 any cyclic subgroup generated by an irrational number. Then H1 +H2 is not cyclic, so by what we proved above,
it cannot be dense. In fact, it is dense in R.

We shall see now that a cyclic subgroup need not be closed in general (compare with Example 4.1.9). A topological
group G is monothetic if there exists x ∈ G with 〈x〉 dense in G.

Exercise 4.1.10. Prove that:

(a) a Hausdorff monothetic group is necessarily abelian.

(b) T is monothetic.

Is T2 monothetic? What about TN?

(Hint. (a) Apply Theorem 4.1.1. (b) By Example 4.1.9 the subgroup N = Z + 〈a〉 of R is dense whenever a ∈ R
is rational. Then the image a+ Z of a in T generates a dense subgroup of T. The questions have positive answer, see
§8.1.)

Let G be an abelian group and let H be a family of characters of G. Then the characters of H separate the points
of G iff for every x ∈ G, x 6= 0, there exists a character χ ∈ H with χ(x) 6= 1.

Exercise 4.1.11. Let G be an abelian group and let H be a family of characters of G. Prove that the topology TH is
Hausdorff iff the characters of H separate the points of G.

Proposition 4.1.12. Let G be an infinite abelian group and let H = Hom(G,S). Then the following holds true:

(a) the characters of H separate the points of G,

(b) the Bohr topology TH is Hausdorff and non-discrete.

Proof. (a) This is Corollary 2.1.12.
(b) According to Exercise 4.1.11 item (a) implies that the topology TH is Hausdorff. Suppose, for a contradiction,

that TH is discrete. Then there exist χi ∈ H, i = 1, . . . , n and δ > 0 such that U(χ1, . . . , χn; δ) = {0}. In particular,
H =

⋂n
i=1 kerχi = {0}. Hence the diagonal homomorphism f = χ1 × . . . × χn : G → Sn is injective and f(G) ∼= G

is an infinite discrete subgroup of Sn. According to Proposition 3.4.1 f(G) is closed in Sn and consequently, compact.
The compact discrete spaces are finite, a contradiction.

Example 4.1.13. (a) Countable Hausdorff topological groups are normal, since a regular Lindelöff space is normal
(Theorem 2.2.13).

(b) The situation is not so clear for uncountable ones. Contrary to what we proved in Theorem 3.5.2 Hausdorff
topological groups need not be normal as topological spaces (see Exercise 4.1.14). A nice “uniform” counter-example
to this was given by Trigos: for every uncountable group G the topological group G# is not normal as a topological
space.

Exercise 4.1.14. ∗ The group Zℵ1 equipped with the Tychonov topology (where Z is discrete) is not a normal space
[102].

4.1.1 Metrizability of topological groups

Theorem 4.1.15. (Birkhoff-Kakutani) A topological group is metrizable iff it has a countable base of neighborhoods of
eG.

Proof. The necessity is obvious as every point x in a metric space has a countable base of neighborhoods. Suppose now
that G has countable base of neighborhoods of eG. Then one can build a chain (2) of neighborhoods of eG as in Lemma
3.3.17 that form a base of V(eG), in particular,

⋂∞
n=1 Un = {eG}. Then the pseudometric produced by the lemma is a

metric that induces the topology of the group G because of the inclusions Un ⊆ B1/n ⊆ Un−1.

Exercise 4.1.16. Prove that subgroups, countable products and quotients of metrizable topological groups are metrizable.

Theorem 4.1.17. Prove that every Hausdorff topological abelian group admits a continuous isomorphism into a product
of metrizable abelian groups.
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Proof. For x ∈ G, x 6= 0 choose an open neighborhood U of 0 with x ∈ U . Build a sequence {Un} of symmetric
open neighborhoods of 0 with U0 ⊆ U and Un + Un ⊆ Un−1. Then HU =

⋂∞
n=1 Un is a closed subgroup of G .Let

τU be the group topology on the quotient G/HU having as a local base at 0 the countable family {fU (Un)}, where
fU : F → G/HU is the canonical homomorphism. According to Birkhoff-Kakutani’s theorem, (G/H, τU ) is metrizable.
Now take the product of all groups (G/H, τU ). To conclude observe that the diagonal map of the family fU into the
product of all groups (G/H, τU ) is continuous and injective.

This theorem fails for non-abelian groups. Indeed, for an uncountable set X the permutation group S(X), equipped
with the topology described in §3.3.5, admits no non-trivial continuous homomorphism to a metrizable abelian group.

Exercise 4.1.18. Let G be an abelian group and let H be a countable set of characters of G. Prove that TH is
metrizable.

4.2 Connectedness in topological groups

For a topological group G we denote by c(G) the connected component of eG and we call it briefly connected component
of G.

Before proving some basic facts about the connected component, we need an elementary property of the connected
sets in a topological groups.

Lemma 4.2.1. Let G be a topological group.

(a) If C1, C2, . . . , Cn are connected sets in G, then also C1C2 . . . Cn is connected.

(b) If C is a connected set in G, then the set C−1 as well as the subgroup generated by C are connected.

Proof. (a) Let us conisder the case n = 2, the general case easily follows from this one by induction. The subset C1×C2

of G × G is connected. Now the map µ : G × G → G defined µ(x, y) = xy is continuous and µ(C1 × C2) = C1C2. So
by Lemma 2.2.31 also C1C2 is connected.

(a) For the first part it suffices to note that C−1 is a continuous image of C under the continuous map x 7→ x−1.
Since C is connected, by Lemma 2.2.31 we conclude that C−1 is connected as well.

To prove the second assertion consider the set C1 = CC−1. It is connected by the previous lemma and obviously
eG ∈ C1. Moreover, C2

1 ⊇ C ∪ C−1. It remains to note now that the subgroup generated by C1 coincides with the
subgroup generated by C. Since the former is the union of all sets Cn1 , n ∈ N and each set Cn1 is connected by item
(a), we are done.

Proposition 4.2.2. The connected component c(G) a topological group G is a closed normal subgroup of G. The
connected component of an element x ∈ G is simply the coset xc(G) = c(G)x.

Proof. To prove that c(G) is stable under multiplication it suffices to note that c(G)c(G) is still connected (applying
item (a) of the above lemma) and contains eG, so must be contained in the connected component c(G). Similarly,
an application of item (b) implies that c(G) is stable also w.r.t. the operation x 7→ x−1, so c(G) is a subgroup of G.
Moreover, for every a ∈ G the image ac(G)a−1 under the conjugation is connected and contains 1, so must be contained
in the connected component c(G). So c(G) is stable also under conjugation. Therefore c(G) is a normal subgroup. The
fact that c(G) is closed is well known.

To prove the last assertion it suffices to recall that the maps y 7→ xy and y 7→ yx are homeomorphisms.

Our next aim is to see that the quotient G/c(G) is totally disconnected. We need first to see that connectedness
and total disconnectedness are properties stable under extension:

Proposition 4.2.3. Let G be a topological group and let N be a closed normal subgroup of G.

(a) If both N and G/N are connected, then also G is connected.

(b) If both N and G/N are totally disconnected, then also G is totally disconnected.

Proof. Let q : G→ G/N be the canonical homomorphism.
(a) Let A 6= ∅ be a clopen set of G. As every coset aN is connected, one has either aN ⊆ A or aN ∩A = ∅. Hence,

A = q−1(q(A)). This implies that q(A) is a non-empty clopen set of the connected group G/N . Thus q(A) = G/N .
Consequently A = G.

(b) Assume C is a connected set in G. Then q(C) is a connected set of G/N , so by our hypothesis, q(C) is a
singleton. This means that C is contained in some coset xN . Since xN is totally disconnected as well, we conclude
that C is a singleton. This proves that G is totally disconnected.
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Lemma 4.2.4. If G is a topological group, then the group G/c(G) is totally disconnected.

Proof. Let q : G→ G/c(G) be the canonical homomorphism and let H be the inverse image of c(G/c(G)) under q. Now
apply Proposition 4.2.3 to the group H and the quotient group H/c(G) ∼= c(G/c(G)) to conclude that H is connected.
Since it contains c(G), we have H = c(G). Hence G/c(G) is totally disconnected.

For a topological group G denote by a(G) the set of points x ∈ G connected to eG by an arc, i.e., a continuous map
f : [0, 1] → G such that f(0) = eG and f(1) = x. We call arc the image f([0, 1]) in G and arc component the subset
a(G). Obviously, all points of the image belong to a(G).

Exercise 4.2.5. (a) If G,H are topological groups, then a(G×H) = a(G)× a(H).
(b) If f : G→ H is a continuous map of topological groups with f(eG) = eH , then f(a(G)) ⊆ a(H).
(c) Let G be an abelian topological group and let l(G) be the set of elements x ∈ G such that there exists a continuous

homomorphism f : R → G with f(1) = x. Check that l(G) is a subgroup of G contained in a(G). If G is also locally
compact, a(G) = l(G).

(d) Can (a) be extended to arbitrary products?

The following theorem can be proved in analogy with Proposition 4.2

Proposition 4.2.6. For a topological group G the arc component a(G) of G is a normal subgroup of G.

Proof. Use the previous exercise and the continuity of the multiplication map G×G→ G to show that a(G)a(G) ⊆ a(G).
Analogously, using the continuity of the inverse x 7→ x−1, prove that a(G)−1 ⊆ a(G). This proves that a(G) is a
subgroup of G. To show that a(G) is stable under conjugation, use again item (b) of the above exercise and the
continuity of conjugation.

In general, a(G) need not be closed in G. Actually, for every compact connected group G the subgroup a(G) is
dense in G.

For a topological group G denote by Q(G) the quasi-component of the neutral element eG of G (i.e., the intersection
of all clopen sets of G containing eG) and call it quasi-component of G.

Proposition 4.2.7. For a topological group G the quasi-component Q(G) is a closed normal subgroup of G. The
quasi-component of x ∈ G coincides with the coset xQ(G) = Q(G)x.

Proof. Let x, y ∈ Q(G). To prove that xy ∈ Q(G) we need to verify that xy ∈ O for every clopen set O containing eG.
Let O be such a set, then x, y ∈ O. Obviously Oy−1 is a clopen set containing 1, hence x ∈ Oy−1. This implies xy ∈ O.
Hence Q(G) is stable under multiplication. For every clopen set O containing 1 the set O−1 has the same propriety,
hence Q(G) is stable also w.r.t. the operation a 7→ a−1. This implies that Q(G) is a subgroup. Moreover, for every
a ∈ G and for every clopen set O containing 1 also its image aOa−1 under the conjugation is a clopen set containing
eG. So Q(G) is stable also under conjugation. Therefore Q(G) is a normal subgroup. Finally, as an intersection of
closen sets, Q(G) is closed.

Remark 4.2.8. It follows from Lemma 2.2.28 that c(G) = Q(G) for every compact topological group G. Actually,
this remains true also in the case of locally compact groups G (cf. 7.4.5) as well as countably compact groups [32].

In the next remark we discuss zero-dimensionality.

Remark 4.2.9. (a) It follows immediately from Proposition 3.4.1 that every topological group with linear topology
is zero-dimensional; in particular, totally disconnected.

(b) Every countable Hausdorff topological group G is zero-dimensional (this is true for regular topological spaces
as well, but not for Hausdorff ones). Indeed, using the Tychonov separation axiom, for every U ∈ V(eG) we
can separate eG from the complement of U by a continuous functions f : G → [0, 1] such that f(eG) = 0
and f(G \ U) = 0. The subset X = f(G) of [0, 1] is countable, hence there exists a ∈ [0, 1] \ f(G). Then
W = (a, 1]∩ f(G) is a clopen subset of f(G). Therefore f−1(W ) ⊆ U is a clopen set containing eG. Hence G has
a base of clopen sets.

We shall see in the sequel that for locally compact groups or compact groups the implication from item (a) can be
inverted (see Theorem 7.4.1). On the other hand, the next example shows that local compactness is essential.

Example 4.2.10. The group Q/Z is zero-dimensional but has no proper open subgroups.
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Exercise 4.2.11. Let G be a connected group and let H be a Hausdorff topological group. Prove that
(a) if h : G→ H a continuous homomorphism, then h is trivial wheneverkerh has non-empty interior;
(b) if G,H are abelian and f1, f2 : G → H are continuous homomorphisms that coincide on some neighborhood of

0 in G, then f1 = f2.

Hint. (a) Use that fact that ker f is an open subgroup of G, so must coincide with G. (b) Apply (a) to the
homomorphism h = f1 − f2 : G→ H.

Exercise 4.2.12. If n ∈ N and f1, f2 : Rn → H are continuous homomorphisms to some Hausdorff topological group
H that coincide on some neighborhood of 0 in Rn, then f1 = f2.

4.3 Group topologies determined by sequences

Let G be an abelian group and let (an) be a sequence in G. The question of the existence of a Hausdorff group topology
that makes the sequence (an) converge to 0 is not only a mere curiosity. Indeed, assume that some Hausdorff group
topology τ makes the sequence (pn) of all primes converge to zero. Then pn → 0 would yield pn − pn+1 → 0 in τ , so
this sequence cannot contain infinitely many entries equal to 2. This would provide a very easy negative solution to
the celebrated problem of the infinitude of twin primes (actually this argument would show that the shortest distance
between two consecutive primes converges to ∞).

Definition 4.3.1. [132] A one-to-one sequence A = {an}n in an abelian group G is called a T-sequence is there exists
a Hausdorff group topology on G such that an → 0.

We shall see below that the sequence (pn) of all primes is not a T -sequence in the group Z (see Exercise 9.2.17). So
the above mentioned possibility to resolve the problem of the infinitude of twin primes does not work.

Let (an) be a T-sequence in an abelian group G. Hence the family {τi : i ∈ I} of Hausdorff group topologies on the
group G such that an → 0 in τi is non-empty. Let τ = supi∈I τi, then by Exercise 3.2.2 an → 0 in τ as well. Clearly,
this is the finest group topology in which an converges to 0. This is why we denote it by τA or τ(an). Since we consider
only sequences without repetition, the convergence to zero an → 0 depends only on the set A = {an}n, it does not
depend on the enumeration of the sequence.

Before discussing the topology τ(an) and how T -sequences can be described in general we consider a couple of
examples:

Example 4.3.2. (a) Let us see that the sequences (n2) and (n3) are not a T -sequence in Z. Indeed, suppose for a
contradiction that some Hausdorff group topology τ on Z makes n2 converge to 0. Then (n+1)2 converges to 0 as
well. Taking the difference we conclude that 2n+ 1 converges to 0 as well. Since obviously also 2n+ 3 converges
to 0, we conclude, after substraction, that the constant sequence 2 converges to 0. This is a contradiction, since
τ is Hausdorff. We leave the case (n3) as an exercise to the reader.

(b) A similar argument proves that the sequence Pd(n), where Pd(x) ∈ Z[x] is a fixed polynomial with degPd = d > 0,
is not a T -sequence in Z.

Protasov and Zelenyuk [131] established a number of nice properties of the finest group topology τ(an) on G that
makes (an) converge to 0.

For an abelian group G and subsets A1, . . . , An . . . of G we denote by A1+. . .+An the set of all sums g = g1+. . .+gn,
where gi ∈ Ai for every i = 1, . . . , n. Let

A1 + . . .+An + . . . =

∞⋃
n=1

A1 + . . .+An.

If A = {an}n is a sequence in G, for m ∈ N denote by A∗m the “tail” {am, am+1, . . .} and let Am = {0}∪A∗m ∪−A∗m
For k ∈ N let A(k,m) = Am + . . .+Am (k times).

Remark 4.3.3. The existence of a finest group topology τA on an abelian group G that makes an arbitrary given
sequence A = {an}n in G converge to 0 is easy to prove as far as we are not interested on imposing the Hausdorff
axiom. Indeed, as an converges to 0 in the indiscrete topology, τA is simply the supremum of all group topologies τ on
G such that an converges to 0 in τ . This gives no idea on how this topology looks like. One can easily describe it as
follows.

Let m1, . . . ,mn, . . . be a sequence of natural numbers. Denote by A(m1, . . . ,mn) the set Am1
+ . . .+Amn and let

A(m1, . . . ,mn, . . .) = Am1
+ . . .+Amn + . . . =

⋃
n

A(m1, . . . ,mn)
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Then the family BA of all sets A(m1, . . . ,mn, . . .), when m1, . . . ,mn, . . . vary in NN, is a filter base, satisfying the
axioms of group topology. The group topology τ defined in this way satisfies the required conditions. Indeed, obviously
an → 0 in (G, τ) and τ contains any other group topology with this property. Consequently, τ = τA.

Note that
A(k,m) ⊆ A(m1, . . . ,mn, . . .), (1)

for every k ∈ N, where m = max{m1, . . . ,mk}. The sets A(k,m), for k,m ∈ N, form a filter base, but the filter they
generate need not be the filter of neighborhoods of 0 in a group topology. The utility of this family becomes clear now.

Theorem 4.3.4. A sequence A = {an}n in an abelian group G is a T-sequence iff

∞⋂
m=1

A(k,m) = 0 for every k ∈ N. (2)

Proof. Obviously the sequence A = {an}n is a T-sequence iff the topology τA is Hausdorff. Clearly, τA is Hausdorff iff

∞⋂
m1,...,mn,...

A(m1, . . . ,mn, . . .) = 0. (∗)

If τA is Hausdorff, then (2) holds by (1). It remains to see that (2) implies (*). We prove first that

∞⋂
i=1

(A(m1, . . . ,mk) +Ai) = A(m1, . . . ,mk) (∗∗)

for every k ≥ 0 and every sequence m1, . . . ,mk, where we agree to let A(m1, . . . ,mk) = 0 when k = 0 (i.e., the sum is
empty). We argue by induction on k. The case k = 0 follows directly from (2) with k = 1.

Now assume that k > 0 and (**) is true for k−1 and all sequences m1, . . . ,mk−1. Take g ∈
⋂∞
i=1A(m1, . . . ,mk)+Ai.

Then for every j = 1, 2, . . . , k and every i ∈ N one can find bj(i) ∈ Amj and a(i) ∈ Ai such that g = b1(i) + . . . +
bk(i) + a(i). If there exists some j = 1, 2, . . . , k, such that bj(i) = 0 for infinitely many i, then g ∈

∑
ν 6=j Amν +Ai for

infinitely many i, so

g ∈
∞⋂
i=1

∑
ν 6=j

Amν +Ai

 =
∑
ν 6=j

Amν ⊆ A(m1, . . . ,mk)

by our inductive hypothesis. Hence we may assume that bj(i) 6= 0 for all i > i0 and for all j = 1, . . . , k. Then for all i > i0
and for all j = 1, . . . , k there exists mj(i) ≥ mj so that bj(i) = ±amj(i) ∈ Amj . If limimj(i) = ∞ for all j = 1, . . . , k,
then g ∈ A(k + 1, i) for infinitely many i, so g ∈

⋂∞
i=1A(k + 1, i) = 0 by (2). Hence g = 0 ∈ A(m1, . . . ,mn). If there

exists some j = 1, . . . , k such that mj(i) = l for some l ≥ mj and infinitely many i, then g∗ = g∓ al ∈
∑
ν 6=j Amν +Ai

for infinitely many i, so

g∗ ∈
∞⋂
i=1

∑
ν 6=j

Amν +Ai

 =
∑
ν 6=j

Amν

by our inductive hypothesis. Therefore

g = al + g∗ ∈ al +
∑
ν 6=j

Amν ⊆ A(m1, . . . ,mn).

This proves (**)
To prove (*) assume that g ∈ G is non-zero. Then using our assumption (2) and (**) it is easy to build inductively

a sequences (mn) such that g 6∈ A(m1, . . . ,mn) for every n, i.e., g 6∈ A(m1, . . . ,mn, . . .).

Since every infinite abelian group G admits a non-discrete metrizable group topology, there exist non-trivial (i.e.,
having all members non-zero) T -sequences.

A notion similar to T -sequence, but defined with respect to only topologies induced by characters, will be given in
§11.5. From many points of view it turns out to be easier to deal with than T -sequence. In particular, we shall see
easy sufficient condition for a sequence of integers to be a T -sequence.

We give without proof the following technical lemma that will be useful in §11.5.

Lemma 4.3.5. [132] For every T -sequence A = {an} in Z there exists a sequence {bn} in Z such that for every choice
of the sequence (en), where en ∈ {0, 1}, the sequence qn defined by q2n = bn + en and q2n−1 = an, is a T -sequence.
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Exercise 4.3.6. (a)∗ Prove that there exists a T -sequence (an) in Z with limn
an+1

an
= 1 [132] (see also Example

11.5.4).

(b)∗ Every sequence (an) in Z with limn
an+1

an
= +∞ is a T -sequence [132, 10] (see Theorem 11.5.3).

(c)∗ Every sequence (an) in Z such that limn
an+1

an
∈ R is transcendental is a T -sequence [132].

5 Markov’s problems

5.1 The Zariski topology and the Markov topology

Let G be a Hausdorff topological group, a ∈ G and n ∈ N. Then the set {x ∈ G : xn = a} is obviously closed in G.
This simple fact motivated the following notions due to Markov [115].

A subset S of a group G is called:

(a) elementary algebraic if there exist an integer n > 0, a1, . . . , an ∈ G and ε1, . . . , εn ∈ {−1, 1} such that

S = {x ∈ G : xε1a1x
ε2a2 . . . an−1x

εn = an},

(b) algebraic if S is an intersection of finite unions of elementary algebraic subsets,

(c) unconditionally closed if S is closed in every Hausdorff group topology of G.

Since the family of all finite unions of elementary algebraic subsets is closed under finite unions and contains all
finite sets, it is a base of closed sets of some T1 topology ZG on G, called the Zariski topology3. Clearly, the ZG-closed
sets are precisely the algebraic sets in G.

Analogously, the family of all unconditionally closed subsets of G coincides with the family of closed subsets of a T1
topology MG on G, namely the infimum (taken in the lattice of all topologies on G) of all Hausdorff group topologies
on G. We call MG the Markov topology of G. Note that (G,ZG) and (G,MG) are quasi-topological groups, i.e.,
the inversion and translations are continuous. Nevertheless, when G is abelian (G,ZG) and (G,MG) are not group
topologies unless they are discrete.

Since an elementary algebraic set of G must be closed in every Hausdorff group topology on G, one always has
ZG ⊆MG. In 1944 Markov [115] asked if the equality ZG = MG holds for every group G. He himself showed that the
answer is positive in case G is countable [115]. Moreover, in the same manuscript Markov attributes to Perel’man the
fact that ZG = MG for every Abelian group G (a proof has never appeared in print until [61]). An example of a group
G with ZG 6= MG was given by Gerchard Hesse [101].

Exercise 5.1.1. Show that if (G, ·) is an abelian group, then every elementary algebraic set of G has the form {x ∈
G : xn = a}, a ∈ G.

5.2 The Markov topology of the symmetric group

Let X be an infinite set. In the sequel we denote by τX the pointwise convergence topology of the infinite symmetric
group S(X) defined in §3.3.5. It turns out that the Markov topology of S(X) coincides with τX :

Theorem 5.2.1. Then Markov topology on S(X) coincides with the topology τX of pointwise convergence of S(X).

This theorem follows immediately from the following old result due to Gaughan.

Theorem 5.2.2. ([57]) Every Hausdorff group topology of the infinite permutation group S(X) contains the topology
τX .

The proof of this theorem follows more or less the line of the proof exposed in [57, §7.1] with several simplifications.
The final stage of the proof is preceded by a number of claims (and their corollaries) and two facts about purely algebraic
properties of the group S(X) (5.2.3 and 5.2.6). The claims and their corollaries are given with complete proofs. To
give an idea about the proofs of the two algebraic facts, we prove the first and a part of the second one.

We say for a subset A of S(X) that A is m-transitive for some positive integer m if for every Y ⊆ X of size at most
m and every injection f : Y → X there exists a ∈ A that extends f . 4 The leading idea is that a transitive subset A
of S(X) is placed “generically” in S(X), whereas a non-tranisitve one is a subset of some subgroup of S(X) that is a

3Some authors call it also the verbal topology [23], we prefer here Zariski topology coined by most authors [13].
4Note that a countable subset H of S(X) cannot be transitive unless X itself is countable.
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direct product S(Y )× S(X \ Y ). (Here and in the sequel, for a subset Y of X we tacitly identify the group S(Y ) with
the subgroup of S(X) consisting of all permutations of S(X) that are identical on X \ Y .)

The first fact concerns the stabilizers Sx = S{x} = {f ∈ S(X) : f(x) = x} of points x ∈ X. They consitute a
prebase of the filter of neighborhoods of idX in τX .

Fact 5.2.3. For every x ∈ X the subgroup Sx of S(X) is maximal.

Proof. Assume H is a subgroup of S(X) properly containing Sx. To show that H = S(X) take any f ∈ S(X). If
y = f(x) coincides with x, then f ∈ Sx ⊆ H and we are done. Assume y 6= x. Get h ∈ H \ Sx. Then z = h(x) 6= x, so
x 6∈ {z, y}. There exists g ∈ S(X) such that g(x) = x, g(y) = z and g(z) = y. Then g ∈ Sx ⊆ H and f(x) = g(h(x)) = y,
so h−1g−1f(x) = x and h−1g−1f ∈ Sx ∩G ⊆ H. So f ∈ ghH = H.

Claim 5.2.4. Let T be a Hausdorff group topology on S(X). If a subgroups of S(X) of the form Sx is T -closed, then
it is also T -open.

Proof. As Sx is T -closed, for every fixed y 6= x the set Vy = {f ∈ S(X) : f(x) 6= y} is T -open and contains 1. So there
exists a symmetric neighborhood W of 1 in T such that W.W ⊆ Vy. By the definition of Vy this gives Wx ∩Wy = ∅.
Then either |X\Wx| = |X| or |X\Wy| = |X|. Suppose this occurs with x, i.e., |X\Wx| = |X|. Then one can find a
permutation f ∈ S(X) that sends Wx \ {x} to the complement of Wx and f(x) = x. Such an f satisfies:

fWf−1 ∩W ⊆ Sx

as fWf−1(x) meets Wx precisely in the singleton {x} by the choice of f . This proves that Sx is T -open.
Analogous argument works for Sy when |X\Wy| = |X|.

Corollary 5.2.5. If T be a Hausdorff group topology on S(X) that does not contain τX , then all subgroups of S(X) of
the form Sx are T -dense.

Proof. Since the subgroups Sx of S(X) form a prebase of the filter of neighborhoods of idX in S(X), out hypothesis
implies that some subgroup Sx is not T -open. By Claim 5.2.4 Sx is not T -closed either. By Fact 5.2.3 Sx is T -dense.
Since all subgroups of the form Sy are conjugated, this implies that stabilizers Sy are T -dense.

This was the first step in the proof. The next step will be establishing that Sx,y are never dense in any Hausdorff
group topology on S(X) (Corollary 5.2.9).

In the sequel we need the subgroup S̃x,y := Sx,y × S({x, y}) of S(X) that contains Sx,y as a subgroup of index 2.

Note that S̃x,y is precisely the subgroup of all permutations in S(X) that leave the doubleton {x, y} set-wise invariant.

Fact 5.2.6. For any doubleton x, y in X the following holds true:

(a) the subgroup S̃x,y of S(X) is maximal;

(b) every proper subgroup of S(X) properly containing Sx,y coincides with one of the subgroups Sx, Sy or S̃x,y.

Proof. (a) This is [57, Lemmas 7.1.4].
(b) Assume H is a subgroup of S(X) properly containing Sx,y. Assume that H does not coincide with Sx, Sy. We

aim to show that H = S̃x,y, i.e., (xy) ∈ H.
Since Sx,y is a maximal subgroup of Sx by Fact 5.2.3 that H ∩ Sx = Sx,y. Analogously, H ∩ Sy = Sx,y. Take

f ∈ H ⊆ Sx,y. Then f 6∈ Sx and f 6∈ Sy. Let z = f(x) and t = f(y). Then z 6= x and t 6= y. Consider the following
three cases:

1. {z, t} = {x, y}. This is possible precisely when z = y and t = x. Then (xy)f ∈ Sx,y ⊆ H. Thus (xy) ∈ H.

2. {z, t} ∩ {x, y} = ∅. Then (zt) ∈ Sx,y ⊆ H, so (xy) = f−1(zt)f ∈ H.

3. {z, t} ∩ {x, y} = {z} = {y} (so x 6= t). Let u = f−1(x) and consider first the case when u 6= t. Then (ut) ∈ Sxy,
so g = f(ut) ∈ H. Then h = (xyt)−1g = (tyx)g ∈ Sxy, so (xyt) ∈ H. If u = t, then h = (xyt)−1f = (tyx)f ∈ Sxy, so
we again have (xyt) ∈ H. Choose an arbitrary v ∈ X \ {x, y, t}. Then (tv) ∈ Sxy. Since

f1 = (xt)(yv) = (xyt)(tv)(xyt)(tv) ∈ H,

we have an element f1 ∈ H with f1(x) = t 6∈ {x, y} and f1(y) 6∈ {x, y}. Applying the argument from case 2 we conclude
that (xy) ∈ H.
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Claim 5.2.7. Let T be a Hausdorff group topology on S(X), then there exists a T -nbd of 1 that is not 2-transitive.

Proof. Assume for a contradiction that all T -neighborhoods of idX that are 2-transitive. Fix distinct u, v, w ∈ X. We
show now that the 3-cycle (u, v, w) ∈ V for every arbitrarily fixed T -neighborhood of idX . Indeed, choose a symmetric
T -neighborhood W of idX such that W 2 ⊆ V . Let f be the transposition (uv). Then U = fWf ∩ W ∈ T is a
neighborhood of 1 and fUf = U . Since U is 2-transitive there exists g ∈ U such that g(u) = u and g(v) = w. Then
(u, v, w) = gfg−1f ∈W · (fUf) ⊆W 2 ⊆ V .

Claim 5.2.8. Let T be a group topology on S(X). Then

(a) every T-nbd V of idX in S(X) is transitive iff every stabilizer Sx is T-dense;

(b) every T -nbd V of idX in S(X) is m-transitive iff every stabilizer SF with |F | ≤ m is T -dense.

Proof. Assume that some (hence all) Sz is T -dense in S(X). To prove that V is transitive consider a pair x, y ∈ X.
Let t = (xy). By the T -density of Sx the T -nbd t−1V of t−1 meets Sx, i.e., for some v ∈ V one has t−1v ∈ Sx. Then
v ∈ tSx obviously satisfies vx = y.

A similar argument proves that transitivity of each T-nbd of 1 entails that every stabilizer Sx is T -dense.
(b) The proof in the case m > 1 is similar.

What we really need further on (in particular, in the next corollary) is that the density of the stabilizers Sx,y imply
that every T -nbd V of idX in S(X) is 2-transitive.

Corollary 5.2.9. Let T be a Hausdorff group topology on S(X). Then Sx,y is T -dense for no pair x, y in X.

Proof. Follows from claims 5.2.7 and 5.2.8

Proof of Theorem 5.2.2. Assume for a contradiction that T is a Hausdorff group topology on S(X) that does not
contain τX . Then by corollaries 5.2.5 and 5.2.9 all subgroups of the form Sx are T -dense and no subgroup of the form
Sx,y is T -dense. Now fix a pair x, y ∈ X and let Gx,y denote the T -closure of Sx,y. Then Gx,y is a proper subgroup of
S(X) containing Sx,y. Since Sx is dense, Gx,y cannot contain Sx, so Sx ∩ Gx,y is a proper subgroup of Sx containing
Sx,y. By Claim 5.2.3 applied to Sx = S(X \ {x}) and its subgroup Sx,y (the stabilizer of y in Sx), we conclude that
Sx,y is a maximal subgroup of Sx. Therefore, Sx ∩ Gx,y = Sx,y. This shows that Sx,y is a T -closed subgroup of Sx.
By Claim 5.2.4 applied to Sx = S(X \ {x}) and its subgroup Sx,y, we conclude that Sx,y is a T -open subgroup of Sx.
Since Sx is dense in S(X), we can claim that Gx,y is a T -open subgroup of S(X). Since Sx is a proper dense subgroup
of S(X), it is clear that Sx cannot contain Gx,y. Analogously, Sy cannot contain Gx,y either. So Gx,y 6= Sx,y is a

proper subgroup of S(X) containing Sx,y that does not coincide with Sx or Sy. Therefore Gx,y = S̃x,y by Fact 5.2.6.

This proves that S̃x,y is T -open. Since all subgroups of the form S̃x,y are pairwise conjugated, we can claim that all

subgroups S̃x,y is T -open.
Now we can see that the stabilizers SF with |F | > 2 are T-open, as

SF =
⋂
{S̃x,y : x, y ∈ F, x 6= y}.

This proves that all basic neighborhoods SF of 1 in τX are T -open. In particular, also the subgroups Sx are T -open,
contrary to our hypothesis.

5.3 Existence of Hausdorff group topologies

According to Proposition 4.1.12 every infinite abelian group admits a non-discrete Hausdorff group topology, for example
the Bohr topology. This gives immediately the following

Corollary 5.3.1. Every group with infinite center admits a non-discrete Hausdorff group topology.

Proof. The center Z(G) of the group G has a non-discrete Hausdorff group topology τ by the above remark. Now
consider the family B of all sets of the form aU , where a ∈ G and U is a non-empty τ -subset of Z(G). It is easy to see
that it is a base of a non-discrete Hausdorff group topology on G.

In 1946 Markov set the problem of the existence of a (countably) infinite group G that admits no Hausdorff group
topology beyond the discrete one. Let us call such a group a Markov group. Obviously, G is a Markov group precisely
when MG is discrete. A Markov group must have finite center by Corollary 5.3.1.
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According to Proposition 3.5.1, the closure of the neutral element of every topological group is always a normal
subgroup of G. Therefore, a simple topological group is either Hausdorff, or indiscrete. So a simple Markov group G
admits only two group topologies, the discrete and the indiscrete ones.

The equality ZG = MG established by Markov in the countable case was intended to help in finding a countably
infinite Markov group G. Indeed, a countable group G is Markov precisely when ZG is discrete. Nevertheless, Markov
failed in building a countable group G with discrete Zariski topology; this was done much later, in 1980, by Ol′shanskii
[118] who made use of the so called Adian groups A = A(m,n) (constructed by Adian to negatively resolve the famous
1902 Burnside problem on finitely generated groups of finite exponent). Let us sketch here Ol′shanskii’s elegant short
proof.

Example 5.3.2. [118] Let m and n be odd integers ≥ 665, and let A = A(m,n) be Adian’s group having the following
properties

(a) A is generated by n-elements;

(b) A is torsion-free;

(c) the center C of A is infinite cyclic.

(d) the quotient A/C is infinite, of exponent m, i.e., ym ∈ C for every y ∈ A.5

By (a) the group A is countable. Denote by Cm the subgroup {cm : c ∈ C} of A. Let us see that (b), (c) and (d)
jointly imply that the Zariski topology of the infinite quotient G = A/Cm is discrete (so G is a countably infinite
Markov group). Let d be a generator of C. Then for every x ∈ A\C one has xm ∈ C\Cm. Indeed, if xm = dms, then
(xd−s)m = eA for some s ∈ Z, so xd−s = eA and x ∈ C by (b). Hence

for every u ∈ G\{eG} there exists a ∈ C\Cm, such that either u = a or um = a. (3)

As |C/Cm| = m, every u ∈ G\{eG} is a solution of some of the 2(m− 1) equations in (3). Thus, G\{eG} is closed in
the Zariski topology ZG of G. Therefore, ZG is discrete.

Now we recall an example, due to Shelah [137], of an uncountable group which is non-topologizable. It appeared
about a year or two earlier than the ZFC-example of Ol′shanskii exposed above.

Example 5.3.3. [137] Under the assumption of CH there exists a group G of size ω1 satisfying the following conditions
(a) (with m = 10000) and (b) (with n = 2):

(a) there exists m ∈ N such that Am = G for every subset A of G with |A| = |G|;

(b) for every subgroup H of G with |H| < |G| there exist n ∈ N and x1, . . . , xn ∈ G such that the intersection⋂n
i=1 x

−1
i Hxi is finite.

Let us see that G is a Markov group (i.e., MG is discrete)6. Assume T be a Hausdorff group topology on G. There
exists a T -neighbourhood V of eG with V 6= G. Choose a T -neighbourhood W of eG with Wm ⊆ V . Now V 6= G and
(a) yield |W | < |G|. Let H = 〈W 〉. Then |H| = |W | · ω < |G|. By (b) the intersection O =

⋂n
i=1 x

−1
i Hxi is finite for

some n ∈ N and elements x1, . . . , xn ∈ G. Since each x−1i Hxi is a T -neighbourhood of eG, this proves that eG ∈ O ∈ T .
Since T is Hausdorff, it follows that {eG} is T -open, and therefore T is discrete.

One can see that even the weaker form of (a) (with m depending on A ∈ [G]|G|), yields that every proper subgroup
of G has size < |G|. In the case |G| = ω1, the groups with this property are known as Kurosh groups (in particular,
this is a Jonsson semigroup of size ω1, i.e., an uncountable semigroup whose proper subsemigroups are countable).

Finally, this remarkable construction from [137] furnished also the first consistent example to a third open problem.
Namely, a closer look at the above argument shows that the group G is simple. As G has no maximal subgroups, it shows
also that taking Frattini subgroup7 “does not commute” with taking finite direct products (indeed, Fratt(G) = G,
while Fratt(G×G) = ∆G the “diagonal” subgroup of G×G).

5i.e., the finitely generated infinite quotient A/C negatively resolves Burnside’s problem.
6Hesse [101] showed that the use of CH in Shelah’s construction of a Markov group of size ω1 can be avoided.
7the Frattini subgroup of a group G is the intersection of all maximal subgroups of G.
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5.4 Extension of group topologies

The problem of the existence of (Hausdorff non-discrete) group topologies can be considered also as a problem of
extension of (Hausdorff non-discrete) group topologies.

The theory of extension of topological spaces is well understood. If a subset Y of a set X carries a topology τ , then
it is easy to extend τ to a topology τ∗ on X such that (Y, τ) is a subspace of (X, τ∗). The easiest way to do it is to
consider X = Y ∪ (X \ Y ) as a partition of the new space (X, τ∗) into clopen sets and define the topology of X \ Y
arbitrarily. Usually, one prefers to define the extension topology τ∗ on X in such a way to have Y dense in X. In such
a case the extensions of a given space (Y, τ) can be described by means of appropriate families of open filters of Y (i.e.,
filters on Y having a base of τ -open sets).

The counterpart of this problem for groups and group topologies is much more complicated because of the presence
of group structure. Indeed, let H be a subgroup of a group G and assume that τ is a group topology of H. Now one
has to build a group topology τ∗ on G such that (H, τ) is a topological subgroup of (G, τ∗). The first idea to extend τ
is to imitate the first case of extension considered above by declaring the subgroup H a τ∗-open topological subgroup
of the new topological group (G, τ∗). Let us note that this would immediately determine the topology τ∗ in a unique
way. Indeed, every coset gH of H must carry the topology transported from H to gH by the translation x 7→ gx, i.e.,
the τ∗-open subsets of gH must have the form gU , where U is an open subset of (H, τ). In other words, the family
{gU : ∅ 6= U ∈ τ} is a base of τ∗. This idea has worked in the proof of Corollary 5.3.1 where H was the center of G.
Indeed, this idea works in the following more general case.

Lemma 5.4.1. Let H be a subgroup of a group G such that G = HcG(H). Then for every group topology τ on H the
above described topology τ∗ is a group topology of G such that (H, τ) is an open topological subgroup of (G, τ∗).

Proof. The first two axioms on the neighborhood base are easy to check. For the third one pick a basic τ∗-neighborhood
U of 1 in G. Since H is τ∗-open, we can assume wlog that U ⊆ H, so U is a τ -neighborhood of 1. Let x ∈ G. We have
to produce a τ∗-neighborhood V of 1 in G such that x−1V x ⊆ U . By our hypothesis there exist h ∈ H, z ∈ cG(H),
such that x = hz. Since τ is a group topology on H there exist V ∈ VH,τ (1) such that h−1V h ⊆ U . Then

x−1V x = z−1h−1V hz ⊆ z−1Uz = U

as z ∈ cG(H). This proves that τ∗ is a group topology of G .

Clearly, the condition G = HcG(H) is satisfied when H is a central subgroup of G. It is satisfied also when H is a
direct summand of G. On the other hand, subgroups H satisfying G = HcG(H) are normal.

Two questions are in order here:

• is the condition G = HcG(H) really necessary for the extension problems;

• is it possible to definite the extension τ∗ in a different way in order to have always the possibility to extend a
group topology?

Our next theorem shows that the difficulty of the extension problem are not hidden in the special features of the
extension τ∗.

Theorem 5.4.2. Let H be a normal subgroup of the group G and let τ be a group topology on H. Then the following
are equivalent:

(a) the extension τ∗ is a group topology on G;

(b) τ can be extended to a group topology of G;

(c) for every x ∈ G the automorphism of H induced by the conjugation by x is τ -continuous.

Proof. The implication (a)→ (b) is obvious, while the implication (b)→ (c) follows from the fact that the conjugations
are continuous in any topological group. To prove the implication (c) → (a) assume now that all automorphisms of
N induced by the conjugation by elements of G are τ -continuous. Take the filter of all neighborhoods of 1 in (H, τ∗)
as a base of neighborhoods of 1 in the group topology τ∗ of G. This works since the only axiom to check is to find
for every x ∈ G and every τ∗-nbd U of 1 a τ∗-neighborhood V of 1 such that V x := x−1V x ⊆ U . Since we can
choose U, V contained in H, this immediately follows from our assumption of τ -continuity of the restrictions to H of
the conjugations in G.

Now we give an example showing that the extension problem cannot be resolved for certain triples G,H, τ of a
group G, its subgroup H and a group topology τ on H.
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Example 5.4.3. In order to produce an example when the extension is not possible we need to produce a triple G,H, τ
such that at least some conjugation by an element of G is not τ -continuous when considered as an automorphism of
H. The best tool to face this issue is the use of semi-direct products.

Let us recall that for groups K, H and a group homomorphism θ : K → Aut(H) one defines the semi-direct product
G = H oθ K, where we shall identify H with the subgroup H × {1K} of G and K with the subgroup {1H} ×K. In
such a case, the conjugation in G by an element k of K restricted to H is precisely the automorphism θ(k) of H. Now
consider a group topology τ on H. According to Theorem 5.4.2 τ can be extended to a group topology of G iff for
every k ∈ K the automorphism θ(k) of H is τ -continuous. (Indeed, every element x ∈ G has the form x = hk, where
h ∈ H and k ∈ K; hence it remains to note that the conjugation by x is composition of the (continuous) conjugation
by h and the conjugation by k. )

In order to produce the required example of a triple G,H, τ such that τ cannot be extended to G it suffices to find
a group K and a group homomorphism θ : K → Aut(H) such that at least one of the automorphisms θ(k) of H is
τ -discontinuous. Of course, one can simplify the construction by taking the cyclic group K1 = 〈k〉 instead of the whole
group K, where k ∈ K is chosen such that the automorphisms θ(k) of H is τ -discontinuous. A further simplification
can be arranged by taking k in such a way that the automorphism f = θ(k) of H is also an involition, i.e., f2 = idH .
Then H will be an index two subgroup of G.

Here is an example of a topological abelian group (H, τ) admitting a τ -discontuous involition f . Then the triple
G,H, τ such that τ cannot be extended to G is obtained by simply taking G = H o 〈f〉, where the involition f acts on
H. Take as (H, τ) the torus group T with the usual topology. Then T is algebraically isomorphic to (Q/Z)⊕c

⊕
Q, so

T has 2c many involutions. Of these only the involutions ±idT of T are continuous (see Lemma 12.2.1).

Let us conclude now with a series of examples when the extension problem has always a positive solution.

Example 5.4.4. Let p be a prime number. If the group of p-adic integers N = Zp is a normal subgroup of some
group G, then the p-adic topology of N can be extended to a group topology on G. Indeed, it suffices to note that if
ξ : N → N is an automorphism of N , then ξ(pnN) = pnN . Since the subgroups pnN define the topology of N , this
proves that every automorphism of N is continuous. Now Theorem 5.4.2 applies.

Clearly, the p-adic integers can be replaced by any topological group N such that every automorphism of N is

continuous (e.g., products of the form
∏
p Z

kp
p × Fp, where kp < ω and Fp is a finite abelian p-group).

Exercise 5.4.5. Let H be a discrete subgroup of a topological group G. Then H is isomorphic to the semi-direct product
of H and {eG}, carrying the product topology, where H is discrete and {eG} is indiscrete.

6 Cardinal invariants and completeness

6.1 Cardinal invariants of topological groups

The cardinal invariants of the topological groups are cardinal numbers, say ρ(G), associated to every topological group
G such that if G is topologically isomorphic to the topological group H, then ρ(G) = ρ(H). For example, the size |G|
is the simplest cardinal invariant of a topological group, it does not depend on the topology of G. Here we shall be
interested in measuring the minimum size of a base (of neighborhoods of eG) in a topological group H, as well as other
cardinal functions related to H. The related cardinal invariants defined below are the weight w(G), the character χ(G)
and the density character d(G).

It is important to relate the bases (of neighborhoods of 1) in H to those of a subgroup G of H.

Exercise 6.1.1. If G is a subgroup of a topological group H and if B is a base (of neighborhoods of eG) in H then a
base (of neighborhoods of 1) in G is given by {U ∩G : U ∈ B}.

Now we consider the case when G is a dense subgroup of H.

Lemma 6.1.2. If G is a dense subgroup of a topological group H and B is a base of neighborhoods of eG in G, then

{UH : U ∈ B} is a base of neighborhoods of e in H.

Proof. Since the topological group H is regular, the closed neighborhoods form a base at eG in H. Hence for a
neighborhood V 3 eG in H one can find another neighborhood V0 3 eG such that V0 ⊆ V . Since G ∩ V0 is a
neighborhood of e in G, there exists U ∈ B such that U ⊆ G ∩ V0. There exists also an open neighborhood W of e in

H such that U = W ∩ G. Obviously, one can choose W ⊆ V0. Hence U
H

= W as G is dense in H and W is open in

H. Thus U
H

= W ⊆ V 0 ⊆ V is a neighborhood of e in H.

Lemma 6.1.3. Let G be a dense subgroup of a topological group H and let B be a base of symmetric neighborhoods of
eG in H. Then {gU : U ∈ B, g ∈ G} is a base of the topology of H.
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Proof. Let x ∈ H and let x ∈ O be an open set. Then there exists a U ∈ B with xU2 ⊆ O. Pick a g ∈ G ∩ xU . Then
x−1g ∈ U , so g−1x ∈ U = U−1. So

x ∈ gU = xx−1gU ⊆ xU2 ⊆ O.

For a topological group G set d(G) = min{|X| : X is dense in G},

w(G) = min{|B| : B is a base of G} and χ(G) = min{|B| : B a base of neighborhoods of eG in G}.

Lemma 6.1.4. Let G be a topological group. Then:

(a) d(G) ≤ w(G) ≤ 2d(G);

(b) |G| ≤ 2w(G) if G is Hausdorff.

Proof. (a) To see that d(G) ≤ w(G) choose a base B of size w(G) and for every U ∈ B pick a point dU ∈ U . Then the
set D = {dU : U ∈ B} is dense in G and |D| ≤ w(G).

To prove w(G) ≤ 2d(G) note that G is regular, hence every open base B on G contains a base Br of the same size
consisting of regular open set. Let B be a base of G of regular open sets and let D be a dense subgroup of G of size
d(G). If U, V ∈ B, with U ∩D = V ∩D, then U = U ∩D = V ∩D = V . Being U and V regular open, the equality
U = V implies U = V . Hence the map U 7→ U ∩D from B to the power set P (D) is injective. Therefore w(G) ≤ 2d(G).

(b) To every point x ∈ G assign the set Ox = {U ∈ B : x ∈ U}. Then the axiom T2 guarantees that the map
x 7→ Ox from G to the power set P (B) is injective. Therefore, |G| ≤ 2w(G).

Remark 6.1.5. Two observations related to item (b) of the above lemma are in order here.

• The equality in item (b) can be attained (see Theorem 8.3.10).

• One cannot remove Hausdorffness in item (b) (any large indiscrete group provides a counter-example). This
dependence on separation axioms is due to the presence of the size of the group in (b). We see in the next exercise
that the Hausdorff axiom is not relevant as far as the other cardinal invariants are involved.

Lemma 6.1.6. w(G) = χ(G) · d(G) for every topological group G.

Proof. The inequality w(G) ≥ χ(G) is obvious. The inequality w(G) ≥ d(G) has already been proved in Lemma 12.4.20
(a). This proves the inequality w(G) ≥ χ(G) · d(G).

To prove the inequality w(G) ≤ χ(G) · d(G) pick a dense subgroup D of G of size d(G) and a base B of symmetric
open sets of V(eG) with |B| = χ(G) and apply Lemma 6.1.3.

Lemma 6.1.7. Let H be a subgroup of a topological group G. Then:

(a) w(H) ≤ w(G) and χ(H) ≤ χ(G);

(b) if H is dense in G, then w(G) = w(H), χ(G) = χ(H) and d(G) ≤ d(H).

Proof. (a) Follows from Exercise 6.1.1, as |{U ∩G : U ∈ B}| ≤ |B| for every base (of neighborhoods of eG) in G.
(b) We prove first χ(G) = χ(H). The inequality χ(G) ≥ χ(H) follows from item (a). To prove the opposite

inequality fix a base B of neighborhoods of eG in H with |B| = χ(H). By Lemma 6.1.2, B∗ = {UH : U ∈ B} is a base
of neighborhoods of e in G. Since |B∗| ≤ B = χ(H), this proves χ(G) ≤ χ(H).

The inequality d(G) ≤ d(H) follows from the fact that the dense subsets of H are dense in G as well.
The inequality w(G) ≥ w(H) follows from item (a). According to Lemma 12.4.20, H has a dense subgroup D with

|D| ≤ w(H). By the above argument χ(G) = χ(H). Now w(G) = χ(G)d(G) ≤ χ(H)d(H) = w(H), where the first and
the last equality follow from Lemma 6.1.6, the inequality follows from d(G) ≤ d(H).

Lemma 6.1.8. If f : G → H is a continuous surjective homomotphism, then d(H) ≤ d(G). If f is open, then also
w(H) ≤ w(G) and χ(H) ≤ χ(G).

Proof. If D is a dense subset of G, then f(D) is a dense subset of H with |f(D)| ≤ |D|. This proves the first assertion.
The second assertion follws from the fact that if B is a base (of neigborhoods of eG), then B0 = {f(B) : B ∈ B} is a
base (of neigborhoods of eH) with |B0| ≤ |B|.

Theorem 6.1.9. If {Gi : i ∈ I} is a family of non-trivial topological groups and G =
∏
i∈I Gi, then:

(a) |I| · sup{d(Gi) : i ∈ I} ≥ d(G) ≥ sup{d(Gi) : i ∈ I},
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(b) χ(G) = |I| · sup{χ(Gi) : i ∈ I} and w(G) = |I| ·max{w(Gi) : i ∈ I}.

Proof. (a) follows from tha fact that if Di is a dense countable subgroup of Gi for each i ∈ I, then D =
⊕

i∈I Di is a
dense subgroup of

∏
i∈I Gi with |D| ≤ |I| ·max{|Di|}.

(b) . . .

Example 6.1.10. (a) The groups G with d(G) ≤ ℵ0 are precisely the separable groups. If {Gi : i ∈ I} is a family of
separable groups, then d(

∏
i∈I Gi) ≤ max{ℵ0, |I|}. (Indeed, if Di is a dense countable subgroup of Gi for each i ∈ I,

then D =
⊕

i∈I Di is a dense subgroup of
∏
i∈I Gi with |D| ≤ max{ℵ0, |I|}.) A stronger, yet non-trivial, inequality

holds for this type of products: d(
∏
i∈I Gi) ≤ κ, whenever |I| ≤ 2κ (in particular,

∏
i∈I Gi is separable whenever

|I| ≤ c), but we are going to prove it in §. . . by means of Pontryagin duality.
(b) Obviously, χ(G) ≤ w(G). According to Birkhoff-Kakutani theorem, χ(G) is countable for a Hausdorff group G

precisely when G is metrizable. Hence, every Hausdorff group of countable weight is metrizable.
(c) Let {Gi : i ∈ I} be an infinite family of non-trivial metrizable Hausdorff groups. Then G =

∏
i∈I Gi has

χ(G) = |I|. If I is countable, then Exercise 6.1.10 applies. In the general case, for every i ∈ I let Bi be a countable
base of the filter VGi(1). Then for any finite subset J ⊆ I and for Ui ∈ Bi when i ∈ J , let WJ be the neighborhood∏
i∈J Ui ×

∏
i∈I\J Gi of 1 in G. Then the family (WJ), when J runs over the family of finite subsets of I and Ui ∈ Bi

for i ∈ J , has size at most |I| and forms a base of VG(1). On the other hand, since every neighborhood O in VGi(1)
contains a subgroup HJ :=

∏
i∈J{1i} ×

∏
i∈I\J Gi ⊆ WJ for some finite subset J ⊆ I, it is clear that less than |I|

neighborhoods cannot give trivial intersection. Hence every base of the filter VG(1) has size at least |I|. This proves
χ(G) = |I|.

Example 6.1.11. Let {Gi : i ∈ I} be an infinite family of non-trivial Hausdorff groups of countable weight. Then
G =

∏
i∈I Gi satisfies w(G) = χ(G) = |I|. Indeed, χ(G) = |I| was already proved in Example 6.1.10. In view of

w(G) = χ(G) · d(G), it remains to note that d(G) ≤ |I| in virtue of item (a) of Example 6.1.10.

Exercise 6.1.12. Let G be a topological group. Prove that:

(a) w(G) = w(G/{eG}), χ(G) = χ(G/{eG}) and d(G) = d(G/{eG});

(b) d(U) = d(G) for every non-empty open set U , if G is Lindelöff;

(c) if G is Hausdorff, then χ(G) is finite iff G is discrete; in such a case χ(G) = 1.

(d) if G is Hausdorff, then w(G) is finite iff G is finite iff d(G) is finite.

Exercise 6.1.13. w(G, TH) ≤ |H|.

(Hint. Since (G, TH) is a topological subgroup of TH , one has w(G, TH) ≤ w(TH) = |H| by Example 6.1.11.)

We shall see in the sequel that χ(TH) = w(TH) = |H|.

Exercise 6.1.14. Show that w(G), χ(G) and d(G) are cardinal invariants in the sense explained above, i.e., if G ∼= H,
then w(G) = w(H), χ(G) = χ(H) and d(G) = d(H).

6.2 Completeness and completion

A net {gα}α∈A in a topological group G is a Cauchy net if for every neighborhood U of eG in G there exists α0 ∈ A
such that g−1α gβ ∈ U and gβg

−1
α ∈ U for every α, β > α0.

Remark 6.2.1. It is easy to see that a if H is a subgroup of a topological group G, then a net {hα}α∈A in H is
Cauchy iff it is a Cauchy net in G. In other words, this is an intrinsic property of the net and it does not depend on
the topological group where the net is considered. (Consequently, a net {hα}α∈A is Cauchy in H iff it is a Cauchy net
of the subgroup 〈hα : α ∈ A〉 of H.)

By item (a) of the next exercise, a net (gα) in a topological group G is a Cauchy net whenever it converges in
some larger topological group H containing G asa topological subgroup. Our aim in this subsection will be to see (see
Theorem 6.2.3) that all Cauchy nets in G arise in this way; moreover, there is a group H witnessing this simultaneously
for all Cauchy nest in G and G is dense in H.

Exercise 6.2.2. (a) Let G be a dense subgroup of a topological group H. If (gα) is a net in G that converges to some
element h ∈ H, then (gα) is a Cauchy net.

(b) Let f : G→ H be a continuous homomorphism. If {gα}α∈A is a (left, right) Cauchy net in G, then {f(gα)}α∈A
is a (left, right) Cauchy net in H.



6 CARDINAL INVARIANTS AND COMPLETENESS 44

By the previous exercise, the convergent nets are Cauchy nets. A topological group G is complete (in the sense of
Răıkov) if every Cauchy net in G converges in G. We omit the tedious proof of the next theorem.

Theorem 6.2.3. For every topological Hausdorff group G there exists a complete topological group G̃ and a topological
embedding i : G→ G̃ such that i(G) is dense in G̃.

The completion G̃ has an important universal property:

Theorem 6.2.4. If G is a topological Hausdorff group G and f : G→ H is a continuous homomorphism, where H is
a complete topological group, then there is a unique continuous homomorphism f̃ : G̃→ H with f = f̃ ◦ i.

Proof. Let g ∈ G̃. Then there exists a net {gα}α∈A in G such that g = lim gα. Then {gα}α∈A is a Cauchy net, hence

{f(gα)}α∈A is a Cauchy net in H. By the completeness of H, it must be convergent. Put f̃(x) = lim f(gα). One can

prove that this limit does not depend on the choice of the net {gα}α∈A with g = lim gα and f̃ is continuous. This also

shows the uniqueness of the extension f̃ .

From this theorem one can deduce that every Hausdorff topological abelian group has a unique, up to topological
isomorphisms, (Răıkov-)completion (G̃, i) and we can assume that G is a dense subgroup of G̃.

Definition 6.2.5. A net {gα}α∈A in G is a left [resp., right] Cauchy net if for every neighborhood U of eG in G there
exists α0 ∈ A such that g−1α gβ ∈ U [resp., gβg

−1
α ∈ U ] for every α, β > α0.

Clearly, a net is Cauchy iff it is both left and right Cauchy.

Lemma 6.2.6. Let G be a Hausdorff topological group. Every left (resp., right) Cauchy net in G with a convergent
subnet is convergent.

Proof. Let {gα}α∈A be a left Cauchy net in G and let {gβ}β∈B be a subnet convergent to x ∈ G, where B is a cofinal
subset of A. Let U be a neighborhood of eG in G and V a symmetric neighborhood of eG in G such that V V ⊆ U .
Since gβ → x, there exists β0 ∈ B such that gβ ∈ xV for every β > β0. On the other hand, there exists α0 ∈ A such
that α0 ≥ β0 and g−1α gγ ∈ V for every α, γ > α0. With γ = β0 we have gα ∈ xV V ⊆ xU for every α > α0, that is
gα → x.

Proposition 6.2.7. A Hausdorff topological group G is complete iff for every embedding j : G ↪→ H into a Hausdorff
topological group H the subgroup j(G) of H is closed.

Proof. Assume that there exists an embedding j : G ↪→ H into a Hausdorff topological group H such that j(H) is not
a closed subgroup of H. Then there exists a net yα in j(G) converging to some element h ∈ H that does not belong
to j(G). By Remark 6.2.1, (yα) is a Cauchy net in j(G). Since it converges to h 6∈ j(G) in H and H is a Hausdorff
group, we conclude that this net does not converge in j(G). Since j : G → j(G) is a topological group isomorphism,
this provides a non-convergent Cauchy net in G. Hence G is not complete. Now assume that G is not complete and
consider the dense inclusion j : G ↪→ G̃. Since G = j(G) is a proper dense subgroup of G̃, we conclude that j(G) is not

closed in G̃.

A topological group G is complete in the sense of Weil if every left Cauchy net converges in G.
Every Weil-complete group is also complete, but the converse does not hold in general. It is possible to define the

Weil-completion of a Hausdorff topological group in analogy with the Răıkov-completion.

Exercise 6.2.8. Prove that if a Hausdorff topological group G admits a Weil-completion, then in G the left Cauchy
and the right Cauchy nets coincide.

Exercise 6.2.9. Let X be an infinite set and let G = S(X) equipped with the topology described in §3.3.5. Prove that:

(a) a net {fα}α∈A in G is left Cauchy iff there exists a (not necessarily bijective) map f : X → X so that fα → f in
XX , prove that such an f must necessarily be injective;

(b) a net {fα}α∈A in G is right Cauchy iff there exists a (not necessarily bijective) map g : X → X so that f−1α → g
in XX ;

(c) the group S(X) admits no Weil-completion.

(d) S(X) is Răıkov-complete.

(Hint. (c) Build a left Cauchy net in S(X) that is not right Cauchy and use items (a) and (b), as well as the
previous exercise.) (d) Use items (a) and (b).)
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Exercise 6.2.10. (a) Let G be a linearly topologized group and let {Ni : i ∈ I} be its system of neighborhoods of eG
consisting of open normal subgroups. Then the completion of G is isomorphic to the inverse limit lim

←−
G/Ni of

the discrete quotients G/Ni.

(b) Show that the completion in (a) is compact iff all Ni have finite index in G.

(c) Let p be a prime number. Prove that the completion of Z equipped with the p-adic topology (see Example 3.3.2)
is the compact group Jp of p-adic integers.

(d) Prove that the completion of Z equipped with the natural topology (see Example 3.3.2) is isomorphic to
∏
p Jp.

Exercise 6.2.11. Let p be a prime number. Prove that:

(a) Z admits a finest group topology τ such that pn converges to 0 in τ (this is τ(pn) in the notation of §3.4);

(b) ∗ [132, 131] (Z, τ) is complete;

(c) conclude that τ is not metrizable.

Exercise 6.2.12. Let V,U be linear spaces over a field K. Prove that the group Hom(V,U), equipped with the finite
topology, is complete.

The proof of Theorem 6.2.3 becomes particularly involved when G is not metrizable. This is why many authors
prefer to avoid the Cauchy nest for the construction of the completion. This can be done by means of the following
notions. A filter F on a Hausdorff topological group G is called Cauchy, if for every U ∈ VG(eG) there exists g ∈ G
such that gU ∈ F and Ug ∈ F .

Exercise 6.2.13. Let G be a Hausdorff topological group. Prove that:

(a) a filter F on G Cauchy iff the filter F−1 = {F−1 : F ∈ F} is Cauchy;

(b) if F is a Cauchy filter on G and xF ∈ F for every F ∈ F , then the net {xF : F ∈ F} is a Cauchy net (here F is
considered as a directed partially ordered set w.r.t. inclusion);

(c) if {xi : i ∈ I} is a Cauchy net in G and Fi = {xj : j ∈ I, j ≥ i}, then the family {Fi : i ∈ I} is a filter base of a
Cauchy filter on G;

(d) G is complete iff every Cauchy filter in G converges.

(e) if G is a topological subgroup of a topological group H and h ∈ G, then F = {G ∩ U : U ∈ VH(h)} is an open
Cauchy filter in G.

The Răıkov completion of a Hausdorff topological group G is built by appropriately using the open Cauchy filters
of G.

A weaker form of completeness was proposed in [65, 66]: a topological group G is said to be sequentially com-
pletetopological group!sequentially complete, if every Cauchy sequence (gn) in G is convergent. It is easy to realize that
G is sequentially complete if and only if G is sequentially closed in its Răıkov completion. Countably compact groups
are sequentially complete, although they need not be complete in general. Plenty of results on this remarkable class
can be found in [35, 65, 66].

7 Compactness and local compactness in topological groups

7.1 Examples

Clearly, a topological group G is locally compact if there exists a compact neighborhood of eG in G (compare with
Definition 2.2.11). We shall assume without explicitly mentioning it, that all locally compact groups are Hausdorff.

Obviously, the group T is compact, so as an immediate consequence of Tychonov’s theorem of compactness of
products we obtain the following generic example of a compact abelian group:

Example 7.1.1. Every power TI of T, as well as every closed subgroup of TI , is compact. It will become clear in
the sequel that this is the most general instance of a compact abelian group. Namely, every compact abelian group is
isomorphic to a closed subgroup of a power of T (see Corollary 11.2.2).

The above example will help us to produce another important one.
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Example 7.1.2. Let us see that for every abelian group G the group Hom (G,S) is closed in the product SG, hence
G∗ ∼= Hom (G,S) is compact. Indeed, consider the projections πx : SG → S for every x ∈ G and the following equalities

G∗ =
⋂

h,g∈G

{f ∈ SG : f(h+ g) = f(h)f(g)} =
⋂

h,g∈G

{f ∈ SG : πh+g(f) = πh(f)πg(f)}

=
⋂

h,g∈G

{f ∈ SG : (π−1h+gπhπg)(f) = 1} =
⋂

h,g∈G

ker(π−1h+gπhπg).

Since πx is continuous for every x ∈ G and {1} is closed in S, then all ker(π−1h+gπhπg) are closed; so Hom (G,S) is closed

too. Since SG is compact by 7.1.1, this yields that Hom (G,S) is compact too.

It will become clear with the duality theorem 12.4.7 that this example is the most general one. Namely, every
compact abelian group K is topologically isomorphic to some compact abelian group of the form G∗.

The next lemma contains a well known useful fact – the existence of a “diagonal subnet”.

Lemma 7.1.3. Let G be an abelian group and let N = {χα}α be a net in G∗. Then there exist χ ∈ G∗ and a subnet
S = {χαβ}β of N such that χαβ (x)→ χ(x) for every x ∈ G.

Proof. By Tychonov’s theorem, the group TG endowed with the product topology is compact. Then there exist χ ∈ TG
and a subnet S = (χαβ ) of N that converges to χ. Therefore χαβ (x)→ χ(x) for every x ∈ G and χ ∈ G∗, because G∗

is closed in TG by 7.1.2.

An example of a non-abelian compact groups can be obtained as a topological subgroup of the full linear group
GLn(C) considered in Example 3.1.4.

Example 7.1.4. The set U(n) of all n × n unitary matrices over C is a subgroup of GLn(C). Moreover, since U(n)

is a closed and bounded subset of Cn2

, we conclude with Example 2.2.12 that U(n) is compact. It is easy to see that
U(1) ∼= T is precisely the unit circle group.

Clearly, U =
∏∞
n=1 U(n) is still compact as well as all powers UI and closed subgroups of UI . It is a remarkable

fact of the theory of topological groups that every compact group is isomorphic to a closed subgroup of a power of U
(Corollary 9.3.3).

Here we collect examples of locally compact groups.

Example 7.1.5. Obviously, every discrete group is locally compact.

(a) For every n ∈ N the group Rn is locally compact.

(b) If G is a topological group having an open compact subgroup K, then G is locally compact.

(c) Since finite products preserve local compactness (see Theorem 2.2.33(b)), it follows from (a) and (b) that every
group of the form Rn × G, where G has an open compact subgroup K, is necessarily locally compact. We shall
prove below that every locally compact abelian group has this form.

Example 7.1.6. The group `2 (see Example 7.1.6) is not locally compact. Indeed, it suffices to note that the closed
unit disk is not compact (the sequence (en) of the vectors of the canonical base has no adherence point).

7.2 Specific properties of (local) compactness

In this subsection we shall see the impact of local compactness in various directions (the open mapping theorem,
properties related to connectedness, etc.).

Lemma 7.2.1. Let G be a topological group and let C and K be closed subsets of G:

(a) if K is compact, then both CK and KC are closed;

(b) if both C and K are compact, then CK and KC are compact;

(c) if K is contained in an open subset U of G, then there exists an open neighborhood V of eG such that KV ⊆ U .



7 COMPACTNESS AND LOCAL COMPACTNESS IN TOPOLOGICAL GROUPS 47

Proof. (a) Let {xα}α∈A be a net in CK such that xα → x0 ∈ G. It is sufficient to show that x0 ∈ CK. For every α ∈ A
we have xα = yαzα, where yα ∈ C and zα ∈ K. Since K is compact, then there exist z0 ∈ K and a subnet {zαβ}β∈B
such that zαβ → z0. Thus (xαβ , zαβ )β∈B is a net in G × G which converges to (x0, z0). Therefore yαβ = xαβz

−1
αβ

converges to x0z
−1
0 because the function (x, y) 7→ xy−1 is continuous. Since yαβ ∈ C for every β ∈ B and C is closed,

x0z
−1
0 ∈ C. Now x0 = (x0z

−1
0 )z0 ∈ CK. Analogously it is possible to prove that KC is closed.

(b) The product C ×K is compact by the Tychonov theorem and the function (x, y) 7→ xy is continuous and maps
C ×K onto CK. Thus CK is compact.

(c) Let C = G \ U . Then C is a closed subset of G disjoint with K. Therefore, for the compact subset K−1 of G
one has 1 6∈ K−1C. By (a) K−1C is closed, so there exists a symmetric neighborhood V of 1 that misses K−1C. Then
KV misses C and consequently KV is contained in U .

Exercise 7.2.2. (i) Prove item (c) of Lemma 7.2.1 directly, withouit making any recourse to item (a).

(ii) Deduce item (a) of Lemma 7.2.1 from item (c).

(Hint. (i) If U is an open set containing K, then for each x ∈ K there exists an open Vx ∈ V(eG) such that
xV 2

x ⊆ U , so
⋃
x∈K xVx covers the compact set K. Hence there exist x1, . . . , xn ∈ K such that K ⊆

⋃n
k=1 xkVxk . Let

V =
⋂n
k=1 Vk. Then KV ⊆ U , since for x ∈ K there exists k with x ∈ xkV , so that xV ⊆ xkV Vk ⊆ xkV

2
k ⊆ U . (ii)

Argue as in the proof of (c): if x ∈ G and x 6∈ KC, then for the compact subset K−1 of G one has K−1x ∩ C = ∅, so
the compact set K−1x is contained in the open subset U = G \ C of G. So by (c) there exists an open neighborhood
V of eG such that K−1xV ⊆ U . Hence K−1xV ∩C = ∅ and consequently xV ∩KC = ∅. This proves that KC is closed.)

Compactness of K cannot be omitted in item (a) of Lemma 7.2.1. Indeed, K = Z and C = 〈
√

2〉 are closed
subgroups of G = R but the subgroup K + C of R is dense (see Exercie 4.1.9 or Proposition 8.3.9).

The canonical projection π : G→ G/K from a topological group G onto its quotient G/K is always open. Now we
see that it is also closed if K is compact.

Lemma 7.2.3. Let G be a topological group and K a compact normal subgroup of G. Then the canonical projection
π : G→ G/K is closed.

Proof. Let C be a closed subset of G. Then CK is closed by Lemma 7.2.1 and so U = G \ CK is open. For every
x 6∈ CK, that is π(x) 6∈ π(C), π(U) is an open neighborhood of π(x) such that π(U) ∩ π(C) is empty. So π(C) is
closed.

Lemma 7.2.4. Let G be a topological group and let H be a closed normal subgroup of G.

(1) If G is compact, then G/H is compact.

(2) If H and G/H are compact, then G is compact.

Proof. (1) is obvious.
(2) Let F = {Fα : α ∈ A} be a family of closed sets of G with the finite intersection property. If π : G → G/H

is the canonical projection, π(F) is a family of closed subsets with the finite intersection property in G/H by Lemma
7.2.3. By the compactness of G/H there exists π(x) ∈ π(Fα) for every α ∈ A. So F ∗α := Fα ∩ xH 6= ∅ for every α ∈ A.
This gives rise to a family {F ∗α : α} of closed sets of the compact set xH with the finite intersection property. Thus⋂
α∈A F

∗
α 6= ∅. So the intersection of all Fα is non-empty as well.

Another proof of item (2) of the above lemma can be obtained using Lemma 7.2.3 which says that the canonical
projection π : G → G/H is a perfect map when H is compact. Applying the well known fact that inverse images of
compact sets under a perfect map are compact to G = π−1(G/H), we conclude that G is compact whenever H and
G/H are compact.

Lemma 7.2.5. Let G be a locally compact group, H be a closed normal subgroup of G and π : G → G/H be the
canonical projection. Then:

(a) G/H is locally compact too;

(b) If C is a compact subset of G/H, then there exists a compact subset K of G such that π(K) = C.

Proof. Let U be an open neighborhood of eG in G with compact closure. Consider the open neighborhood π(U) of
eG/H in G/H. Then π(U) ⊆ π(U) by the continuity of π. Now π(U) is compact in G/H, which is Hausdorff, and so

π(U) is closed. Since π(U) is dense in π(U), we have π(U) = π(U) = π(U). So G/H is locally compact.
(b) Let U be an open neighborhood of eG in G with compact closure. Then {π(sU) : s ∈ G} is an open covering of

G/H. Since C is compact, a finite subfamily {π(siU) : i = 1, . . . ,m} covers C. Then we can take K = (s1U ∪ · · · ∪
smU) ∩ π−1(C).
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Lemma 7.2.6. A locally compact group is Weil-complete.

Proof. Let U be a neighborhood of eG in G with compact closure and let {gα}α∈A be a left Cauchy net in G. Then
there exists α0 ∈ A such that g−1α gβ ∈ U for every α, β ≥ α0. In particular, gβ ∈ gα0

U for every β > α0. By the
compactness of gα0

U , we can conclude that there exists a convergent subnet {gβ}β∈B (for some cofinal B ⊆ A) such
that gβ → g ∈ G. Then also gα converges to g by Lemma 6.2.6.

Lemma 7.2.7. A locally compact countable group is discrete.

Proof. By the Baire category theorem 2.2.22 G is of second category. Since G = {g1, . . . , gn, . . . } =
⋃∞
n=1{gn}, there

exists n ∈ N+ such that Int {gn} is not empty and so {gn} is open.

Now we introduce a special class of σ-compact groups that will play an essential role in determining the structure
of the locally compact abelian groups.

Definition 7.2.8. A group G is compactly generated if there exists a compact subset K of G which generates G, that
is G = 〈K〉 =

⋃∞
n=1(K ∪K−1)n.

Lemma 7.2.9. If G is a compactly generated group then G is σ-compact.

Proof. By the definition G =
⋃∞
n=1(K ∪K−1)n, where every (K ∪K−1)n is compact, since K is compact.

It should be emphasized that while σ-compactness is a purely topological property, being compactly generated
involves essentially the algebraic structure of the group.

Exercise 7.2.10. (a) Give examples of σ-compact groups that are not compactly generated.

(b) Show that every connected locally compact group is compactly generated.

Lemma 7.2.11. Let G be a locally compact group.

(a) If K a compact subset of G and U an open subset of G such that K ⊆ U , then there exists an open neighborhood
V of eG in G such that (KV ) ∪ (V K) ⊆ U and (KV ) ∪ (V K) is compact.

(b) If G is compactly generated, then there exists an open neighborhood U of eG in G such that U is compact and U
generates G.

Proof. (a) By Lemma 7.2.1 (c) there exists an open neighborhood V of eG in G such that (KV )∪ (V K) ⊆ U . Since G
is locally compact, we can choose V with compact closure. Thus KV is compact by Lemma 7.2.1. Since KV ⊆ KV ,
then KV ⊆ KV and so KV is compact. Analogously V K is compact, so (KV ) ∪ (V K) = KV ∪ V K is compact.

(b) Let K be a compact subset of G such that K generates G. So K ∪ {eG} is compact and by (a) there exists an
open neighborhood U of eG in G such that U ⊇ K ∪ {eG} and U is compact.

In the case of first countable topological groups Fujita and Shakmatov [83] have described the precise relationship
between σ-compactness and the stronger property of being compactly generated.

Theorem 7.2.12. [83] A metrizable topological group G is compactly generated if and only if G is σ-compact and, for
every open subgroup H of G, there exists a finite set F ⊆ G such that F ∪H algebraically generates G.

This gives the following (for the definition of total boundedness see Definition 9.2.1):

Corollary 7.2.13. A σ-compact metrizable group G is compactly generated in each of the following cases:

(a) G has no open subgroups

(b) the completion G̃ is connected;

(c) G is totally bounded.

Moreover,

Theorem 7.2.14. [83] A countable metrizable group is compactly generated iff it is algebraically generated by a sequence
(possibly eventually constant) converging to its neutral element.

Examples showing that the various conditions above cannot be omitted can be found in [83].
The question when will a topological group contain a compactly generated dense subgroup is considered in [84].



7 COMPACTNESS AND LOCAL COMPACTNESS IN TOPOLOGICAL GROUPS 49

7.3 The open mapping theorem

Now we prove the open mapping theorem for locally compact topological groups.

Theorem 7.3.1 (Open mapping theorem). Let G and H be locally compact topological groups and let h be a continuous
homomorphism of G onto H. If G is σ-compact, then h is open.

Proof. Let U be an open neighborhood of eG in G. There exists an open symmetric neighborhood V of eG in G such
that V V ⊆ U and V is compact. Since G =

⋃
x∈G xV and G is Lindelöff by Lemma 2.2.14, we have G =

⋃∞
n=1 xnV .

Therefore H =
⋃∞
n=1 h(xnV ), because h is surjective. Put yn = h(xn), hence H =

⋃∞
n=1 ynh(V ) where each h(V ) is

compact and so closed in H. Since H is locally compact, Theorem 2.2.22 yields that there exists n ∈ N+ such that
Inth(V ) is not empty. So there exists a non-empty open subset W of H such that W ⊆ h(V ). If w ∈W , then w ∈ h(V )

and so w = h(v) for some v ∈ V = V
−1

. Hence

eG ∈ w−1W ⊆ w−1h(V ) = h(v−1)h(V ) ⊆ h(V V ) ⊆ h(U)

and this implies that h(U) is an open neighborhood of eG in H.

The following immediate corollary is frequently used:

Corollary 7.3.2. If f : G → H is a continuous surjective homomorphism of Hausdorff topological groups and G is
compact, then f is open.

Exercise 7.3.3. Let K be a compact torsion-free divisible abelian group. Then for every non-zero r ∈ Q the alfgebraic
automorphism λr of K, defined by setting λr(x) = rx for every x ∈ K, is a topological isomorphism.

(Hint. Write r = n/m. Note that the multiplication by m is a continuous automorphism of K. By the compactness
of K and the open mapping theorem, it is a topological isomorphism. In particular, its inverse x 7→ 1

mx is a topological
isomorphism too. Since n 6= 0, the multiplication by n is a topological isomorphism too. Being the composition of two
topological isomorphisms, also λr is a topological isomorphism.)

The topological groups satisfying the open mapping theorem are known also under the name totally minimal. More
precisely, one has the following pair of concepts:

Definition 7.3.4. Let G be a Hausdorff topological group.
(a) G is said to be totally minimal, if every continuous homomorphism of G onto a Hausdroff topological group H

is open.
(b) G be minimal, if every continuous isomorphism of G onto a Hausdorff topological group H is open.

One can easily see that a Hausdorff topological group G is totally minimal if and only if all Hausdorff quotients of
G are minimal. Therefore, compact groups are totally minimal (see Corollary 7.3.2).

The minimal groups were introduced simultaneously and independently in [138] and [72], where the first examples
of non-compact minimal groupd can be found. The first examples of minimal non-totally-minimal groups can be found
in [55], where the notion of totally minimal group was explicitly introduced. It was conjectured by Prodanov in 1971
that the minimal abelian groups are precompact. This was confirmed for totally minimal groups as well as some classes
of minimal groups in [125, 126]. A positive solution in the general case was obtained by Prodanov and Stoyanov [126].
Answering a question of Choquet, Döıtchinov [72] showed that minimality (unlike compactness) is not preserved even
under finite direct products. A complete description of the cases when minimality is preserved even under (arbitrary)
direct products can be found in [31]. The surveys [34] and [35] contain various information on minimal groups.

The recent progress in this field is outlines in [50]

7.4 Compactness vs connectedness

Now we see that linearity and total disconnectedness of group topologies coincide for compact groups and for locally
compact abelian groups.

Theorem 7.4.1. [van Dantzig] Every locally compact totally disconnected group has a base of neighborhoods of e
consisting of open subgroups. In particular, a locally compact totally disconnected group that is either abelian or compact
has linear topology.

This can be derived from the following more precise result:

Theorem 7.4.2. Let G be a locally compact topological group and let C = c(G). Then :
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(a) C coincides with the intersection of all open subgroups of G;

(b) if G is totally disconnected, then every neighborhoodof eG contains an open subgroup of G.

If G is compact, then the open subgroups in items (a) and (b) can be chosen normal.

Proof. (a) follows from (b) as G/C is totally disconnected hence the neutral element of G/C is intersection of open
(resp. open normal) subgroups of G/C. Now the intersection of the inverse images, w.r.t. the canonical homomorphism
G→ G/C, of these subgroups coincides with C.

(b) Let G be a locally compact totally disconnted group. By Vedenissov’s Theorem G has a base O of clopen
symmetric compact neighborhoods of eG. Let U ∈ O. The

U = U =
⋂
{UV : V ∈ O,V ⊆ U}.

Then every set U ·V is compact by Lemma 7.2.1, hence closed. Since U is open and U ⊇
⋂
V ∈O UV , by the compactness

of UU = UU we deduce that there exist V1, . . . , Vn ∈ O such that U ⊆
⋂n
k=1 UVk, so U =

⋂n
k=1 UVk. Then for

V := U ∩
⋂n
k=1 Vk one has UV = U . This implies also V V ⊆ U , V V V ⊆ U etc. Since V is symmetric, the subgroup

H = 〈V 〉 is contained in U as well. From V ⊆ H one can deduce that H is open (cf. 3.4.1). In case G is compact, note
that the heart HG =

⋂
x∈G x

−1Hx of H is an open normal subgroup as the number of all conjugates x−1Hx of H is
finite (being equal to [G : NG(H)] ≤ [G : H] <∞). Hence HG is an open normal subgroup of G contained in H, hence
also in U .

In general total disconnectedness is not preserved under taking quotients.

Corollary 7.4.3. The quotient of a locally compact totally disconnected group is totally disconnected.

Proof. Let G be a locally compact totally disconnected group and let N be a closed normal subgroup of G. It follows
from the above theorem that G has a linear topology. This yields that the quotient G/N has a linear topology too.
Thus G/N is totally disconnected.

Corollary 7.4.4. The continuous homomorphic images of compact totally disconnected groups are totally disconnected.

Proof. Follows from the above corollary and the open mapping theorem.

According to Example 4.2.10 none of the items (a) and (b) of Theorem 7.4.2 remain true without the hypothesis
“locally compact”.

Corollary 7.4.5. Let G be a locally compact group. Then Q(G) = c(G).

Proof. By item (a) of the above theorema C(G) is an intersection of open subgroups, that are clopen being open
subgroups (cf. Proposizione 3.4.1). Hence c(G) contains Q(G) which in turn coincides with the intersection of all
clopen sets of G containing eG. The inclusion C(G) ⊆ Q(G) is always true.

8 Properties of Rn and its subgroups

We saw in Exercise 4.2.12 that every continuous homomorphism f : Rn → H is uniquely determined by its restriction
to any (arbitrarily small) neighborhood of 0 in Rn. Now we prove that every continuous map f : U → H defined only
on a small neighborhood U of 0 of Rn can be extended to a continuous homomorphism f : Rn → H provided some
natural additivity restraint is satisfied within that small neighborhood.

Lemma 8.0.6. Let n ∈ N+, let H be an abelian topological group and let U,U1 be open symmetric neighborhoods of 0
in Rn with U1 + U1 ⊆ U . Then every map f : U → H, such that f(x + y) = f(x) + f(y) whenever x, y ∈ U1, can be
uniquely extended to a homomorphism f̄ : Rn → H. Moreover, f̄ is continuous if and only if f is continuous.

Proof. Taking eventually smaller neighborhoods U,U1 with U1 +U1 ⊆ U , we can assume without loss of generality that
if x ∈ U , then also all 1

nx ∈ U for n ∈ N+, and similarly for U1.
For x ∈ Rn there exists n ∈ N+ such that 1

nx ∈ U . We put f̄(x) = nf( 1
nx). To see that this definition does not

depend on n assume that 1
mx ∈ U as well and let y = 1

mnx ∈ U . Then ny = 1
mx ∈ U and my = 1

nx ∈ U . So

mf

(
1

m
x

)
= mf(ny) = mnf(y) = nf(my) = nf

(
1

n
x

)
.



8 PROPERTIES OF RN AND ITS SUBGROUPS 51

Next we prove now that f̄ is a homomorphism. Take x, y ∈ Rn. There exists an integer n > 0 such that 1
nx,

1
ny ∈ U1

and so 1
nx+ 1

ny ∈ U . By our hypothesis

f(x+ y) = nf

(
1

n
(x+ y)

)
= nf

(
1

n
x+

1

n
y

)
= nf

(
1

n
x

)
+ nf

(
1

n
y

)
= f(x) + f(y).

Uniqueness of f̄ follows from Exercise 4.2.12. (For a direct proof assume that f ′ : Rn → H is another homomorphism
extending of f . Then for every x ∈ Rn there exists n ∈ N+ such that y = 1

nx ∈ U . So f ′(x) = f ′(ny) = nf ′(y) =
nf(y) = f̄(x).)

Since f̄ is a homomorphism, it suffices to check its continuity at 0. This follows from our hypothesis that the map
f : U → H is continuous map.

The next lemma will be used frequently in the sequel.

Lemma 8.0.7. Let H be an abelian topological group with a discrete subgroup D and let p : H → H/D be the canonical
map. Then for every continuous homomorphism q : Rn → H/D, n ∈ N+, there exists a continuous homomorphism
f : Rn → H such that p ◦ f = q. Moreover, if q is open, then f can be chosen to be open.

Proof. Let W be a symmetric open neighborhood of 0 in H, such that (W + W ) ∩ D = {0}. Then the restriction
p �W is a one-to-one map from W to p(W ). Moreover, both the bijection p �W and its inverse ξ : p(W ) → W are
homeomorphisms. Pick a symmetric open neighborhood W1 of 0 in H such that W1 +W1 ⊆W and note that

ξ(x+ y) = ξ(x) + ξ(y) whenever x, y ∈ p(W1). (1)

Indeed, if x = p(u), y = p(v) for u, v ∈ W1, then x + y = p(u) + p(v) = p(u + v), since p is a homomorphism. Then
ξ(x+ y) = u+ v = ξ(x) + ξ(y), this porves (1).

Let U = q−1(p(W )) and U1 = q−1(p(W1)), so these are symmetric open neighborhoods of 0 in Rn with U1+U1 ⊆ U .
Define the map f : U → H simply as the composition ξ ◦ q. So f : U → H continuously maps U0 onto the open

subset ξ(q(U)) of H. Moreover, (1) yields that f(x+y) = f(x)+f(y) whenever x, y ∈ U1. Now Lemma 8.0.6 guarantees
that the continuous map f : U → H can be extended to a continuous homomorphism f : Rn → H.

Now assume that q is open. It suffices to show that the homomorphism f defined above is open. To this end it suffices
to check that for every neighborhood U of 0 in Rn contained in U1 also f(U) ∈ VH(0). Since ξ is a homeomorphism
and q(U) ∈ VH/D(0) is contained in q(U1) ⊆W1, ξ(q(U)) = f(U) ∈ VH(0).

8.1 The closed subgroups of Rn

Our main goal here is to describe the closed subgroup of Rn. In the next example we outline two important instances
of such subgroups.

Example 8.1.1. Let n,m ∈ N+ and let v1, . . . , vm be linearly independent vectors in Rn.

(a) The linear subspace V = Rv1 + . . .+ Rvm ∼= Rm spanned by v1, . . . , vm is a closed subgroup of Rn.

(b) The subgroup D = 〈v1〉 + . . . + 〈vm〉 = 〈v1, . . . , vm〉 ∼= Zm generated by v1, . . . , vm is a discrete (hence, closed)
subgroup of Rn. A subgroup D of Rn of this form we call a lattice in Rn. Clearly, a lattice D in Rn is free with
r0(D) = m.

We prove that every closed subgroup of Rn is topologically isomorphic to a product V ×D of subspace V ∼= Rs and
a lattice D ∼= Zm, with s,m ∈ N and s+m ≤ n. More precisely:

Theorem 8.1.2. Let n ∈ N+ and let H be a closed subgroup of Rn. Then there exist s+m ≤ n linearly independent
vectors v1, . . . , vs, vs+1, . . . , vs+m such that H = V +D, where V ∼= Rs is the vector subspace spanned by v1, . . . , vs and
D = 〈vs+1, . . . , vs+m〉 ∼= Zm.

We give two proof of this theorem. The first one is relatively short and proceeds by induction. The second proof
splits in several steps. Before starting the proofs, we note that the dichotomy imposed by Example 8.1.1 is reflected in
the following topological dichotomy resulting from the theorem:

• the closed connected subgroups of Rn are always subspaces, isomorphic to some Rs with s ≤ n;

• the closed totally disconnected subgroups D of Rn are lattices in Rn, so must be free and have free-rank r0(D) ≤ n;
in particular they are discrete.
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In the general case, for every closed subgroup H of Rn the connected component c(H) is open in H and isomorphic
to Rs for some s ≤ n. Therefore, by the divisibility of Rs one can write H = c(H)×D for some discrete subgroup D of
H (see Corollary 2.1.13). Necessarily r0(D) ≤ n − s as c(H) ∼= Rs contains a discrete subgroup D1 of rank s, so that
D1 ×D will be a discrete subgroup of Rn.

The next lemma prepares the inductive step in the proof of Theorem 8.1.2.

Lemma 8.1.3. If a closed subgroup H of Rn and a one-dimentional subspace L ∼= R of Rn satisfy H ∩L 6= 0, then the
canonical map p : Rn → Rn/L sends H to a closed subgroup p(H) of Rn/L.

Proof. If n = 1, then Rn/L is trivial, so we are done. Assume n > 1. Consider the non-zero closed subgroup H1 = H∩L
of L ∼= R. If H1 = L, i.e., if L ⊆ H, then the assertion follows from Theorem 3.6.7 (b). Now assume that H1 6= L ∼= R.
Then H1 = 〈a〉 is cyclic by Exercise 4.1.9. Making use of an appropriate linear automorphism α of Rn and replacing H
by α(H), we may assume without loss of generality that L = R× {0}n−1 and a = e1, i.e., H1 = Z× {0}n−1. Consider
the canonical map π : Rn → Rn/H1. Since H is a closed subgroup of Rn containing H1, its image π(H) is a closed
subgroup of Rn/H1

∼= T × Rn−1 by Theorem 3.6.7 (b). Next we observe that the projection p : Rn → Rn−1 is the
composition of π and the canonical map ρ : Rn/H1 → Rn−1. Since ker ρ = L/H1

∼= T is compact and π(H) is closed
in Rn/H1, p(H) = ρ(π(H)) is a closed subgroup of Rn−1 by Lemma 7.2.3.

We shall see in §8.2 that “closed” can be replaced by “discrete” in this lemma.

Example 8.1.4. Let us see that the hypothesis H ∩ L 6= 0 is relevant . Indeed, take the discrete (hence, closed)
subgroup H = Z2 of R2 and the line L = vR in R2, where v = (1,

√
2). Then L ∩ H = 0, while R2/L ∼= R, so by

Exercise 4.1.9, the non-cyclic image p(H) ∼= Z2 of H in R is dense, so fails to be closed.

First proof of of Theorem 8.1.2. The case n = 1 is Exercise 4.1.9. Assume n > 1. If H is a subspace of Rn,
then H = V and we are done. Assume that H is not a subspace. Then there exits a non-zero h ∈ H such that
the line L = Rh through h is not contained in H. Thus the closed non-zero subgroup H1 = H ∩ L of L ∼= R is
proper, hence cyclic. Let H1 = 〈a〉. By Lemma 8.1.3 the projection p : Rn → Rn/L ∼= Rn−1 sends H to a closed
subgroup p(H) of Rn−1. By the inductive hypothesis there exist naturals s,m with s + m < n and s + m linearly
independent vectors v′1, . . . , v

′
s, v
′
s+1, . . . , v

′
s+m of Rn/L ∼= Rn−1 such that, with V ′ = Rv′1 + . . . + Rv′s ∼= Rs and

D′ = 〈v′s+1, . . . , v
′
s+m〉 ∼= Zm, one has p(H) = V ′×D′. Since both H and p(H) are LCA and H is also σ-compact (as a

closed subgroup of Rn), it follows from Theorem 7.3.1 that the continuous surjective homomorphism p : H → p(H) is
open, i.e., p(H) ∼= H/H1. Since H1 is discrete, we can apply Lemma 8.0.7 to obtain a continuous open homomorphism
f : V ′ → H such that p ◦ f = j is the inclusion of V ′ ∼= Rs in p(H). Let V = f(V ′), then f : V ′ → V will be
a topological isomorphism. Let vi = f(v′i) for i = 1, 2, . . . , s. For every j = 1, 2, . . . ,m find vs+j ∈ H such that
p(vs+j) = v′s+j . Let v0 = a. Since the projection p : Rn → Rn/L is R-linear, the vectors v0, v1, . . . , vs, vs+1, . . . , vs+m
are linearly independent, so D = 〈v0, vs+1, . . . , vs+m〉 is a lattice in Rn. From p(H) = V ′ × D′ and ker p = 〈a〉, we
deduce that H = V ×D ∼= Rs ⊕ Zm+1. 2

Corollary 8.1.5. For every n ∈ N+ the only compact subgroup of Rn is the zero subgroup.

Proof. Let K be a compact subgroup of Rn. So K = V ×D, where V is a subspace of Rn and D is a lattice in Rn. The
compactness of K yield that both V and V are compact. Since Rs is compact only for s = 0 and D ∼= Zm is compact
only for m = 0, we are done.

8.2 A second proof of Theorem 8.1.2

This proof of Theorem 8.1.2 makes no recourse to induction, so from a certain point of view gives a better insight of
the argument. By Exercise 4.1.9 every discrete subgroup of R is cyclic. The first part of this (second) proof consists in
appropriately extending this property to discrete subgroups of Rn for every n ∈ N+ (see Proposition 8.2.2). The first
step is to prove directly that the free-rank r0(H) of a discrete subgroup H of Rn coincides with the dimension of the
subspace of Rn generated by H.

Lemma 8.2.1. Let H be a discrete subgroup of Rn. If the elements v1, . . . , vm of H are Q-linearly independent, then
they are also R-linearly indipendent.

Proof. Let V ∼= Rk be the subspace of Rn generated by H. We can assume wlog that V = Rn, i.e., k = n. Hence
we have to prove that the free-rank m = r0(H) of H coincides with n. Obviously m ≥ n. We need to prove that
m ≤ n. Let us fix n R-linearly independent vectors v1, . . . , vn in H. It is enough to see that for every h ∈ H the vectors
v1, . . . , vn, h are not Q-linearly independent. This would imply m ≤ n. Let us note first that we can assume wlog
that H ⊇ Zn. Indeed, as v1, . . . , vn are R-linearly independent, there exists a linear isomorphism α : Rn → Rn with
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α(vi) = ei for i = 1, 2, . . . , n, where e1, . . . , en is the canonical base of Rn. Clearly, α(H) is still a discrete subgroup of
Rn and the vectors v1, . . . , vn, h are Q-linearly independent iff the vectors e1 = α(v1), . . . , en = α(vn), α(h) are. The
latter fact is equivalent to α(h) 6∈ Qn. Therefore, arguing for a contradiction, assume for simplicity that H ⊇ Zn and
there exists h = (h1, . . . , hn) ∈ H such that

h 6∈ Qn. (3)

By the discreteness of H there exists an ε > 0 with max{|hi| : i = 1, 2, . . . , n} ≥ ε for every 0 6= h = (h1, . . . , hn) ∈ H.
Represent the cube C = [0, 1]n as a finite union

⋃
i Ci of cubes Ci of diameter < ε (e.g., take them with faces parallel

to the coordinate axes, although their precise position is completely irrelevant). For a real number r denote by {r}
the unique number 0 ≤ x < 1 such that r − x ∈ Z. Then ({mv1}, . . . , {mvn}) 6= ({lh1}, . . . , {lhn}) for every positive
l 6= m, since otherwise, (m − l)h ∈ Zn with m − l 6= 0 in contradiction with (3). Among the infinitely many points
am = ({mh1}, . . . , {mhn}) ∈ C there exist two am 6= al belonging to the same cube Ci. Hence, |{mhj}−{lhj}| < ε for
every j = 1, 2, . . . , n. So there exists a z = (z1, . . . , zn) ∈ Zn ⊆ H, such that 0 6= (m−l)h−z ∈ H and |(m−l)hj−zj | < ε
for every j = 1, 2, . . . , n, this contradicts the choice of ε.

The aim of the next step is to see that the discrete subgroups of Rn are free.

Proposition 8.2.2. If H is a discrete subgroup of Rn, then H is free and r(H) ≤ n.

Proof. In fact, let m = r(H). By the definition of r(H) there exist m Q-linearly independent vectors v1, . . . , vm of H.
By the previous lemma the vectors v1, . . . , vm are also R-linearly independent. Hence, m ≤ n. Let V ∼= Rm be the
subspace of Rn generated by v1, . . . , vm. Obviously, H ⊆ V , since H is contained in the Q-subspace of Rn generated
by the free subgroup F = 〈v1, . . . , vm〉 di H. Since H is a discrete subgroup of V too, we can argue with V in place
of Rn. So, we can assume wlog that m = n and V = Rn. It suffices to see that H/F is finite. Then H will be finitely
generated and torsion-free, hence H must be free.

Since the vectors v1, . . . , vn are linearly independent on R we can assume wlog that H ⊇ Zn. In fact, let α : Rn → Rn
be the linear isomorphism with α(vi) = ei for i = 1, 2, . . . , n, where e1, . . . , en is the canonical base of Rn. Then α(H)
is still a discrete subgroup of Rn, Zn = α(F ) ⊆ α(H) and H/F is finite iff α(H)/α(F ) ∼= H/F is finite.

In the sequel we assume H ⊇ Zn = F for the sake of simplicity. To check that H/F is finite consider the canonical
homomorphism q : Rn → Rn/Zn ∼= Tn. According to Theorem 3.6.7, q sends the closed subgroup H onto a closed
(hence compact) subgroup q(H) of Tn; moreover H = q−1(q(H)), hence the restriction of q to H is open and q(H) is
discrete. Thus q(H) ∼= H/F is both compact and discrete, so q(H) must be finite.

The next lemma extends Lemma 8.1.3 to the case of discrete subgroups of Rn.

Lemma 8.2.3. If for a discrete subgroup H of Rn and a one-dimentional subspace L ∼= R of Rn one has H ∩ L 6= 0,
then the canonical map p : Rn → Rn/L sends H to a discrete subgroup p(H) of Rn/L.

Proof. If n = 1, then L = Rn, so this case is trivial. Assume n > 1 in the sequel. Since 0 6= H1 = H ∩ L is a discrete
subgroup of L ∼= R, we conclude that H = 〈a〉 is cylic. Making use of an appropriate linear automorphism α of Rn and
replacing H by α(H), we may assume wlog that L = R × {0}n−1 and a = e1. Thus, L ∩H = Z × {0}n−1. For ε > 0
let Bε(0) = (−ε, ε)n and Uε = Bε(0) + L. Let us prove that for some ε > 0 also

Uε ∩H = Z× {0}n−1, (4)

holds true. Assume for a contradiction that U1/n ∩ H 6⊆ L for every n ∈ N and pick h(xn, yn) ∈ U1/n(0) ∩ H with
yn 6= 0. Since Z × {0}n−1 ⊆ H, we can assume without loss of generality that 0 ≤ xn < 1 for every n. Then there
exists a converging subsequences xnk → z. Hence hnk → (z, 0) ∈ H. Since H is discrete, this sequence is eventually
constant, so ynk = 0 for all sufficienlty large k, a contradiction. This proves that (4) holds true for some ε > 0. Let
p : Rn → Rn−1 be the projection along L. Then Uε(0) = p−1(p(Bε(0))), so (4) implies that p(Bε(0)) ∩ p(H) = (0) in
Rn−1. Thus the subgroup p(H) of Rn−1 is discrete.

The next exercise provides a shorter alternative proof of the first part of Theorem 8.1.2 carried out in Proposition
8.2.2, namely the description of the discrete subgroups of Rn.

Exercise 8.2.4. Prove by induction on n that for every discrete (so closed) subgroup H of Rn there exist m ≤ n
linearly independent vectors v1, . . . , vm such that H = 〈v1, . . . , vm〉 ∼= Zm.

Proof. The case n = 1 is Exercise 4.1.9. Assume n > 1. Pick any 0 6= h ∈ H and let L be the line Rh in Rn. Since
0 6= H1 = H ∩ L is a discrete subgroup of L ∼= R, we conclude that H = 〈a〉 is cylic and we can apply Lemma 8.2.3
to claim that the image p(H) of H along the projection p : Rn → Rn/L ∼= Rn−1 is a discrete subgroup of Rn−1. Then
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our inductive hypothesis yields p(H) = 〈v′2, . . . , v′m〉 for some linearly independent vectors v′2, . . . , v
′
m in Rn/L. Pick

vi ∈ Rn such that p(vi) = v′i for i = 2, . . . , n. Then with v1 = a we have the desired presentation

H = 〈v1, . . . , vm〉 = 〈v1〉 ⊕ 〈v2, . . . , vm〉 ∼= Z⊕ Zm−1 ∼= Zm.

Now we pass to the case of non-discrete closed subgroups of Rn.

Lemma 8.2.5. If H is a closed non-discrete subgroup of Rn, then H contains a line through the origin.

Proof. Consider the subset
M = {u ∈ Rn : ‖u‖ = 1 and ∃λ ∈ (0, 1) with λu ∈ H}

of the unitary sphere S in Rn. For u ∈ S let Nu = {r ∈ R : ru ∈ H}. Then Nu is a closed subgroup of R and
H ∩ Ru = Nuu. Our aim will be to find some u ∈ S such that the whole line Ru is contained in H. This will allow
us to use our inductive hypothesis. Since the proper closed subgroups of R are cyclic (see Exercise 4.1.9), it suffices to
find some u ∈ S such that Nu is not cyclic.

Case 1. If M = {u1, . . . , un} is finite, then there exists an index i such that λui ∈ H for infinitely many λ ∈ (0, 1).
Then the closed subgroup Nui cannot be cyclic, so H contains to line Rui and we are done.

Case 2. Assume M is infinite. By the assumption H is not discrete there exists a sequence un ∈M such that the
corresponding λn, with λnun ∈ H, converge to 0. By the compactness of S there exists a limit point u0 ∈ S for the
sequence un ∈ M . We can assume wlog that un → u0. Let ε > 0 and let ∆ε be the open interval (ε, 2ε). As λn → 0,
there exists n0 such that λn < ε for every n ≥ n0. Hence for every n ≥ n0 there exists an appropriate kn ∈ N with
ηn = knλn ∈ ∆ε. Taking again a subsequence we can assume wlog that there exists some ξε ∈ ∆ε such that ηn → ξε.
Hence ξεu0 = limn knλnu0 ∈ H. This argument shows that Nu0

contains ξε ∈ ∆ε with arbitrarily small ε. Therefore,
Nu0

cannot be cyclic. Hence H contains the line Ru0.

Now we are in position to prove Theorem 8.1.2.

Proof of Theorem 8.1.2. If H is a closed subgroup of Rn and V1, V2 are subspaces of Rn contained in H, then also
the subspace V1 + V2 of Rn is contained in H. Therefore, H contains a largest subspace λ(H) of Rn. Since λ(H) is
a closed subgroup of Rn contained in H, the projection p : Rn → Rn/λ(H) ∼= Rk (where k = n − dimλ(H)) sends
H to a closed subgroup p(H) of Rk by Theorem 3.6.7 (b). Moreover, p(H) contains no lines L since such a line L
would produce a subspace p−1(L) of Rn contained in H and properly containing λ(H). By the above lemma, p(H)
is discrete, i.e., λ(H) is an open subgroup of H. Since λ(H) is divisible, it splits, so H = λ(H) × H ′, where H ′ is a
discrete subgroup of H (and of Rn). By Proposition 8.2.2, H ′ ∼= Zm. This proves Theorem 8.1.2.

8.3 Elementary LCA groups and Kronecker’s theorem

Definition 8.3.1. An abelian topological group is

(a) elementary compact if it is topologically isomorphic to Ts × F , where n is a positive integer and F is a finite
abelian group.

(b) elementary locally compact if it is topologically isomorphic to Rn×Zm×Ts×F , where n,m, s are positive integers
and F is a finite abelian group.

Here we study properties of the elementary (locally) compact abelian groups. In particular, we see that the class of
elementary locally compact abelian groups is closed under taking quotient, closed subgroups and finite products (see
Theorem 8.1.2 and Corollary 8.3.3).

The next corollary describes the quotients of Rn.

Corollary 8.3.2. A quotient of Rn is isomorphic to Rk × Tm, where k +m ≤ n. In particular, a compact quotient of
Rn is isomorphic to Tm for some m ≤ n.

Proof. Let H be a closed subgroup of Rn. Then H = V + D, where V,D are as in Theorem 8.1.2. If s = dimV and
m = r0(D), then s+m ≤ n. Let V1 be the linear subspace of Rn spanned by D. Pick a complementing subspace V2 for
the subspace V + V1 and let k = n− (s+m). Then Rn = V + V1 + V2 is a factorization in direct product. Therefore
Rn/H ∼= (V1/D)× V2. Since dimV1 = r0(D) = m, one has V1/D ∼= Tm. Therefore, Rn/H ∼= Tm × Rk.

Now we prove that the closed subgroups of the finite-dimensional tori Tn are elementary compact abelian groups.
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Corollary 8.3.3. Let C be a closed subgroup of Tn. Then C is isomorphic to Ts × F where s ≤ n and F is a finite
abelian group.

Proof. Let q : Rn → Tn = Rn/Zn be the canonical projection. If C is a closed subgroup of Tn, then H = q−1(C) is a
closed subgroup of Rn that contains Zn = ker q. Hence H is a direct product H = V +D with V ∼= Rs and D ∼= Zm,
where s and m satisfy s+m = n as Zn ≤ H. Since the restriction of q to H is open by Theorem 3.6.7, we conclude that
the restriction of q to V is open as far as V is open in H. Hence q �V : V → q(V ) is an open surjective homomorphism
and the subgroup q(V ) is open in C. As C is compact (as a closed subgroup of Ts×F ), q(V ) has finite index in C. On
the other hand, q(V ) is also divisible (being a quotient of the divisible group V ), we can write C = q(V ) × F , where
the subgroup F is finite. On the other hand, as a compact quotient of V ∼= Rs the group q(V ) is isomorphic to Ts by
Corollary 8.3.2. Therefore, C ∼= Ts × F .

Using the above corollary one can prove that the closed subgroups and the quotients of the elementary compact
abelian groups are still elementary compact abelian groups:

Exercise 8.3.4. Prove that the class EC of elementary compact abelian groups is stable under taking closed subgroups,
quotients and finite direct products.

Exercise 8.3.5. Prove that every elementary locally compact abelian groups is a quotient of an elementary locally
compact abelian group of the form Rn × Zm.

Our next aim is the description of the closure of an arbitrary subgroup of Rn. To this end we shall exploit the scalar
product (x|y) of two vectors x, y ∈ Rn.

Recall that every base v1, . . . , vn di Rn admits a dual base v′1, . . . , v
′
n defined by the relations (vi|v′j) = δij . For a

subset X of Rn define the orthogonal subspace Xo setting

Xo := {u ∈ Rn : (∀x ∈ X)(x|u) = 0}.

If X = {v} 6= {0} is a singleton, then Xo is the hyperspace orthogonal to v, so in general Xo is always a subspace, being
an intersection of hyperspaces. If V is a subspace of V , then V o is the orthogonal complement of V , so Rn = V × V o.

For a subgroup H of Rn define the associated subgroup H† setting

H† := {u ∈ Rn : (∀x ∈ H)(x|u) ∈ Z}.

Then obviously (Zn)† = Zn.

Lemma 8.3.6. Let H be a subgroup di Rn. Then:

1. H† is a closed subgroup of Rn and the correspondence H 7→ H† is decreasing;

2. (H)† = H†.

3. Ho ⊆ H†, equality holds if H is a subspace.

4. for subgroup H and H1 of Rn one has (H +H1)† = H† ∩H†1 .

Proof. The map Rn × Rn → R defined by (x, y) 7→ (x|u) is continuous.
(1) Let q : R→ T = R/Z be the canonical homomorphism.Then for every fixed a ∈ Rn the assignment x 7→ (a|x) 7→

f((a|x)) is a continuous homomorphism χa : Rn → T. Hence the set χ−1h (0) = {u ∈ Rn : (∀h ∈ H)(h|u) ∈ Z} is
closed in Rn. Therefore H† =

⋂
h∈H χ

−1
h (0) is closed. The same equality proves that the correspondence H 7→ H∗ is

decreasing.
(2) From the second part of (a) one has (H)† ⊆ H†. Suppose that u ∈ H† e x ∈ H. By the continuity of the map

χx(u) = χu(x), as a function of x, one can deduce that χx(u) ∈ Z, being χu(h) ∈ Z for every h ∈ H.
(3) The inclusion is obvious. Assume that H is a subspace and y ∈ H†. To prove that y ∈ Ho take any x ∈ H and

assume that m = (x|y) 6= 0. Then z = 1
2m ∈ H and (z|y) = 1

2 6= Z, a contradiction.

(4) The inclusion (H +H1)† ⊆ H† ∩H†1 follows from item (a). On the other hand, if x ∈ H† ∩H†1 , then obviously
x ∈ (H +H1)†.

We study in the sequel the subgroup H† associated to a closed subgroup H of Rn. According to Theorem 8.1.2 there
exist a base v1, . . . , vn of Rn and k ≤ n, such that H = V ⊕ L where V is the linear subspace generated by v1, . . . , vs
for some 0 ≤ s ≤ k and L = 〈vs+1, . . . , vk〉. Let v′1, . . . , v

′
n be the dual base of v1, . . . , vn.

Lemma 8.3.7. In the above notation the subgroup H† coincides with 〈v′s+1, . . . , v
′
k〉+W , where W is the linear subspace

generated by v′k+1, . . . , v
′
n.
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Proof. Let V ′ be the linear subspace generated by v′1, . . . , v
′
s, V

′′ the linear subspace generated by v′s+1, . . . , v
′
k and

L′ = 〈v′s+1, . . . , v
′
k〉. Then L† = V ′ + L′ + W , while V † = V ′′ + W . Hence H† = L† ∩ V † by Lemma 8.3.6. Hence,

H† = L′ +W .

Corollario 8.3.8. H = (H†)† for every subgroup H of Rn.

Proof. If H is closed of the form V + L in the notation of the previous lemma, then H† = L′ +W with v′1, . . . , v
′
n, L′

and W defined as above. Now H† = L′ +W is a closed subgroup of Rn by Lemma 8.3.6 and v1, . . . , vn is a dual base
of v′1, . . . , v

′
n. Therefore, H = V + L coincides with (H†)†.

The next proposition is a particular case of the well-known Kronecker’s theorem.

Proposition 8.3.9. Let v1, . . . , vn ∈ R. Then for v = (v1, . . . , vn) ∈ Rn the subgroup 〈v〉 + Zn of Rn is dense iff
v0 = 1, v1, . . . , vn ∈ R are linearly independent as elements of the vector space R over Q.

Proof. Assume v0 = 1, v1, . . . , vn ∈ R are linearly independent and let H = 〈v〉+Zn. Then H† ⊆ Zn = (Zn)†. It is easy
to see now that some z ∈ Zn belongs to (〈v〉)† iff z = 0. This proves that H† = 0. Consequently H is dense in Rn by
Corollary 8.3.8. If

∑n
i=0 kivi = 0 is a non-trivial linear combination with ki ∈ Z, then the vector k = (k1, . . . , kn) ∈ Zn

is non-zero and obviously k ∈ H†. Thus H† 6= 0, hence H is not dense.

Theorem 8.3.10. Tc is monothetic.

Proof. Let B be a Hamel base of R on Q that contains 1 and let B0 = B \ {1}. Applying the previous proposition one
can see that the element x = (xb)b∈B0

∈ TB0 , defined by xb = b + Z ∈ R/Z = T, is a generator of the group TB0 . To
conclude note that |B0| = |R| = c.

Exercise 8.3.11. Determine for which of the following possible choices of the vector v ∈ R4

(
√

2,
√

3,
√

5,
√

6), (
√

2,
√

3,
√

5,
√

7), (log 2, log 3, log 5, log 6),

(log 2, log 3, log 5, log 7), (log 3, log 5, log 7, log 9) and (log 5, log 7, log 9, log 11)

the subgroup 〈v〉+ Z4 of R4 is dense.

Exercise 8.3.12. Let V be a hyperplain in Rn determined by the equation
∑n
i=1 aixi = 0 such that there exists at least

one coefficient ai = 1. Then the subgroup H = V + Zn of Rn is not dense iff all the coefficients ai are rational.

(Hint. We can assume wlog that i = n. Suppose that H is not dense in Rn. Then H† 6= 0 by Corollary 8.3.8. Let 0 6= z ∈
H†. Since Zn ≤ H, one has H† ≤ Zn = (Zn)†, so z ∈ Zn. If j < n, then aj ∈ Q as v = (0, . . . , 0, 1, 0, . . . , 0,−aj) ∈ V .)

Exercise 8.3.13. (a) Prove that a subgroup H of T is dense iff H is infinite.

(b) Determine the minimal (w.r.t. inclusion) dense subgroups T.

(c) ∗ Determine the minimal (w.r.t. inclusion) dense subgroups T2.

9 Subgroups of the compact groups

For a subset E of an abelian group G we set E(2) = E − E, E(4) = E − E + E − E, E(6) = E − E + E − E + E − E
and so on.

9.1 Big subsets of groups

A subset X of an abelian group (G,+) is big8 if there exists a finite subset F of G such that G = F +X. Obviously,
every non-empty set of a finite group is big; on the other hand, every big set in an infinite group is necessarily infinite.

Example 9.1.1. Let B be an infinite subset of Z. Show that B is big iff the following two conditions hold:

(a) B is unbounded from above and from below;

(b) if B = {bn}∞n=−∞ is a one-to-one monotone enumeration of B then the differences bn+1 − bn are bounded.

Lemma 9.1.2. (a) Assume Bν is a big set of the abelian group Gν for ν = 1, 2, . . . , n. Then B1 × . . .×Bn is a big
set of G1 × . . .×Gn.

8Some authors use also the terminology large, relatively dense, or syndetically dense.
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(b) Let f : G→ H be a surjective group homomorphism. Then:

(b1) if B is a big subset of H, then f−1(B) is a big subset of G.

(b2) if B′ is a big subset of G, then f(B′) is a big subset of H.

Proof. (a) and (b2) follow directly from the definition
To prove (b1) assume that exists a finite subset F of H such that F +B = H. Let F ′ be a finite subset of G such

that f(F ′) = F . Then G = F ′ + f−1(B). Indeed, if x ∈ G, then there exists a ∈ F such that f(x) ∈ a + B. Pick an
a′ ∈ F ′ such that f(a′) = a. Then f(x) ∈ f(a′) +B, so that f(x− a′) ∈ B. Hence, x− a′ ∈ f−1(B). This proves that
x ∈ F ′ + f−1(B).

Note that if f in item (b) of 9.1.2 is not surjective, then the property may fail. The next proposition gives an easy
remedy to this.

Proposition 9.1.3. Let A be an abelian group and let B be a big subset of A. Then (B − B) ∩H is big with respect
to H for every subgroup H of A.

If a ∈ A then there exists a sufficiently large positive integer n such that na ∈ B −B.

Proof. There exists a finite subset F of A such that F +B = A. For every f ∈ F , if (f +B ∩H is not empty, choose
af ∈ (f +B)∩H, and if (f +B)∩H is empty, choose an arbitrary af ∈ H. On the other hand, for every x ∈ H there
exists f ∈ F such that x ∈ f +B; since af ∈ f +B, we have x− af ∈ B −B and so H ⊆ {af : f ∈ F}+ (B −B)∩H,
that is (B −B) ∩H is big in H.

For the last assertion it suffices to take H = 〈a〉. If H is finite, then there is nothing to prove as 0 ∈ B − B.
Otherwise H ∼= Z so the first item of Example 9.1.1 applies.

Combining Proposition 9.1.3 with item (b) of Lemma 9.1.2 we get:

Corollary 9.1.4. For every group homomorphism f : G→ H and every big subset B of H, the subset f−1(B −B) of
G is a big.

Definition 9.1.5. Call a subset S of an infinite abelian group G small if there exist (necessarily distinct) elements
g1, g2, . . . , gn, . . . of G such that (gn + S) ∩ (gm + S) = ∅ whenever m 6= n.

Lemma 9.1.6. Let G be an infinite abelian group.

(a) Show that every finite subset of G is small.

(b) Show that a subset S of G such that S − S is not big is necessarily small.

(c) Show that the group Z is not a finite union of small sets.

Proof. (a) is obvious.
(b) Build the sequence (gn) by induction, using the fact that at each stage G 6=

⋃
gn +S−S since S−S is not big.

(c) So the next exercise.

Exercise 9.1.7. ∗ Show that no infinite abelian group G is a finite union of small sets.

(Hint. Use a finitely additive invariant (Banach) measure9 on G. For an elementary proof (due to U. Zannier), see
[57, Exerc. 1.6.20].)

One can extend the notions of big and small for non-abelian groups as well (see the next definition), but then
both versions, left large and right large, need not coincide. This creates some technical difficulties that we prefer
to avoid since the second part of the next section is relevant only for abelian groups. The first half, including the
characterization 9.2.5, remains valid in the non-abelian case as well (since, fortunately, the “left” and “right” versions
of total boundedness coincide, see Exercise 9.2.2(b)).

Definition 9.1.8. Call a subset B and a group (G, ·):

(a) left (right) big if there exists a finite set F ⊆ G such that FB = G (resp., BF = G);

(b) left (right) small if there exist (necessarily distinct) elements g1, g2, . . . , gn, . . . of G such that gnS ∩ gmS = ∅
whenever m 6= n.

9This is finitely additive measure m defined on the power-set of G, i.e., every subset is measurable and m(G) = 1. The existence of such
a measure on the abelian groups can be proved using Hahn-Banach’s theorem. Some non-abelian groups do not admit such measures (this
is related to the Banach-Tarski paradox).



9 SUBGROUPS OF THE COMPACT GROUPS 58

It is clear, that a subset B is left big iff the subset B−1 is right big. In the sequel we use to call simply big the sets
that are simultaneously left and right big.

Exercise 9.1.9. Prove that

(a) if Bν is a left (right) big set of the group Gν for ν = 1, 2, . . . , n, then B1 × . . . × Bn is a left (right) big set of
G1 × . . .×Gn.

(b) if f : G→ H is a surjective group homomorphism, and

(b1) if B is a left (right) big subset of H, then f−1(B) is a left (right) big subset of G;

(b2) if B′ is a left (right) big subset of G, then f(B′) is a left (right) big subset of H;

(c) if B is a left (right) big subset of a group G, then B−1B ∩ H (resp., BB−1 ∩ H) is left (resp., right) big with
respect to H for every subgroup H of G.

(d) Show that for an infinite group G and a subgroup H of G the following are equivalent:

(d1) H has infinite index;

(d2) H is not left big;

(d3) H is not right big;

(d4) H is left small;

(d5) H is right small.

(Hint. (c) If B is a left big subset of a group G, then there exists a finite subset F of G such that FB = G.
For every f ∈ F , if fB ∩ H 6= ∅, choose af ∈ fB ∩ H, and if fB ∩ H = ∅, choose an arbitrary af ∈ H. On the
other hand, for every h ∈ H there exists f ∈ F such that h ∈ fB; since af ∈ fB, we have a−1f h ∈ B−1B and so

H ⊆ {af : f ∈ F}(B−1B ∩H), that is B−1B ∩H is left big in H.)

Exercise 9.1.10. ∗ Every infinite abelian group has a small set of generators.

This can be extended to arbitrary groups [58]. One can find in the literature also different (weaker) forms of
smallness ([5, 14]).

9.2 Precompact groups

9.2.1 Totally bounded and precompact groups

Definition 9.2.1. A topological group G is totally bounded if every open non-empty subset U of G is left big. A
Hausdorff totally bounded group will be called precompact .

Clearly, compact groups are precompact. Let us underline the fact that the notions of total boundedness and
precompactness defined by using left big sets is only apparently asymmetric. Indeed, a topological group G is totally
bounded iff every open non-empty subset U of G is right big. (Take any V ∈ V(eG) such that V −1 ⊆ U . Since V must
be left big, V −1 is right big, so U is right big as well.)

Exercise 9.2.2. Let G be topological group. Prove that G is totally bounded iff G/{eG} is totally bounded (i.e., G/{eG}
is precompact).

(Hint. Use Exercise 9.1.9, as well as the fact that G/{eG} carries the initial topology w.r.t. the quotient map
G→ G/{eG}.)

For the nice connection between totally boundedness and precompactness from this exercise we shall often prove a
property for on of this property and this will easily imply that the properties holds (with very few exceptions) also for
the other one.

Lemma 9.2.3. If G is a totally bounded group, then for every U ∈ V(eG) there exists a V ∈ V(eG) such that g−1V g ⊆ U
for all g ∈ G.
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Proof. Pick a symmetric W ∈ V(eG) satisfying W 3 ⊆ U . Then G = FW for some finite F set F in G. For every a ∈ F
pick a Va ∈ V(eG) such that aVaa

−1 ⊆ W and let V =
⋂
a∈F Va. Then g−1V g ⊆ U for every g ∈ G. Indeed, assume

g ∈ aW for some a ∈ F . Then g−1 = w−1a−1, so

g−1V g = w−1a−1V aw ⊆ w−1a−1Vaaw ⊆ w−1Ww ⊆ U.

Here comes the most important fact on precompact groups that we prove by means of the properties extablished in
of Exercise 9.1.9.

Corollary 9.2.4. Subgroups of precompact groups are precompact. In particular, all subgroups of compact groups are
precompact.

Proof. Let H be a subgroup of the precompact group G. If U is a neighborhood of eG in H, one can choose a
neighborhood W of 0 in G such that U = G ∩W . Pick a neighborhood V of eG in G such that V −1V ⊆ W . Then
V −1V ∩G ⊆W ∩G = U is big in H by Exercise 9.1.9. Thus U is big in H.

One can show that the precompact groups are precisely the subgroups of the compact groups. This requires two
steps as the next theorem shows:

Theorem 9.2.5. (a) A group having a dense precompact subgroup is necessarily precompact.

(b) The compact groups are precisely the complete precompact groups.

Proof. (a) Indeed, assume that H is a dense precompact subgroup of a group G. Then for every U ∈ VG(eG) choose an
open V ∈ VG(0) with V V ⊆ U . By the precompactness of H there exists a finite set F ⊆ H such that H = F (V ∩H).
Then

G = HV ⊆ F (V ∩H)V ⊆ FV V ⊆ FU.

(b) Compact groups are complete and precompact. To prove the other implication take a complete precompact
group G. To prove that G is compact it sufficies to prove that every ultrafilter on G converges. Assume U is such an
ultrafilter. We show first that it is a Cauchy filter. Indeed, if U ∈ VG(eG), then U is a big set of G so there exists
g1, g2, . . . , gn ∈ G such that G =

⋃n
i=1 giU . Since U is an ultrafilter, giU ∈ U for some i. Hence U is a Cauchy filter.

According to Exercise 6.2.13 U converges.

In this way we have described the precompact groups internally (as the Hausdorff topological groups having big
non-empty open sets), or externally (as the subgroups of the compact groups).

Lemma 9.2.6. For a topological group G the following are equivalent:

(a) G is not precompact;

(b) H has a left small non-empty open set.

(c) H has a right small non-empty open set.

Proof. (a) → (b) If U is a neighborhood of 0 that is not left big, choose a neighborhood V of 0 such that V −1V ⊆ U .
Then V is left small by (the obvious non-abelian version of) item (b) of Lemma 9.1.6. Similarly, (a) → (c). Since a left
(right) small set is not left (resp., right) big, both (b) and (c) trivially imply (a).

Lemma 9.2.7. Let G be a locally compact monothetic group. Then G is either compact or is discrete.

Proof. If G is finite, then G is both compact and discrete. So we can suppose without loss of generality that 〈x〉 ∼= Z
is infinite and so also that Z is a subgroup of G.

If G induces the discrete topology on Z, then Z is closed and so G = Z is discrete.
Suppose now that G induces on Z a non-discrete topology. Our aim is to show that it is totally bounded. Then the

density of Z in G yields that G = Z̃ = Z is compact, as G is locally compact and so complete (see Lemma 7.2.6).
Every open subset of G has no maximal element. Indeed, if U is an open subset of Z that contains 0 and it has a

maximal element, then −U is an open subset of Z that contains 0 and it has a minimal element and U ∩−U is an open
finite neighborhood of 0 in Z; thus Z is discrete against the assumption. Consequently every open subset of Z contains
positive elements.
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Let U be a compact neighborhood of 0 in G and V a symmetric neighborhood of 0 in G such that V + V ⊆ U .
There exist g1, . . . , gm ∈ G such that U ⊆

⋃m
i=1(gi + V ). Let n1, . . . , nm ∈ Z be positive integers such that ni ∈ gi + V

for every i = 1, . . . ,m. Equivalently gi ∈ ni − V = ni + V . Thus

U ⊆
m⋃
i=1

(gi + V ) ⊆
m⋃
i=1

(ni + V + V ) ⊆
m⋃
i=1

(ni + U)

implies

U ∩ Z ⊆
m⋃
i=1

(ni + U ∩ Z). (1)

We show that U ∩Z is big with respect to Z. Let t ∈ Z; since U ∩Z has no maximal element, then there exists s ∈ U ∩Z
such that s ≥ t. Define st = min{s ∈ U ∩ Z : s ≥ t}. By (1) st = ni + ut for some i ≤ m and ut ∈ U ∩ Z. Since ni > 0,
then ut < st and so ut < t ≤ st. Now put N = max{n1, . . . , nm} and F = {1, . . . , N}. Hence U ∩ Z + F = Z. This
proves that the topology induced on Z by G is totally bounded.

Corollary 9.2.8. Let G be a locally compact abelian group and x ∈ G. Then 〈x〉 is either compact or discrete.

9.2.2 The Bohr compactification

Proposition 9.2.9. (a) If f : G → H is a continuous surjective homomorphism of topological groups, then H is
totally bounded whenever G is totally bounded. If G carries the initial topology of f and if H is totally bounded,
then also G is totally bounded.

(b) If {Gi : i ∈ I} is a family of topological groups, then
∏
iGi is totally bounded (precompact) iff each Gi is totally

bounded (precompact).

(c) Every group G admits a finest totally bounded group topology PG.

Proof. (a) Follows from item (b2) of Lemma 9.1.2. The second assertion follows from the fact that the open sets in G
are preimages of the open sets on H, in case G carries the initial topology of f . Now Exercise 9.1.9 applies.

(b) Follows from item (a) of Lemma 9.1.2 and the definition of the Tychonov topology.
(c) Let T (G) = {τi : i ∈ I} be a the family of all totally bounded topologies on G. By Exercise 3.8.7 (G, sup{τi : i ∈

I}) is topologically isomorphic to the diagonal subgroup ∆ = {x = (xi) ∈ GI : xi = xj for all i, j ∈ I} of
∏
i∈I(Gi, τi).

Hence sup{τi : i ∈ I} is still totally bounded. Obviously, this is the finest totally bounded group topology on G.

We shall see in Corollary 9.2.16 that if G is abelian, then PG is precompact (i.e., Hausdorff).
Using the same argument one can prove a version of (c) for topological groups. This will allow us to see that every

topological abelian group G admits a “universal” precompact continuous surjective homomorphic image q : G→ G+:

Proposition 9.2.10. (a) Every topological group (G, τ) admits a finest totally bounded group topology τ+ with τ+ ≤
τ .

(b) For every topological abelian group (G, τ) the quotient group G+ = G/{eG}
τ+

equipped with the quotient topology
is precompact and for every continuous homomorphsm f : G→ P , where P is a precompact group, factors through
q : G→ G+ ).

Proof. (a) Use the argument from the proof of Proposition 9.2.9 (c).
(b) The precompactness of the quotient G+ is obvious in view of Exercise 9.2.2. Let τ1 be the initial topology of G

w.r.t. f : G→ P . Then τ1 ≤ τ and τ1 is totally bounded by Proposition 9.2.9 (a). Now item (a) implies that τ1 ≤ τ+.
Therefore f : (G, τ+) → P is continuous as well. Now we can factorize f through the quotient map q : G → G+

according to Lemma 4.1.8.

According to item (b) of the above proposition, the assignment G 7→ G+ is a functor from the category of all
topological groups to the subcategory of all precompact groups.

Theorem 9.2.11. Every topological group G admits a compact group bG and a continuous homomorphism bG : G→ bG
of G, such that for every continuous homomorphism f : G → K into a compact group K there exists a (unique)
continuous homomorphism f ′ : bG→ K with f ′ ◦ bG = f .
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Proof. Take the completion bG of the group G+ built in item (b) of the above proposition. Consider now a continuous
homomorphism f : G → K into a compact group K. By the previous proposition, f factorizes through q : G → G+,
i.e., there exists a continuos homomorphism h : G+ → K such that f = h ◦ q. Since compact groups are complete, we
can extend h to the completion bG of G+. The continuous homomorphism f ′ : bG→ K obtained in this way satisfies
f ′ ◦ q = f . The uniquencess of f ′ follows from the fact that two homomorphisms f ′, f ′′ : bG → K with this property
must coinside on the dense subgroup G+ = q(G) of bG, hence f ′′ = f ′.

The compact group bG and the homomorphism bG : G→ bG from the above theorem are called Bohr compactification
of the topological group G. Clearly, the assignment G 7→ bG is a functor from the category of all topological groups
to the subcategory of all compact groups. In some sense the Bohr compactification of a topological group G is the
compact group bG that best approximates G in the sense of Theorem 9.2.11.

The terms Bohr topology and Bohr compactification have been chosen as a reward to Harald Bohr for his work [9]
on almost periodic functions closely related to the Bohr compactification (see Theorems 11.4.7 and 11.4.9). Otherwise,
Bohr compactification is due to A. Weil. More general results were obtained later by Holm [107] and Prodanov [124].

According to J. von Neumann, we adopt the following terminology concerning the injectivity of the map bG:

Definition 9.2.12. A topological group G is called

(a) maximally almost periodic (briefly, MAP), if bG is injective;

(b) minimally almost periodic , if bG is a singleton.

According to Corollary 2.1.12, every discrete abelian group G is MAP. We will prove that G+ coincides with G#

and bG coincides with the completion of G#.
The name MAP (maximally almost periodic) is justified by the notion of almost periodic function. For a (topological)

group G a complex-valued function f ∈ B(G) is almost periodic10 if the set {fa : a ∈ G} is relatively compact in the
uniform topology of B(G), where fa(x) = f(xa) for all x ∈ G and a ∈ G (i.e., if every sequence (fan) of translations of
f has a subsequence that converges uniformly in B(G), see also §11.4 for the case of abelian topological groups). The
continuous almost periodic functions of a group G are related to the Bohr compactification bG of G as follows. Every
continuous almost periodic function f : G→ C admits an‘extension’ to bG (see the proof of this fact in the abelian case
in §11.4, Theorem 11.4.9). In other words, the continuous almost periodic function of G are precisely the compositions
of bG with continuous functions of the compact group bG. Therefore, the group G is maximally almost periodic iff the
continuous almost periodic functions of G separate the points of G.

We give the following fact without a detailed proof:

Fact 9.2.13. The set A(G) of all almost periodic functions of a group G is a closed C-subalgebra of B(G) closed under
the complex conjugation.

(Hint. To check that A(G) is a C-vector subspace take two almost periodic functions f, g of G. We have to prove
that c1f + c2g is an almost periodic function of G for every c1, c2 ∈ C. It suffices to consider the case c1 = c2 = 1 since
c1f and c2g are obviously almost periodic functions. Then the closures Kf = {fa : a ∈ G} and Kg = {ga : a ∈ G} taken
in the uniform topology of B(G) are compact. Hence Kf +Kg is compact as well. Since (f + g)a = fa + ga ∈ Kf +Kg

for every a ∈ G, we conclude that f + g is almost periodic. The closedness of A(G) under the complex conjugation is
obvious.

To check that A(G) is closed assume that f can be uniformly approximated by almost periodic functions and pick
a sequence (g(m)) of almost periodic functions of G such that

‖f − g(m)‖ ≤ 1/m. (∗)

Then for every sequence (fan) of translations of f one can inductively define a sequence of subsequence of (an) as

follows. For the first one the subsequence (g
(1)
ank

) of the sequence (g
(1)
an ) uniformly converges in B(G). Then pick a

subsequence anks of ank such that the subsequence (g
(2)
anks

) of the sequence (g
(2)
ank

) uniformly converges in B(G), etc.
Finally take a diagonal subsequence aν , e.g., a1, an1

, ank1 , . . . such that for each subsequence an, ank , anks , etc. of

an has a tail contained in the subsequence aν . Then for every m the sequence (g
(m)
aν ) uniformly converges in B(G).

Therefore, by (*) also the sequence (faν ) uniformly converges in B(G).)
In §11.4 we give a detailed alternative desciption of the almost periodic functions of an abelian group G.

Exercise 9.2.14. Let h : G → H be a homomorphism and let f : H → C be an almost periodic function. Then also
g = f ◦ h : G→ C is almost periodic.

(Hint. Let an be a sequence in G. Then for bn = h(an), the sequence fbn has a uniformly convergent subsequence
fbnk in B(H). Then gank is a convergent subsequence of gan in B(G). Thus g ∈ A(G).)

10This definition, in the case of G = R, is due to Bochner.
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9.2.3 Precompactness of the topologies TH
Now we adopt a different approach to describe the precompact abelian groups, based on the use of characters. Our
first aim will be to see that the topologies induced by characters are always totally bounded.

Proposition 9.2.15. If A is an abelian group, δ > 0 and χ1, . . . , χs ∈ A∗ (s ∈ N+), then U(χ1, . . . , χs; δ) is big in A.
Moreover for every a ∈ A there exists a sufficiently large positive integer n such that na ∈ U(χ1, . . . , χs; δ).

Proof. Define h : A→ Ts such that h(x) = (χ1(x), . . . , χs(x)) and

B =

{
(z1, . . . , zn) ∈ Ss : |Arg zi| <

δ

2
for i = 1, . . . , s

}
=

{
z ∈ S : |Arg z| < δ

2

}s
.

Then B is big in Ss and

B −B ⊆ C = {(z1, . . . , zs) ∈ Ss : ‖Arg zi‖ < δ for i = 1, . . . , s}.

Therefore U(χ1, . . . , χs; δ) = h−1(C) is big in A by Corollary 9.1.4.
The second statement follows from Proposition 9.1.3, since

U

(
χ1, . . . , χs;

δ

2

)
− U

(
χ1, . . . , χs;

δ

2

)
⊆ U(χ1, . . . , χs; δ).

Corollary 9.2.16. For an abelian group G all topologies of the form TH , where H ≤ G∗, are totally bounded. Moreover,
TH is precompact iff H separates the points of G. Hence PG is precompact.

It requires a considerable effort to prove that, conversely, every totally bounded group topology has the form TH
for some H (see Remark 11.1.3). At this stage we can prove only that every group G admits a finest totally bounded
group topology PG (Exercise 9.2.10), moreover, it is precompact when G is abelian. So the above corollary gives so far
only the inequality PG ≥ TG∗ .

It follows easily from Corollary 9.2.16 and Proposition 9.2.15 that for every neighborhood E of 0 in the Bohr
topology (namely, a set E containing a subset of the form U(χ1, . . . , χn; ε) with characters χi : G→ S, i = 1, 2, . . . , n,
and ε > 0) there exists a big set B of G such that B(8) ⊆ E (just take B = U(χ1, . . . , χn; ε/8)). Surprisingly, the
converse is also true. Namely, we shall obtain as a corollary of Følner’s lemma that every set E satisfying B(8) ⊆ E for
some big set B of G must be a neighborhood of 0 in the Bohr topology of G (see Corollary 10.2.5), i.e., PG = TG∗ .

Lemma 9.2.17. If G is a countably infinite Hausdorff abelian group, then for every compact set K in G the set K(2n)

is big for no n ∈ N.

Proof. By Lemma 7.2.1 every set K(2n) is compact. So if K(2n) were big for some n, then G itself would be compact.
Now Lemma 7.2.7 applies.

Exercise 9.2.18. (a) If S = (an) is a one-to-one T -sequence in an abelian group G, then for every n ∈ N the set
S(2n) is small in G.

(b) ∗ Show that the sequence (pn) of prime numbers in Z is not a T -sequence.

(Hint. (a) Consider the (countable) subgroup generated by S and note that if an → 0 in some Hausdorff group
topology τ on G, then the set S ∪ {0} would be compact in τ , so item (a) and Lemma 9.2.17 apply. For (b) use (a)
and the fact that there exists a constant m such that every integer number is a sum of at most m. More precisely,
according to the positive solution of the ternary Goldbach’s conjecture there exists a constant C > 0 such that every
odd integer ≥ C is a sum of three primes (see [143] for further details on Goldbach’s conjecture).

9.3 Haar integral and unitary representations

According to a classical result of E. Følner, an abelian topological group G is MAP iff for every a 6= 0 in G there exists
a big set B such that a does not belong to the closure of B(4) = B − B + B − B. A weaker form of this theorem will
be proved in §9.3, (with the bigger set B(8) in place of B(4)).

The nice structure theory of locally compact groups (see §11.3) is due to the Haar measure and Haar integral in
locally compact groups. Every locally compact group G admits a right Haar integral, i.e., a positive linear functional∫
G

defined on the space C0(G) of all continuous complex-valued functions on G with compact support that is right
invariant (in the sense that I(fa) = I(f) for every f ∈ C0(G) and a ∈ G [102, Theorem (15.5)], see also §§11.4.3, 11.4.2
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for more detail in the abelian case). Moreover, if
∫ ∗
G

is another right Haar integral of G then there exists a positive

c ∈ R such that
∫ ∗
G

= c
∫
G

. The measure m induced by a right Haar integral on the family of all Borel sets of G is called
a right Haar measure. The group G has finite measure iff G is compact. In such a case the measure m is determined
uniquely by the additional condition m(G) = 1. Analogously, a locally compact group admits a unique, up to a positive
multiplicative constant, left Haar integral. Every compact group G admits a unique Haar integral that is right and left
invariant, such that its Haar measure satisfies m(G) = 1.

Alternatively, the Haar measure of a compact group G is a function µ : B(G)→ [0, 1] such that

(a) (σ-additivity) µ(
⋃∞
n=1Bn) =

∑∞
n=1 µ(Bn) for every family (Bn) of pairwise disjoint members of B(G);

(b) (left and right invariance) m(aB) = m(Ba) = m(B) for every B ∈ B(G);

(c) m(G) = 1.

It easily follows from (b) and (c) that m(U) > 0 for every non-empty open set U of G. The Haar measure is unique
with the properties (a)–(c).

The representations of the locally compact groups are based on the Haar integral (one can see in §11.4 how these
unitary representation arise in the case of compact abelian groups).

Theorem 9.3.1. (Gel′fand-Răıkov ) For every locally compact group G and a ∈ G, a 6= e, there exists a continuous
irreducible representation V of G by unitary operators of some Hilbert space H, such that Va 6= e.

The proof of this theorem can be found in [102, 22.12]. If G is compact, H can be chosen finite dimensional.
Then the unitary group of H is compact. Note that the locally compact group groups with the last property (namely,
those locally compact groups whose continuous irreducible unitary representations in finite-dimensional Hilbert space
separate the points), are precisely the MAP locally compact groups.

It was proved by Freudenthal and Weil that the connected locally compact MAP groups have the form Rn × G,
where G is compact (and necessarily connected).

The case of Gel′fand-Răıkov’s theorem with compact group G is known as Peter-Weyl-van Kampen theorem:

Theorem 9.3.2. Let G be a compact group. For every a ∈ G, a 6= e, there exists a continuous homomorphism
f : G→ U(n), such that f(a) 6= e (n may depend on a).

In particular, a topological group G is MAP iff the continuous homomorphisms G → U(n) (with n varying in N)
separate the points of G.

Corollary 9.3.3. If G is a compact group, then G is isomorphic to a (closed) subgroup of some power UI of the group
U.

Proof. Since the continuous homomorphims fi : G→ U (i ∈ I) separate the points of G, the diagonal map determined
by all homomorphisms fi defines a continuous injective homomorphism ∆I : G ↪→ UI . By the compactness of G and
the open mapping theorem, this is the required embedding.

In the case of an abelian group G the continuous irreducible unitary representations are simply the continuous
characters G→ T. Hence an abelian topological group G is MAP iff the continuous homomorphisms G→ T separate
the points of G, i.e., for every x, y ∈ G with x 6= y, there exists χ ∈ Ĝ such that χ(x) 6= χ(y).

Using Peter-Weyl’s theorem in the abelian case one can prove that every locally compact abelian group is MAP.
The proof of this fact (see Theorem 11.3.3) requires several ingredients that we develop in §11.

The standard exposition of Pontryagin-van Kampen duality exploits the Haar measure for the proof of Peter-Weyl’s
theorem. Our aim here is to obtain a proof of Peter-Weyl-van Kampen theorem in the abelian case without any recourse
to Haar integration and tools of functional analysis. This elementary approach, based on Følner’s theorem mentioned
above and ideas of Iv. Prodanov, can be found in [57, Ch.1]). It makes no recourse to Haar measure at all – on the
contrary, after giving a self-contained elementary proof of Peter-Weyl’s theorem, one obtains as an easy consequence
the existence of Haar measure on the locally compact abelian groups (see Theorem 11.4.17 for the compact case and
Theorem 11.4.21 for the locally compact one).

10 Følner’s theorem

This section is entirely dedicated to Følner’s theorem.
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10.1 Fourier theory for finite abelian groups

In the sequel G will be a finite abelian group, so G∗ ∼= G, so in particular |G∗| = |G|.
Here we recall some well known properties of the scalar product in finite-dimensional complex spaces V = Cn. Since

our space will be “spanned” by a finite abelian group G of size n (i.e., V = CG), we have also an action of G on V . We
normalize the scalar product in a such way to let the vector (1, 1, . . . , 1) (i. e., the constant function 1) to have norm
1. The reader familiar with Haar integration may easily recognize in this the Haar integral on G.

Define the scalar product by

(f, g) =
1

|G|
∑
x∈G

f(x)g(x).

Let us see first that the elements of the subset G∗ of V are pairwise orthogonal and have norm 1:

Proposition 10.1.1. Let G be an abelian finite group and ϕ, χ ∈ G∗, x, y ∈ G. Then:

(a) 1
|G|
∑
x∈G ϕ(x)χ(x) =

{
1 if ϕ = χ

0 if ϕ 6= χ
;

(b) 1
|G∗|

∑
χ∈G∗ χ(x)χ(y) =

{
1 if x = y

0 if x 6= y.
.

Proof. (a) If ϕ = χ then χ(x)χ(x) = χ(x)χ(x)−1 = 1.
If ϕ 6= χ there exists z ∈ G such that ϕ(z) 6= χ(z). Therefore the following equalities∑

x∈G
ϕ(x)χ(x) =

ϕ(z)

χ(z)

∑
x∈G

ϕ(x− z)χ(x− z) =
ϕ(z)

χ(z)

∑
x∈G

ϕ(x)χ(x)

imply that
∑
x∈G ϕ(x)χ(x) = 0.

(b) If x = y then χ(x)χ(x) = χ(x)χ(x)−1 = 1.
If x 6= y, by Corollary 2.1.12 there exists χ0 ∈ G∗ such that χ0(x) 6= χ0(y). Now we can proceed as before, that is∑

χ∈G∗
χ(x)χ(y) =

χ0(x)

χ0(y)

∑
χ∈G∗

(χχ0)(x)(χχ0)(y) =
χ0(y)

χ0(x)

∑
χ∈G∗

χ(x)χ(y)

yields
∑
χ∈G∗ χ(x)χ(y) = 0.

If G is a finite abelian group and f is a complex valued function on G, then for every χ ∈ G∗ we can define

cχ = (f, χ) =
1

|G|
∑
x∈G

f(x)χ(x),

that is the Fourier coefficient of f corresponding to χ.
For complex valued functions f, g on a finite abelian group G define the convolution f ∗ g by (f ∗ g)(x) =

1
|G|
∑
y∈G f(y)g(x+ y).

Proposition 10.1.2. Let G be an abelian finite group and f a complex valued function on G with Fourier coefficients
cχ where χ ∈ G∗. Then:

(a) f(x) =
∑
χ∈G∗ cχχ(x) for every x ∈ G;

(b) if {aχ}χ∈G∗ is such that f(x) =
∑
χ∈G∗ aχχ(x), then aχ = cχ for every χ ∈ G∗;

(c) 1
|G|
∑
x∈G |f(x)|2 =

∑
χ∈G∗ |cχ|2;

(d) if g is an other complex valued function on G with Fourier coefficients (dχ)χ∈G∗ , then f ∗g has Fourier coefficients
(cχdχ)χ∈G∗ .
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Proof. (a) The definition of the coefficients cχ yields∑
χ∈G∗

cχχ(x) =
∑
χ∈G∗

1

|G|
∑
y∈G

f(y)χ(y)χ(x).

Computing
∑
χ∈G∗ χ(y)χ(x) with Proposition 10.1.1(b) we get

∑
χ∈G∗ cχχ(x) = |G∗|

|G| f(x) for every x ∈ G. Now

|G| = |G∗| gives f(x) =
∑
χ∈G∗ cχχ(x) for every x ∈ G.

(b) By Proposition 10.1.1 the definition of the coefficients cχ and the relation f(x) =
∑
χ∈G∗ aχχ(x)

cχ =
1

|G|
∑
ϕ∈G∗

aϕ
∑
x∈G

ϕ(x)χ(x) = aχ.

(d) By item (a) g(x) =
∑
ϕ∈G∗ dϕϕ(x) for every x ∈ G. Therefore∑

y∈G
f(y)g(x+ y) =

∑
y∈G

( ∑
χ∈G∗

cχχ(y)
)( ∑

ϕ∈G∗
dϕϕ(x)ϕ(y)

)
=

=
∑
χ∈G∗

∑
ϕ∈G∗

cχdϕϕ(x)
∑
y∈G

χ(y)ϕ(y) = |G|
∑
χ∈G∗

cχdχχ(x).

(c) It is sufficient to apply (d) with g = f and let x = 0.

Corollary 10.1.3. Let G be a finite abelian group, E be a non-empty subset of G and let f be the characteristic
function of E. Then for the convolution g = f ∗ f one has

(a) g(x) > 0 iff x ∈ E(2);

(b) g(x) =
∑
χ∈G∗ |cχ|2χ(x).

Proof. (a) g(x) > 0 if and only if there exists y ∈ E with x+ y ∈ E, that is x ∈ E − E = E(2).
(b) follows obviously from Proposition 10.1.2(d).

10.2 Bogoliouboff and Følner Lemmas

Lemma 10.2.1 (Bogoliouboff lemma). If F is a finite abelian group and E is a non-empty subset of F , then there

exist χ1, . . . , χm ∈ F ∗, where m =
[( |F |
|E|
)2]

, such that U(χ1, . . . , χm; π2 ) ⊆ E(4).

Proof. Let f be the characteristic function of E. By Proposition 10.1.2(a) we have

f(x) =
∑
χ∈F∗

cχχ(x), with cχ =
1

|F |
∑
x∈F

f(x)χ(x). (1)

Define g = f ∗ f and h = g ∗ g. The functions f and g = f ∗ f have real values and by Corollary 10.1.3

g(x) =
∑
χ∈F∗

|cχ|2χ(x) and h(x) =
∑
χ∈F∗

|cχ|4χ(x) for x ∈ F. (2)

Moreover, g(x) > 0 if and only if x ∈ E − E = E(2). Analogously h(x) > 0 if and only if x ∈ E(4).

By Proposition 10.1.2(c)
∑
χ∈F∗ |cχ|2 = |E|

|F | . Set a = |E|
|F | and order the Fourier coefficients of f so that

|cχ0
| ≥ |cχ1

| ≥ . . . ≥ |cχk | ≥ . . .

(note that they are finitely many). Taking into account the fact that f is the characteristic function of E, it easily
follows from (1) that the maximum value of |cχi | is attained for the trivial character χ0 = 1, namely cχ0 = a. Then∑k
i=0 |cχi |2 ≤

∑
χ∈F∗ |cχ|2 = a for every k ≥ 0. Consequently (k + 1)|cχk |2 ≤ a, so

|cχk |4 ≤
a2

(k + 1)2
. (3)

Now let m =
[

1
a2 ]. We are going to show now that with these χ1, . . . , χm ∈ F ∗ one has

h(x) > 0 for every x ∈ U(χ1 . . . , χm;
π

2
). (4)
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Clearly Reχk(x) ≥ 0 for k = 1, 2, . . . ,m whenever x ∈ U(χ1 . . . , χm; π2 ) thus

|a4 +

m∑
k=1

|cχk |4χk(x)
∣∣ ≥ Re(a4 +

m∑
k=1

|cχk |4χk(x)) ≥ a4. (5)

On the other hand, (3) yields

∑
k≥m+1

|cχk |4 ≤
∑

k≥m+1

a2

(k + 1)2
< a2

∑
k≥m+1

1

k(k + 1)
≤ a2

m+ 1
. (6)

Since h has real values, (2), (5) and (6) give

h(x) = |h(x)| = |a4 + |cχ1
|4χ1(x) + . . .

∣∣ ≥ ∣∣∣∣∣a4 +

m∑
k=1

|cχk |4χk(x)

∣∣∣∣∣− ∑
k≥m+1

|cχk |4 ≥ a4 −
a2

m+ 1
≥ a2(a2 − 1

m+ 1
) > 0.

This proves (4). Therefore U(χ1 . . . , χm; π2 ) ⊆ E(4).

Let us note that the estimate for the number m of characters is certainly non-optimal when E is too small. For
example, when E is just the singleton {0}, the upper bound given by the lemma is just |F |2, while one can certainly
find at most m = |F | − 1 characters χ1, . . . , χm (namely, all non-trivial χi ∈ F ∗) such that U(χ1, . . . , χm; π2 ) = {0}.
For certain groups (e.g., F = Zk2) one can find even a much smaller number (say m = log2 |F |). Nevertheless, in the
cases relevant for the proof of Følner’s theorem, namely when the subset E is relatively large with respect to F , this
estimate seems more reasonable.

The next lemma will be needed in the following proofs.

Lemma 10.2.2. Let A be an abelian group and {An}∞n=1 be a sequence of finite subsets of A such that

lim
n→∞

|(An − a) ∩An|
|An|

= 1

for every a ∈ A. If k is a positive integer and V is a subset of A such that k translates of V cover A, then for every
ε > 0 there exists N > 0 such that

|V ∩An| >
(

1

k
− ε
)
|An|

for every n ≥ N .

Proof. Let a1, . . . , ak ∈ A be such that
⋃k
i=1(ai+V ) = A. If ε > 0, then there exists N1 > 0 such that for every n ≥ N1

|(An − ai) ∩An| > (1− ε)|An|

and consequently,
|(An − ai) \An| < ε|An| (7)

for every i = 1, . . . , k. Since An =
⋃k
i=1(ai + V ) ∩An, for every n there exists in ∈ {1, . . . , k} such that

1

k
|An| ≤ |(ain + V ) ∩An| = |V ∩ (An − ain)|.

Since V ∩ (An − ain) ⊆ (V ∩An) ∪ ((An − ain) \An), (7) yields

1

k
|An| ≤ |V ∩ (An − ain)| ≤ |V ∩An|+ |(An − ain) \An| < |V ∩An|+ ε|An|.

Lemma 10.2.3 (Bogoliouboff-Følner lemma). Let A be a finitely generated abelian group and let r = r0(A). If k is
a positive integer and V is a subset of A such that k translates of V cover A, then there exist ρ1, . . . , ρs ∈ A∗, where
s = 32rk2, such that UA(ρ1, . . . , ρs;

π
2 ) ⊆ V(4).
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Proof. By Theorem 2.1.1 we have A ∼= Zr × F , where F is a finite abelian group; so we can identify A with the group
Zr × F . Define An = (−n, n]r × F , let a = (a1, . . . , ar; f) ∈ Zr × F . Then Jni = (−n, n] ∩ (−n − ai, n − ai] satisfies
|Jni| ≥ 2n−|ai|. In particular, Jni 6= ∅ for every n > n0 = max{|ai| : i = 1, 2, . . . , n}. As (An−a)∩An =

∏r
i=1 Jni×F ,

we have

|(An − a) ∩An| ≥ |F | ·
r∏
i=1

(2n− |ai|)

or all n > n0. Since |An| = |F |(2n)r, we can apply Lemma 10.2.2. Thus for every ε > 0 we have

|V ∩An| >
(

1

k
− ε
)
|An|. (8)

for every sufficiently large n. For n with (8) define G = A/(6nZr) and E = q(V ∩An) where q is the canonical projection
of A onto G. Observe that q �An is injective, as (An −An) ∩ ker q = {0}. Then (8) gives

|E| = |V ∩An| >
(

1

k
− ε
)
|An| =

(
1

k
− ε
)

(2n)r|F |

and so
|G|
|E|
≤ (6n)r|F |

( 1
k − ε)(2n)r|F |

=
3rk

1− kε
.

Fix ε > 0 sufficiently small to have
[

32rk2

(1−kε)2
]

= 32rk2 and pick sufficiently large n to have (8). Now apply the

Bogoliouboff Lemma 10.2.1 to find s = 32rk2 characters ξ1n, . . . , ξsn ∈ G∗ such that UG(ξ1n, . . . , ξsn; π2 ) ⊆ E(4). For
j = 1, . . . , s define %jn = ξjn ◦ π ∈ A∗. If a ∈ An ∩ UA(%1n, . . . , %sn; π2 ) then q(a) ∈ UG(ξ1n, . . . , ξsn; π2 ) ⊆ E(4) and so
there exist b1, b2, b3, b4 ∈ V ∩An and c = (ci) ∈ 6nZr such that a = b1 − b2 + b3 − b4 + c. Now

c = a− b1 + b2 − b3 + b4 ∈ (An)(4) +An

implies |ci| ≤ 5n for each i. So c = 0 as 6n divides ci for each i. Thus a ∈ V(4) and so

An ∩ UA
(
%1n, . . . , %sn;

π

2

)
⊆ V(4) (9)

for all n satisfying (8).
By Lemma 7.1.3 there exist %1, . . . , %s ∈ A∗ and a subsequence {nl}l of {n}n∈N+ such that %i(a) = liml %inl(a) for

every i = 1, . . . , s and a ∈ A. We are going to prove now that

UA

(
%1, . . . %s;

π

2

)
⊆ V(4). (10)

Take a ∈ UA(%1, . . . , %s;
π
2 ). Since A =

⋃∞
l=k Anl for every k ∈ N+, there exists n0 satisfying (8) and a ∈ An0

. As
%i(a) = liml %inl(a) for every i = 1, . . . , s, we can pick l to have nl ≥ n0 and |Arg(%inl(a))| < π/2 for every i = 1, . . . , s,
i.e., a ∈ UA(%1nl , . . . , %snl ;

π
2 ) ∩Anl . Now (9), applied to nl, yields a ∈ V(4). This proves (10).

Our next aim is to eliminate the dependence of the number m of characters on the free rank of the group A in
Bogoliouboff - Følner’s lemma. The price to pay for this is taking V(8) instead of V(4).

Lemma 10.2.4 (Følner lemma). Let A be an abelian group. If k is a positive integer and V be a subset of A such that
k translates of V cover A, then there exist χ1, . . . , χm ∈ A∗, where m = k2, such that UA(χ1, . . . , χm; π2 ) ⊆ V(8).

Proof. We consider first the case when A is finitely generated. Let r = r0(A). By Lemma 10.2.3 there exist %1, . . . , %s ∈
A∗, where s = 32rk2, such that

UA

(
%1, . . . , %s;

π

2

)
⊆ V(4).

Since it is finitely generated, we can identify A with Zr×F , where F is a finite abelian group. For t ∈ {1, . . . , r} define
a monomorphism it : Z ↪→ A by letting

it(n) = (0, . . . , 0, n︸ ︷︷ ︸
t

, 0, . . . , 0; 0) ∈ A.

Then each κjt = %j ◦ it, where j ∈ {1, . . . , s}, t ∈ {1, . . . , r}, is a character of Z. By Proposition 9.2.15 the subset

L = UZ

(
{κjt : j = 1, . . . , s, t = 1, . . . , r}; π

8r

)
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of Z is infinite. Let L0 =
⋃r
t=1 it(L), i.e., this is the set of all elements of A of the form it(n) with n ∈ L and

t ∈ {1, . . . , r}. Then obviously L0 ⊆ UA
(
%1, . . . , %s;

π
8r

)
, therefore,

L0
(4r) ⊆ UA

(
%1, . . . , %s;

π

2

)
⊆ V(4). (λ)

Define An = (−n, n]r × F and pick ε > 0 such that ε < 1
6k4 . Then

[(
k

1−kε
)2]

= k2. As in Lemma 10.2.3 An
satisfies the hypotheses of Lemma 10.2.2 and so |V ∩ An| > ( 1

k − ε)|An| for sufficiently large n. Moreover, we choose
this sufficiently large n from L. Let Gn = A/(2nZr) ∼= Zr2n×F and E = q(An ∩ V ) where q is the canonical projection
A→ Gn. Then q �An is injective as (An − An) ∩ ker q = 0. So q induces a bijection between An and Gn on one hand,
and between V ∩An and E. Thus |An| = |Gn| = (2n)r|F |, |E| > ( 1

k − ε)|An| and so(
|Gn|
|E|

)2

≤
(

k

εk − 1

)2

, hence

[(
|Gn|
|E|

)2
]
≤

[(
k

εk − 1

)2
]

= k2.

To the finite group Gn apply the Bogoliouboff Lemma 10.2.1 to get ξ1n, . . . , ξmn ∈ G∗n, where m = k2, such that

UGn

(
ξ1n, . . . , ξmn;

π

2

)
⊆ E(4).

Let χjn = ξjn ◦ q ∈ A∗. If a ∈ An ∩ UA(χ1n, . . . , χmn; π2 ), then q(a) ∈ UGn(ξ1n, . . . , ξmn; π2 ) ⊆ E(4). Therefore there
exist b1, b2, b3, b4 ∈ An ∩ V and c = (ci) ∈ 2nZr such that a = b1 − b2 + b3 − b4 + c. Since 2n divides ci for every i and
|ci| ≤ 5n, we conclude that ci ∈ {0,±2n± 4n} for i = 1, 2, . . . , r. This means that c can be written as a sum of at most
4r elements of L0. This gives c ∈ L0

(4r) ⊆ V(4) by (λ), consequently a ∈ V(8). Therefore

An ∩ UA
(
χ1n, . . . , χmn;

π

2

)
⊆ V(8)

for n ∈ L sufficiently large n. By Lemma 7.1.3 there exist χ1, . . . , χm ∈ A∗ and a subsequence {nl}l of {n}n∈N+
such

that χj(a) = liml χjnl(a) for every j = 1, . . . ,m and for every a ∈ A. Being A =
⋃
{Anl : l > k, nl ∈ L} for every

k ∈ N+ we can conclude as above that UA
(
χ1, . . . , χm; π2

)
⊆ V(8).

Consider now the general case. Let g1, . . . , gk ∈ A be such that A =
⋃k
i=1(gi + V ). Suppose that G is a finitely

generated subgroup of A containing g1, . . . , gk. Then G =
⋃k

1=1(gi + V ∩G) and so k translates of V ∩G cover G. By
the above argument there exist ϕ1G, . . . , ϕmG ∈ G∗, where m = k2, such that

UG

(
ϕ1G, . . . , ϕmG;

π

2

)
⊆ (V ∩G)(8) ⊆ V(8).

By Corollary 2.1.11 we can extend each ϕiG to a character of A, so that we assume from now on ϕ1G, . . . , ϕmG ∈ A∗
and

G ∩ UA
(
ϕ1G, . . . , ϕmG;

π

2

)
= UG

(
ϕ1G, . . . , ϕmG;

π

2

)
⊆ V(8). (11)

Let G be the family of all finitely generated subgroups G of A containing g1, . . . , gk. It is a directed set under inclusion.
So we get m nets {ϕjG}G∈G in A∗ for j = 1, . . . ,m. By Lemma 7.1.3 there exist subnets {ϕjGβ}β and χ1, . . . , χm ∈ A∗
such that

χj(x) = lim
β
ϕjGβ (x) for every x ∈ A and j = 1, . . . ,m. (12)

From (11) and (12) we conclude as before that UA(χ1, . . . , χm; π2 ) ⊆ V(8).

As a corollary of Følner’s lemma we obtain the following internal description of the neighborhoods of 0 in the Bohr
topology of A.

Corollary 10.2.5. For a subset E of an abelian group A the following are equivalent:

(a) E contains V(8) for some big subset V of A;

(b) for every n ∈ N+ E contains V(2n) for some big subset V of A;

(c) E is a neighborhood of 0 in the Bohr topology of A.

Proof. The implication (a)⇒ (c) follows from Følner’s lemma. The implication (c)⇒ (b) follows from Corollary 9.2.16
and Proposition 9.2.15.
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Corollary 10.2.6. For an abelian group G the Bohr topology TG∗ coincides with the finest precompact group topology
PG.

Corollary 10.2.7. For a subgroup H of an abelian group G the Bohr topology of G/H coincides with the quotient
topology of G#.

Proof. Let q : G → G/H be the quotient homomorphism. The quotient topology T G∗ of the Bohr topology TG∗ is a
precompact group topology on G/H (as H is closed in G# by Theorem 3.4.7). Hence T G∗ ≤ PG/H = TG/H . On the

other hand, q : G# → (G/H)# is continuous, hence TG/H ≤ T G∗ by the properties of the quotient topology. Hence

T G∗ = TG/H .

Exercise 10.2.8. Prove the above corollary using the explicit description of the neighborhoods of 0 in G# given in
Corollary 10.2.5.

(Hint. Since q : G# → (G/H)# is continuous, it remains to show that it is also open. To this end take a neigh-
borhood U of 0 in G#. Then U contains some V(8), where V is a big set in G. Since q(V ) is big in G/H and

q(V(8)) = q(V )(8) ⊆ q(U), we deduce from Corollary 10.2.5 that q(U) is a neighborhood of 0 in (G/H)#.)

It follows from results of Følner [79] obtained by less elementary tools, that (a) can be replaced by the weaker
assumption V(4) ⊆ E (see also Ellis and Keynes [76] or Cotlar and Ricabarra [30] for further improvements). Nevertheless
the following old problems concerning the group Z is still open (see Cotlar and Ricabarra [30], Ellis and Keynes [76],
Følner [79], Glasner [89], Pestov [120, Question 1025] or Veech [141]):

Question 10.2.9. Does there exist a big set V ⊆ Z such that V − V is not a neighborhood of 0 in the Bohr topology
of G?

It is known that every infinite abelian group G admits a big set with empty interior with respect to the Bohr topology
[5] (more precisely, these authors prove that every totally bounded group has a big subset with empty interior).

10.3 Prodanov’s lemma and independence of characters

In the sequel various subspaces of the C-algebra B(G) of all bounded complex-valued functions on an abelian group G
will be used. We denote by X(G) the C-subspace of B(G) consisting of all linear combinations of continuous characters
of a topological abelian group G with coefficients from C and by X0(G) its C-subspace spanned by the continuous

non-trivial characters of G. If G carries no specific topology, we shall always assume that G is discrete, so that G∗ = Ĝ.
Note that X(G) = C · 1⊕ X0(G) and both X (G) and X0(G) are invariant under the action f 7→ fa of the group G.

For an abelian group G let A(G) denote the set of all functions f ∈ B(G) such that for every ε > 0 there exists a
g ∈ X(G) with ‖f − g‖ ≤ ε, i.e., A(G) is the closure of X(G) in B(G) with respect to the uniform convergence topology
of B(G). Hence A(G) is a C-subalgebra of B(G) containing all constants and closed under complex conjugation.
Furthermore, let A0(G) denote the set of all functions f ∈ A(G) such that for every ε > 0 there exists a g ∈ X0(G) with
‖f − g‖ ≤ ε, i.e., A0(G) is the closure of X0(G) in B(G) with respect to the uniform convergence topology of B(G).
It is easy to see that A0(G) is C-vector subspaces of A(G) (hence of B(G) as well). Moreover, A(G) = A0(G) + C · 1,
where C · 1 is the one-dimensional subalgebra consisting of the constant functions.

10.3.1 Prodanov’s lemma

Let C be a set in a real or complex vector space. Then C is said to be convex if, for all x, y ∈ C and all t ∈ [0, 1], the
point (1− t)x+ ty ∈ C.

The next lemma, due to Prodanov [127], allows us to eliminate the discontinuous characters in uniform approxima-
tions of continuous functions via linear combinations of characters. In [57, Lemma 1.4.1] it is proved for abelian groups
G that carry a topology τ such that for every g ∈ G and n ∈ Z the functions x 7→ x+ g and x 7→ nx are continuous in
(G, τ). The fact that this topology is not assumed to be Hausdorff will be crucial in the applications of the lemma.

Lemma 10.3.1 (Prodanov’s lemma). Let G be a topological abelian group, let U be an open subset of G, f a complex
valued continuous function on U and M a convex closed subset of C. Let k ∈ N+ and χ1, . . . , χk ∈ G′. Suppose that

c1, . . . , ck ∈ C are such that
∑k
j=1 cjχj(x) − f(x) ∈ M for every x ∈ U . If χm1 , . . . , χms , with m1 < · · · < ms, s ∈

N, {m1, . . . ,ms} ⊆ {1, . . . , k}, are precisly all continuous characters among χ1, . . . , χk, then
∑s
i=1 cmiχmi(x)−f(x) ∈M

for every x ∈ U .
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Proof. Let χk ∈ G∗ be discontinuous. Then it is discontinuous at 0. Consequently there exists a net {xγ}γ in G
such that limγ xγ = 0 and there exist yj = limγ χj(xγ) for all j = 1, . . . , k, but yk 6= 1. Notice that always |yj | = 1.
Moreover, yj = 1 when χj is continuous because xγ → 0, so yj = limχj(xγ) = 1.

Consider
∑k
j=1 cjχj(x + txγ) − f(x + txγ), where t ∈ Z. Since limγ xγ = 0, we have x + txγ ∈ U for every

x ∈ U and for every sufficiently large γ. Thus
∑k
j=1 cjχj(x)χj(xγ)t − f(x + txγ) ∈ M and so passing to the limit∑k

j=1 cjχj(x)ytj − f(x) ∈M , because f is continuous and M is closed.
Take an arbitrary n ∈ N. By the convexity of M and the relation above for t = 0, . . . , n, we obtain

1

n+ 1

n∑
t=0

 k∑
j=1

cjχj(x)ytj − f(x)

 ∈M.

Note that
∑n
t=0 y

t
k =

yn+1
k −1
yk−1 because yk 6= 1. Hence we get

k−1∑
j=1

cjnχj(x) +
ck

1 + n

1− yn+1
k

1− yk
χk(x)− f(x) ∈M

for every x ∈ U , where cjn =
cj
n+1

∑n
t=0 y

t
j . Now for every j = 1, 2, . . . , k − 1

• |cjn| ≤ |cj |
n+1

∑n
t=0 |yj |t = |cj | (because |yj | = 1), and

• if yj = 1 then cjn = cj .

By the boundedness of the sequences {cjn}∞n=1 for j = 1, . . . , k − 1, there exists a subsequence {nm}∞m=1 such that all
limits c′j = limm cjnm exist for j = 1, . . . , k − 1. On the other hand, |yk| = 1, so |1− yn+1

k | ≤ 1 + |yn+1
k | ≤ 2 hence

lim
n

ck
n+ 1

1− yn+1
k

1− yk
= 0.

Taking the limit for m→∞ in

k−1∑
j=1

cjnmχj(x) +
ck

1 + nm

1− ynm+1
k

1− yk
χk(x)− f(x) ∈M

gives
k−1∑
j=1

c′jχj(x)− f(x) ∈M for x ∈ U ; (13)

moreover c′j = cj for every j = 1, . . . , k − 1 such that χj is continuous.
The condition (13) is obtained by the hypothesis, removing the discontinuous character χk in such a way that the

coefficients of the continuous characters remain the same. Iterating this procedure, we can remove all discontinuous
characters among χ1, . . . , χk.

This lemma allows to “produce continuity out of nothing” in the process of approximation.

Corollary 10.3.2. Let G be a topological abelian group, f ∈ C(G) and ε > 0. If ‖
∑k
j=1 cjχj−f‖ ≤ ε for some k ∈ N+,

χ1, . . . , χk ∈ G∗ and c1, . . . , ck ∈ C, then also ‖
∑s
i=1 cmiχmi − f‖ ≤ ε, where {χm1

, . . . , χms} = {χ1, . . . , χn}∩ Ĝ, with
m1 < · · · < ms.

In particular, if f =
∑k
j=1 cjχj for some k ∈ N+, χ1, . . . , χk ∈ G∗ and c1, . . . , ck ∈ C, then also f =

∑s
i=1 cmiχmi

with {χm1 , . . . , χms} are the continuous characters in the linear combination. In other words, C(G) ∩X(Gd) coincides

with the C-subalgebra X(G) of B(G) generated by Ĝ. For further use in the sequel we isolate also the following equality
C(G) ∩ X(Gd) = X(G), i.e.,

Corollary 10.3.3. C(G) ∩ A(Gd) = A(G) for every topological abelian group G.

In other words, as far as continous functions are concerned, in the definition of A(G) it is irrelevant whether one
approximates via (linear combinations of) continuous or discontinuous characters.

Now we give an (apparently) topology-free form of the local version of the Stone-Weierstraß theorem 2.2.35.
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Proposition 10.3.4. Let G be an abelian group and H be a group of characters of G. If X is a subset of G and f is
a complex valued bounded function on X then the following conditions are equivalent:

(a) f can be uniformly approximated on X by a linear combination of elements of H with complex coefficients;

(b) for every ε > 0 there exist δ > 0 and χ1, . . . , χm ∈ H such that x− y ∈ UG(χ1, . . . , χm; δ) yields |f(x)− f(y)| < ε
for every x, y ∈ X.

Proof. (a)⇒(b) Let ε > 0. By (a) there exist c1, . . . , cm ∈ C and χ1, . . . , χm ∈ H such that ‖
∑m
i=1 c1χi − f‖∞ < ε

4 ,
that is |

∑m
i=1 c1χi(x)− f(x)| < ε

4 for every x ∈ X.
On the other hand note that |

∑m
i=1 ciχi(x)−

∑m
i=1 ciχi(y)| ≤

∑m
i=1 |ci| · |χi(x)− χi(y)| and that |χi(x− y)− 1| =

|χi(x)χi(y)−1 − 1| = |χi(x)− χi(y)|. If we take

δ =
ε

2mmaxi=1,...,m |ci|

then x − y ∈ U(χ1, . . . , χm; δ) implies
∑m
i=1 |ci| · |χi(x) − χi(y)| < ε

2 and so also |
∑m
i=1 ciχi(x) −

∑m
i=1 ciχi(y)| < ε

2 .
Consequently,

|f(x)− f(y)| ≤

∣∣∣∣∣f(x)−
m∑
i=1

ciχi(x)

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

ciχi(x)−
m∑
i=1

ciχi(y)

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

ciχi(y)− f(y)

∣∣∣∣∣ < ε.

(b)⇒(a) Let βX be the Čech-Stone compactification of X endowed with the discrete topology. If F : X → C is
bounded, there exists a unique continuous extension F β of F to βX. Let S be the collection of all continuous functions
g on βX such that g =

∑n
j=1 cjχ

β
j with χj ∈ H, cj ∈ C and n ∈ N+. Then S is a subalgebra of C(βX,C) closed under

conjugation and contains all constants. In fact in S we have χβkχ
β
j = (χkχj)

β by definition and χβ = (χ)β because

χχ = 1 and so (χχ)β = χβ(χ)β = 1, that is (χ)β = (χ−1)β = χβ .
Now we will see that S separates the points of βX separated by fβ , to apply the local Stone-Weierstraß Theorem

2.2.35. Let x, y ∈ βX and fβ(x) 6= fβ(y). Consider two nets {xi}i and {yi}i in X such that xi → x and yi → y.
Since fβ is continuous, we have fβ(x) = lim f(xi) and fβ(y) = lim f(yi). Along with fβ(x) 6= fβ(y) this implies that
there exists ε > 0 such that |f(xi) − f(yi)| ≥ ε for every sufficiently large i. By the hypothesis there exist δ > 0 and

χ1, . . . , χk ∈ H such that for every u, v ∈ X if u− v ∈ UG(χ1, . . . , χk; δ) then |f(u)− f(v)| < ε. Assume χβj (x) = χβj (y)
holds true for every j = 1, . . . , k. Then xi− yi ∈ UG(χ1, . . . , χk; δ) for every sufficiently large i, this contradicts (a). So
each pair of points of βX separated by fβ is also separated by S. Since βX is compact, one can apply the local version
of the Stone-Weierstraß Theorem 2.2.35 to S and fβ and so fβ can be uniformly approximated by S. To conclude note
that if g =

∑
cjχ

β
j on βX then g �X=

∑
cjχj .

The reader familiar with uniform spaces will note that item (b) is nothing else but uniform continuity of f w.r.t.
the uniformity on X induced by the uniformity of the whole group G determined by the topology TH .

The use of the Čech-Stone compactification in the above proof is inspired by Nobeling and Beyer [?] who proved that
if S is a subalgebra of B(X), for some set X, containing the constants and stable under conjugation, then g ∈ B(X)
belongs to the closure of S with respect to the norm topology if and only if for every net (xα) in X the net g(xα) is
convergent whenever the nets f(xα) are convergent for all f ∈ S.

10.3.2 Proof of Følner’s theorem

Theorem 10.3.5 (Følner theorem). Let G be a topological abelian group. If k is a positive integer and E is a subset

of G such that k translates of E cover G, then for every neighborhood U of 0 in G there exist χ1, . . . , χm ∈ Ĝ, where
m = k2, and δ > 0 such that UG(χ1, . . . , χm; δ) ⊆ U − U + E(8).

Proof. We can assume, without loss of generality, that U is open. By Følner’s lemma 10.2.4, there exist ϕ1, . . . , ϕm ∈ G∗
such that UG(ϕ1, . . . , ϕm; π2 ) ⊆ E(8), where the characters ϕj can be discontinuous. Our aim will be to replace these
characters by continuous ones “enlarging” E(8) to U − U + E(8).

It follows from Lemma 3.4.2 that C := E(8) + U ⊆ E(8) + U − U . Consider the open set X = U ∪ (G \ C) and the
function f : X → C defined by

f(x) =

{
0 if x ∈ U
1 if x ∈ G \ C

Then f is continuous as X = U ∪ (G \ C) is a clopen partition of X.
Let H be the group generated by ϕ1, . . . , ϕm. Take x, y ∈ X with x − y ∈ UG(ϕ1, . . . , ϕm; π2 ) ⊆ E(8). So if y ∈ U

then x ∈ E(8) + U and consequently x 6∈ G \ E(8) + U , that is x ∈ U . In the same way it can be showed that x ∈ U
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yields y ∈ U . This gives f(x) = f(y) by the definition of f . So by Proposition 10.3.4 one can uniformly approximate f
on X by characters of H. Hence one can find a finite number of m-uples j̃ = (j1, . . . , jm) of integers and c̃ ∈ C such
that ∣∣∣∣∑

̃

c̃ϕ
j1
1 (x) · . . . · ϕjmm (x)− f(x)

∣∣∣∣ ≤ 1

3
(13)

holds for every x ∈ X. Denote the product ϕj11 · . . . · ϕjmm by ξ̃. Since X is open and f is continuous, we can apply

Lemma 10.3.1 to the convex closed set M = {z ∈ C : |z| ≤ 1
3} and this permits us to assume that all characters ξ̃ are

continuous. Letting x = 0 in (13) one gets |
∑

̃ c̃| ≤
1
3 , and consequently,

2

3
≤
∣∣∣∣∑

̃

c̃ − 1

∣∣∣∣. (14)

Let now Φ be the subgroup of H consisting of all continuous characters of H, i.e., Φ = H ∩ Ĝ. By Theorem 2.1.1
there exist χ1, . . . , χm ∈ Φ that generate Φ. Since the characters ξ̃ are continuous, each ξ̃ can be written as a product

χ
s1(̃)
1 · . . . · χsm(̃)

m for appropriate s1(̃), . . . sm(̃) ∈ Z. Choose ε > 0 with ε
∑

̃ |c̃| <
1
3 . Then there exists δ > 0 such

that |ξ̃(x)− 1| ≤ ε for all summands ξ̃ in (13) whenever x ∈ UG(χ1, . . . , χm; δ).
To prove

UG(χ1, . . . , χm; δ) ⊆ U − U + E(8)

assume for a contradiction that some z ∈ UG(χ1, . . . , χm; δ) and z 6∈ U −U +E(8). Since C = E(8) + U ⊆ E(8) +U −U ,
then z ∈ G \ C ⊆ X. Thus, by the definition of f , (13), (14) and |ξ̃(z)− 1| ≤ ε, we have

2

3
≤
∣∣∣∣∑

̃

c̃ − 1

∣∣∣∣ ≤ ∣∣∣∣∑
̃

c̃(1− ξ̃(z))
∣∣∣∣+

∣∣∣∣∑
̃

c̃ξ̃(z)− f(z)

∣∣∣∣ ≤ ε∑
j̃

|c̃|+
1

3
.

These inequalities together give 2
3 ≤ ε

∑
̃ |c̃|+

1
3 . This contradicts the choice of ε.

10.3.3 Independence of characters

We apply now Prodanov’s lemma for indiscrete G and U = G. Note that this necessarily yields f is a constant function.

Corollary 10.3.6. Let G be an abelian group, g ∈ X0(G) and M be a closed convex subset of C. If g(x) + c ∈ M for
some c ∈ C and for every x ∈ G, then c ∈M .

Proof. Assume that g(x) =
∑k
j=1 cjχj(x) for some c1, . . . , ck ∈ C and non-constant χ1, . . . , χk ∈ G∗. Apply Lemma

10.3.1 with G indiscrete, U = G and f the constant function c. Since all characters χ1, . . . , χk are discontinuous, we
conclude c ∈M with Lemma 10.3.1.

Corollary 10.3.7. Let G be an abelian group, g ∈ X0 and ε ≥ 0. If |g(x)− c| ≤ ε for some c ∈ C and for every x ∈ G.
Then |c| ≤ ε.

Proof. Follows from the above corollary with M the closed disk with center 0 and radius ε.

Corollary 10.3.8. Let G be an abelian group, and let χ0, χ1, . . . , χk ∈ G∗ be distinct characters. Then χ0, χ1, . . . , χk
are linearly independent.

Using this corollary we shall see now that for an abelian group G the characters G∗ not only span X(G) as a base,
but they have a much stronger independence property.

Corollary 10.3.9. Let G be an abelian group, and let χ0, χ1, . . . , χk ∈ G∗ be distinct characters. Then ‖χ0 −∑k
j=1 cjχj‖ ≥ 1 for every c1, . . . , ck ∈ C.

Proof. Let ε = ‖
∑k
j=1 cjχj − χ0‖. Then ∣∣ k∑

j=1

cjχj(x)− χ(x)
∣∣ ≤ ε (1)

for every x ∈ G. According to the previous corollary, χ0, χ1, . . . , χk are linearly independent, hence ε > 0.
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By our assumption ξj = χjχ
−1 is non-constant for every j = 1, 2, . . . , n. So g =

∑m
j=1 ξj ∈ X0 and (1) yields

|g(x)− 1| =
∣∣ m∑
j=1

cjχj(x)χ−1(x)− 1
∣∣ ≤ ε

for every x ∈ G. According to the previous corollary |1| ≤ ε.

Corollary 10.3.10. Let G be an abelian group, H ≤ G∗ and χ ∈ G∗ such that there exist k ∈ N+, χ1, . . . , χk ∈ H and
c1, . . . , ck ∈ C such that ∣∣∣∣∣∣

k∑
j=1

cjχj(x)− χ(x)

∣∣∣∣∣∣ ≤ 1

2
(2)

for every x ∈ G. Then χ = χi for some i (hence χ ∈ H).

Proof. We can assume without loss of generality that χ1, . . . , χk are pairwise distinct. Assume for a contradiction that
χ 6= χj for all j = 1, 2, . . . , k. Then the previous corollary applied to χ, χ1, . . . , χk yields ‖

∑k
j=1 cjχj − χ‖ ≥ 1. This

contradicts (2). Therefore, χ = χj for some j = 1, 2, . . . , k, so χ ∈ H.

We obtain as an immediate consequence of Corollary 10.3.10 the following fact of independent interest: the contin-
uous characters of (G, TH) are precisely the characters of H.

Corollary 10.3.11. Let G be an abelian group. Then H = ̂(G, TH) for every H ≤ G∗.

Proof. Obviously, H ⊆ ̂(G, TH). Now let χ ∈ ̂(G, τH). For every fixed ε > 0 the set O = {a ∈ S : |a − 1| < ε} is
an open neighborhood of 1 in S. Hence W = χ−1(O) is TH -open in G. So there exist χ1, . . . , χm ∈ H and δ > 0
such that UG(χ1, . . . , χm; δ) ⊆ W . Now, if x − y ∈ UG(χ1, . . . , χm; δ) then χ(x − y) ∈ O, so |χ(x)χ−1(y) − 1| < ε. So
|χ(x) − χ(y)| < ε. In other words, χ satisfies condition (b) of Proposition 10.3.4. Hence there exist χ1, . . . , χm ∈ H
and c1, . . . , cm ∈ C such that

∣∣∑m
j=1 cjχj(x)− χ(x)

∣∣ ≤ 1
2 for every x ∈ G. By Corollary 10.3.10 this yields χ ∈ H.

11 Applications of Følner’s theorem

In this section we prove Peter-Weyl’s theorem using Følner’s theorem. Moreover, we use Prodanov’s lemma to describe
the precompact topologies of the abelian groups and to easily build the Haar integral of a compact abelian group.

11.1 Precompact group topologies on abelian groups

Let us recall here that for an abelian group G and a subgroup H of G∗, the group topology TH generated by H is the
coarsest group topology on G that makes every character from H continuous. We recall its description and properties
in the next proposition:

Proposition 11.1.1. Let G be an abelian group and let H be a group of characters of G. A base of the neighborhoods
of 0 in (G, TH) is given by the sets U(χ1, . . . , χm; δ), where χ1, . . . , χm ∈ H and δ > 0. Moreover (G, TH) is a Hausdorff
if and only if H separates the points of G.

Now we can characterize the precompact topologies on abelian groups.

Theorem 11.1.2. Let (G, τ) be an abelian group. The following conditions are equivalent:

(a) τ is precompact;

(b) τ is Hausdorff on G and the neighborhoods of 0 in G are big subsets;

(c) there exists a group H of continuous characters of G that separates the points of G and such that τ = TH .

Proof. (a)⇒(b) is the definition of precompact topology.

(b)⇒(c) If H = (̂G, τ) then TH ⊆ τ . Let U and V be open neighborhoods of 0 in (G, τ) such that V(10) ⊆ U . Then V
is big and by Følner’s Theorem 10.3.5 there exist continuous characters χ1, . . . , χm of G such that UG(χ1, . . . , χm; δ) ⊆
V(10) ⊆ U for some δ > 0. Thus U ∈ TH and τ ⊆ TH .

(c)⇒(a) Even if this implication is contained in Corollary 9.2.16, we give a direct proof here. Let i : G → SH be
defined by i(g) = ig : H → S (if g ∈ G) with ig(χ) = χ(g) for every χ ∈ H. Since H separates the points of G, the
function i is injective. The product SH endowed with the product topology is compact and so i is a topological immersion
by Proposition 11.1.1. The closure of i(G) in SH is compact and G̃ is isomorphic to it, hence G̃ is compact.
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Remark 11.1.3. The above theorem essentially belongs to Comfort and Ross [29]. It can be given in the following
simpler “Hausdorff-free” version: τ is totally bounded iff τ = TH for some group H of continuous characters of
G. Indeed, let N denote the closure of 0 in (G, τ) and let τ̄ denote the quotient topology of G/N . Then (G, τ̄) is
precompact iff (G, τ) totally bounded. On the other hand, if (G, τ) totally bounded, then the neighborhoods of 0 in
(G, τ) are big. Finally, if the neighborhoods of 0 in (G, τ) are big, then an application of Følner’s Theorem 10.3.5 gives,
as above, τ ⊆ T

(̂G,τ)
.

Theorem 11.1.4 will allow us to sharpen this property (see Corollary 11.2.3).

Theorem 11.1.4. Let G be an abelian group. Let D(G) be the set of all groups of characters of G separating the points

of G and P be the set of all precompact group topologies on G. Then the map T : D(G)→ P, D(G) 3 H T7→ TH ∈ P, is
an order preserving bijection (if H1, H2 ∈ D(G) then TH1 ⊆ TH2 if and only if H1 ⊆ H2).

Proof. The equivalence (a)⇔(c) of Theorem 11.1.2 yields that TH ∈ P for every H ∈ D(G) and that T is surjective.
By Corollary 10.3.11, TH1

= TH2
for H1, H2 ∈ H yields H1 = H2. Therefore, T is a bijection.

The last statement of the theorem is obvious.

We proved in Corollary 10.3.11 that for a subgroup H of G∗ the continuous characters of (G, TH) are precisely the

characters of H. This allows us to prove that w(G) = χ(G) = |Ĝ| for precompact abelian groups:

Corollary 11.1.5. If G an abelian group and H ≤ G∗, then w(G, TH) = χ(G, TH) = |H|.

Proof. According to Exercise 6.1.13, w(G, TH) ≤ |H|. Let κ = χ(G, TH). We aim to prove that κ ≥ |H|. Then we obtain
χ(G, TH) ≥ κ ≥ |H| ≥ w(G, TH) ≥ χ(G, TH), thus χ(G, TH) = w(G, TH) = |H|. Pick a base B of the neighborhoods at
0 of TH of size ≤ κ. By the definition of TH , every element B ∈ B can be written as B = UG(χ1,B , . . . , χnB ,B ; 1/mB),
where nB ,mB ∈ N and χi,B ∈ H for i = 1, . . . , nB . Then the subset H ′ = {χi,B : B ∈ B, i = 1, . . . , nB} of H has
|H ′| ≤ κ and produces the topology TH′ that is finer than TH , by the choice of B. On the other hand, TH′ ≤ T〈H′〉 ≤ TH .
Therefore, T〈H′〉 = TH . By Theorem 11.1.4, 〈H ′〉 = H. This gives |H| = |H ′| ≤ κ, as desired.

Corollary 11.1.6. Let G an abelian group and H ≤ G∗ such that TH is metrizable. Then H is countable.

11.2 Peter-Weyl’s theorem for compact abelian groups

Let us start with the following important consequence of Theorem 11.1.2.

Corollary 11.2.1 (Peter-Weyl’s theorem). If G is a compact abelian group, then Ĝ separates the points of G.

Proof. Let τ be the topology of G. By Theorem 11.1.2 there exists a group H of continuous characters of G (i.e.,

H ⊆ Ĝ) such that τ = TH . Since τ ⊇ TĜ and H ⊆ Ĝ we conclude that H = Ĝ separates the points of G.

Corollary 11.2.2. If G is a compact abelian group, then G is isomorphic to a (closed) subgroup of the power TĜ.

Proof. Since the characters χ ∈ Ĝ separate the points of G, the diagonal map determined by all characters defines a

continuous injective homomorphism ∆Ĝ : G ↪→ TĜ. By the compactness of G and the open mapping theorem, this is
the required embedding.

Let us note here that the power TĜ is the smallest possible one with this property. Indeed, if G embedds into some
power Tκ, then κ = w(Tκ) ≥ w(G) = |Ĝ|.

As a corollary of Theorem 11.1.4 we obtain the following useful fact that completes Corollary 11.2.1. It will be
essentially used in the proof of the duality theorem.

Corollary 11.2.3. If (G, τ) is a compact abelian group and H ≤ Ĝ separates the points of G, then H = Ĝ.

Proof. By Theorem 11.1.2 it holds τ = TĜ. Since TH ⊆ TĜ by Theorem 11.1.4 and TH is Hausdorff, then TH = TĜ.

Now again Theorem 11.1.4 yields H = Ĝ.

We show now that every compact abelian group is an inverse limit of elementary compact abelian groups (see
Definition 8.3.1).

Proposition 11.2.4. Let G be a compact abelian group and let U be an open neighborhood of 0 in G. Then there exists
a closed subgroup C of G such that C ⊆ U and G/C is an elementary compact abelian group. In particular, G is an
inverse limit of elementary compact abelian groups.
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Proof. By the Peter-Weyl Theorem 11.2.1
⋂
χ∈Ĝ kerχ = {0} and each kerχ is a closed subgroup of G. By the

compactness of G there exists a finite subset F of Ĝ such that C =
⋂
χ∈F kerχ ⊆ U . Define now g =

∏
χ∈F χ : G→ TF .

Thus ker g = C and G/C is topologically isomorphic to the closed subgroup g(G) of TF by the compactness of G. So
G/C is elementary compact abelian by Lemma 8.3.3.

To prove the last statement, fix for every open neighborhood Ui of 0 in G a closed subgroup Ci of G with Ci ⊆ U
and such that G/Ci is elementary compact abelian. Note that for Ci and Cj obtained in this way the subgroup Ci∩Cj
has the same property as G/Ci ∩Cj is isomorphic to a closed subgroup of the product G/Ci ×G/Cj which is again an
elementary compact abelian group. Enlarging the family (Ci) with all finite intersections we obtain an inverse system
of elementary compact abelian groups G/Ci where the connecting homomorphisms G/Ci → G/Cj , when Ci ≤ Cj ,
are simply the induced homomorphisms. Then the inverse limit G′ of this inverse system is a compact abelian group
together with a continuous homomorphism f : G → G′ induced by the projections pi : G → G/Ci. Assume x ∈ G
is non-zero. Pick on open neighborhood U of 0. By the first part of the proof, there exists Ci ⊆ U , hence x 6∈ Ci.
Therefore, pi(x) 6= 0, so f(x) 6= 0 as well. This proves that f is injective. To check surjectivity of f take an element
x′ = (xi +Ci) of the inverse limit G′. Then the family of closed cosets xi +Ci in G has the finite intersection property,
so has a non-empty intersection. For every element x of that intersection one has f(x) = x′. Finally, the continuous
isomorphism f : G→ G′ must be open by the compactness of G.

For a topological abelian group G we say that G has no small subgroups, or shortly, G is NSS, if there exists a
neighborhood U of 0 such that U contain no non-trivial subgroups of G. The next corollary follows immediately from
the above proposition:

Corollary 11.2.5. A compact abelian group G has no small subgroups precisely when G is an elementary compact
abelian group.

11.3 On the structure of compactly generated locally compact abelian groups

From now on all groups are Hausdorff; quotients are taken for closed subgroups and so they are still Hausdorff.

Proposition 11.3.1. Let G be a compactly generated locally compact abelian group. Then there exists a discrete
subgroup H of G such that H ∼= Zn for some n ∈ N and G/H is compact.

Proof. Suppose first that there exist g1, . . . , gm ∈ G such that G = 〈g1, . . . , gm〉. We proceed by induction. For m = 1
apply Lemma 9.2.7: if G is infinite and discrete take H = G and if G is compact H = {0}. Suppose now that the
property holds for m ≥ 1 and G = 〈g1, . . . , gm+1〉. If every 〈gi〉 is compact, then so is G and H = {0}. If 〈gm+1〉
is discrete, consider the canonical projection π : G → G1 = G/〈gm+1〉. Since G1 has a dense subgroup generated by
m elements, by the inductive hypothesis there exists a discrete subgroup H1 of G1 such that H1

∼= Zn and G1/H1 is
compact. Therefore H = π−1(H1) is a closed countable subgroup of G. Thus H is locally compact and countable,
hence discrete by Lemma 7.2.7.

Since H is finitely generated, it is isomorphic to H2 × F , where H2
∼= Zs for some s ∈ N and F is a finite abelian

group (see Theorem 2.1.1). Now G/H is isomorphic to G1/H1 and H/H2 is finite, so G/H2 is compact thanks to
Lemma 7.2.4.

Now consider the general case. There exists a compact subset K of G that generates G. By Lemma 7.2.11 we can
assume wlog that K = U , where U is a symmetric neighborhood of 0 in G with compact closure. We show now that
there exists a finite subset F of G such that

K +K ⊆ K + 〈F 〉. (2)

In fact, pick a symmetric neighborhood V of 0 in G such that V + V ⊆ U . For the compact set K satisfying
K ⊆

⋃
x∈K(x+ V ) there exists a finite subset F of K such that K ⊆

⋃
x∈F (x+ V ) = F + V . Then

K +K ⊆ F + F + V + V ⊆ 〈F 〉+ U ⊆ 〈F 〉+K.

gives (2). An easy inductive argument shows that 〈K〉 = G and (2) imply G = 〈K〉 ⊆ K + 〈F 〉.
Let G1 = 〈F 〉. By G = 〈F 〉+K the quotient π(K) = G/G1 is compact. By the first part of the proof there exists a

discrete subgroup H of the locally compact subgroup G1 of G, such that H ∼= Zn for some n ∈ N and G1/H is compact.
Since G1/H is a compact subgroup of G/H such that (G/H)/(G1/H) ∼= G/G1 is compact, we conclude that also G/H
is compact.

Proposition 11.3.2. Let G be a compactly generated locally compact abelian group. Then there exists a compact
subgroup K of G such that G/K is elementary locally compact abelian.
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Proof. By Proposition 11.3.1 there exists a discrete subgroup H of G such that the quotient G/H is compact. Consider
the canonical projection π of G onto G/H. Let U be a compact symmetric neighborhood of 0 in G such that (U +U +
U) ∩H = {0}. So π(U) is a neighborhood of 0 in G/H and applying Lemma 11.2.4 we find a closed subgroup L ⊇ H
of G such that the closed subgroup C = L/H of G/H satisfies

C = L/H ⊆ π(U) and (G/H)/(L/H) = G/L ∼= Tt × F, (4)

where F is a finite abelian group and t ∈ N, i.e., G/L is elementary compact abelian.
The set K = L ∩ U is compact being closed in the compact neighborhood U . Let us see now that K is a subgroup

of G. To this end take x, y ∈ K. Then x− y ∈ L and π(x− y) ∈ C ⊆ π(U). Thus π(x− y) = π(u) for some u ∈ U . As
π(x− y − u) = 0 in G/H, one has x− y − u ∈ (U + U + U) ∩H = {0}. Hence x− y = u ∈ L ∩ U = K.

Now take x ∈ L; consequently π(x) ∈ C ⊆ π(U) so π(x) = π(u) for some u ∈ U . Clearly, u ∈ L ∩ U = K, hence
π(L) = π(K). Thus L = K +H and K ∩H = {0} yields that the canonical projection l : G→ G/K restricted to H is
a continuous isomorphism of H onto l(H) = l(L). Let us see now that l(H) is discrete. To this end we apply Lemma
7.2.3 to deduce first that l(H) is closed. Since H is discrete, {0G} is open in H, so A := H \ {0G} is a closed subset
of H, hence of G as well. Again by Lemma 7.2.3, l(A) = l(H) \ {0G/K} is closed in G/K. Hence, {0G/K} is open in
l(H). Thus

l(L) = l(H) ∼= H ∼= Zs

is discrete in G/K.
Observe that (4) yields the following isomorphisms:

(G/K)/l(L) = (G/K)/(L/K) ∼= G/L ∼= Tt × F.

Denote by % the composition G/K → G/L → Tt × F and note that l(L) = ker % is a discrete subgroup G/K. Hence
to % : G/K → G/L and the composition q : Rt → G/L of the canonical projection Rt → Tt and the obvious inclusion
of Tt in G/L one can apply Lemma 8.0.711 to obtain an open continuous homomorphism f : Rt → G/K such that
% ◦ f = q. In particular, N = f(Rt) is an open subgroup of G/K as has a non-empty interior (as q and % are local
homeomorphisms). As f : Rt → N is open by Theorem 7.3.1, N is isomorphic to a quotient of Rt, so N is an elementary
locally compact abelian. Since N is divisible (as a quotient of Rt), by Lemma 2.1.13 G/K = N × B where B is a
discrete subgroup of G/K because N ∩B = {0} and N is open. Moreover B is compactly generated as it is a quotient
of G. Since it is also discrete, B is finitely generated. Therefore, G/K = N × B is an elementary locally compact
abelian as well.

To prove the Pontryagin-van Kampen duality theorem in the general case (for G ∈ L), we need Theorem 11.3.3,
which generalizes the Peter-Weyl Theorem 11.2.1.

Theorem 11.3.3. If G is a locally compact abelian group, then Ĝ separates the points of G.

Proof. Let V be a compact neighborhood of 0 in G. Take x ∈ G\{0}. Then G1 = 〈V ∪{x}〉 is an open (it has non-void
interior) compactly generated subgroup of G. In particular G1 is locally compact. By Proposition 11.3.1 there exists a
discrete subgroup H of G1 such that H ∼= Zm for some m ∈ N and G1/H is compact. Thus

⋂
n∈N+

nH = {0} and so

there exists n ∈ N+ such that x 6∈ nH. Since H/nH is finite, the quotient G2 = G1/nH is compact by Lemma 7.2.4.
Consider the canonical projection π : G1 → G2 and note that π(x) = y 6= 0 in G2. By the Peter-Weyl Theorem 11.2.1

there exists ξ ∈ Ĝ such that ξ(y) 6= 0. Consequently χ = ξ ◦ π ∈ Ĝ1 and χ(x) 6= 0. By Theorem 2.1.10 there exists

χ ∈ Ĝ such that χ �G1
= χ. Since G1 is an open subgroup of G, this extension will be continuous (as its restriction to

G1 is continuous).

Corollary 11.3.4. Let G be a locally compact abelian group and K a compact subgroup of G. Then for every χ ∈ K̂
there exists ξ ∈ Ĝ such that ξ �K= χ.

Proof. Define H = {χ ∈ K̂ : there exists ξ ∈ Ĝ with ξ �K= χ}. By Theorem 11.3.3 the continuous characters of
G separate the points of G. Therefore H separate the points of K. Now apply Corollary 11.2.3 to conclude that
H = K̂.

Here is another corollary of Theorem 11.3.3:

Corollary 11.3.5. A σ-compact and locally compact abelian group is totally disconnected iff for every continuous
character χ of G the image χ(G) is a proper subgroup of T.

11The reader who is familiar with covering maps may deduce the existence of such a lifting from the facts that % is a covering homomorphism
and Rt is simply connected.
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Proof. Assume that G is a locally compact abelian group such that χ(G) is a proper subgroup of T for every continuous

character χ of G. According to Theorem 11.3.3 the diagonal homomorphism f : G →
∏
{χ(G) : χ ∈ Ĝ} of all χ ∈ Ĝ

is injective. Since the proper subgroups of T are totally disconnected, the whole product will be totally disconnected,
so also G will be totally disconnected. Now assume that G is σ-compact, locally compact and totally disconnected.
Consider χ ∈ Ĝ and assume for a contradiction that χ(G) = T. Then χ : G → T will be an open map by the open
mapping theorem, so T will be a quotient of G. As total disconnectedness is inherited by quotiens of locally compact
groups (see Corollary 7.4.3), we conclude that T must be totally disconnected, a contradiction.

One cannot remove “σ-compact” in the above corollary. Indeed, let G denote T equipped with the discrete topology.
Then G is totally disconnected, although the identity map χ : G→ T provides a character with χ(G) = T.

Algebraic properties of the dual group Ĝ of a compact abelian group G can be described in terms of topological
properties of the group G. We prove in Corollary 11.3.6 that Ĝ is torsion precisely when G is totally disconnected:

Corollary 11.3.6. A compact abelian group is totally disconnected iff every continuous character of G is torsion.

Proof. For a compact abelian group G the image χ(G) under a continuous character χ of G is a compact, hence closed
subgroup of T. Hence χ(G) is a proper subgroup of T precisely when it is finite. This means that the character χ is
torsion.

Compactness plays an essential role here. We shall see examples of totally disconnected σ-compact and locally
compact abelian groups G such that no continuous character of G is torsion (e.g., G = Qp).

Here is the counterpart of this property in the connected case:

Proposition 11.3.7. Let G be a topological abelian group.

(a) If G is connected, then the dual group Ĝ is torsion-free.

(b) If G is compact, then the dual group Ĝ is torsion-free iff G is connected.

Proof. (a) Since for every non-zero continuous character χ : G→ T the image χ(G) is a non-trivial connected subgroup

of T, we deduce that χ(G) = T for every non-zero χ ∈ Ĝ. Hence Ĝ is torsion-free.
(b) If the group G is compact and disconnected, then by Theorem 7.4.2 there exists a proper open subgroup N of G.

Take any non-zero character ξ of the finite group G/N . Then mξ = 0 for some positive integer m (e.g., m = [G : N ]).

Now the composition χ of ξ and the canonical homomorphism G→ G/N satisfies mχ = 0 as well. So Ĝ has a non-zero
torsion character. This proves the implication left open by item (a).

11.4 Almost periodic functions and Haar integral in compact abelian groups

11.4.1 Almost periodic functions of the abelian groups

Example 11.4.1. Let f : R → C be a function. One says that a ∈ R is a period of f , if f(x + a) = f(x) for every
x ∈ R (i.e., fa = f). Clearly, if a ∈ R is a period of f , then also ka is a period of f for every k ∈ Z. More precisely, the
periods of f form a subgroup Π(f) of R. Call f periodic if Π(f) 6= {0}.

It is easy to see that f has period a iff f factorizes through the quotient homomorphism R → R/〈a〉. Since
R/〈a〉 ∼= T is compact, this explains the great importance of the periodic functions, i.e., these are the functions that
can be factorized through the compact circle group T.

Exercise 11.4.2. Let G be an abelian group. Call a ∈ G a period of a function f : G→ C if f(x+ a) = f(x) for every
x ∈ G. Prove that:

(a) the subset Π(f) of all periods of f is a subgroup of G and f factorizes through the quotient map G→ G/Π(f);

(b) Π(f) is the largest subgroup such that f is constant on each coset of Π(f);

(c) if G is a topological group and f is continuous, then Π(f) is a closed subgroup of G.

(d) if f : R→ C is a continuous non-constant function, then there exists a smallest positive period a of f .

Definition 11.4.3. For an abelian group G, a function f : G → C and ε > 0 an element a ∈ G is called an ε-almost
period of f if ‖f − fa‖ ≤ ε.

Let
T (f, ε) = {a ∈ G : a is an ε-almost period of f}.
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Exercise 11.4.4. Let G be an abelian group and let f : G → C be a function. Prove that {T (f, ε) : ε > 0} is a
filter-base of neighborhoods of 0 in a group topology Tf on G.

(Hint. Note that −T (f, ε) = T (f, ε) and T (f, ε/2) + T (f, ε/2) ⊆ T (f, ε) for every ε.)

Now we use the group topology Tf to find an equivalent description of almost periodicity of f .

Proposition 11.4.5. Let G be an abelian group. Then for every function f : G→ C the following are equivalent:

(a) f is almost periodic

(b) Tf is totally bounded.

Proof. Clearly, Tf is totally bounded iff for every ε > 0 the set T (f, ε) is big, i.e., for every ε > 0 there exist
a1, . . . , an ∈ G such that G =

⋃n
k=1 ak + T (f, ε).

(a)→ (b) Arguing for a contradiction assume that Tf is not totally bounded. Then by Lemma 9.2.6 there exists some
ε > 0 such that T (f, ε) is small, so there exists a sequence (bn) in G such that the sets bn+T (f, ε) are pairwise disjoint.
By the almost periodicity of f the sequence of translates (fbm) admits a subsequence that is Cauchy w.r.t. the uniform
topology of B(G). In particular, one can find two distinct indexes n < m such that ‖fbm − fbn‖ = ‖fbm−bn − f‖ ≤ ε,
i.e., bm − bn ∈ T (f, ε) ⊆ T (f, ε)− T (f, ε). Hence (bm + T (f, ε)) ∩ (bn + T (f, ε)) 6= ∅, a contradiction.

(b) → (a) It suffices to check that every infinite sequence of translates (fbm) of f admits a subsequence that is
Cauchy w.r.t. the uniform topology of B(G). From the completeness of B(G), we deduce then that this subsequence
converges in the uniform topology of B(G), so f is almost periodic.

Assume for a contradiction that some sequence of translates (fbm) admits no Cauchy subsequence. That is, for
every subsequence (fbmk ) there exists an ε > 0 such that for some subsequence mks of mk one has

‖fbmks − fbmkt ‖ = ‖fbmks−bmkt − f‖ ≥ 2ε for all s 6= t. (3)

Since our hypothesis implies that T (f, ε/2) is big, there exist a1, . . . , an ∈ G such that G =
⋃n
k=1 ak + T (f, ε/2).

Since infinitely many bmks will fall in the same ak + T (f, ε/2) for some k, we deduce that for distinct s and t with
bmks , bmkt ∈ ak + T (f, ε/2) one has

bmks − bmkt ∈ T (f, ε/2)− T (f, ε/2) ⊆ T (f, ε), i.e., ‖fbmks−bmkt − f‖ ≤ ε.

This contradicts (3).

Example 11.4.6. Let χ ∈ G∗. Then T (χ, ε) = {a ∈ G : |χ(a)− 1| < ε} contains UG(χ; δ) for an appropriate δ, hence
T (χ, ε) is big. Consequently, χ is almost periodic.

Theorem 11.4.7 (Bohr-von Neumann Theorem). A(G) = A(G) for every abelian group G, i.e., f ∈ B(G) is almost
periodic if and only if f can be uniformly approximated by linear combinations, with complex coefficients, of characters
of G (i.e., functions from X(G)).

Proof. We give a brief sketch of the proof, for more details see [57, Theorem 2.2.2].
According to Example 11.4.6 every character is almost periodic. It follows from Fact 9.2.13 that every linear

combination of characters is an almost periodic function. This implies that that every function from X(G) is almost
periodic. Moreover, by this and by the proof of Fact 9.2.13 it follows that every function from A(G) is almost periodic.
This proves the inclusion A(G) ⊆ A(G).

To establish the inclusion A(G) ⊇ A(G) we assume that the function f is almost periodic. Fix an ε > 0. By
Proposition 11.4.5 the set T (f, ε/8) is big. Hence we can apply Følner’s theorem to the set T (f, ε) containing T (f, ε/8)(8)
and find χ1, . . . , χn ∈ G∗, δ > 0 such that UG(χ1, . . . , χn; δ) ⊆ T (f, ε). Now if x, y ∈ G satisfy x−y ∈ UG(χ1, . . . , χn; δ),
then x− y ∈ T (f, ε), so ‖fx−y − f‖ ≤ ε. In particular, |f(x)− f(y)| ≤ ε. Then f satisfies condition (b) of Proposition
10.3.4 with H = G∗. Hence f ∈ A(G) according to the conclusion of that proposition.

Corollary 11.4.8. Every continuous function on a compact abelian group is almost periodic.

Proof. It follows immediately from Stone-Weierstraß Theorem and Peter-Weyl’s Theorem that every f ∈ C(G) can
be uniformly approximated by linear combinations, with complex coefficients, of characters of G when G is compact.
Hence the above theorem applies.

Now we are in position to prove that the continuous almost periodic functions of a topological abelian group G are
precisely those that factorize through the Bohr compactification bG : G→ bG.
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Theorem 11.4.9. Let G be a topological abelian group. Then a continuous function f : G → C is almost periodic iff
there exists a continuous function f̃ : G→ C such that f = f̃ ◦ bG.

Proof. Assume there exists a continuous function f̃ : G → C such that f = f̃ ◦ bG. Then f̃ is almost periodic by
Corollary 11.4.8. Now Exercise 9.2.14 implies that f ∈ A(G).

Now assume that f ∈ A(G). Then by Theorem 11.4.7 f can be uniformly approximated by functions from X(G).
By Theorem 2.2.35 X (G) separates the points of G separated by f . Since g(x) = g(y) for x, y ∈ G and all g ∈ X(G)
is equivalent to bG(x) = bG(y), we conclude that f(x) = f(y) whenever bG(x) = bG(y). This means that f can be
factorized as f = f̃ ◦ bG for some function f̃ : G→ C. Note that the continuity of f yields that f̃ is continuous.

We recall that for an abelian group G, A(G) = A0(G)+C ·1, where C ·1 is the one-dimensional subalgebra consisting
of the constant functions. We shall see below that A0(G) ∩ C · 1 = 0, so A0(G) has co-dimension one in A(G).

The next lemma is a corollary of Corollary 10.3.6:

Lemma 11.4.10. Let G be an abelian group, g ∈ A0(G) and let M be a closed convex subset of C. If g(x)− c ∈M for
some c ∈ C and for every x ∈ G, then c ∈M .

Proof. Assume for contradiction that c 6∈M . Since M is closed there exists ε > 0 such that c 6∈M +D, where D is the
closed (so compact) ball with center 0 and radius ε. Let h ∈ X0(G) with ‖g − h‖ ≤ ε/2. Since M +D is still a closed
convex set of C and h(x)− c ∈M +D, we conclude with Corollary 10.3.6 that c ∈M +D, a contradiction.

Lemma 11.4.11. For every abelian group G

A(G) = A0(G)⊕ C · 1 (4).

Moreover, if f ∈ C(G) is written as f(x) = gf (x)+cf , with gf ∈ Cz(G) and cf ∈ C a constant function, then |cf | ≤ ‖f‖
and cf ≥ 0, whenever f satisfies f(x) ≥ 0 for all x ∈ G.

Proof. Assume c · 1 = g ∈ A0(G) for some c ∈ C. For M = {0} apply Lemma 11.4.11 to c− g = 0 ∈M . The conclusion
of the lemma gives c = 0. Hence A0(G) ∩ C · 1 = 0. This proves (4).

For f ∈ A(G) the projections f 7→ gf ∈ A0(G) and f 7→ cf ∈ C · 1 related to this factorization (4) can be described
as follows. By the definition of A(G), for every n ∈ N+ there exist hn ∈ X(G), hn = cn + gn, with gn ∈ X0(G), cn ∈ C
such that

|f(x)− cn − gn(x)| ≤ 1

n
(∗n)

for every x ∈ G. Applying the triangle inequality to (*n) and (*k) one gets

|cn − ck − gn(x) + gk(x)| ≤ 1

n
+

1

k

for every x ∈ G. By Lemma 11.4.11 applied to the closed disk M with center 0 and radius 1
n + 1

k we conclude
|cn − ck| ≤ 1

n + 1
k . Hence (cn) is a Cauchy sequence in C. Let cf := limn cn. Then gf := f − cf ∈ A0(G). Indeed,

according to (*n) and the definition of cf , ‖f − cf − gn‖ ≤ ‖f − cn− gn + (cn− cf )‖ ≤ 1
n + |cn− cf | becomes arbitrarly

small when n→∞.
If f = 0, then cf = 0 and there is nothing to prove. Assume f 6= 0 and let ε = ‖f‖. Then ‖f‖ = ‖gf + cf‖ ≤ ε

yields |cf | ≤ ε by Lemma 11.4.10.
To prove the last assertion, apply Lemma 11.4.10 to the closed convex subset of C consisting of all non-negatrive

real numbers.

According to this lemma the projection A(G)→ C defined by f 7→ cf is a continuous positive linear functional. We
show in the sequel that this is the Haar integral on A(G) (Theorem 11.4.12).

11.4.2 Haar integral of the compact abelian groups

Let G be an abelian group and let J(G) be a translation-invariant C-subspace of B(G) containing all constant functions
and closed under complex conjugation. The Haar integral on J(G) is a linear functional

∫
defined on the space J(G)

which is

(a) positive (i.e., if f ∈ J(G) is real-valued and f ≥ 0, then also
∫
f ≥ 0);

(b) invariant (i.e.,
∫
fa =

∫
f for every f ∈ J(G) and a ∈ G, where fa(x) = f(x+ a));

(c)
∫

1 = 1.
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The last item can be announced also as m(G) = 1 in terms of the measure m associated to
∫

. In the presence of the

Haar intergral one can define also a scalar product in J(G) by (f, g) =
∫
f(x)g(x). This makes J(G) a Hilbert space.

Moreover, the scalar product is invariant, i.e., (fa, ga) = (f, g) for every a ∈ G. Hence the action f 7→ fa of G in the
Hilbert space C(G) is given by unitary operators of the Hilbert space J(G).

The Haar intregral in a compact abelian group G is obtained with J(G) = C(G).
Now we check that the assignment f 7→ cf defines a Haar integral on the algebra A(G) of almost periodic functions

of an abelian group G.

Theorem 11.4.12. For every abelian group G the assignment f 7→ cf (f ∈ A(G)) defines a Haar integral
∫

on A(G).

Proof. Fix a function f ∈ A(G) and consider cf ∈ C as defined above. The fact that f 7→ cf is linear is obvious from the
definition. Positivity was established in Lemma 11.4.11. To check invariance note that if f = gf + cf with gf ∈ A0(G),
then gf (a + x) = (gf )a(x) ∈ A0(G) and fa(x) = f(a + x) = gf (a + x) + cf . Hence

∫
fa =

∫
f . Finally, for f = 1 one

obviously has c1 = 1.

Next we see that the Haar integral on A(G) is unique.

Proposition 11.4.13. Let G be an abelian group, let
∫

be a Haar integral on A(G) and ϕ, χ ∈ G∗. Then:

•
∫
ϕ(x)χ(x) =

{
1 if ϕ = χ

0 if ϕ 6= χ
.

In particular,
∫
ϕ(x) = 0 when ϕ is non-trivial.

From the above proposition we get:

Corollary 11.4.14. If G is an abelian group and
∫

is a Haar integral on A(G), then one has
∫
f = 0 for every

f ∈ X0(G).

Proof. The first assertion follows from Proposition 11.4.13. The second one from property (c) and Lemma 11.4.11 that
guarantees that the functionals

∫
and f 7→ cf coincide once they coinide on C · 1 and have as kernel A0(G).

Exercise 11.4.15. Let G be an abelian group and let
∫

be a Haar integral on J(G). If f, g ∈ J(G) and ‖f − g‖ ≤ ε,
then also |

∫
f −

∫
g| ≤ ε.

Corollary 11.4.16. Let G be an abelian group and let
∫

be a Haar integral on A(G). Then
∫
f = 0 for every f ∈ A0(G).

Consequenly,
∫
f = cf for every f ∈ A(G).

Proof. Let f ∈ A0(G). For every ε > 0 there exists g ∈ X0(G) such that ‖f − g‖ ≤ ε. Then by Corollary 11.4.14 and
Exercise 11.4.15 we get |

∫
f | ≤ ε. Therefore,

∫
f = 0.

According to Corollary 11.4.8 every continuous function on a compact abelian group is almost periodic. This fact
gives an easy and natural way to define the Haar intregral in a compact abelian groups by using the construction of
the functional f 7→ cf from (4).

Theorem 11.4.17. ([57, Lemma 2.4.2]) For every compact abelian group G the assignment f 7→ cf (f ∈ C(G)) defines
a (unique) Haar integral on G.

11.4.3 Haar integral of the locally compact abelian groups

Analogously, we can define a Haar integral on a locally compact (abelian) group G as follows. A Haar integral on G is
a linear functional I =

∫
G

: C0(G) −→ C such that:

(i)
∫
f ≥ 0 for any real-valued f ∈ C0(G) with f ≥ 0;

(ii)
∫
fa =

∫
f for any f ∈ C0(G) and any a ∈ G;

(iii) there exists f ∈ C0(G) with
∫
f 6= 0.

In the remaining part of this section we will show that every LCA group G admits a Haar integral
∫
G

.
We begin with a simple property of Haar integrals that will be useful later on.

Lemma 11.4.18. Let I =
∫
G

be a Haar integral on a LCA group G. Then for any real-valued h ∈ C0(G) with h ≥ 0
on G and h(x) > 0 for at least one x ∈ G we have I(h) > 0.
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Proof. Let h ∈ C0(G) be a real-valued function such that h ≥ 0 on G and h(x0) > 0 for some x0 ∈ G. Then there
exists a neighbourhood V of 0 in G such that h(x) ≥ a = h(x0)/2 for all x ∈ x0 + V .

By property (iii) of Haar integrals, there exists f ∈ C0(G) with I(f) 6= 0. Then f = u + ı v for some real-valued
u, v ∈ C0(G), so we must have either I(u) 6= 0 or I(v) 6= 0. So, without loss of generality we may assume that f is
real-valued. Setting f+(x) = max{f(x), 0}, x ∈ G and f−(x) = max{−f(x), 0}, we get functions f+, f− ∈ C0(G) such
that f+ ≥ 0 and f− ≥ 0 on G and f = f+ − f−. Thus, either I(f+) 6= 0 or I(f−) 6= 0.

So, we may assume that f ≥ 0 and I(f) 6= 0; then by (i) we must have I(f) > 0. Since f ∈ C0(G), there exists a
compact K ⊂ G with f(x) = 0 on G \K. So one can find a finite F ⊂ G such that K ⊂ F + V . If A = maxx∈G f(x),
then A > 0 and for every g ∈ F we have hx0−g(x) ≥ a for all x ∈ g + V . Thus, f(x) ≤ A

a

∑
g∈F hx0−g(x) for all x ∈ G,

and therefore 0 < I(f) ≤ A
a |F | I(h), which shows that I(h) > 0.

The following three lemmas are the main steps in the proof of existence of Haar integrals.

Lemma 11.4.19. If G is a discrete abelian group, then G admits a Haar integral.

Proof. Setting ∫
G

f =
∑
x∈G

f(x) , f ∈ C0(G) ,

one checks easily that
∫
G

is a Haar integral on G.

Lemma 11.4.20. If G ∈ L and H is a closed subgroup of G such that both H and G/H admit a Haar integral, then
also G admits a Haar integral.

Proof. Let f ∈ C0(G). Then fy �H∈ C0(H) for every y ∈ G. Let F (y) =
∫
H
fy �H . Then F : G → C is a continuous

function. Indeed, let y0 ∈ G and ε > 0. There exists a compact K ⊂ G such that f = 0 on G \ K. Let U be an
arbitrary compact symmetric neighbourhood of 0 in G. There exists h ∈ C0(G) such that 0 ≤ h(x) ≤ 1 for all x ∈ G
and h(x) = 1 for all x ∈ y0 + U +K.

Since f is continuous and U +K is compact, there exists a symmetric neighbourhood V of 0 in G such that V ⊂ U
and

|f(x)− f(y)| ≤ ε , x, y ∈ U +K , x− y ∈ V . (4)

We will now show that |F (y)− F (y0)| ≤ ε for all y ∈ y0 + V . Given y ∈ y0 + V let us first check that

|f(x− y)− f(x− y0)| ≤ ε h(x) , x ∈ G . (5)

Indeed, if x ∈ G is such that f(x− y) = f(x− y0) = 0, then (2) is obviously true. Assume that either f(x− y) 6= 0 or
f(x− y0) 6= 0. Then either x− y ∈ K or x− y0 ∈ K, so either x ∈ y +K ⊂ y0 + V +K or x ∈ y0 +K. In both cases
x ∈ y0 + U +K and x− y, x− y0 ∈ U +K. Moreover,

(x− y)− (x− y0) = y0 − y ∈ y0 − (y0 + V ) = V ,

so (1) and h(x) = 1 imply
|f(x− y)− f(x− y0)| ≤ ε ≤ ε h(x) .

This proves (2).
From (2) it follows that |fy �H −fy0 �H | ≤ ε h �H , so

|F (y)− F (y0)| ≤
∫
H

|fy �H −fy0 �H | ≤ ε
∫
H

h �H .

This proves the continuity of F at y0.
Next, for any x, y ∈ G with x− y ∈ H we have

F (x) =

∫
H

fx �H=

∫
H

(fy)x−y �H=

∫
H

fy �H= F (y) ,

using the invariance of
∫
H

in H. Then there exists a continuous function F̃ : G/H → C such that F = F̃ ◦ p, where

p : G→ G/H is the natural projection. Moreover, F̃ ∈ C0(G/H).

Set
∫
G
f :=

∫
G/H

F̃ for any f ∈ C0(G). It is now easy to check that
∫
G

is a Haar integral on G. Indeed, the linearity

of
∫
G

follows from that of
∫
G/H

and the fact that (α f1 +β f2)∼ = α F̃1 +β F̃2 for any α, β ∈ C and any f1, f2 ∈ C0(G).
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If f ≥ 0, then F̃ ≥ 0, too, so
∫
G

=
∫
G/H

F̃ ≥ 0. To check invariance, notice that for any x ∈ G we have (fx)∼ = (F̃ )p(x),
so ∫

G

fx =

∫
G/H

(fx)∼ =

∫
G/H

(F̃ )p(x) =

∫
G/H

F̃ =

∫
G

f .

We will now show that
∫
G

is non-trivial, i.e. it satisfies (iii). Take an arbitrary compact neighbourhood U of 0 in
G. There exists a real-valued f ∈ C0(G) with f ≥ 0 on G such that f(x) ≥ 1 for all x ∈ U . Then f ≥ 1 on U ∩H,

so by Lemma 11.4.18, F (0) =
∫
H
f � H > 0, which gives F̃ (0) > 0. Moreover f ≥ 0 implies F̃ ≥ 0 on G/H, so using

Lemma 11.4.18 again,
∫
G
f =

∫
G/H

F̃ > 0.

Thus,
∫
G

is a Haar integral on G.

We are now ready to prove existence of Haar integrals on general LCA groups.

Theorem 11.4.21. Every locally compact abelian group admits a Haar integral.

Proof. Let G be a LCA group. If G is compact or discrete, then Theorem 11.4.17 or Lemma 11.4.19 apply. In case G
is compactly generated, G has a discrete subgroup H such that G/H is compact by Proposition 11.3.1. So both H and
G/H admit a Haar integral. It follows from Lemma 11.4.20 that G admits a Haar integral, too.

In the general case G has an open subgroup H which is compactly generated – just take the subgroup generated
by an arbitrary compact neighbourhood of 0 in G. Such a subgroup H is locally compact (and compactly generated),
hence admits a Haar integral by the above argument, while G/H is discrete, so it also admits a Haar integral by Lemma
11.4.19. Finally, Lemma 11.4.20 implies that G admits a Haar integral, too.

11.5 Precompact group topologies determined by sequences

Large and lacunary sets (mainly in Z or elsewhere) are largely studied in number theory, harmonic analysis and
dynamical systems ([76], [30], [120], [86], [87], [89], [90], [94]).

Let us consider a specific problem. For a strictly increasing sequence u = (un)n≥1 of integers, the interest in the
distribution of the multiples {unα : n ∈ N} of a non-torsion element α of the group T = R/Z has roots in number
theory (Weyl’s theorem of uniform distribution modulo 1) and in ergodic theory (Sturmian sequences and Hartman
sets [146]). According to Weyl’s theorem, the set {unα : n ∈ N} will be uniformly dense in T for almost all α ∈ T.
One can consider the subset tu(T) of all elements α ∈ T such that limn unα = 0 in T. Clearly it will have measure
zero. Moreover, it is a subgroup of T as well as a Borel set, so it is either countable or has size c. It was observed by
Armacost [4] that when un = pn for all n and some prime p, then tu(T) = Z(p∞). He posed the question of describing
the subgroup tu(T) for the sequence un = n!, this was done by Borel [22] (see also [57] and [39] for the more general
problem concerning sequences u with un−1|un for every n).

Another motivation for the study of the subgroups of the form tu(T) come from the fact that they lead to the
description of precompact group topologies on Z that make the sequence un converge to 0 in Z (see the comment after
proposition 11.5.1). Let us start by an easy to prove general fact:

Proposition 11.5.1. [10] A sequence A = {an}n in a precompact abelian group G converges to 0 in G iff χ(an) → 0
in T for every continuous character of G.

In the case of G = Z the characters of G are simply elements of T, i.e., a precompact group topology on Z has
the form TH for some subgroup H of T. Thus the above proprosition for G = Z can be reformulated as: a sequence
A = {an}n in (Z, TH) converges to 0 iff anx→ 0 for every x ∈ H, i.e., simply H ⊆ ta(T).

Now we can discuss a counterpart of the notion of T -sequences (introduced in §3.5), defined with respect to topologies
induced by characters, i.e., precompact topologies.

Definition 11.5.2. [10, 12] A sequence A = {an}n in an abelian group G is called a TB-sequence is there exists a
precompct group topology on G such that an → 0.

Clearly, every TB-sequence is a T-sequence (see Example 11.5.4 for a T-sequence in Z that is not a TB-sequence).
The advantage of TB-sequences over the T-sequences is in the easier way of determining sufficient condition for a
sequence to be a TB-sequence [10, 12]. For example, a sequence (an) in Z is a TB-sequence iff the subgroup ta(T) of
T is infinite.

Egglestone [73] proved that the asymptotic behavior of the sequence of ratios qn = un+1

un
may have an impact on

the size of the subgroup tu(T) in the following remarkable “dichotomy”:

Theorem 11.5.3. Let (an) be a sequence in Z.

• If limn
an+1

an
= +∞, then (an) is a TB-sequence and |ta(T)| = c.
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• If an+1

an
is bounded, then ta(T) is countable.

Example 11.5.4. [12] There exists a TB-sequence (an) in Z with limn
an+1

an
= 1 .

Here is an example of a T-sequence in Z that is not a TB-sequence.

Example 11.5.5. For every TB-sequence A = {an} in Z such that ta(T) is countable, there exists a sequence {cn} in
Z such that the sequence qn defined by q2n = cn and q2n−1 = an, is a T -sequence, but not a TB-sequence.

Proof. Let {z1, . . . , zn, . . .} be an enumeration of ta(T).
According to Lemma 4.3.5 there exists a sequence bn in Z such that for every choice of the sequence (en), where

en ∈ {0, 1}, the sequence qn defined by q2n = bn + en and q2n−1 = an, is a T -sequence. Now we define the sequence
qn with q2m−1 = am and q2m = bm when m is not a prime power. Let p1, . . . , pn, . . . be all prime numbers enumerated
one-to-one. Now fix k and define ek ∈ {0, 1} depending on limn bpnk zk as follows:

• if limn bpnk zk = 0, let ek = 1,

• if limn bpnk zk 6= 0 (in particular, if the limit does not exists) let ek = 0.

Now let q2pnk = bpnk + ek for n ∈ N. Hence for every k ∈ N

lim
n
q2pnk zk = 0 =⇒ ek = 1. (∗)

To see that (qn) is not a TB-sequence assume that χ : Z → T a character such that χ(qn) → 0 in T. Then
x = χ(1) ∈ T satisfies qnx → 0, so x ∈ tq(T) ⊆ ta(T). So there exists k ∈ N with x = zk. By (*) ek = 1. Hence

q2pnk = bpnk + 1 and limn bpnk zk = 0, so x ∈ tq(T) yields 0 = limn q2pnkx = 0 + x, i.e., x = 0. This proves that every

character χ : Z→ T such that χ(qn)→ 0 in T is trivial. In particular, (qn) not a TB-sequence.

Let us note that the above proof gives much more. Since qn → 0 in τ(qn), it shows that every τ(qn)-continuous

character of Z is trivial, i.e., ̂(Z, τ(qn) = 0.
The information accumulated on the properties of the subgroups tu(T) of T motivated the problem of describing

those subgroups H of T that can be characterized as H = tu(T) for some sequence u. As already mentioned, such an
H can be only countable or can have size c being of measure zero. A measure zero subgroup H of T of size c that is not
even contained in any proper subgroup of T of the form tu(T) was built in [10] (under the assumption of Martin Axiom)
and in later in [96, 97] (in ZFC). Much earlier Borel [22] had already resolved in the positive the remaining part of the
problem showing that every countable subgroup of T can be characterized (in the above sense). Unaware of his result,
Larcher [111], and later Kraaikamp and Liardet [108], proved that some cyclic subgroups of T are characterizable (see
also [19, 18, 15, 17, 16] for related results). The paper [12] describes the algebraic structure of the subgroup tu(T) when
the sequence u := (un) verifies a linear recurrence relation of order ≤ k,

un = a(1)n un−1 + a(2)n un−2 + . . .+ a(k)n un−k

for every n > k with a
(i)
n ∈ Z for i = 1, . . . , k.

Three proofs of Borel’s theorem of characterizability of the countable subgroups of T were given in [16]. These
author mentioned that the theorem can be extended to compact abelian groups in place of T, without giving any
precise formulation. There is a natural way to extend the definition of tu(T) to an arbitrary topological abelian group
G by letting tu(G) = {x ∈ G : limn unx = 0 in G}. Actually, for the sequence un = pn (resp., un = n!) an element x
satisfying limn unx = 0 has been called topologically p-torsion (resp., topologically torsion) by Braconnier and Vilenkin
in the forties of the last century and these notions played a prominent role in the development of the theory of locally
compact abelian groups. One can easily reduce the computation of tu(G) for an arbitrary locally compact abelian group
to that of tu(T) [36]. Independently on their relevance in other questions, the subgroups tu(G) turned out to be of no
help in the characterization of countable subgroups of the compact abelian groups. Indeed, a much weaker condition,
turned out the characterize the circle group T in the class of all locally compact abelian groups:

Theorem 11.5.6. [39] In a locally compact abelian group G every cyclic subgroup of the group G is an intersection of
subgroups of the form tu(G) iff G ∼= T.

Actually, one can remove the “abelian” restraint in the theorem remembering that in the non-abelian case tu(G) is
just a subset of G, not a subgroup in general [39].

The above theorem suggested to use in [53] a different approach to the problem, replacing the sequence of integers

un (characters of T!) by a sequence un in the Pontryagin-van Kampen dual Ĝ. Then the subgroup su(G) = {x ∈ G :
limn un(x) = 0 in T} of G really can be used for such a characterization of all countable subgroups of the compact
metrizable groups (see [53, 49, 20] for major detail).
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12 Pontryagin-van Kampen duality

12.1 The dual group

In the sequel we shall write the circle additively as (T,+) and we denote by q0 : R→ T = R/Z the canonical projection.
For every k ∈ N+ let Λk = q0((− 1

3k ,
1
3k )). Then {Λk : k ∈ N+} is a base of the neighborhoods of 0 in T, because

{(− 1
3k ,

1
3k ) : k ∈ N+} is a base of the neighborhoods of 0 in R.

For abelian group G we let as usual G∗ = Hom (G,T). For a subset K of G and a subset U of T let

WG∗(K,U) = {χ ∈ G∗ : χ(K) ⊆ U}.

For any subgroup H of G∗ we abbreviate H ∩W (K,U) to WH(K,U). When there is no danger of confusion we shall
write only W (K,U) in place of WG∗(K,U). The group G∗ will be considered only with one topology, namely the
induced from TG compact topology (see Remark 7.1.2).

If G is a topological abelian group, Ĝ will denote the subgroup of G∗ consisting of continuous characters.
The group Ĝ will carry the compact open topology that has as basic neighborhoods of 0 the sets WĜ(K,U), where

K is a compact subset of G and U is neighborhood of 0 in T. We shall see below that when U ⊆ Λ1, then WĜ(K,U)
coincides with WG∗(K,U) in case K is a neighborhood of 0 in G. Therefore we shall use mainly the notation W (K,U)
when the group G is clear from the context.

Let us start with an easy example.

Example 12.1.1. Let G be an abelian topological group.

(1) If G is compact, then Ĝ is discrete.

(2) If G is discrete, then Ĝ is compact.

Indeed, to prove (1) it is sufficient to note that WĜ(G,Λ1) = {0} as Λ1 contains no subgroup of T beyond 0.

(2) Suppose that G is discrete. Then Ĝ = Hom (G,T) is a subgroup of the compact group TG. The compact-open

topology of Ĝ coincides with the topology inherited from TG: let F be a finite subset of G and U an open neighborhood
of 0 in T, then

⋂
x∈F

π−1x (U) ∩ Hom (G,T) = {χ ∈ Hom (G,T) : πx ∈ U for every x ∈ F}

= {χ ∈ Hom (G,T) : χ(x) ∈ U for every x ∈ F} = W (F,U).

Moreover Hom (G,T) is closed in the compact product TG by Remark 7.1.2 and we can conclude that Ĝ is compact.

Now we prove that the dual group is always a topological group. Moreover, if the group G is locally compact, then
its dual is locally compact too (Corollary 12.1.4). This is the starting point of the Pontryagin-van Kampen duality
theorem.

Theorem 12.1.2. For an abelian topological group G the following assertions hold true:

(a) if x ∈ T and k ∈ N+, then x ∈ Λk if and only if x, 2x, . . . , kx ∈ Λ1;

(b) χ ∈ Hom (G,T) is continuous if and only if χ−1(Λ1) is a neighborhood of 0 in G;

(c) {WĜ(K,Λ1) : K compact ⊆ G} is a base of the neighborhoods of 0 in Ĝ, in particular Ĝ is a topological group.

(d) WĜ(A,Λs) + WĜ(A,Λs) ⊆ WĜ(A,Λ[s/2]) and WĜ(A,Λs) + WĜ(A,Λs) ⊆ WĜ(A,Λ[s/2]) for every A ⊆ G and
s > 1.

(e) if F is a closed subset of T, then for every K ⊆ G the subset WG∗(K,F ) of G∗ is closed (hence, compact);

(f) if U is neighborhoodof 0 in G, then

(f1) WĜ(U, V ) = WG∗(U, V ) for every neighborhood of 0 V ⊆ Λ1 in T;

(f2) W (U,Λ4) has compact closure;

(f3) if U has compact closure, then W (U,Λ4) is a neighborhood of 0 in Ĝ with compact closure, so Ĝ is locally
compact.
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Proof. (a) Note that for s ∈ N, sx ∈ Λ1 if and only if x ∈ As,t = Λs + q0( ts ) for some integer t with 0 ≤ t ≤ s. On the
other hand, As,0 = Λs and Λs ∩ As+1,t is non-empty if and only if t = 0. Hence, if x ∈ Λs and (s + 1)x ∈ Λ1, then
x ∈ Λs+1 and this holds in particular for 1 ≤ s < k. This proves that sx ∈ Λ1 for s = 1, . . . , k if and only if x ∈ Λk.

(b) Suppose that χ−1(Λ1) is a neighborhood of 0 in G. So there exists an open neighborhood U of 0 in G such that
U ⊆ χ−1(Λ1). Moreover, there exists another neighborhood V of 0 in G with V + · · ·+ V︸ ︷︷ ︸

k

⊆ U where k ∈ N+. Now

sχ(y) ∈ Λ1 for every y ∈ V and s = 1, . . . , k. By item (a) χ(y) ∈ Λk and so χ(V ) ⊆ Λk.
(c) Let k ∈ N+ and K be a compact subset of G. Define L = K + · · ·+K︸ ︷︷ ︸

k

, which is a compact subset of G because

it is a continuous image of the compact subset Kk of Gk. Take χ ∈ W (L,Λ1). For every x ∈ K we have sχ(x) ∈ Λ1

for s = 1, . . . , k and so χ(x) ∈ Λk by item (a). Hence W (L,Λ1) ⊆W (K,Λk).
(d) obvious.
(e) If πx : TG → T is the projection defined by the evaluation at x, for x ∈ G, then obviously

WG∗(K,F ) =
⋂
x∈K
{χ ∈ G∗ : χ(x) ∈ F} =

⋂
x∈K

(π−1x (F ) ∩G∗)

is closed as each (π−1x (F ) ∩G∗) is closed in G∗.
(f1) follows immediately from item (b).
(f2) To prove that the closure of W0 = W (U,Λ4) is compact it is sufficient to note that W0 ⊆W1 := W (U,Λ4) and

prove that W1 is compact. Let τs denote the subspace topology of W1 in Ĝ. We prove in the sequel that (W1, τs) is
compact.

Consider on the set W1 also the weaker topology τ induced from G∗ and consequently from TG. By (e) (W1, τ) is
compact.

It remains to show that both topologies τs and τ of W1 coincide. Since τs is finer than τ , it suffices to show that if
α ∈W1 and K is a compact subset of G, then (α+W (K,Λ1)) ∩W1 is also a neighborhood of α in (W1, τ).

Since
⋃
{a+ U : a ∈ K} ⊇ K and K is compact, K ⊆ F + U , where F is a finite subset of K. We prove now that

(α+W (F,Λ2)) ∩W1 ⊆ (α+W (K,Λ1)) ∩W1. (∗)

Let ξ′ ∈ W (F,Λ2), so that α + ξ′ ∈ W1 = W (U,Λ4). As α ∈ W1 as well, we deduce from items (c) and (d) that
ξ = (α+ ξ′)− α ∈W1 −W1. Hence ξ(U) ⊆ Λ2 and consequently

ξ(K) ⊆ ξ(F + U) ⊆ Λ2 + Λ2 ⊆ Λ1.

This proves that ξ ∈W (K,Λ1) and (*).
(f3) Follows obviously from (f2) and the definition of the compact open topology.

Corollary 12.1.3. Let G be a locally compact abelian group. Then:

(a) Ĝ is locally compact;

(b) if G is metrizable, then Ĝ is σ-compact;

(c) if G is σ-compact, then Ĝ is metrizable;

Proof. (a) Follows immediately from the above theorem.
(b) Let (Un) be a countable base of the filter of neighborhoods of 0 in G. By item (f2) of the above theorem

W (Un,Λ4) has compact closure Kn. Let χ ∈ Ĝ. Then by the continuity of χ, there exists n such that χ(Un) ⊆ Λ4,

i.e., χ ∈ Kn. Therefore Ĝ =
⋃
n=1Kn is σ-compact.

(c) If G is σ-compact, then G is also hemicompact by Exercise 2.2.25, so G =
⋃
n=1Kn where each K is compact

and every compact subset K of G is contained in some Kn. Then W (K,Λ1) ⊇ W (Kn,Λ1). Hence the neighborhoods

W (Kn,Λ1) form a countable base of the filter of neighborhoods of 0 in Ĝ. By Birkhoff-Kakutani theorem Ĝ is
metrizable.

The proof of Theorem 12.1.2 shows another relevant fact. The neighborhood W (U,Λ4) of 0 in the dual group Ĝ

carries the same topology in Ĝ and G∗, nevertheless the inclusion map j : Ĝ ↪→ G∗ need not be an embedding:

Corollary 12.1.4. For a locally compact abelian group G the following are equivalent:

(a) the inclusion map j : Ĝ ↪→ G∗ is an embedding;
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(b) G is discrete;

(c) Ĝ = G∗ is compact.

Proof. Since G∗ is compact, j can be an embedding iff Ĝ itself is compact. According to Example 12.1.1 this occurs
precisely when G is discrete. In that case Ĝ = G∗ is compact.

Actually, it can be proved, once the duality theorem is available, that j : Ĝ ↪→ G∗ need not be even a local
homeomorphism. (If j is a local homeomorphism, then the topological subgroup j(Ĝ) of G∗ will be locally compact,

hence closed in G∗. This would yield that j(Ĝ) is compact. On the other hand, the topology of j(Ĝ) is precisely the

initial topology of all projections px restricted to Ĝ. By the Pontryagin duality theorem, these projections form the
group of all continuous characters of Ĝ. So this topology coincides with T ̂̂

G
. By a general theorem of Glicksberg, a

locally compact abelian groups H and (H, TĤ) have the same compact sets. In particular, compactness of (H, TĤ) yields

compactness of H. This proves that if j : Ĝ ↪→ G∗ is a local homeomorphism, then Ĝ is compact and consequently G
is discrete.)

12.2 Computation of some dual groups

In the sequel we denote by k · idG the endomorphism of an abelian group G obtained by the map x 7→ kx, for a fixed
k ∈ Z. The next lemma will be used for the computation of the dual groups in Example 12.2.4.

Lemma 12.2.1. Every continuous homomorphism χ : T→ T has the form k · idT, for some k ∈ Z. In particular, the
only topological isomorphisms χ : T→ T are ±idT.

Proof. We give two proofs of this fact.

First proof. Let prove first that the only topological isomorphisms χ : T→ T are ±idT. This completely self-contained
proof will exploit the fact that the arcs are the only connected sets of T. Hence χ sends any arc of T to an arc, sending
end points to end points. Denote by ϕ the canonical homomorphism R → T and for n ∈ N let cn = ϕ(1/2n) be
the generators of the Prüfer subgroup Z(2∞) of T. Then, c1 is the only element of T of order 2, hence g(c1) = c1.
Therefore, the arc A1 = ϕ([0, 1/2]) either goes onto itself, or goes onto its symmetric image −A1. Let us consider the
first case. Clearly, either g(c2) = c2 or g(c2) = −c2 as o(g(c2)) = 4 and being ±c2 the only elements of order 4 of T.
By our assumption g(A1) = A1 we have g(c2) = c2 since c2 is the only element of order 4 on the arc A1. Now the arc
A2 = [0, c2] goes onto itself, hence for c3 we must have g(c3) = c3 as the only element of order 8 on the arc A2, etc.
We see in the same way that g(cn) = cn. Hence g is identical on the whole subgroup Z(2∞). As this subgroup is dense
in T, we conclude that g coincides with idT. In the case g(A1) = −A1 we replace g by −g and the previous proof gives
−g = idT, i.e., g = −idT.

For k ∈ N+ let πk = k · idT. Then kerπk = Zk and πk is surjective. Let now χ : T→ T be a non-trivial continuous
homomorphism. Then kerχ is a closed proper subgroup of T, hence kerχ = Zk for some k ∈ N+. Let q : T→ T/Zk be
the quotient homomorphism. Since χ(T) is a connected non-trivial subgroup of T, one has χ(T) = T. Now we apply
Proposition 3.6.4 with G = H1 = H2 = T, χ2 = χ and χ1 = πk. Since kerχ1 = kerχ2 = Zk, q1 = q2 = q and the
homomorphism t in Proposition 3.6.4 becomes the identity of T/Zk and we obtain the following commutative diagram:

G
χ1

}}zz
zz
zz
zz
z
q

��

χ2

!!D
DD

DD
DD

DD

T

ι

@@T/Zk
j1

oo
j2
// T

(6)

According to the first part of the argument the isomorphism ι = j2 ◦ j−11 : T → T coincides with ±idT. Therefore,
χ = ±πk.

Second proof. Applying Lemma 8.0.7 to the composition q = ϕ ◦ χ : R→ T and ϕ : R→ T we can find a continuous
homomorphism η : R→ R such that ϕ ◦ η = q = ϕ ◦ χ, i.e., one has the following commutative diagram:

R

ϕ

��

η
//

q
��?

??
??

??
? R

ϕ

��
T

χ
// T

(7)
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As χ(ϕ(Z)) = 0, we deduce that ϕ(η(Z)) = 0 as well. Therefore, η(Z) ≤ kerϕ = Z. It is easy to prove that there
exists a real number ρ such that η(x) = ρx for every x ∈ R. Therefore, η(Z) ≤ Z yields ρ ∈ Z. Hence, χ(y) = ρx for
every y ∈ T.

Obviously, χ = ±ξ for characters χ, ξ : G → T implies kerχ = ker ξ and χ(G) = ξ(G). More generally, if χ = k · ξ
for some k ∈ Z, then kerχ ≥ ker ξ and χ(G) ≤ ξ(G). Now we see that this implication can be (partially) inverted under
appropriate hypotheses.

Corollary 12.2.2. Let G be a locally compact and σ–compact abelian group and let χi : G→ T, i = 1, 2, be continuous
surjective characters. Then there exists an integer m ∈ Z such that χ2 = mχ1 iff kerχ1 ≤ kerχ2. If kerχ1 = kerχ2

then χ2 = ±χ1.

Proof. Argue as in the final part of the above proof, applying Proposition 3.6.4 with G = H1 = H2 = T and use the
diagram (8) to conclude as above.

Corollary 12.2.3. Let G be a σ-compact locally compact abelian group and let χ, ξ : G→ T be continuous characters
such that kerχ ≥ ker ξ and χ(G) ≤ ξ(G).

(a) If G is compact and |ξ(G)| = m for some m ∈ N+, then χ = kξ for some k ∈ Z; moreover, kerχ = ker ξ iff
χ(G) = ξ(G), in such a case k must be coprime to m.

(b) If kerχ = ker ξ is open and H = χ(G) = ξ(G), then χ = ι ◦ ξ, where ι : H → H is an appropriate automorphism
of the subgroup H of T equipped with the discrete topology.

Proof. (a) If G is compact and |ξ(G)| = m for some m ∈ N+, then ξ(G) is a cyclic subgroup of T of order m. Note
that T has a unique such cyclic subgroup. By Proposition 3.6.4 there exists a homomorphism ι : ξ(G) → χ(G) such
that χ = ι ◦ ξ. The hypothesis χ(G) ≤ ξ(G) implies that there such a ι must be the multiplication by some k ∈ Z. In
case χ(G) = ξ(G) this k is coprime to m.

(b) Since G be a σ-compact and kerχ = ker ξ is open, the group H = χ(G) = ξ(G) is countable. Proposition 3.6.4
applies again.

Example 12.2.4. Let p be a prime. Then Ẑ(p∞) ∼= Jp, Ĵp ∼= Z(p∞), T̂ ∼= Z, Ẑ ∼= T and R̂ ∼= R.

Proof. The first isomorphism Ẑ(p∞) = Jp follows from our definition Jp = End(Z(p∞)) = Hom(Z(p∞),T) = Ẑ(p∞).

To verify the isomorphism Ĵp ∼= Z(p∞) consider first the quotient homomorphism ηn : Jp → Jp/pnJp ∼= Zpn ≤ T.

With this identifications we consider ηn ∈ J∗p. As ker ηn = pnJp is open, one has actually ηn ∈ Ĵp. It is easy to see that

under this identification pηn = ηn−1. Therefore, the subgroup H of Ĵp generated by the characters ηn is isomorphic to

Z(p∞). Let us see that H = Ĵp. Indeed, take any non-trivial character χ : Jp → T. Then N = kerχ is a closed proper
subgroup of Jp. Moreover, N 6= 0 as Jp is not isomorphic to a subgroup of T by Exercise 8.3.13. Thus N = pnJp for
some n ∈ N+. Since N = ker ηn, we conclude with (b) of Corollary 12.2.3 that χ = kηn for some k ∈ Z. This proves

that χ ∈ H and consequently Ĵp ∼= Z(p∞).

The isomorphism g : Ẑ → T is obtained by setting g(χ) := χ(1) for every χ : Z → T. It is easy to check that this
isomorphism is topological.

According to 12.2.1 every χ ∈ T̂ has the form χ = k · idT for some k ∈ Z. This gives a homomorphism T̂ → Z
assigning χ 7→ k. It is obviously injective and surjective. This proves T̂ ∼= Z since both groups are discrete.

To prove R̂ ∼= R consider the character χ1 : R → T obtained simply by the canonical map R → R/Z. For every
r ∈ R consider the map ρr : R→ R defined by ρr(x) = rx. Then its composition χr = χ1◦ρr with χ1 gives a continuous

character of R. If r 6= 0, then χr 6= 0, so the homomorphism g : R → R̂ defined by g(r) = χr has ker g = 0. To see

that g is surjective consider any continuous non-trivial character χ ∈ R̂. Applying Lemma 8.0.7 to the homorphisms
χ : R → T and ϕ : R → T we can find a continuous homomorphism η : R → R such that ϕ ◦ η = χ, i.e., one has the
following commutative diagram:

R
η
//

χ
��?

??
??

??
? R

ϕ

��
T

(8)

Let r := η(1). It is easy to check that η(x) = rx for every x ∈ R. This means that χ = χr. This proves that

the assignment g : r 7→ χr is an isomorphism R → R̂. Its continuity immediately follows from the definition of the
compact-open topology of R̂. As R is σ-compact, this isomorphism is also open by the open mapping theorem.
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Proposition 12.2.5. Let G be a totally disconnected locally compact abelian group. Then kerχ is an open subgroup of
G for every χ ∈ Ĝ.

Proof. According to Theorem 7.4.2, by the continuity of χ and the total disconnectedness of G there exists an open
subgroup O of G such that χ(O) ⊆ Λ1. Since Λ1 contains no non-trivial subgroup, χ(O) = {1}, so O ⊆ kerχ. Therefore,
kerχ is open.

Exercise 12.2.6. Let G be an abelian group and p be a prime. Prove that

(a) χ ∈ pĜ iff χ(G[p]) = 0.

(b) pχ = 0 in Ĝ iff χ(pG) = 0.

Conclude that

(i) a discrete abelian group G is divisible (resp., torsion-free) iff Ĝ is torsion-free (resp., divisible).

(ii) the groups Q̂ and Q̂p are torsion-free and divisible.

Example 12.2.7. Let p be a prime. Then Q̂p ∼= Qp, where Qp denotes the field of all p-adic numbers.

To prove Q̂p ∼= Qp consider the character χ1 : Qp → T obtained simply by the canonical map Qp → Qp/Jp ∼=
Z(p∞) ≤ T. As Jp is open in Qp, χ1 ∈ Q̂p. For every ξ ∈ Qp consider the map ρξ : Qp → Qp defined by ρξ(x) = ξx.
Then its composition χξ = χ1 ◦ ρξ with χ1 gives a continuous character of Qp. If ξ 6= 0, then χξ 6= 0, so the

homomorphism g : Qp → Q̂p defined by g(ξ) = χξ has ker g = 0. To see that g is surjective consider any continuous

non-trivial character χ ∈ Q̂p. By Proposition 12.2.5, N = kerχ is an open subgroup of Qp. Hence, N = pmJp for some
m ∈ Z. Let χ′ be defined by χ′(x) = χ(p−mx) for all x ∈ Qp. Then kerχ′ = Jp. In this way kerχ′ = kerχ1 = Jp.
On the other hand, χ1(Qp) = χ′(Qp) = Z(p∞). By Corollary 12.2.3 (b), there exists an automorphism ι of Z(p∞),
such that χ′ = ι ◦ χ1. There exists ξ ∈ Jp, such that ι(x) = ξx for every x ∈ Z(p∞). Since all three homomorphisms
χ1 : Qp → Z(p∞), χ′ : Qp → Z(p∞) and ι : Z(p∞) → Z(p∞), are Jp-module homomorphims, we deduce that
χ′(x) = χ1(ξx) for all x ∈ Qp. Consequently, χ(x) = χ′(pmξx) for all x ∈ Qp. In other words, χ = χpmξ = g(pmξ).

Therefore, g : Qp → Q̂p is an isomorphism. To check its continuity note first that every compact set of Qp is contained
in some of the compact open subgroups pmJp. Then the basic neighborhood Um := W (pmJp,Λ1) coincides with all
χ that vanish on pmJp (as Λ1 contains no non-trivial subgroups). Hence, g−1(Um) is open, as it contains the open
subgroup p−mJm of Qp. This proves the continuity of g. As Qp is σ-compact, this isomorphism is also open by the
open mapping theorem.

Exercise 12.2.8. Let H be a subgroup of Rn. Prove that every χ ∈ Ĥ extends to a continuous character of Rn.

12.3 Some general properties of the dual

12.3.1 The dual of direct products and direct sums

We prove next that the dual group of a finite product of abelian topological groups is the product of the dual groups
of each group.

Lemma 12.3.1. If G and H are topological abelian groups, then Ĝ×H is isomorphic to Ĝ× Ĥ.

Proof. Define Φ : Ĝ × Ĥ → Ĝ×H by Φ(χ1, χ2)(x1, x2) = χ1(x1) + χ2(x2) for every (χ1, χ2) ∈ Ĝ × Ĥ and (x1, x2) ∈
G×H. Then Φ is a homomorphism, in fact Φ(χ1 + ψ1, χ2 + ψ2)(x1, x2) = (χ1 + ψ1)(x1) + (χ2 + ψ2)(x2) = χ1(x1) +
ψ1(x1) + χ2(x2) + ψ2(x2) = Φ(χ1, χ2)(x1, x2) + Φ(ψ1, ψ2)(x1, x2).

Moreover Φ is injective, because

ker Φ = {(χ, ψ) ∈ Ĝ× Ĥ : Φ(χ, ψ) = 0}

= {(χ, ψ) ∈ Ĝ× Ĥ : Φ(χ, ψ)(x, y) = 0 for every (x, y) ∈ G×H}

= {(χ, ψ) ∈ Ĝ× Ĥ : χ(x) + ψ(y) = 0 for every (x, y) ∈ G×H}

= {(χ, ψ) ∈ Ĝ× Ĥ : χ(x) = 0 and ψ(y) = 0 for every (x, y) ∈ G×H}
= {(0, 0)}.

To prove that Φ is surjective, take ψ ∈ Ĝ×H and note that ψ(x1, x2) = ψ(x1, 0) + ψ(0, x2). Now define ψ1(x1) =

ψ(x1, 0) for every x1 ∈ G and ψ2(x2) = ψ(0, x2) for every x2 ∈ H. Hence ψ1 ∈ Ĝ, ψ2 ∈ Ĥ and ψ = Φ(ψ1, ψ2).
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Now we show that Φ is continuous. Let W (K,U) be an open neighborhood of 0 in Ĝ×H (K is a compact subset
of G × H and U is an open neighborhood of 0 in T). Since the projections πG and πH of G × H onto G and H are
continuous, KG = πG(K) and KH = πH(K) are compact in G and in H respectively. Taking an open neighborhood V
of 0 in T with V + V ⊆ U , it follows Φ(W (KG, V )×W (KH , V )) ⊆W (K,U).

It remains to prove that Φ is open. Consider two open neighborhoods W (KG, UG) of 0 in Ĝ and W (KH , UH)

of 0 in Ĥ, where KG ⊆ G and KH ⊆ H are compact and UG, UH are open neighborhoods of 0 in T. Then K =
(KG ∪ {0}) × (KH ∪ {0}) is a compact subset of G ×H and U = UG ∩ UH is an open neighborhood of 0 in T. Thus
W (K,U) ⊆ Φ(W (KG, UG) ×W (KH , UH)), because if χ ∈ W (K,U) then χ = Φ(χ1, χ2), where χ1(x1) = χ(x1, 0) ∈
U ⊆ UG for every x1 ∈ KG and χ2(x2) = χ(0, x2) ∈ U ⊆ UH for every x2 ∈ KH .

It follows from Example 12.2.4 that the groups T, Z, Z(p∞), Jp e R satisfy
̂̂
G ∼= G, namely the Pontryagin-van

Kampen duality theorem. Using the Lemma 12.3.1 this propertiy extends to all finite direct products of these groups.
Call a topological abelian group G autodual, if G satisfies Ĝ ∼= G. We have seen already that R and Qp are autodual.

By Lemma 12.3.1 finite direct products of autodual groups are autodual. Now using this observation and Lemma 12.3.1
we provide a large supply of groups for which the Pontryagin-van Kampen duality holds true.

Proposition 12.3.2. Let P1, P2 and P3 be finite sets of primes, m,n, k, kp ∈ N (p ∈ P3) and np,mp ∈ N+ (p ∈ P1∪P2).
Then every group of the form

G = Tn × Zm × Rk × F ×
∏
p∈P1

Z(p∞)np ×
∏
p∈P2

Jmpp ×
∏
j∈P3

Qkpp ,

where F is a finite abelian group, satisfies
̂̂
G ∼= G.

Moreover, such a group is autodual iff n = m, P1 = P2 and np = mp for all p ∈ P1 = P2. In particular,
̂̂
G ∼= G

holds true for all elementary locally compact abelian groups.

Proof. Let us start by proving F̂ = F ∗ ∼= F . Recall that F has the form F ∼= Zn1
× . . . × Znm . So applying Lemma

12.3.1 we are left with the proof of the isomorphism Z∗n ∼= Zn for every n ∈ N+. The elements x of T satisfying nx = 0
are precisely those of the unique cyclic subgroup of order n of T, we shall denote that subgroup by Zn. Therefore, the
group Hom(Zn,Zn) of all homomorphisms Zn → Zn is isomorphic to Zn.

It follows easily from Lemma 12.3.1 that if
̂̂
Gi ∼= Gi (resp., Ĝi ∼= Gi) for a finite family {Gi}ni=1 of topological

abelian groups, then also G =
∏n
i=1Gi satisfies

̂̂
G ∼= G (resp., Ĝ ∼= G). Therefore, it suffices to verify that the groups

T, Z, Z(p∞), and Jp e satisfy
̂̂
G ∼= G, while R̂ ∼= R, Q̂p ∼= Qp were already checked.

It follows from Proposition 12.2.4 that Ẑ ∼= T and T̂ ∼= Z, hence Z ∼= ̂̂Z and T ∼= ̂̂T. Analogously, Ẑ(p∞) ∼= Jp and

Ĵp ∼= Z(p∞) yield Z(p∞) ∼=
̂̂Z(p∞) and Jp ∼=

̂̂Jp.
The problem of characterizing all autodual locally compact abelian groups is still open [81, 82].

Theorem 12.3.3. Let {Di}i∈I be a family of discrete abelian groups and let {Gi}i∈I be a family of compact abelian
groups. Then ⊕̂

i∈I
Di
∼=
∏
i∈I

D̂i and
∏̂
i∈I

Gi ∼=
⊕
i∈I

Ĝi. (5)

Proof. Let χ :
⊕

i∈I Di → T be a character and let χi : Di → T be its restriction to Di. Then χ 7→ (χi) ∈
∏
i∈I D̂i is

the first isomorphism in (5).
Let χ :

∏
i∈I Gi → T be a continuous character. Pick a neighborhood U of 0 containing no non-trivial subgroups of

T. Then there exists a neighborhood V of 0 in G =
∏
i∈I Gi with χ(V ) ⊆ U . By the definition of the Tychonov topology

there exists a finite subset F ⊆ I such that V contains the subproduct B =
∏
i∈I\F Gi. Being χ(B) a subgroup of T,

we conclude that χ(B) = 0 by the choice of U . Hence χ factorizes through the projection p : G→
∏
i∈F Gi = G/B; so

there exists a character χ′ :
∏
i∈F Gi → T such that χ = χ′ ◦ p. Obviously, χ′ ∈

⊕
i∈I Ĝi. Then χ 7→ χ′ is the second

isomorphism in (5).

In order to extend the isomorphism (5) to the general case of locally compact abelian groups one has to consider a
specific topology on the direct sum. This will not be done here.

Example 12.3.4. Using the isomorphism Q/Z ∼=
⊕

p Z(p∞), Example 12.2.4 and Theorem 12.3.3, we obtain Q̂/Z ∼=∏
p Jp.
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12.3.2 Extending the duality functor ̂ to homomorphisms

Let G and H be abelian topological groups. If f : G → H is a continuous homomorphism, define f̂ : Ĥ → Ĝ putting
f̂(χ) = χ ◦ f for every χ ∈ Ĥ.

Lemma 12.3.5. If f : G → H is a continuous homomorphism of topological abelian group, then f̂(χ) = χ ◦ f is a
continuous homomorphism as well.

(a) If f(G) is dense in H, then f̂ is injective.

(b) If f is an embedding and f(G) is either open or dense in H, then f̂ is surjective.

(c) if f is a surjective homomorphism, such that every compact subset of H is covered by some compact subset of G,

then f̂ is an embedding.

(d) if f is a quotient homomorphism and G is locally compact, then f̂ is an embedding.

Proof. Assume K is a compact subset of G and U a neighborhood of 0 in T. Then f(K) is a compact set in H, so

W = WĤ(f(K), U) is a neighborhood of 0 in Ĥ and f̂(W ) ⊆WĜ(K,U). This proves the continuity of f̂ .

(a) If f̂(χ) = 0, then χ ◦ f = 0. By the density of f(G) in H this yields χ = 0.

(b) Let χ ∈ Ĝ. If f(G) is open in H, then any extension ξ : H → T of χ will be continuous on f(G). There exists at

least one such extension ξ by Corollary 2.1.11. Hence ξ ∈ Ĥ and χ = f̂(ξ). Now consider the case when f(G) is

dense in H. Then H̃ = G̃ and the characters of H can be extended to characters of G (see Theorem 6.2.3).

(c) Assume L is a compact subset of H and U a neighborhood of 0 in T. Let K be a compact set in G such that

f(K) = L. Then f̂(WĤ(L,U)) = Imf̂ ∩WĜ(K,U), so f̂ is an embedding.

(d) Follows from (c) and Lemma 7.2.5.

If H denote the category of all Hausdorff abelian topological groups, the Pontryagin-van Kampen duality functor ,
defined by

G 7→ Ĝ and f 7→ f̂

for objects G and morphisms f of H, is a contravariant functor ̂: H → H (see Lemma 12.3.5). In particular, if f is a

topological isomorphism, then f̂ is a topological isomorphism too.

Corollary 12.3.6. If G is an abelian group and H is a subgroup of G, then |Ĥ| ≤ |Ĝ|.

Now we use this corollary in order to compute the size of the dual Ĝ of a discrete abelian group.

Theorem 12.3.7 (Kakutani). For every infinite discrete abelian group |Ĝ| = 2|G|.

Proof. The inequality |Ĝ| ≤ 2|G| is obvious since Ĝ is contained in the Cartesian power TG which has cardinality 2|G|.

It remains to prove the inequality |Ĝ| ≥ 2|G|. We consider several cases using each time the inequality Ĝ ≥ Ĥ from
Corollary 12.3.6 for an appropriate subgroup H of G.

Case 1. G is countable, so we have to check that |Ĝ| ≥ c.
Assume first that G is a p-group. If rp(G) = n is finite, then by Example 2.1.22 G contains a subgroup H ∼= Z(p∞).

Since |Ẑ(p∞)| = c, from the above corollary we conclude that |G| ≥ c. If rp(G) is infinite, then G contains a subgroup

H ∼=
⊕

N Zp (namely, H = G[p]). Since Ĥ ∼= ZN
p by Theorem 12.3.3, we conclude again that |Ĝ| ≥ |Ĥ| = c.

Now assume that G is torsion. If rp(G) is positive for infinitely many primes p1, p2, . . . , pn, . . ., then G contains a

subgroup H ∼=
⊕∞

n=1 Zpn . Since Ĥ ∼=
∏∞
n=1 Zpn by Theorem 12.3.3, we conclude again that |Ĝ| ≥ |Ĥ| = c.

Finally, assume that G is not torsion. Then G contains a subgroup H ∼= Z. Since Ĥ ∼= T, we conclude that
|Ĝ| ≥ |Ĥ| = c.

Case 2. G is uncountable. Now, with |G| = κ, the group G contains a subgroup H of the form H ∼=
⊕

i∈I Ci, where
|I| = κ and each Ci is a cyclic group. Indeed, let M be a maximal independent subset of G, so that

〈M〉 =
⊕
x∈M
〈x〉 ∼=

⊕
|M |

Z
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is a free abelian group. Then, with

Soc(G) =
⊕
p

G[p] ∼=
⊕
p

⊕
rp(G)

Zp


let H = 〈M〉 ⊕ Soc(G). It is easy to see now that for every non-zero x ∈ G there exists k ∈ Z such that kx ∈ H and
kx 6= 0. Let

D =

(⊕
M

Q

)
⊕
⊕
p

⊕
rp(G)

Z(p∞)

 .

Then D is divisible and there is an obvious injective homomorphism j : H → D. Let us see that |H| = |D|. Indeed,
|〈M〉| = | (

⊕
M Q) |. This ends up the argument when |G| = r0(G) = |〈M〉|. Assume now that |G| > r0(G), so |G| =

sup rp(G), hence at least one of the p-ranks is infinite. It remains to note now that |G[p]| = rp(G) =
∣∣∣⊕rp(G) Z(p∞)

∣∣∣
whenever rp(G) is infinite, so |G| = sup rp(G) = |H| again.

By the divisibility of D j can be extended to a homomorphism j1 : G → D. Assume j1(x) = 0 for some non-zero
x ∈ G. Then kx ∈ H and kx 6= 0 for some k ∈ Z. This gives j(kx) = j1(kx) = kj1(x) = 0, a contradiction. Hence,
G ∼= j1(G) ≤ D. This gives |H| = |D| = |G|. Therefore, H is a direct sum of |G|-many cyclic groups, i.e., has the

desired form. By the above theorem, Ĥ ∼=
∏
i∈I Ĉi. Since each Ĉi is either a finite cyclic group, or a copy of T, we

conclude that |Ĝ| ≥ |Ĥ| = 2|I| = 2|G|.

Remark 12.3.8. As we shall see in the sequel, every compact abelian group K has the form K = Ĝ for some
discrete abelian group. Moreover, G can be taken to be dual K̂. Hence, one can re-write Kakutani’s theorem also as
|K| = 2w(K), where K is a compact abelian group. This property can be established for arbitrary compact groups. Since
the inequality |K| ≤ 2w(K) holds true for every Hausdorff topological group, it remains to use the deeply non-trivial
fact that a compact group K contains a copy of the Cantor cube {0, 1}w(K) having size 2w(K). The compactness plays a
relevant role in this embedding theorem. Indeed, there are precompact groups that contain no copy of {0, 1}ℵ0 (e.g., all
groups of the form G#, as they contain no non-trivial convergent sequences by Glicksberg’s theorem, whereas {0, 1}ℵ0
contains non-trivial convergent sequences).

Now we shall see that the group Q satisfies the duality theorem (see item (b) below).

Example 12.3.9. Let K denote the compact group Q̂. Then:

(a) K contains a closed subgroup H isomorphic to Q̂/Z such that K/H ∼= T;

(ii) K̂ ∼= Q.

(a) Denote by H the subgroup of all χ ∈ K such that χ(Z) = 0. We prove that H is a closed subgroup of K such that

K/H is isomorphic to T. To this end consider the continuous map ρ : K → Ẑ obtained by the restriction to Z of every

χ ∈ K (i.e., ρ = ĵ, where j : Z ↪→ Q). Then ρ is surjective by Lemma 12.3.5. Obviously, ker ρ = H, so T ∼= Ẑ ∼= K/H.

To see that H ∼= Q̂/Z note that the characters of Q/Z correspond precisely to those characters of Q that vanish on Z,
i.e., precisely H.

(b) By Exercise 12.2.6 K is a divisible torsion-free group, every non-zero r ∈ Q defines a continuous automorphism
λr of K by setting λr(x) = rx for every x ∈ K (see Exercise 7.3.3). Then the composition ρ ◦ λr : K → T defines a

character χr ∈ K̂ with kerχr = r−1H. For the sake of completeness let χ0 = 0. By Exercise 12.3.4 Q̂/Z ∼=
∏
p Jp is

totally disconnected, so by Corollary 11.3.5 H has no surjective characters χ : H → T. Now let χ ∈ K̂ be non-zero.
Then χ(K) will be a non-zero closed divisible subgroup of T, hence χ(K) = T. On the other hand, N = kerχ is
a proper closed subgroup of K such that N + H 6= K, as χ(H) is a proper closed subgroup of T by the previous
argument. Hence, χ(H) is finite, say of order m. Then N + H contains N is a finite-index subgroup, more precisely
[(N+H) : N ] = [H : (N∩H)] = m. ThenmH ≤ N . Consider the character χm−1 ofK having kerχm−1 = mH ≤ N . By

Corollary there exists k ∈ Z such that χ = kχm−1 = χr, where r = km−1 ∈ Q. This shows that K̂ = {χr : r ∈ Q} ∼= Q.

The compact group Q̂ is closely related to the adele ring12 AQ of the field Q, more detail can be found in [52, 68,
114, 144].

Exercise 12.3.10. Prove that a discrete abelian group G satisfies
̂̂
G ∼= G whenever

12AQ is the subring of R ×
∏
p Qp consisting of those elements x = (r, (ξp)) ∈ R ×

∏
p Qp (r ∈ R, ξp ∈ Qp for each p) such that all but

finitely many ξp ∈ Jp. Then the subgroup Q = {x = (r, (ξp)) ∈ R ×
∏
p Qp : ξp = r ∈ Q for all p} of AQ is discrete and AQ/Q ∼= Q̂,

according to A. Weil’s theorem.
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(a) G is divisible;

(b) G is free;

(c) G is of finite exponent;

(d) G is torsion and every primary component of G is of finite exponent.

(Hint. (a) Use Examples 12.2.4 and 12.3.9 (b) and the fact that every divisible group is a direct sum of copies of Q
and the groups Z(p∞).

(c) and (d) Use that fact that every abelian group of finite exponent is a direct sum of cyclic subgroups (i.e., Prüfer’s
theorem, see (c) of Example 2.1.3).

12.4 The natural transformation ω

Let G be a topological abelian group. Define ωG : G → ̂̂
G such that ωG(x)(χ) = χ(x), for every x ∈ G and for every

χ ∈ Ĝ. We show now that ωG(x) ∈ ̂̂G.

Proposition 12.4.1. If G is a topological abelian group. Then ωG(x) ∈ ̂̂G and ωG : G→ ̂̂
G is a homomorphism.

If G is locally compact, then the homomorphism ωG is a continuous.

Proof. In fact,
ωG(x)(χ+ ψ) = (χ+ ψ)(x) = χ(x) + ψ(x) = ωG(x)(χ) + ωG(x)(ψ),

for every χ, ψ ∈ Ĝ. Moreover, if U is an open neighborhood of 0 in T, then ωG(x)(W ({x}, U)) ⊆ U . This proves that

ωG(x) is a character of Ĝ, i.e., ωG(x) ∈ ̂̂G. For every x, y ∈ G and for every χ ∈ Ĝ we have ωG(x+y)(χ) = (χ)(x+y) =
χ(x) + χ(y) = ωG(χ)(x) + ωG(χ)(y) and so ωG is a homomorphism.

Now assume G is locally compact. To prove that ωG is continuous, pick an open neighborhood A of 0 in T and

a compact subset K of Ĝ. Then W (K,A) is an open neighborhood of 0 in
̂̂
G. Let U be an open neighborhood of 0

in G with compact closure. Take an open symmetric neighborhood B of 0 in T with B + B ⊆ A. Thus W (U,B) is

an open neighborhood of 0 in Ĝ. Since K is compact, there exist finitely many characters χ1, . . . , χm of G such that
K ⊆ (χ1 +W (U,B)) ∪ · · · ∪ (χm +W (U,B)). For every i = 1, . . . ,m there is an open neighborhood Vi of 0 in G such
that χi(Vi) ⊆ B and Vi ⊆ U . Define V = U ∩ V1 ∩ · · · ∩ Vm ⊆ U and note that χi(V ) ⊆ B for every i = 1, . . . ,m. Thus
ωG(V ) ⊆W (K,A). Indeed, if x ∈ V and χ ∈ K, then χi(x) ∈ B for every i = 1, . . . ,m and there exists i0 ∈ {1, . . . ,m}
such that χ ∈ χi0 +W (U,B); so χ(x) = χi0(x) +ψ(x) with ψ ∈W (U,B) and then ωG(x)(χ) = χ(x) ∈ B+B ⊆ A.

Let us see that local compactness is essential in the above proposition

Example 12.4.2. For a countably infinite abelian group G consider the topological group G#. Then Ĝ# = G∗ is

compact since the only compact subsets of Ĝ# are the finite ones.13 Therefore,
̂̂
G# = G discrete. Hence ω : G# → ̂̂

G#

is not continuous when G is infinite (as G# is precompact, while the discrete group G is not precompact).

In this chapter we shall adopt a more precise approach to Pontryagin-van Kampen duality theorem, by asking ωG
to be a topological isomorphism. To this end we give the following

Definition 12.4.3. A topological abelian groups G is said to satisfy Pontryagin-van Kampen duality theorem, or
shortly, to be reflexive, if ωG is a topological isomorphism.

Lemma 12.4.4. If the topological abelian groups Gi are reflexive for i = 1, 2, . . . , n, then also G =
∏n
i=1Gi is reflexive.

Proof. Apply Lemma 12.3.1 twice to obtain an isomorphism j :
∏n
i=1

̂̂
Gi →

̂̂
G. It remains to verify that the product

π : G→
∏n
i=1

̂̂
Gi of the isomorphisms ωGi : Gi →

̂̂
Gi given by our hypothesis composed with the isomorphism j gives

precisely ωG.

Let L be the full subcategory of H having as objects all locally compact abelian groups. According to Proposition
12.1.2, the functor ̂ : H → H sends L to itself, i.e., defines a functor ̂ : L → L. The Pontryagin-van Kampen

duality theorem states that ω is a natural equivalence from idL to ̂̂ : L → L. We start by proving that ω is a natural
transformation.

13This non-trivial fact is a particular case of Glicksberg’s theorem: a locally compact abelian group G and its Bohr modification G+ have
the same compact sets. For a proof in the specific countable case see Theorem 12.4.9.
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Proposition 12.4.5. ω is a natural transformation from idL to ̂̂ : L → L.

Proof. By Proposition 12.4.1 ωG is continuous for every G ∈ L. Moreover for every continuous homomorphism f : G→
H the following diagram commutes:

G
f−−−−→ H

ωG

y yωĤ̂
G −−−−→̂̂

f

̂̂
H

In fact, if x ∈ G and ξ ∈ Ĥ, then ωH(f(x))(ξ) = ξ(f(x)). On the other hand,

(
̂̂
f(ωG(x)))(ξ) = (ωG(x) ◦ f̂)(ξ) = ωG(x)(f̂(ξ)) = ωG(x)(ξ ◦ f) = ξ(f(x)).

Hence ωH(f(x)) =
̂̂
f(ωG(x)) for every x ∈ G.

Remark 12.4.6. Note that ωG is a monomorphism if and only if Ĝ separates the points of G. Hence, by Theorem

11.3.3, ωG is a monomorphism for every locally compact abelian group. Moreover, ωG(G) is a subgroup of
̂̂
G that

separates the points of Ĝ.

12.4.1 Proof of the compact-discrete case of Pontryagin-van Kampen duality theorem

Now we can prove the Pontryagin-van Kampen duality theorem in the case when G is either compact or discrete.

Theorem 12.4.7. If the abelian topological group G is either compact or discrete, then ωG is a topological isomorphism.

Proof. If G is discrete, then Ĝ separates the points of G by Corollary 2.1.12 and if G is compact, then Ĝ separates the
points of G by the Peter-Weyl Theorem 11.2.1. Therefore ωG is injective by Remark 12.4.6. If G is discrete, then Ĝ is

compact and the characters from ωG(G) separate the points of Ĝ. Hence, ωG(G) =
̂̂
G by Corollary 11.2.3. Since

̂̂
G is

discrete, ωG is a topological isomorphism.
Let nowG be compact. Then ωG is a continuous monomorphism by Proposition 12.4.1 and Remark 12.4.6. Moreover,

ωG is open, by Theorem 7.3.1. Suppose that ωG(G) is a proper subgroup of
̂̂
G. By the compactness of G, ωG(G) is

compact, hence closed in
̂̂
G. By the Peter-Weyl Theorem 11.2.1 applied to

̂̂
G/ωG(G), there exists ξ ∈

̂̂̂
G\{0} such that

ξ(ωG(G)) = {0}. Since Ĝ is discrete, ωĜ is a topological isomorphism and so there exists χ ∈ Ĝ such that ωĜ(χ) = ξ.
Thus for every x ∈ G we have 0 = ξ(ωG(x)) = ωĜ(χ)(ωG(x)) = ωG(x)(χ) = χ(x). It follows that χ ≡ 0 and so that
also ξ ≡ 0, a contradiction.

Our next step is to prove the Pontryagin-van Kampen duality theorem when G is elementary locally compact
abelian:

Theorem 12.4.8. If G is an elementary locally compact abelian group, then ωG is a topological isomorphism of G ontô̂
G.

Proof. According to Lemma 12.4.4 and Theorem 12.4.7 it suffices to prove that ωR is a topologically isomorphism. Of

course, by the fact that R̂ is topologically isomorphic to R, one concludes immediately that also R and
̂̂R are topologically

isomorphic. A more careful analysis of the dual R̂ shows the crucial role of the (Z-)bilnear map λ : R×R→ T defined
by λ(x, y) = χ1(xy), where χ1 : R → T is the character determined by the canonical quotient map R → T = R/Z.

Indeed, for every y ∈ R the map χy : R→ T defined by x 7→ λ(x, y) is an element of R̂. Hence the second copy {0}×R
of R in R × R can be identified with R̂. On the other hand, every element x ∈ R gives a continuous characterR → T
defined by y 7→ λ(x, y), so can be considered as the element ωR(x) of

̂̂R. We have seen that every ξ ∈ ̂̂R has this form.

This means that ωR is surjective. Since continuity of ωR, as well as local compactness of
̂̂R are already established, ωR

is a topological isomorphism by the open mapping theorem.

As a first application of the duality theorem we can prove:

Theorem 12.4.9. Let G be a countably infinite abelian group. Then the topological group G# has no infinite compact
sets.
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Proof. According to Theorem 2.2.17, it suffices to see that G# has no non-trivial convergent sequences. Assume that
xn is a null sequence in G#. Let K be the compact dual of G, and consider the characters χn = ωG(xn) of K. Then

χn(x)→ 0 in T for every x ∈ K. (∗)

Hence, letting
Fn = {x ∈ K : (∀m ≥ n)χm(x) ∈ Λ4},

we get an increasing chain F1 ⊆ F2 ⊆ . . . ⊆ Fn ⊆ . . . of closed sets in K with K =
⋃
n Fn. Since K is compact, from the

Baire category theorem we deduce that some Fn must have non-empty interior, i.e., there exists y ∈ K and U ∈ VK(0)
with x+U ⊆ Fn. Hence, χm(x+U) ⊆ Λ4 for all m ≥ n. From (*) we deduce that there exists n1 such that χm(x) ∈ Λ4

for all m ≥ n1. Therefore, for all χm(U) ⊆ Λ2 for all m ≥ n2 = max{n, n1}.
From (*) we deduce that χn(x) ∈ Λ2 for all n ≥ kx. By the compactness of K =

⋃
x x + U , there exist a finite

number of points x1, . . . , xs ∈ K such that K =
⋃s
i=1 xi + U . Let k0 = max{k1, . . . , ks} and n0 = max{n2, k0}. Then

χm(K) ⊆ Λ1 for all m ≥ n0. As Λ1 contains no non-trivial subgroups, we deduce that χm = 0 for all m ≥ n0. This
entails xm = 0 for all m ≥ n0.

12.4.2 Exactness of the functor ̂
For a subset X of G the annihilator of X in Ĝ is AĜ(X) = {χ ∈ Ĝ : χ(X) = {0}} and for a subset Y of Ĝ the
annihilator of Y in G is AG(Y ) = {x ∈ G : χ(x) = 0 for every χ ∈ Y }. When no confusion is possible we shall omit
the subscripts Ĝ and G.

The next lemma will help us in computing the dual of a subgroup and a quotient group.

Lemma 12.4.10. Let G be a locally compact abelian group. If M is a subset of G, then AĜ(M) is a closed subgroup

of Ĝ.

Proof. It suffices to note that

AĜ(M) =
⋂
x∈M
{χ ∈ Ĝ : χ(x) = 0} =

⋂
{kerωG(x) : x ∈M},

where each kerω(x) is a closed subgroup of Ĝ.

Call a continuous homomorphism f : G→ H of topological groups proper if f : G→ f(G) is open, whenever f(G)
carries the topology inherited from H. In particular, a surjective continuous homomorphism is proper iff it is open.

A short sequence 0 → G1
f−→ G

h−→ G2 → 0 in L, where f and h are continuous homomorphisms, is exact if f is
injective, h is surjective and im f = kerh. It is proper if f and h are proper.

Lemma 12.4.11. Let G be a locally compact abelian group, H a subgroup of G and i : H → G the canonical inclusion
of H in G. Then

(a) î : Ĝ→ Ĥ is surjective if H is dense or open or compact;

(b) î is injective if and only if H is dense in G;

(c) if H is closed and π : G→ G/H is the canonical projection, then the sequence

0→ Ĝ/H
π̂−→ Ĝ

î−→ Ĥ

is exact, π̂ is proper and im π̂ = AĜ(H). If H is open or compact, then î is open and surjective.

Proof. (a) Note that î is surjective if and only if for every χ ∈ Ĥ there exists ξ ∈ Ĝ such that ξ �H= χ. If H is compact
apply Corollary 11.3.4. Otherwise Lemma 12.3.5 applies.

(b) If H is dense, then î is injective by Lemma 12.3.5. Conversely, assume that H is a proper subgroup of G and

let q : G → G/H be the canonical projection. By Theorem 11.3.3 there exists χ ∈ Ĝ/H not identically zero. Then

ξ = χ ◦ q ∈ Ĝ is non-zero and satisfies ξ(H) = {0}, i.e., î(ξ) = 0. This implies that î is not injective.

(c) According to Lemma 12.3.5 π̂ is a monomorphism, since π is surjective. We have that î ◦ π̂ = π̂ ◦ i = 0. If

ξ ∈ ker î = {χ ∈ Ĝ : χ(H) = {0}}, then ξ(H) = {0}. So there exists ξ1 ∈ Ĝ/H such that ξ = ξ1 ◦ π (i.e. ξ = π̂(ξ1)) and

we can conclude that ker î = im π̂. So the sequence is exact and im π̂ = ker î = AĜ(H).
To show that π̂ is proper it suffices to apply Lemma 12.3.5.



12 PONTRYAGIN-VAN KAMPEN DUALITY 95

If H is open or compact, (a) implies that î is surjective. It remains to show that î is open. If H is compact then Ĥ

is discrete by Example 12.1.1(2), so î is obviously open. If H is open, let K be a compact neighborhood of 0 in G such

that K ⊆ H. Then W = WĜ(K,Λ4) is a compact neighborhood of 0 in Ĝ. Since î is surjective, V = î(W ) = WĤ(K,Λ4)

is a neighborhood of 0 in Ĥ. Now M = 〈W 〉 and M1 = 〈V 〉 are open compactly generated subgroups respectively of

Ĝ and Ĥ, and î(M) = M1. Since M is σ-compact by Lemma 7.2.9, we can apply Theorem 7.3.1 to the continuous

surjective homomorphism î �M : M →M1 and so also î is open.

The lemma gives these immediate corollaries:

Corollary 12.4.12. Let G be a locally compact abelian group and let H be a closed subgroup of G. Then Ĝ/H ∼= AĜ(H).

Moreover, if H is open or compact, then Ĥ ∼= Ĝ/AĜ(H).

Corollary 12.4.13. Let G be a locally compact abelian group and H a closed subgroup of G. If a ∈ G \H then there
exists χ ∈ A(H) such that χ(x) 6= 0.

Proof. Let ρ : Ĝ/H → A(H) be the topological isomorphism of Corollary 12.4.12. By Theorem 11.3.3 there exists

ψ ∈ Ĝ/H such that ψ(a+H) 6= 0. Therefore χ = ρ(ψ) ∈ A(H) and χ(a) = ρ(ψ)(a) = ψ(a+H) 6= 0.

This gives the following immediate

Corollary 12.4.14. Let f : G → H be a continous homomorphism of locally compact abelian groups. Then f(G) is

dense iff f̂ is injective.

The next corollary says that the duality functor preserves proper exactness for some sequences.

Corollary 12.4.15. If the sequence 0 → G1
f−→ G

h−→ G2 → 0 in L is proper exact, with G1 compact or G2 discrete,

then 0→ Ĝ2
ĥ−→ Ĝ

f̂−→ Ĝ1 → 0 is proper exact with the same property.

12.4.3 Proof of Pontryagin-van Kampen duality theorem: the general case

Now we can prove prove the Pontryagin-van Kampen duality theorem, namely ω is a natural equivalence from idL tô̂: L → L.

Theorem 12.4.16. If G is a locally compact abelian group, then ωG is a topological isomorphism of G onto
̂̂
G.

Proof. We know by Proposition 12.4.5 that ω is a natural transformation from idL to ̂̂: L → L. Our plan is to chase
the given locally compact abelian group G into an appropriately chosen proper exact sequence

0→ G1
f−→ G

h−→ G2 → 0

in L, with G1 compact or G2 discrete, such that both G1 and G2 satisfy the duality theorem. By Corollary 12.4.15 the
sequences

0→ Ĝ2
ĥ−→ Ĝ

f̂−→ Ĝ2 → 0 and 0→ ̂̂
G1

̂̂
f−→ ̂̂
G

̂̂
h−→ ̂̂
G2 → 0

are proper exact. According to Proposition 12.4.5 the following diagram commutes:

0 −−−−→ G1
f−−−−→ G

h−−−−→ G2 −−−−→ 0

ωG1

y yωG yωG2

0 −−−−→ ̂̂
G1 −−−−→̂̂

f

̂̂
G −−−−→̂̂

h

̂̂
G2 −−−−→ 0

According to Remark 12.4.6, ωG1 , ωG, ωG2 are injective. Moreover, ωG1 and ωG2 are surjective by our choice of
G1 and G2. Then ωG must be surjective too, by Lemma 2.1.26.

If G is locally compact abelian and compactly generated, by Proposition 11.3.2 we can choose G1 compact and
G2 elementary locally compact abelian. Then G1 and G2 satisfy the duality theorem by Theorems 12.4.7 and 12.4.8,
hence ωG is surjective, by Lemma 2.1.26. Since ωG is a continuous isomorphism and G is σ-compact, we conclude with
Theorem 7.3.1 that ωG is a topological isomorphism.
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In the general case of locally compact abelian group G, we can take an open compactly generated subgroup G1 of

G. This will produce a proper exact sequence 0→ G1
f−→ G

h−→ G2 → 0 with G1 compactly generated and G2
∼= G/G1

discrete. By the previous case ωG1
is a topological isomorphism and ωG2

is an isomorphism thanks to Theorem 12.4.7.
Therefore ωG is a continuous isomorphism by Lemma 2.1.26.

Moreover ωG �f(G1): f(G1) → ̂̂
f(
̂̂
G1) is a topological isomorphism and f(G1) and

̂̂
f(
̂̂
G1) are open subgroups

respectively of G and
̂̂
G. Thus ωG is a topological isomorphism.

12.4.4 First applications of the duality theorem

As a first applications of the duality theorem we describe now the structure of the some classes of compact abelian
groups, such as monothetic ones or bounded torsion ones.

Theorem 12.4.17. Let K be a compact group. Then K is monothetic if and only if the dual group K̂ admits an
injective homomorphism into T.

Proof. The group G = K̂ is discrete.
Assume there exists an injective homomorphism j : G → T. Taking the duals we obtain a homomorphism ĵ :

Z = T̂ → Ĝ =
̂̂
K ∼= K with dense image (Corollary 12.4.14). Hence K is monothetic. Viceversa, if K is monothetic,

then there exists a homomorphism f : Z = T̂ → K with dense image. By Corollary 12.4.14 the homomorphism
f̂ : G→ Ẑ = T is injective.

The above theorem gives the following corollary:

Corollary 12.4.18. Let K be a compact group.

(a) If K is connected, then K is monothetic if and only if w(K) ≤ c.

(b) If K is totally disconnected, then K is monothetic if and only if K is isomorphic to a quotient group of
∏
p∈P Jp.

Proof. (a) By Proposition 11.3.7, G = K̂ is torsion-free. Since a torsion-free group G admits an injective homomorphism
into T precisely when |G| ≤, it remains to recall that w(K) = |G|.

(b) By Corollary 11.3.6, G = K̂ is torsion. Since t(T) = Q/Z, the torsion group G admits an injective homomorphism
into T if and only if G admits an injective homomorphism into Q/Z. This is equivalent to have K is isomorphic to a

quotient group of
∏
p∈P Jp ∼= Q̂/Z.

Now we describe the torsion compact abelian groups.

Theorem 12.4.19. Every torsion compact abelian group G is bounded. More precisely, there exists natural numbers
m1, . . . ,mn and cardinals α1, . . . , αn such that G ∼=

∏n
i=1 Zαimi .

Proof. Let us note first that G =
⋃∞
n=1G[n!] is a union of closed subgroups. Using the Baire category theorem we

conclude that G[n!] is open for some n, so must have finite index by the compactness of G. This yields mG = 0 for

some m. Show that this yields also mĜ = 0. Now apply Prüfer’s theorem to Ĝ and the fact that G ∼= ̂̂
G.

Next we compute the density character of a compact group K as a function of its weight w(K) = |K̂|. More precisely,
given the already known inequality w(K) ≤ 2d(K), valid for all topological groups, we see now that for compact K the
density character d(K) has the smallest possible value (w.r.t. w(K)).

Proposition 12.4.20. For a compact abelian group K

d(K) = log |K̂| = min{κ : 2κ ≥ |K̂|}.

Proof. Let κ = min{κ : 2κ ≥ |K̂|} and λ = d(G). Since rp(Tκ) = r0(Tκ) = 2κ, the inequality |K̂| ≤ 2κ and

the divisibility of Tκ ensure that there exists an injective homomorphism j : K̂ → Tκ. Therefore, the continuous

homomorphism ĵ :
⊕

κ Z ∼= T̂κ → ̂̂
K ∼= K has a dense image. This proves λ ≤ κ.

Now assume that D is a dense subgroup of K of size λ. Then there exists a surjective homomorphism q :
⊕

λ Z→ D,

hence we get a homomorphism j :
⊕

λ Z → K with dense image. Therefore ĵ : K̂ → Tλ is injective, by Corollary

12.4.14. Since |Tλ| = 2λ, this yields 2λ ≥ |K̂|, i.e., λ ≥ κ.
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12.5 The annihilator relations and further applications of the duality theorem

Our last aim is to prove that the annihilators define an inclusion-inverting bijection between the family of all closed
subgroups of a locally compact group G and the family of all closed subgroups of Ĝ. We use the fact that one can

identify G and
̂̂
G by the topological isomorphism ωG. In more precise terms:

Exercise 12.5.1. Let G be a locally compact abelian group and Y be a subset of Ĝ. Then A ̂̂
G

(Y ) = ωG(AG(Y )).

Lemma 12.5.2. If G is a locally compact abelian group and H a closed subgroup of G, then

H = AG(AĜ(H))) = ω−1G (A ̂̂
G

(AĜ(H))).

Proof. The first equality follows immediately from Corollary 12.4.13.
The last equality follows from the equality H = AG(AĜ(H))) and Exercise 12.5.1.

By Lemma 12.4.12 the equality H = AG(AĜ(H))) holds if and only if H is a closed subgroup of G.

Proposition 12.5.3. Let G be a locally compact abelian group and H a closed subgroup of G. Then Ĥ ∼= Ĝ/A(H).

Proof. Since H = ω−1G (A ̂̂
G

(AĜ(H))) by Lemma 12.5.2 we have a topological isomorphism φ from H to ̂̂G/A(H)

given by φ(h)(α + A(H)) = α(h) for every h ∈ H and α ∈ Ĝ. This gives rise to another topological isomorphism

φ̂ :
̂̂

Ĝ/A(H) → Ĥ. By Pontryagin’s duality theorem 12.4.16 ωĜ/A(H) is a topological isomorphism from Ĝ/A(H) to

̂̂
Ĝ/A(H). The composition gives the desired isomorphism.

Finally, let us resume for reader’s benefit some of the most relevant points of Pontryagin-van Kampen duality
theorem established so far:

Theorem 12.5.4. Let G be a locally compact abelian group. Then Ĝ is a locally compact abelian group and:

(a) the correspondence H 7→ AĜ(H), N 7→ AG(N), where H is a closed subgroup of G and N is a closed subgroup of

Ĝ, defines an order-inverting bijection between the family of all closed subgroups of G and the family of all closed
subgroups of Ĝ;

(b) for every closed subgroup H of G the dual group Ĥ is isomorphic to Ĝ/A(H), while A(H) is isomorphic to the

dual Ĝ/H;

(c) ωG : G→ ̂̂
G is a topological isomorphism;

(d) G is compact (resp., discrete) if and only if Ĝ is discrete (resp., compact);

Proof. The first sentence is proved in Theorem 12.1.2. (a) is Lemma 12.5.2 while (b) is Proposition 12.5.3. (c) is
Theorem 12.4.16. To prove (d) apply Theorem 12.4.16 and Lemma 12.1.1.

Using the full power of the duality theorem one can prove the following structure theorem on compactly generated
locally compact abelian groups.

Theorem 12.5.5. Let G be a locally compact compactly generated abelian group. Prove that G ∼= Rn×Zm×K, where
n,m ∈ N and K is a compact abelian group.

Proof. According to Theorem 11.3.2 there exists a compact subgroup K of G such that G/K is an elementary locally
compact abelian group. Taking a bigger compact subgroup one can get the quotient G/K to be of the form Rn×Zm for

some n,m ∈ N. Now the dual group Ĝ has an open subgroup A(K) ∼= Ĝ/K ∼= Rn×Tm. Since this subgroup is divisible,

one has Ĝ ∼= Rn×Tm×D, where D ∼= Ĝ/A(K) is discrete and D ∼= K̂. Taking duals gives G ∼= ̂̂
G ∼= Rn×Zm×K.

Making sharper use of the annihilators one can prove the structure theorem on locally compact abelian groups (see
[102, 57] for a proof).

Theorem 12.5.6. Let G be a locally compact abelian group. Then G ∼= Rn ×G0, where G0 is a closed subgroup of G
containing an open compact subgroup K.

This is the strongest structure theorem concerning the locally compact abelian groups.
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Exercise 12.5.7. Deduce Theorem 12.5.5 from Theorem 12.5.6.

(Hint. Let G be a locally compact compactly generated abelian group and let C be a compact subset of G generating
G. By Theorem 12.5.6 we can write G = Rn × G0, where G0 is a closed subgroup of G containing an open compact
subgroup K. Since the quotient group G0/K ∼= G/Rn ×K is discrete, the image of C in G/Rn ×K is finite. Since
G is generated by C, this yields that the quotient group G/Rn ×K is finitely generated, so isomorphic to Zd × F for
some finite group F and d ∈ N. Hence, by taking a compact subgroup K1 of G containing K, we can assume that
G/Rn ×K ∼= Zd. Since the group Zd is free, the group G splis as G = Rn ×K1 × Zd.)

As another corollary of Theorem 12.5.6 one obtains:

Corollary 12.5.8. Every locally compact abelian group is isomorphic to a closed subgroup of a group of the form
Rn ×D × C, where n ∈ N, D is a discrete abelian group and C is a compact abelian group.

Proof. Let G ∼= Rn × G0 with n, G0 and K as in Theorem 12.5.6. Then there exists a cardinal κ and an embedding
j : K → Tκ. Since Tκ is divisible, one can extend j to a homomorphism j1 : G0 → Tκ. It will be continuous by the
continuity of j and by the openness of K in G0. Let j2 : G0/K → D be an injective homomorphism with D is discrete
divisible group. Then the diagonal map f : (j1, j2) : G0 → Tκ × D is injective and continuous. Since K is compact,
its restriction to K is an embedding. Since K is open in G0 this yields that f : G0 → Tκ ×D is an embedding. This
provides an embedding ν of G ∼= Rn×G0 into the group Rn ×Tκ ×D. The image ν(G) ∼= G will be a closed subgroup
of Rn × Tκ ×D since locally compact groups are complete.

The next lemma follows directly from the definitions.

Lemma 12.5.9. Let G be a topological abelian group. Then for χ1, . . . , χn ∈ Ĝ and δ > 0 one has

UG(χ1, . . . , χn; δ) = ω−1G (W ̂̂
G

({χ1, . . . , χn}, U),

where U is the neighborhood of 0 in T ∼= S determined by |Arg z| < δ.

Using this lemma we can prove now that another duality can be obtained for precompact abelian groups, if the dual
Ĝ of the group is equipped with the topology of the pointwise convergence instead of the finer compact-open topology.
In the sequel we shall denote by Ĝpw the the dual Ĝ equipped with the pointwise convergence topology.

Theorem 12.5.10. The assigment G 7→ Ĝpw defines a duality in the category of precompact abelian groups, more

precisely ωG → (̂Ĝpw)pw is a topological isomorphism for every precompact abelian group G.

Proof. Note that by the definition of the group Ĝpw, its topology coincides with TωG(G). This proves that ωG is
surjective in view of Corollary 10.3.11. The injectivity of ωG follows from the fact that G is precompact, so its
continuous characters separate to points of G. The fact that ωG is a homeomorphism follows from the preceding lemma

and the fact that a typical neighborhood of 0 in (̂Ĝpw)pw has the form W ̂̂
G

({χ1, . . . , χn}, U) for some χ1, . . . , χn ∈ Ĝ
and a neighborhood U of 0 in T ∼= S.

Proposition 12.5.11. For a compact connected abelian group G the subgroup t(G) is dense in G iff Ĝ is reduced.

Consequently, every compact connected abelian group G has the form G ∼= G1 × Q̂α for some cardinal α, where the
compact subgroup G1 coincides with the closure of the subgroup t(G) of G.

Proof. Note first that Ĝ is torsion-free by Proposition 11.3.7. Hence Ĝ is reduced iff
⋂∞
n=1 nĜ = 0. It is easy to see that

this equality is equivalent to density of t(G) =
⋃∞
n=1G[n] in G. To prove the second assertion consider the torsion-free

dual Ĝ and its decomposition Ĝ = D(Ĝ)×R, where R is a reduced subgroup of Ĝ. Since Ĝ is torsion-free, there exists

a cardinal α such that D(Ĝ) ∼=
⊕

αQ. Therefore, D̂(Ĝ) ∼= Q̂α. On the other hand, by the first part of the proof, the

compact group G1 = R̂ has a dense t(G1). Since G ∼= ̂̂
G ∼= Q̂α ×G1 and Q̂α is torsion-free, the torsion subgroup of

̂̂
G

coincides with t(G1), so its closure gives G1.

Exercise 12.5.12. Give example of a reduced abelian group G such that
⋂∞
n=1 nG 6= 0.

(Hint. Fix a prime number p and take an appropriate quotient of the group
⊕∞

n=1 Z(pn).
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13 Appendix

13.1 Topological rings and fields

Let us start with the definition of a topological ring:

Definition 13.1.1. Let A be a ring.

• A topology τ on G is said to be a ring topology if the maps f : G × G → G and m : G × G → G defined by
f(x, y) = x− y and m(x, y) = xy, are continuous when A×A carries the product topology.

• A topological ring is a pair (A, τ) of a ring A and a ring topology τ on A.

Obviously, a topology τ on a ring A is a ring topology iff (A,+, τ) is a topological group and the map m : A×A→ A
is continuous.

Here are some examples, starting with two trivial ones: for every ring A the discrete topology and the indiscrete
topology on A are ring topologies. Non-trivial examples of a topological ring are provided by the fields R and C of
reals and complex numbers, respectively.

Example 13.1.2. For every prime p the group Jp of p-adic integers carries also a ring structure and its compact group
topology is also a ring topology.

Other examples of ring topologies will be given in §13.1.5.
We shall exploit the fact that for a topological ring A the pair (A,+, τ) is a topological group. In particular, for

a ∈ A we shall make use of the fact that the filter VG,τ (a) of all neighborhoods of the element a of A coincides with
the filter a+ VG,τ (0), obtained by translation of the filter VG,τ (0).

The following theorem is a counterpart of Theorem 3.1.5:

Theorem 13.1.3. Let A be a ring and let V(0A) be the filter of all neighborhoods of 0G in some ring topology τ on G.
Then:

(a) for every U ∈ V(0G) there exists V ∈ V(0G) with V + V ⊆ U ;

(b) for every U ∈ V(0G) there exists V ∈ V(0G) with −V ⊆ U ;

(c) for every U ∈ V(0G) and for every a ∈ G there exists V ∈ V(0G) with V a ⊆ U and aV ⊆ U ;

(d) for every U ∈ V(0G) there exists V ∈ V(0G) with V V ⊆ U .

Conversely, if V is a filter on A satisfying (a), (b), (c) and (d), then there exists a unique ring topology τ on G
such that V coincides with the filter of all τ -neighborhoods of 0G in A.

Proof. Since (A,+, τ) is a topological group, (a) and (b) hold true by Theorem 3.1.5. To prove (d) it suffices to apply
the definition of the continuity of the multiplication m : A×A→ A at (0A, 0A) ∈ A×A. Analogously, for (c) use the
continuity of the multiplication m : A×A→ A at (0A, a) ∈ A×A and (a, 0A) ∈ A×A.

Let V be a filter on G satisfying all conditions (a), (b), (c) and (d). It can be proved as in the proof of Theorem
3.1.5 that every U ∈ V contains 0A. Define a topology τ on A as the group topology on (A,+) having as a filter of
neighborhoods at 0A the filter V (i.e., the τ -open sets O are the subsets O ⊆ G, such that for all a ∈ O there exists
some U ∈ V with a + U ⊆ O). Since this is a group topology on (A,+) having as a filter of neighborhoods at 0A the
filter V, it only remains to check that this is a ring topology, i.e., the multiplication map m : A×A→ A is continuous
at every pair (a, b) ∈ A × A. Pick a neighborhood of ab ∈ A, it is not restrictive to take it of the form ab + U , with
U ∈ V. Next, choose V ∈ V such that V +V +V ⊆ U and pick a W ∈ V with WW ⊆ V , aW ⊆ V and Wb ⊆ V . Then

m((a+W )× (b+W )) = (a+W )(b+W ) = ab+ aW +Wb+WW ⊆ ab+ V + V + V ⊆ ab+ U.

This proves the continuity of the multiplication m : A×A→ A at (a, b).

13.1.1 Examples and general properties of topological rings

Let V = {Ji : i ∈ I} be a filter base consisting of two-sided ideals of a ring A. Then V satisfies (a)–(d) from the above
theorem, hence generates a ring topology on A having as basic neighborhoods of a point a ∈ A the family of cosets
{a+ Ji : i ∈ I}. Ring topologies of this type will be called linear ring topologies.

Let (A, τ) be a topological ring and let I be a two-sided ideal of A. The quotient ring A/I, equipped with the
quotient topology of the underlying abelian group (A/I,+) is a topological ring, that we call quotient ring.
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If (A, τ) is a topological ring, then the closure of a two-sided (left, right) ideal I of A is again a two-sided (resp.,
left, right) ideal of A. In particular, the closure J of the ideal {0} is a closed two-sided ideal. As we already know, the
quotient ring A/I is Hausdorff and shares many of the properties of the initial topological ring (A, τ). This is why we
consider exclusively Hausdorff topological rings.

A Hausdorff topological ring (A, τ) is called complete, if it is complete as a topological group. In general, if (A, τ)

is a Hausdorff topological ring, the completion Ã of the topological group (A,+, τ) carries a natural ring structure,

obtained by the extension of the ring operation of A to Ã by continuity14. In this way, the completion Ã becomes a
topological ring.

As fas as connectedness if concerned, one has the following easy to prove fact:

Theorem 13.1.4. The connected component of a topological ring is a two-sided ideal. Hence, every topological ring
that is a division ring is either connected, or totally disconnected.

Let us see now some basic examples of a linear ring topologies.

Example 13.1.5. Let A be a ring and A be a two-sided ideal of A. Then the powers {An : n ∈ N} form a filter base
of a ring topology named A-adic topology.

(a) The p-adic topology of the ring Jp coincides also with the pJp-adic topology of the ring Jp, generated by the ideal
pJp.

(b) Let k be a field and let A = k[x] be the polynomial ring over k. Take A = (x), then the A-adic topology has as
basic neighborhoods of 0 the ideals (xn).

(c) The completion Ã of the ring A = k[x], equipped with the (x)-adic topology is the ring k[[x]] of formal power
series over k (elements of k[[x]] are the formal power series of the form

∑∞
n=0 anx

n, with an ∈ k for all n). The

topology of the completion Ã coincides with the (x)Ã-adic topology of Ã (here the principal ideal is taken in Ã).

(d) Let k be a field, n ∈ N+ and let A = k[x1, . . . , xn] be the ring of polynomials of n-variables over k. Take
A = (x1, . . . , xn), then the A-adic topology has as basic neighborhoods of 0 the ideals (An), where the power An

consists of all polynomials having no terms of degree less than n.

(e) Similarly, for every n ∈ N+ the completion Ã of the ring A = k[x1, . . . , xn], equipped with the (x1, . . . , xn)-adic
topology is the ring k[[x1, . . . , xn]] of formal power series of n-variables over k. The topology of the completion

Ã coincides with the (x1Ã + . . . + xnÃ)-adic topology of Ã (the principal ideals are obviously taken in Ã). The

topological ring Ã is compact precisely when k is finite.

A subset B of a topological ring A is bounded if for every U ∈ V(0) there exists a V ∈ V(0) such that V B ⊆ U and
BV ⊆ U .

Exercise 13.1.6. Let A be a topological ring. Prove that

(a) the family of bounded subsets of A is stable under taking subsets and finite unions;

(b) every compact subset of A is bounded;

(c) if A has a linear topology, then A is bounded.

(d∗) if A is a compact unitary ring, then A has a linear topology.

13.1.2 Topological fields

Now comes the definition of a topological field:

Definition 13.1.7. Let K be a field.

• A topology τ on K is said to be a field topology if the maps d : G×G→ G, m : G×G→ G and ι : K\{0} → K\{0},
defined by d(x, y) = x− y, m(x, y) = xy and ι(x) = x−1 are continuous when A×A carries the product topology.

14This can be done in two steps. First one defined an A-module structure on Ã as follows. For a fixed a ∈ A the map x 7→ ax in A is
uniformly continuous, so extends to a continuous map z 7→ az of Ã. This makes Ã a topological left A-module. Analogously Ã becmes a
topological left A-module. Now consider a fixed element y ∈ Ã. Then y = lim ai for some net (ai) in A. For every z ∈ Ã the nets aiz and

zai are Cauchy nets in Ã. Put yz := limi aiz and zy := limi zai. This multiplications makes Ã a ring, containing A as a subring. Moreover,
Ã is a topological ring, when equipped with its comlpetion topology, containing A as a dense subring.



13 APPENDIX 101

• A topological field is a pair (A, τ) of a field A and a field topology τ on A.

Exercise 13.1.8. Every compact topological field is finite.

(Hint. Apply item (d) of Exercise 13.1.6.)

The next example provides instances of infinite locally compact topological fields.

Example 13.1.9. (a) Obviously, R and C are (connected) locally compact topological fields.

(b) For every prime p the field Qp equipped with the p-adic topology is a locally compact topological field.

(c) Let K be a finite extension of Qp, equipped with the Tichonov topology, induced by the isomorphism K ∼= Qdp of
Qp-vectors spaces, where d = [K : Qp]. Then K is a locally compact topological field.

It turns out that the example of item (a) gives all connected locally compact topological fields:

Theorem 13.1.10 (Pontryagin). R and C are the only locally compact connected topological fields.

The locally compact topological fields from Example 13.1.9 (a) and (b) have characteristic 0. It was proved by
Kowalski that the totally disconnected locally compact topological fields of characteristic 0 are necessarily the form
given in item (b) of the example.

It is possible to build locally compact topological fields, by taking the compact ring k[[x]], where k is a finite field,
and its field of fractions k((x)), consisting of formal power series of the form

∑∞
n=n0

anx
n, n0 ∈ N. By declaring

the subring k[[x]] of k((x)) open, with its compact topology, one obtains a locally compact field topology on k((x))
having the same characteristic as k. Obviously, finite extensions of k((x)) will still be locally compact fields of finite
characteristic. One can prove that these are all locally compact fields of finite characteristic have this form.

13.2 Uniqueness of Pontryagin-van Kampen duality

For topological abelian groups G,H denote by Chom(G,H) the group of all continuous homomorphisms G → H
equipped with the compact-open topology. It was pointed out already by Pontryagin that the group T is the unique
locally compact group L with the property Chom(Chom(T, L), L) ∼= T (note that this is much weaker than asking
Chom(−, L) to define a duality of L). Much later Roeder [136] proved that Pontryagin-van Kampen dualityis the unique
functorial duality of L, i.e., the unique involutive contravariant endofunctor L → L. Several years later Prodanov [128]
rediscovered this result in the following much more general setting. Let R be a locally compact commutative ring and
LR be the category of locally compact topological R-modules. A functorial duality # : LR → LR is a contravariant
functor such that # · # is naturally equivalent to the identity of LR and for each morphism f : M → N in LR and
r ∈ R (rf)# = rf# (where, as usual, rf is the morphism M → N defined by (rf)(x) = rf(x)). It is easy to see that
the restriction of the Pontryagin-van Kampen duality functor on LR is a functorial duality, since the Pontryagin-van
Kampen dual M̂ of an M ∈ LR has a natural structure of an R-module. So there is always a functorial duality in LR.
This stimulated Prodanov to raise the question how many functorial dualities can carry LR and extend this question
to other well known dualities and adjunctions, such as Stone duality15, the spectrum of a commutative rings [129],
etc. at his Seminar on dualities (Sofia University, 1979/83). Uniqueness of the functorial duality was obtained by
L. Stoyanov [139] in the case of a compact commutative ring R. In 1988 Gregorio [91] extended this result to the
general case of compact (not necessarily commutative) ring R (here left and right R-modules should be distinguished,
so that the dualities are no more endofunctors). Later Gregorio jointly with Orsatti [93] offered another approach to
this phenomenon.

Surprisingly the case of a discrete ring R turned out to be more complicated. For each functorial duality # :
LR → LR the module T = R# (the torus of the duality #) is compact and for every X ∈ LR the module ∆T (X) :=
ChomR(X,T ) of all continuous R-module homomorphisms X → T , equipped with the compact-open topology, is
algebraically isomorphic to X#. The duality # is called continuous if for each X this isomorphism is also topological,
otherwise # is discontinuous. Clearly, continuous dualities are classified by their tori, which in turn can be classified by
means of the Picard group Pic(R) of R. In particular, the unique continuous functorial duality on LR is the Pontryagin-
van Kampen duality if and only if Pic(R) = 0 ([54, Theorem 5.17]). Prodanov [128] (see also [57, §3.4]) proved that
every functorial duality on L = LZ is continuous, which in view of Pic(Z) = 0 gives another proof of Roeder’s theorem
of uniqueness. Continuous dualities were studied in the non-commutative context by Gregorio [92]. While the Picard
group provides a good tool to measure the failure of uniqueness for continuous dualities, there is still no efficient way
to capture it for discontinuous ones. The first example of a discontinuous duality was given in [54, Theorem 11.1].
Discontinuous dualities of LQ and its subcategories are discussed in [52]. It was conjectured by Prodanov that in case

15his conjecture that the Stone duality is the unique functorial duality between compact totally disconnected Hausdorff spaces and Boolean
algebras was proved to be true by Dimov [69].
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R is an algebraic number ring uniqueness of dualities is available if and only if R is a principal ideal domain. This
conjecture was proved to be true for real algebraic number rings, but Prodanov’s conjecture was shown to fail in case
R is an order in an imaginary quadratic number field [33].

We will not touch other well-known dualities for module categories such as Morita duality (see [115]) or more general
setting of dualities of (representable dualities, adjunctions rather than involutions, etc. [70], [71] and [123]).

13.3 Non-abelian or non-locally compact groups

The Pontryagin-van Kampen duality theorem was extended to some non-locally compact abelian topological groups
(e.g., infinite powers of the reals, the underlying additive groups of certain linear topological spaces, etc.). The un-
derlying topological group of a Banach space is reflexive. Characterizations of the reflexive groups were proposed by
Venkatamaran [142] and Kye [110], but they contained flaws. These gaps were removed in the recent paper of Hernández
[98]. An important class of abelian groups (nuclear groups) were introduced and studied in the monograph [9] (see also
[6]) in relation to the duality theorem. Further reference can be found also in [24, 85, 100]

We do not discuss here non-commutative versions of duality for locally compact groups. The difficulties arise
already in the compact case – there is no appropriate (or at least, comfortable) structure on the set of irreducible
unitary representations of a compact non-abelian group. The reader is referred to [102] for a historical panorama of
this trend (Tanaka-Kĕın duality, etc.). In the locally compact case one should see the pioneering paper of H. Chu [25],
as well as the monograph of Heyer [103] (see also [104]). The reader can find the last achievements in this field in the
survey of Galindo, Hernández, and Wu [87] (see also [99] and [48]).

13.4 Relations to the topological theory of topological groups

The Pontryagin-van Kampen dual of a compact abelian group K carries a lot of useful information about the topology
of H. For example,

- w(K) = |K̂| (this is true for every precompact group K, Corollary 11.1.6),

- d(K) = log |K̂| = min{κ : 2κ ≥ |K̂|} (Proposition 12.4.20),

- K is connected iff K̂ is torsion-free (Proposition 11.3.7),

- K is totally disconnected iff K̂ is torsion (Corollary 11.3.6),

- c(K) = A(t(K̂)), where t(K̂) is the torsion subgroup of K̂,

- dimK = r0(K̂),

- H1(K,Z) ∼= K̂ if K is connected (here H1(K,Z) denotes the first cohomology group),
- for two compact connected abelian groups K1 and K2 the following are equivalent: (i) K1 and K2 are homotopically

equivalent as topological spaces; (ii) K1 and K2 are homeomorphic as topological spaces; (iii) K̂1
∼= K̂2; (iv) K1

∼= K2

as topological groups.
The first equality can be generalized to w(K) = w(K̂) for all locally compact abelian groups K.
The Pontryagin-van Kampen duality can be used to easily build the Bohr compactification bG of a locally compact

abelian group G. In the case when G is discrete, bG is simply the completion of G#, the group G equipped with its

Bohr topology. One can prove that bG ∼= ̂̂
Gd, where Ĝd denotes the group Ĝ equipped with the discrete topology. For

a comment on the non-abelian case see [38, 87].
Many nice properties of Z# can be found in Kunnen and Rudin [109]. For a fast growing sequence (an) in Z# the

range is a closed discrete set of Z# (see [87] for further properties of the lacunary sets in Z#), whereas for a polynomial
function n 7→ an = P (n) the range has no isolated points [109, 44, Theorem 5.4]. Moreover, the range P (Z) is closed
when P (x) = xk is a monomial. For quadratic polynomials P (x) = ax2 + bx + c, (a, b, c,∈ Z, a 6= 0) the situation is
already more complicated: the range P (Z) is closed iff there is at most one prime that divides a, but does not divide b
[109, 44, Theorem 5.6]. This leaves open the general question [36, Problem 954].

Problem 13.4.1. Characterize the polynomials P (x) ∈ Z[x] such that P (Z) is closed in Z#.

13.5 Countably compact and pseudocompact groups

Let us see first that countably compact groups and pseudocompact groups are precompact.

Theorem 13.5.1. Every countably compact group is precompact.

Proof. Apply the above lemma to conclude that a non-precompact group has a symmetric neighborhood V of 1 and
a sequence (gn) of elements of G such that such that gnV ∩ gmV = ∅ whenever m 6= n. Let us see that the sequence
(gn) has no accumulation points. Indeed, for every x ∈ G the neighborhood xV of x may contain at most one of the
elements of the sequence (gn). This proves that a non-precompact group cannot be countably compact.
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We can prove even the stronger property:

Theorem 13.5.2. Every pseudocompact group is precompact.

Proof. Using again Lemma 9.2.6 as in the above proof, we can produce a symmetric neighborhood V of 1 and a sequence
(gn) of elements of G such that such that gnV ∩ gmV = ∅ whenever m 6= n. Pick a symmetric neighborhood W of 1
with W 2 ⊆ V . Since G is a Tychonov space, for each n ∈ N we can find a continuous function fn : G→ [0, 1] such that
fn(gn) = 1 and fn(X \ gnW ) = 0. Since the family (gnW ) is locally finite, the sum f(x) =

∑
n nfn(x) is continuous

and obviously unbounded.

Deduce from this an alternative proof of the fact that countably compact groups are precompact.
of Y . The necessity of the next theorem follows from the previous theorem and Remark 2.2.19.

Theorem 13.5.3 (Comfort and Ross). A topological group G is pseudocompact if and only if G is precompact and
Gδ-dense in its (compact) completion.

For the sufficiency one can make use of the following steps:
(a) every Gδ-subset O of a compact group G containing eG contains also a closed Gδ-subgroup N of G;
(b) if f : G→ R is a continuous function, then there exists a second countable group M , a continuous homomorphism

h : G→M and a continuous function f ′ : M → R, such that f = f ′ ◦ h;
(c) for h : G → M from (b) take the extension h̃ : G̃ → M̃ to the respective extensions. Then by the density of

h(G) in M̃ and the compactness of G̃, we deduce that h̃ is surjective and M is compact. Hence, the range of f ′ (and
consequently, taht of f , as well) is bounded.

The factorization property used in item (b) was introduced by Tkachenko. Topological groups with this property
he called R-factorizable. In particular, precompact groups are R-factorizable.

The structure of groups admitting pseudocompact group topologies as well as many other features of pseudocompact
groups are discussed in [60].

13.6 Relations to dynamical systems

Among the known facts relating the dynamical systems with the topic of these notes let us mention just two.

• A compact group G admits ergodic translations ta(x) = xa iff G is monothetic. The ergodic rotations ta of G are
precisely those defined by a topological generator a of G.

• A continuous surjective endomorphism T : K → K of a compact abelian group is ergodic iff the dual T̂ : K̂ → K̂
has no periodic points except x = 0.

The Pontryagin-van Kampen duality has an important impact also on the computation of the entropy of endomor-
phisms of (topological) abelian groups. Adler, Konheim, and McAndrew introduced the notion of topological entropy
of continuous self-maps of compact topological spaces in the pioneering paper [1]. In 1975 Weiss [145] developed the
definition of entropy for endomorphisms of abelian groups briefly sketched in [1]. He called it “algebraic entropy”,
and gave detailed proofs of its basic properties. His main result was that the topological entropy of a continuous
endomorphism φ of a profinite abelian group coincides with the algebraic entropy of the adjoint map φ̂ of φ (note that
pro-finite abelian groups are precisely the Pontryagin duals of the torsion abelian groups).

In 1979 Peters [122] extended Weiss’s definition of entropy for automorphisms of a discrete abelian group G. He
generalized Weiss’s main result to metrizable compact abelian groups, relating again the topological entropy of a
continuous automorphism of such a group G to the entropy of the adjoint automorphism of the dual group Ĝ. The
definition of entropy of automorphisms given by Peters is easily adaptable to endomorphisms of Abelian groups, but
it remains unclear whether his theorem can be extended to the computation of the topological entropy of a continuous
endomorphism of compact abelian groups. The algebraic entropy is extensively studied in [47]. In particular, the above
mentioned results of Weiss and Peters were extended in [47] to arbitrary continuous endomorphisms of compact abelian
groups. Recently, this result was further extended to some locally compact abelian groups.
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[21] J. P. Borel, Sous-groupes de R liés à répartition modulo 1 de suites Ann. Fac. Sci. Toulouse Math. (5) 5 (1983),
no. 3-4, 217–235.
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