
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Phil: A Lazy Implementation of a Language
for Approximate Filtering of XML Documents

M. Baggi D. Ballis

Dip. Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy.
Email: {baggi,demis}@dimi.uniud.it.

Abstract

In this paper, we introduce a system, written in Haskell, for filtering information from XML data. Essen-
tially, the system implements a simple declarative language which allows one to extract relevant data as
well as to exclude useless and misleading contents from an XML document by matching patterns against
XML documents.
The matching mechanism employes a cost-based pattern transformation algorithm which searches for pat-
terns in an approximate way (i.e. modulo renaming, insertion, and deletion of XML items) and ranks the
results w.r.t. their cost. In order to improve efficiency, the implementation uses sophisticated indexing
techniques and exploits laziness to automatically avoid the construction of unnecessary data structures.
We analyzed both the expressiveness of our filtering language and the performance of the system using the
well known XMark benchmark suite.

Keywords: XML filtering and query languages, approximate pattern matching, tree embedding problem.

1 Introduction

The adoption of XML[12] as a widely accepted standard for data representation and
exchange has led to a rapid growth in the amount of XML data available over the
internet. Nowadays, large-scale XML repositories are constantly browsed, queried
and modified by internet users, who typically retrieve a lot of information which is
not always possible to absorb in a pleasant and/or understandable fashion. In order
to tame the inherent complexity of such a massive amount of data, a lot of research
effort has been invested by computer scientists in the last years giving rise to a
proliferation of decision-support systems to manage and explore XML repositories.

Arguably, a growing attention has been dedicated to query and filtering lan-
guages as means to efficiently extract all and only the relevant information from
huge data collections. As a matter of fact, information frequently appears obscure
or difficult to interpret; moreover, most of the time, just a small percentage of the
whole amount of the data received is considered interesting by the user. Therefore,
query and filtering systems represent a valid way to obtain those contents which
best fit user’s needs. The World Wide Web Consortium has defined XQuery[14]
and XPath[13] as standard languages to consult and filter information in XML doc-

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Baggi and Ballis

uments, nonetheless a plethora of alternative and worthwhile proposals have been
developed independently, e.g. [3,7,5]. Basically, they all work by exactly matching
a given pattern (or path expression) representing the information to be searched
for against an XML document. Hence, recognized pattern instances are delivered
to the user.

Although the languages mentioned above are very advantageous in many ap-
plications, they may be of limited use when dealing with data filtering in a pure
information retrieval context, since (i) they require the user to be aware of the
complete XML document structure, (ii) results that are not fully matched are not
delivered, (iii) there is no result ranking. Therefore, in this context, a more flexible
matching mechanism which can manage the lack as well as the vagueness of the
information is necessary. Such an approximate behaviour is not typically imple-
mented in the standard query languages, and actually only few works address this
issue.

For instance, the PIX[9] system is a phrase matching system tailored to XML
for searching a given phrase into an XML document. It implements a rough ap-
proximate matching method which basically allows to ignore some tags included in
the document, while no deletion and renaming of XML items are permitted.

A more flexible approach is followed in ApproxXQL[11,10], which is an approx-
imate query language which provides a more sophisticated approximate matching
mechanism. It is based on a cost-based query transformation algorithm which allows
to rename, insert and delete XML items in order to find the best match between a
pattern and a given XML document. However, this language is still rather simple
and does not offer the full expressive power of modern query languages.
Our contribution. The original contribution of this paper is twofold.

(i) We present a novel declarative language for approximate filtering of XML doc-
uments, which allows the user to easily select the desired information (positive
filtering) as well as to remove noisy, spurious data (negative filtering) from
a given Web page. Our language is easy to use and thus can be employed
even by those users who are typically not used to express themselves using
formal methodologies, since no special expertise is required. Basically, in our
approach, XML documents and filtering queries are encoded as tree-shaped
terms of a suitable term algebra, then an approximate tree embedding algo-
rithm is employed to execute filtering queries on XML documents to recognize
the information that the user wants to select or to strike out. Our approach is
inspired by ApproXQL and extends it in several ways.
• ApproXQL allows to define only ground patterns, while our language provides

“logical” variables, which can be used to extract parts of the document on
which we can perform further tests.

• We add regular expressions and built-in functions to model conditional fil-
tering rules with the aim of refine the approximate search engine.

• Nested filtering queries are allowed, while ApproXQL manages only flat
queries.

• ApproXQL does not support negative filtering, while our language does. This
feature allows to introduce the expressive power of negation in the language.
As a matter of fact, within our framework, we can easily formulate rules to

2

Baggi and Ballis

answer queries of the form: “Which persons don’t have a homepage?”
Besides, the approach followed in this paper improves our previous filtering
framework [1] which formalizes an exact tree embedding algorithm for filtering
XML documents.

(ii) The filtering language has been implemented in the prototypical system Phil

using a lazy functional language (Haskell). Through a thorough experimental
evaluation, we will show the convenience of such a lazy implementation and
the usefulness of the undertaken approach. In particular, we will illustrate how
laziness automatically avoids the construction of unneeded data structures and
allows to directly obtain a simple and efficient implementation of the filtering
language.

Plan of the paper. The rest of the paper is structured as follows. In Section
2, we formalize our filtering language, while Section 3 illustrates how the filtering
problem can be reduced to a tree matching problem. In Section 4, we outline our
approximate pattern matching algorithm. Section 5 provides some experiments and
a qualitative as well as quantitative evaluation of the implementation of our method-
ology with a particular focus on the benefits offered by lazy functional languages in
this application domain. Finally, Section 6 concludes.

2 The Filtering Language

The filtering language we describe is a declarative, pattern-based language in which
we can specify filtering rules as (possibly conditional) patterns. A filtering rule
matches an XML document if the pattern is somehow “embedded” into the XML
document and fulfills the desired relationships and conditions. Basically, a filtering
rule can be formalized by means of the following syntax:

<filterop> <pat> in <XML doc> where <cond> (<mode>)

which informally says that

(i) a pattern pat is searched in a document XML doc;

(ii) only detected instances of pat which satisfy the given condition cond are ei-
ther extracted (positive filtering) or removed (negative filtering) from XML doc
according to the value of the filtering mode mode. A filtering mode is a label
belonging to the set {P,N}. Positive filtering rules are identified by means of
the filtering mode P, while the negative one are denoted by N. Whenever a fil-
tering rule does not specify a filtering mode, it has to be considered a positive
filtering rule.

Moreover, several filtering operators filterop have been formulated to support
approximate as well as exact matching mechanisms. Finally, note that, when no
condition is specified, the where part of a filtering rule can be omitted.

In the remainder of this section, we present the syntax of each component of a
filtering rule providing a brief explanation of the basic constructs of the language.

3

Baggi and Ballis

2.1 Filtering operators

We provide four filtering operators which can model both exact and approximative
filtering w.r.t. a universal as well as existential semantics.

• filterBest is an operator that allows one to search for the best approximate
match between a given pattern and an XML document. Approximate matching
has to be intended modulo renaming, insertion and deletion of pattern items.
More precisely, when no exact match is found, either some items of the filtering
pattern may be renamed/removed or new elements may be inserted in order to
find an approximate match. Any insertion/deletion/renaming operation has a
fixed cost. filterBest returns the match with lower cost.

Informally speaking, given a pattern, we try to generate a result for every
position in the document where there is a tag that matches the pattern root.
filterBest then selects the position referring to the document subpart that
better matches the pattern. When there is more than one best approximate
match, the operator will only deliver the first one it discovered.

• filterAllBest returns all the best approximate matches found, i.e. all the matches
of minimum cost.

• filterBestExact is an operator that exactly matches a specified pattern against
an XML document. In case that more than one exact match is detected, this
operator will only deliver the first one it discovered.

“Exactly” means that the labels and the structure of the pattern are preserved
and precisely recognized inside the XML document. In other words, no renaming,
insertion and deletion of pattern items are allowed to “adapt” the pattern to the
given document.

• filterAllExact returns all the exact matches found.

2.2 Patterns

Patterns of filtering rules are used to describe the information we want to detect
inside a given XML document. A pattern is built by composing the following
syntactical elements.

• Variables (we assume to have a countable infinite set of variables at hand {X,Y,...}).
• Text selectors, that is strings of plain text surrounded by single quotes (e.g.
’Dear friend’). Text selectors will be matched against the textual part of the
XML document.

• Tag selectors represent XML tags and are denoted by strings of characters (e.g.
author, book,. . .). Tag selectors can be followed by the occurrence operator [i],
where i∈ N ∪ {last}. Given a sequence s of tag selectors t, t[i] selects the i-th
occurrence of t from s. The keyword last is used to select the last element of
the sequence (e.g. book[1], book[last]).

Moreover, tag selectors can be used together with the synonymity operator
“$”, which enables the flexible matching of tag selectors. More precisely, given
a tag selector t, $t allows to match t against any synonym of t which has been
defined by the user.

4

Baggi and Ballis

• The containment operator is represented by brackets “()” and it is used in com-
bination with tag selectors and boolean operators to define boolean-connected
structured patterns. Given a tag selector t and pat1, . . . , patn patterns, the
following syntactical expressions are legal patterns:
· t(pat1, . . . , patn). The comma “,” separator represents the logical conjunctive

operator and allows to build conjunctions of patterns. For instance, the pattern
book(title(X),author(Y)) searches for all the books containing both a title
X and an author Y.

· t(pat1| . . . |patn). The “|” separator allows to model boolean disjunctions of
patterns. For example, book(title(X) | author(Y)) selects all the book in-
stances containing a title X or an author Y.

· t(pat1? . . .?patn). The separator “?” formalizes the boolean xor operator.
One may use this operator to obtain the evidence of the existence of exactly
one of the patterns in the list.

Operators “,” , “|” and “?” are called inner boolean operators. Note that
brackets “()” are also used to specify precedence in boolean-connected patterns
as shown in the following example:

pubs(report(author(X),year(’2007’))|article(author(Y),year(’2007’)))

• Several patterns can be connected together at the root level by means of the
outer boolean operators (“and”, “or”, “xor”). Given patterns pat1, . . . , patn,
the syntactical expression pat1op . . . op patn, where op ∈ {and, or, xor} is still a
legal pattern.

Although, outer and inner boolean operators behave very similarly, there is
a subtle difference between them. Roughly speaking, when an inner boolean
operator is used, it always refers to a parent node explicitly. For example, in
the pattern h(f(X),g(Y)), the parent node of operator “,” is the tag selector
h, so the patterns f(X) and g(Y) are somehow connected to the parent node
h. When an outer operator is used, the parent node is not specified, and the
boolean-connected patterns are executed independently.

2.3 XML documents and nested filtering rules

Filtering rules works on XML documents. There are three ways to supply an XML
document to a filtering rule:

• directly giving the XML code. For instance, filterBest a(X) in <a>b.
• giving the name of a file containing the XML data. In this case, the keyword
file must precedes the file name to be loaded. For instance,

filterBest a(X) in file ’test.xml’.

• The execution of a filtering rule generates an XML document. Thus, the outcome
of a filtering rule may be employed to feed another filtering rule. Or, equivalently,
the result of an inner rule becomes the source document for an outer rule. Our
language supports nested filtering rules with an arbitrary level of nesting. As an
example, consider

filterBest a(X) in

5

Baggi and Ballis

(filterAllBest b(a(X),c()) in file ’test.xml’ where X match f*g)

2.4 Conditions

The condition is an optional part of the filtering rule, which can be employed to
further refine the search of a given pattern inside an XML document. Formally, a
condition is a sequence &c1&,&c2&,. . . ,&cn&, where each ci can be

• a membership test of the form X match RegExp, where X is a variable occurring
in the pattern and RegExp is a regular expression 1 .

• an equation s=t, where s and t are terms built over a set of primitive operators
and the set of variables occurring in the pattern. Our language supports a number
of built-in operators to deal with strings and numbers.

2.5 Counting the results

By executing a filtering rule on an XML document doc, we generate a new XML
document containing one or more instances of a given pattern that are embedded
into doc. However, we might be interested only in the number of embeddings found
(e.g. we want to know the number of books written by an author). To model this
feature, our language is equipped with the counting operator count which takes a
filtering rule f and a maximum cost c as arguments. The result of applying the
count operator to f and c is the number of embeddings found by executing f whose
cost does not exceed the value c.

2.6 Some examples

The following examples formalize, within our framework, three queries (namely,
query Q3, query Q5, and query Q17) of the XMark benchmark set [4], which is
typically used to evaluate XML filtering and query languages. More precisely,

Q3: Return the IDs of all open auctions whose current increase is at least twice as
high as the initial increase.

filterAll id(Z) in
(
filterAll $site($open_auctions(open_auction(id(Z),

bidder[1](increase(X)),
bidder[last](increase(Y))
)

)
)

in file ’auction.xml’ where &2*X <= Y& (P)
)

Q5: How many sold items cost more than 40?

count 0 (filterAllExact price(X) in
(

1 Regular languages are represented by means of the usual Unix-like regular expressions syntax [8].

6

Baggi and Ballis

filterAll site($closed_auctions(closed_auction(price(X))))
in file ’auction.xml’
where &X >= 40& (P)
)

)

Q17: Which persons don’t have a homepage?

filterAll site(people(person(name(X)))) in
(
filterAllExact site(people(person(name(X),homepage(Y))))
in file ’auction.xml’(N)
)

Note that we introduced some occurrences of the “$” operator to explicity allow
the flexible matching of some tag selectors.

3 Filtering is a Tree Embedding Problem

Filtering can be treated as a matching problem over trees. In fact, filtering rule
patterns and XML document can be straightforwardly encoded into tree-shaped
terms of a suitable term algebra.

On the one hand, a pattern can be interpreted as a tree in the following way:

• each variable and text selector is mapped to a leaf node;
• each tag selector and boolean operator is mapped to an inner node;
• the containment operator is interpreted as the standard tree parent-child relation.

The tree representing the pattern is called pattern tree. Figure 1 illustrates the tree
encoding of the pattern h(f(’a’,X)|g(Y?m(’b’))).

On the other hand, XML documents are provided with a tree-like structure in
which plain text elements are mapped to leaf nodes, while tag elements define the
inner structure of the tree. Note that XML tag attributes can be considered as com-
mon tagged elements, and hence translated in the same way. Precisely, the follow-
ing piece of XML <tag att1="val1" ... attn="valn"> ... </tag> can be first
translated into <tag><att1>val1</att1>... <attn>valn</attn> ...</tag>, and
next encoded into a tree as described above. The tree representing the XML docu-

h

|

gf

?,

X'a' Y m

'b'

Figure 1. Tree encoding of a filtering rule pattern.

7

Baggi and Ballis

ment is also called data tree.

By interpreting patterns and documents as trees, executing a filtering rule boils
down to finding one (or all) the matches (i.e., embeddings) of a given pattern tree
into a data tree. The recognized subtrees are then either selected or removed from
the data tree according to the filtering mode of the rule. Therefore, our filtering
mechanism is inspired by and slightly modifies the unordered path inclusion prob-
lem[6]. Roughly speaking, the unordered path inclusion of a tree T1 in a tree T2

is defined as an injective function from T1 to T2 that preserves labels of the nodes
and parent-child relationships (i.e. the structure), but not the order of the siblings.
Equivalently, it can be considered as a particular instance of the Kruskal’s embed-
ding relation[2]. We think that ignoring the order of siblings is favorable or even
necessary for filtering XML data, because the ordering of the XML items may not
be known to the user.

Following [11], our methodology discards the injectivity property, which is re-
quired in the path inclusion problem. Although this can imply a possible loss of
precision of the computed results, the efficiency of the matching method is greatly
improved. Moreover, while the unordered path inclusion problem typically searches
for exact answers (in a sense that the labels and the structure of the pattern tree
are precisely embedded in the data tree), our goal is to find a match even when no
exact instances of the pattern tree can be recognized inside the data tree.

To find such approximate results, we use pattern transformations, which mini-
mally modify the original pattern tree and adapt it to the data tree with the aim
of finding the best match which now might be not precise.

A pattern transformation consists of a sequence of basic transformations. Each
basic transformation has a cost which is represented by a natural number. The
summary cost of a sequence of basic transformations is assigned to the matching
result of the transformed pattern tree against the data tree and used to rank the
result by increasing cost. We consider the following three types of basic pattern
transformations.

Renaming. A Label l of a pattern tree inner node can be renamed with a new
label l′ provided that l′ is a synonymous of l. The synonymity relation might
be explicitly provided by the user or automatically computed by querying an
ontology. Renaming is enabled only for tag selectors to which the synonymity
operator “$” is applied.

Deletion. A pattern tree node (corresponding to either a tag selector or a text
selector) can be deleted, whenever it is not the pattern tree root.

Insertion. A new tree node (corresponding to a tag selector) can be inserted into
the pattern tree. However, it is not allowed to add a new root or new leaf nodes.

In the next section, we describe a pattern-transformation algorithm which imple-
ments the strategy mentioned above.

8

Baggi and Ballis

4 An Approximate Tree Matching Algorithm

We start describing a basic procedure for approximate tree matching for ground
patterns. Next, we will add all the other components of a filtering rule (variables,
conditions,. . .). The core algorithm is a slightly modified version of the one proposed
by Schlieder in [10] which not only finds a single best match, but also allows to find
all the best matches of a pattern tree w.r.t. a data tree.

From a theoretical point of view, to evaluate a pattern tree P against a data
tree D, we can follow these steps:

1 Derive from P, every pattern tree P ′ which is obtained by applying a sequence of
basic transformations to P (i.e. we compute the pattern transformation closure
w.r.t. the basic transformations) and compute the corresponding summary cost
cP ′ .

2 Find all the exact matches of P ′ against D, for each P ′ .

3 Group the matches found into embedding sets, where an embedding set is a set
of matches which refer to the same subtree of the data tree.

4 From each embedding set, choose either one match or all the matches with lower
cost cP ′ according to the filtering operator applied.

5 Rank the selected matches according to their costs.

Obviously, the brute-force generation of the pattern transformation closure is not
feasible, since it would lead to an infinite set of transformed patterns. Nonetheless,
in the following, we will show a possible way to solve the problem, which exploits
smart representations of data and pattern trees. Basically, all possible node dele-
tions will be encoded in a single pattern tree, while renamings and insertions will
be encoded into an index modeling the data tree.

4.1 Data Tree Encoding

As shown in Section 3, an XML document can be represented by means of a data
tree in which leaf nodes represent plain text items and inner nodes represent XML
tags. In the following, given a node u of a data tree D the position (or preorder
number) of u in D is a natural number n ≥ 1 assigned to u by a preorder traversing
of D. The position of the root node is 1.

In order to construct an approximate match of a pattern tree w.r.t a data tree,
some nodes may need to be inserted into the pattern tree or simply renamed. To
avoid the explicit insertions of nodes into a pattern tree, we use a special encoding
of the data tree which measures the insertion distance between two nodes in a data
tree. Formally, given two nodes u and v of a data tree D such that u is an ancestor
of v, the insertion distance between u and v is the sum of the insertion costs of
all nodes along the path from u to v (excluding u and v). Moreover, information
regarding label renaming of pattern tree nodes is formalized by providing an exten-
sional representation of the synonymity relation (i.e. any node label is decorated
with the list of its possible synonyms) along with the associated renaming cost.

The encoding is based on an indexing technique that is inspired by the partial in-
dex data structure which has been originally introduced in [11] and then successfully

9

Baggi and Ballis

employed in the language ApproXQL[10]. The data structure is as follows.
Given a data tree D for each node u appearing in D we define a tuple (called

posting) containing the following information:

• pre(u) is the position of u in D;
• dist(u) is the sum of the insertion costs of all ancestors of u in D;
• bound(u) is the position of the rightmost leaf of the subtree of D rooted at u;
• rencost(u) represents the renaming cost of the pattern tree node that matches u,
• embcost(u) stores the cost of embedding a pattern subtree into the subtree of D

rooted at u. The value is zero if u is the match of a pattern tree leaf.
• embtree(u) stores the pattern subtree embedded into the subtree of D rooted at

u whose cost is embcost(u).

The first three fields are fixed and depends on the considered data tree, while the
last three will change during the execution of the algorithm.

We now define a data tree index 2 which contains an entry for each label occur-
ring in D. An entry for a label l contains

• a list of all postings referring to nodes in D with label l. Such a list of postings
is sorted by ascending preorder numbers.

• a pair containing a list of all synonyms of label l and the associated renaming
cost;

Figure 2 illustrates the data tree Dbook and the corresponding data tree index for a
piece of XML. For the sake of readability, we omitted the postings regarding the leaf
nodes of Dbook. Moreover, we assumed an insertion cost equals to 2 and a renaming
cost equals to 6.

4.2 Expanded Pattern Tree

The expanded representation of a pattern tree allows one to explicitly encode all
possible node deletions of a pattern tree node. More precisely, all permitted dele-
tions of inner pattern tree nodes are represented by transforming the original pattern
tree in the following way.

Every inner pattern tree node (except the root) w which represents a tag selector
or a “,” operator (i.e. boolean conjunction) 3 is replaced by a fresh binary “|”-
labelled node wor. The left child of wor refers to w, while the right child represents
the fact that the pattern tree node is removed from the pattern tree. Basically, the
fresh “|”-labelled (i.e. boolean disjunction) nodes inserted play the role of choice
points in which the algorithm is called to decide whether to delete a node. Figure
3 shows the expanded version of the pattern tree depicted in figure 1. Observe that
we do not have to directly manage leaf deletions, since they are implicitly encoded
into the expanded pattern tree.

2 For the sake of efficiency, the implementation indeed uses two indexes to encode the data tree: the former
to store the leaf nodes of the data tree (i.e. the plain text elements) and the latter to store the inner nodes
(i.e. the XML tags).
3 Actually, in our system, we implemented an equivalent, optimized version of the pattern tree expansion
which only replaces tag selector nodes, while boolean conjunctive nodes are implicitly managed by the
pattern matching mechanism.

10

Baggi and Ballis

 <book>
 <title>
 Manual de zoología fantástica
 </title>
 <authorlist>
 <author>J.L. Borges </author>
 <author>M. Guerrero </author>
 </authorlist>
 <year>1957</year>
 </book>

book

title

author author

year

'Manual de
zoología

fantástica'
'J.L.

Borges'
'M.

Guerrero'

1957

book : [(1,0,10,_,_,_)],([volume,tome,publication],6)
year : [(9,2,10,_,_,_)],([calendar year,fiscal year],6)
authorlist: [(4,2,8,_,_,_)],([],6)
author : [(5,4,6,_,_,_),(7,4,8,_,_)],([poet,novelist],6)
title : [(2,2,3,_,_,_)],([heading],6)
...

author
list

Data Tree Index

Figure 2. Data tree and data tree index for an XML document

h

|

I

m

'b'

,

X

|

|

X'a'

,

X'a'

|

|

X'a'

f

|

'a' 'b'

?

Y

|

g

I

m

'b' 'b'

?

Y

Figure 3. Expanded version of pattern h(f(’a’,X)|g(Y?m(’b’)))

Now for every node w of the expanded pattern tree, we define a function
delcost(w) which computes the summary cost of deleting the node w and all its
inner descendants. The returned value is greater than zero only for those right
children of “|”-labelled node representing the deletion of an inner node.

In the following, sometimes an expanded pattern tree is simply called pattern
tree.

4.3 Evaluating an unconditional, positive, ground filtering rule

For the sake of simplicity, we first describe how the methodology works on an uncon-
ditional, positive, ground filtering rule, and then we will describe how to implement
the other language features. Basically, the problem amounts to finding one or all
best approximate matches (i.e. also called embeddings) of a ground pattern against
an XML document. We assume to have already generated both the expanded pat-
tern tree P and the data tree index D representing the data tree.

11

Baggi and Ballis

The evaluation algorithm is based on the dynamic programming principle. The
embedding cost of a subtree of the expanded pattern tree P rooted at a node w is
calculated from

(i) the embedding costs of the subtrees rooted at the children of w,

(ii) the insertion distance between the match of w and the matches of the children
of w.

All matches of pattern tree node labels against data tree node labels are stored
in posting lists. To find the best approximate embedding of P in D, the algorithm
uses operations on postings. Two types of operations are needed.

(i) Given a posting list of potential ancestors and a posting list of potential descen-
dants, the algorithm must find all ancestor-descendant pairs with the smallest
embedding cost (vertical axis). Such an operation can be performed basically
using some information stored in the posting list. In fact, if Pu is a posting
representing a potential ancestor node u and R is a posting list including n

potential descendants of u, recalling that the postings are ordered by preorder
numbers, all the n descendants v1, . . . , vn of the node u must reside in the inter-
val R[j,j+n] of the posting list R, since pre(u) < pre(vi) ∧ bound(u) ≥ pre(vi).
When no deletions are allowed, the smallest embedding cost of u w.r.t. the
descendants in R is thus calculated using the following formula

embcost(u) =min{embcost(Rk) + dist(Rk) | j ≤ k < j + n}− (1)
dist(u) + rencost(u) + cins

where cins is the insertion cost of a node. Whenever we also allow deletions,
the smallest embedding cost become the minimum between delcost(u) and the
value computed by the formula (1).

(ii) Given two posting lists that represent the embeddings of two distinct children
of a pattern tree node w, the algorithm must find all pairs that belong to the
same data node (horizontal axis).

In this case, if w is connected to its children through a boolean conjunction,
then the sum of the embedding costs must be calculated, whereas w is con-
nected to its children via a boolean disjunction (i.e. “|” or “?” operator), then
we must select the embedding with the cheapest cost.

When evaluating a ground filtering rule, the algorithm visits the pattern tree
nodes in depth-first order. During the traversal, it fetches from the data tree index
the posting lists belonging to the labels of the visited nodes. Arrived at the leftmost
leaf, it joins the posting belonging to this leaf with the posting belonging to the
parent node (vertical axis) and then proceeds the visit. If a node u has two or
more children, then the cheapest combination of matches belonging to u’s children
is chosen and stored in the posting list generated for u (horizontal axis).

The posting lists returned by the algorithm contains the postings representing
the transformed pattern that best matches the data tree along with the embedding
cost.

12

Baggi and Ballis

4.4 Evaluating a generic filtering rule

As shown in Section 2, a filtering rule is a quite complex object which may contain
non ground patterns and filtering conditions. Moreover, according to the filtering
operator and the filtering mode chosen, it can be employed for approximate/exact
matching and to implement positive as well as negative filtering. In the following,
we briefly discuss how to adapt the algorithm presented in the previous section to
cope with such features.
Nonground patterns and filtering conditions. Patterns may contain variables.
Therefore, substitutions that bind such variables to subparts of the data tree must
be computed during the matching process to find the desired embeddings.

We extend the matching algorithm to deal with variables in the following way.
Given a nonground pattern tree P, we consider the pattern P ′ which is obtained
from P by removing all the variables in P. For each node labelled with a variable
we removed, we record its position into a list. Since P ′ is ground, we can apply the
previous tree matching algorithm to find the embeddings of P ′ into the data tree.
Moreover, as we saved the positions of the variables appearing in P, we can compute
the embedding substitutions by analyzing the matched subtrees in the data tree
and hence selecting those parts which correspond to the variable positions. It can
happen that a variable cannot be bound to a subtree, e.g. the algorithm computes
an embedding for P ′ which requires some node deletions involving an ancestor of a
variable node. In this case, such an embedding is simply discarded.

By using this approach, we can thus produce all the possible embedding sub-
stitutions for a nonground pattern P by simply analyzing all the embeddings of P ′

in the data tree. We can then apply such substitutions to filtering conditions to
generate instantiated conditions and subsequently check their satisfiability.
Approximate and Exact Filtering. The algorithm we described is mainly used
for approximate filtering. Nevertheless it can be employed for exact matching. We
just have to look for matches with a null embedding cost, since no insertion, deletion,
or renaming of nodes is allowed in this case. Therefore, to optimize the search one
can think to ignore the basic pattern transformations. Unfortunately, the insertions
are implicitly defined in the matching algorithm, and hence we cannot avoid them.
However, deletions and renamings can be disabled in the following way.

• To avoid deletion of nodes, we simply use the original pattern tree instead of
using its expanded representation.

• To avoid renaming of nodes, the synonymity relation encoded in the data tree
index is ignored.

Positive and Negative Filtering. As shown in Section 2, our language defines
syntax constructs for negative filtering which incorporate the expressive power of
negation into our formalism. To enforce such a behaviour, we just execute the
negative filtering rule as it was a positive one. We then remove all the embeddings
found from the data tree returning the desired filtered outcome. Finally, in order
to exaclty remove all and only the desired information, we allow only to “filter out”
exact matches. In other words, any negative filtering is always an exact filtering.

13

Baggi and Ballis

Figure 4. Experimental evaluation of the Phil System

5 A Lazy Implementation: an Experimental Evaluation

The proposed filtering language has been implemented in the Phil system, which
is freely available at http://www.dimi.uniud.it/demis/#software. The imple-
mentation has been written in the lazy functional language Haskell with the aim
of showing how laziness can be particularly fruitful in developing such kind of ap-
plications. Lazy functional (and functional logic) languages allow one to somehow
“minimize” the amount of information needed to be processed in order to evaluate
expressions.

As we have seen in Section 4, our methodology employes a quite sophisticated
data structure whose whole generation may be very time-expensive. Therefore,
exploiting laziness in this context amounts to saying that only the portion of the
data tree index which is strictly necessary to evaluate a filtering rule is generated
with a consequent gain in the overall system performance. Our claim is supported
by the following experiment. We have evaluated a given filtering rule on XML
documents of increasing sizes in two distinct ways.

Case 1. We have forced the whole data tree index generation before executing the
rule;

Case 2. We have just “lazily” executed the given filtering rule letting Haskell to
produce the (portion of) the data structure which is needed to process the rule.

The results of our experiment are depicted in Figure 4(a) and clearly show how
laziness speeds up the query evaluation by automatically avoiding the construction
of unnecessary data structure (e.g. for a of 1Mb XML document, the evaluation of
the filtering rule in Case 2 is ∼7 times faster than the rule evaluation of Case 1).

5.1 Qualitative and Quantitative Analysis

In order to evaluate the usefulness of our approach in a realistic scenario, we have
benchmarked our system using the XMark benchmark suite[4]. The suite offers a

14

Baggi and Ballis

set of 20 queries, each of which is intended to challenge a particular primitive of
the filtering engine, along with the XML documents generator xmlgen which can be
used to produce the synthetic data on which running the experiments.

By means of our formalism, we are able to express 17 queries out of 20. The
remaining 3 queries cannot be formalized, since they involve document transforma-
tion and computational capabilities which are out of the scope of a simple filtering
language (e.g. lexicographic ordering (query n. 19), currency conversion (query n.
18), and output formatting (query n. 10)).

From a purely quantitative point of view, we tested the system on a Macbook
Intel Core 2 Duo 2Ghz equipped with 2Gb of RAM memory. We defined 4 filtering
rules encompassing all the language features. Specifically, rule Q1 models a positive
nested filtering rule with regular expressions, rule Q2 is a positive nested filtering
rule which includes applications of the occurrence operator and arithmetic tests, rule
Q3 employes the counting operator, and finally rule Q4 is an example of negative
filtering. All the considered rules contain one or more occurrences of the synonymity
operator.

Figure 4(b) shows the results obtained by executing the 4 filtering rules to 5
different, randomly generated XML documents which have been synthesized by
xmlgen data generator. We tuned the generator in order to yield XML documents
whose size ranges from 208Kb to almost 6Mb. Execution times of each filtering rule
are computed as the average of three filtering rule’s runs. The preliminary results
are quite encouraging even on experiments that exceed the toy size: all the rules are
evaluated in less than 3 minutes on a repository whose size is almost 6Mb. Moreover,
it is a matter of few seconds obtaining an answer on a 1Mb XML document. Finally,
note that negative filtering behaves worse than positive filtering. This is mainly due
to the fact that, in the current implementation, negative filtering has to traverse the
entire data tree (which may easily consist of more than 100000 nodes) in order to get
rid of the detected patterns. Therefore, when dealing with large XML documents,
the overhead due to the data tree traversal might be considerably high.

6 Conclusion

The growing complexity of the World Wide Web demands for tools which are able
to tame the so-called information overload. To this respect, filtering and query
languages allow one to extract relevant and meaningful information within the
enormous amount of data available on the Web. In this paper, we firstly pre-
sented a declarative XML filtering language which has several advantages w.r.t.
other approaches. It is inspired by the approximate pattern-based query language
ApproXQL and extends it by introducing a number of new syntax constructs which
provide a much more expressive framework (e.g. negative filtering, pattern variables,
nested queries, conditional filtering, etc.). Secondly, we implemented the language
in the prototype Phil using the lazy functional language Haskell pointing out the
inborn benefits of laziness by means of a thorough experimental evaluation.

Finally, let us conclude by mentioning some directions for future work. We are
currently formalizing a denotational semantics of the language which precisely mod-
els the behaviour of the language constructs. Moreover, we are trying to combine the

15

Baggi and Ballis

filtering language with an ontology reasoner which simplifies and automatizes the
retrieval of the synonymity relation by querying a given (possibly remote) ontology.

References

[1] D. Ballis and D. Romero. Filtering of XML Documents. In Proc. of 2nd Int’l Workshop on Automated
Specification and Verification of Web Systems (WWV’06), Paphos (Cyprus). IEEE Computer Society
Press, 2006. To appear.

[2] M. Bezem. TeReSe, Term Rewriting Systems, chapter Mathematical background (Appendix A).
Cambridge University Press, 2003.

[3] F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Principles, Examples, and
Semantics. Technical report, 2002. Available at: http://www.xcerpt.org.

[4] Centrum voor Wiskunde en Informatica. XMark – an XML Benchmark Project, 2001. Available at:
http://monetdb.cwi.nl/xml/.

[5] A. Cortesi, A. Dovier, E. Quintarelli, and L. Tanca. Operational and Abstract Semantics of a Graphical
Query Language. Theoretical Computer Science, 275:521–560, 2002.

[6] P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text Databases. Ph.d. thesis,
University of Helsinki (Finland), 1992.

[7] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data Manipulation Language.
Theory and Practice of Logic Programming, 2004.

[8] The Open Group. Unix Regular Expressions. Available at:
http://www.opengroup.org/onlinepubs/7908799/xbd/re.html.

[9] S.Amer-Yahia, M. F. Fernández, D. Srivastava, and Y. Xu. Phrase matching in xml. In Proc. of 29th
International Conference on Very Large Data Bases (VLDB’03), pages 177–188, 2003.

[10] T. Schlieder. ApproXQL:Design and Implementation of an Approximate Pattern Matching Language
for XML. Technical Report B 01-02, Freie Universität Berlin, 2001.

[11] T. Schlieder and H. Meuss. Querying and Ranking XML documents. Journal of the American Society
for Information Science and Technology JASIST, 53(6):489–503, 2002.

[12] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.0, second edition, 1999.
Available at: http://www.w3.org.

[13] World Wide Web Consortium (W3C). XML Path Language (XPath), 1999. Available at:
http://www.w3.org.

[14] World Wide Web Consortium (W3C). XQuery: A Query Language for XML, 2001. Available at:
http://www.w3.org.

16

	Introduction
	The Filtering Language
	Filtering operators
	Patterns
	XML documents and nested filtering rules
	Conditions
	Counting the results
	Some examples

	Filtering is a Tree Embedding Problem
	An Approximate Tree Matching Algorithm
	Data Tree Encoding
	Expanded Pattern Tree
	Evaluating an unconditional, positive, ground filtering rule
	Evaluating a generic filtering rule

	A Lazy Implementation: an Experimental Evaluation
	Qualitative and Quantitative Analysis

	Conclusion
	References

