Query decomposition and data localization

Dario Della Monica

These slides are a modified version of the slides provided with the book Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011 The original version of the slides is available at: extras.springer.com

Outline (distributed DB)

- Introduction (Ch. 1) *
- Distributed Database Design (Ch. 3) *
- Distributed Query Processing (Ch. 6-8) *
 - \rightarrow Overview (Ch. 6) *
 - → Query decomposition and data localization (Ch. 7) *
 - → Distributed query optimization (Ch. 8) *
- Distributed Transaction Management (Ch. 10-12) *

^{*} Özsu and Valduriez, Principles of Distributed Database Systems (3rd Ed.), 2011

Outline (today)

Query decomposition and data localization (Ch. 7) *

- → The problem of distributed data localization
- → A naïve algorithm
- → Optimization steps (reductions)
 - PHF (selection, join)
 - VF (projection)
 - DHF (join)
 - Hybrid Fragmentation (selection/join + projection)

^{*} Özsu and Valduriez, *Principles of Distributed Database Systems* (3rd Ed.), 2011

Data Localization

Input: Relational algebra expression on global, distributed relations (distributed query)

Output: Relational algebra expression on fragments (localized query)

- Localization uses global information about distribution of fragments (no use of quantitative information, e.g., catalog statistics)
- Recall that fragmentation is obtained by several application of rules expressed by relational algebra ...
 - \rightarrow primary horizontal fragmentation: selection σ
 - → derived horizontal fragmentation: semijoin ×
 - \rightarrow vertical fragmentation: projection Π
- ... and that reconstruction (reverse fragmentation) rules are also expressed in relational algebra
 - → horizontal fragmentation: union U
 - → vertical fragmentation: join 🛛

A naïve algorithm to localize distribute queries

- Localization program: relational algebra expression that reconstructs a global relation from its fragments, by reverting the rules employed for fragmentation
- A localized query is obtained from distributed, global query by replacing leaves (global relations) with (the tree of) its corresponding localization program
 - → Leaves of localized queries are fragments
- This approach to obtain a localized query from a distributed one is inefficient and the result can be improved
 - → During data localization there is a **first optimization phase**
 - we call it reduction
 - different from the "proper" global optimization phase ("proper" in the sense of the centralize case, i.e., finding the "best" strategy for executing the query)

EMP ⋈ ASG

Assume

- EMP is fragmented as follows:
 - $\rightarrow \text{EMP}_1 = \sigma_{\text{ENO} \leq "E3"}(\text{EMP})$
 - $\rightarrow \text{EMP}_2 = \sigma_{\text{"E3"} < \text{ENOS"E6"}}(\text{EMP})$
 - → $EMP_3 = \sigma_{ENO \ge "E6"}(EMP)$
- ASG is fragmented as follows:
 - → $ASG_1 = \sigma_{ENO \leq "E3"}(ASG)$
 - → $ASG_2 = \sigma_{ENO^{*}E3''}(ASG)$

 $\mathrm{EMP}\bowtie\mathrm{ASG}$

Assume

- EMP is fragmented as follows:
 - $\rightarrow \text{EMP}_1 = \sigma_{\text{ENO} \leq "E3"}(\text{EMP})$
 - → $EMP_2 = \sigma_{"E3" < ENO \leq "E6"}(EMP)$
 - → $EMP_3 = \sigma_{ENO \ge "E6"}(EMP)$
- ASG is fragmented as follows:
 - → $ASG_1 = \sigma_{ENO \leq "E3"}(ASG)$
 - \rightarrow ASG₂= $\sigma_{\text{ENO}>"E3"}$ (ASG)

Replace EMP by $(EMP_1 \cup EMP_2 \cup EMP_3)$ and ASG by $(ASG_1 \cup ASG_2)$ in any query

$\mathrm{EMP}\bowtie\mathrm{ASG}$

Assume

- EMP is fragmented as follows:
 - → $EMP_1 = \sigma_{ENO \leq "E3"}(EMP)$
 - $\rightarrow \text{EMP}_2 = \sigma_{\text{"E3"} < \text{ENOS"E6"}}(\text{EMP})$
 - → $EMP_3 = \sigma_{ENO \ge "E6"}(EMP)$
- ASG is fragmented as follows:
 - → $ASG_1 = \sigma_{ENO \leq "E3"}(ASG)$
 - \rightarrow ASG₂= $\sigma_{\text{ENO}>"E3"}$ (ASG)

Replace EMP by $(EMP_1 \cup EMP_2 \cup EMP_3)$ and ASG by $(ASG_1 \cup ASG_2)$ in any query $EMP \bowtie ASG$ = $(EMP_1 \cup EMP_2 \cup EMP_3) \bowtie (ASG_1 \cup ASG_2)$

Assume

- EMP is fragmented as follows:
 - \rightarrow EMP₁= $\sigma_{\text{ENO} \leq "E3"}$ (EMP)
 - $\rightarrow \text{EMP}_2 = \sigma_{\text{"E3"} < \text{ENOS"E6"}}(\text{EMP})$
 - → $EMP_3 = \sigma_{ENO \ge "E6"}(EMP)$
- ASG is fragmented as follows:
 - → $ASG_1 = \sigma_{ENO \leq "E3"}(ASG)$
 - \rightarrow ASG₂= $\sigma_{\text{ENO}>"E3"}$ (ASG)

Replace EMP by $(EMP_1 \cup EMP_2 \cup EMP_3)$ and ASG by $(ASG_1 \cup ASG_2)$ in any query

 $(EMP_1 \cup EMP_2 \cup EMP_3) \bowtie (ASG_1 \cup ASG_2)$

Identify (pairs of) fragments that can be ignored because they produce empty relations (e.g., when a selection or a join is applied to them)

Reduction for PHF – Selection

- Reduction of a selection over a relation fragmented with PHF: ignore a fragment if selection predicate and fragment predicate are contradictory
 - → Consider $\sigma_p(R)$
 - → Horizontal fragmentation on R: $F_R = \{R_1, R_2, ..., R_w\}$, where $R_j = \sigma_{p_j}(R)$
 - → $\sigma_p(R_j) = \emptyset$ if $\forall x$ in R: $\neg(p(x) \land p_j(x))$ i.e., p and p_j are contradictory

Reduction for PHF – Selection (Example)

 Reduction of a selection over a relation fragmented with PHF: ignore a fragment if selection predicate and fragment predicate are contradictory

Reduction for PHF – Join

- Reduction of a join over relations fragmented with PHF: ignore the join of 2 fragments if their fragment predicates are contradictory over the join attributes
 - → Possible if fragmentation predicates (minterms) involve the join attribute
 - → Distribute join over union

$$\begin{array}{l} R \Join S \Leftrightarrow (R_1 \cup R_2) \Join (S_1 \cup S_2) \\ \Leftrightarrow (R_1 \Join S_1) \cup (R_1 \Join S_2) \cup (R_2 \Join S_1) \cup (R_2 \Join S_2) \end{array}$$

→ Then, join between 2 fragments can be simplified in some cases

• Given $R_i = \sigma_{p_i}(R)$ and $S_j = \sigma_{p_i}(S)$ [p_i and p_j defined over join attributes]

 $R_i \bowtie S_j = \emptyset \text{ if } \forall x \text{ in } R \bowtie S : \neg(p_i(x) \land p_j(x)) \qquad [there is a mistake in the textbook]$ i.e., p_i and p_j are contradictory

Reduction for PHF – Join (Example)

 $EMP_{1} = \sigma_{ENO \leq "E3"}(EMP)$ $EMP_{2} = \sigma_{"E3" < ENO \leq "E6"}(EMP)$ $EMP_{3} = \sigma_{ENO \geq "E6"}(EMP)$ $ASG_{1} = \sigma_{ENO \leq "E3"}(ASG)$ $ASG_{2} = \sigma_{ENO \geq "E3"}(ASG)$

Consider the query

SELECT*FROMEMP,ASGWHEREEMP.ENO=ASG.ENO

- Distribute join over unions
- Apply the reduction rule

Reduction for PHF – Join (Example)

$$\begin{split} & EMP_1 = \sigma_{ENO \leq "E3"}(EMP) \\ & EMP_2 = \sigma_{"E3" < ENO \leq "E6"}(EMP) \\ & EMP_3 = \sigma_{ENO \geq "E6"}(EMP) \\ & ASG_1 = \sigma_{ENO \leq "E3"}(ASG) \\ & ASG_2 = \sigma_{ENO > "E3"}(ASG) \end{split}$$

Consider the query

FROM	EMP,ASG
WHERE	EMP.ENO=ASG.ENO

- Distribute join over unions
- Apply the reduction rule

Not always useful

Reduction for VF

- Reduction of a projection over a relation fragmented with VF: ignore the fragment for which the set of fragmentation attributes intersected with the set of projection attributes is contained in the primary key
- Recall that the localization program consists in joins over key attributes
- Let R_1 be a fragment of R obtained as $R_1 = \prod_{A'}(R)$ where $A' \subseteq attr(R)$:
 - → Reduction of a projection $\Pi_{A''}$ over R_1 is possible when $A'' \cap A' \subseteq key(R)$

Reduction for DHF

- Similar to the case PHF
- DHF: 2 relations *S* (owner) and *R* (member) in association one-to-many
 - → *S* participates with cardinality N , *R* participates with cardinality 1
 - \rightarrow Fragmentation propagate from *S* to *R*
 - → Localization program: union
 - → Compatible fragments (i.e., fragments that agree on the values of join attributes) are placed at the same site
- Reduction of a join over relations fragmented with DHF: only join "corresponding" fragments
 - → Distribute joins over unions
 - Apply the join reduction for horizontal fragmentation

Reduction for DHF – Example

Reduction for DHF – Example

2. Reduction of selection over a relation fragmented with HF

Distributed DBMS

Ch.7/31

Reduction for Hybrid Fragmentation

- Combine the rules already specified
 - → Remove empty relations generated by contradicting predicates (inside selections or joins) on horizontal fragments
 - → Remove useless relations generated by projections on vertical fragments
 - → Distribute joins/selections/projections over unions in order to isolate and remove useless operands

Reduction for Hybrid Fragmentation

Example

Consider the following hybrid fragmentation: $EMP_1 = \sigma_{ENO \leq "E4"} (\Pi_{ENO,ENAME} (EMP))$ $EMP_2 = \sigma_{ENO > "E4"} (\Pi_{ENO,ENAME} (EMP))$ $EMP_3 = \Pi_{ENO,TITLE} (EMP)$

Thus, the localization program for EMP is:

 $\text{EMP} = (\text{EMP}_1 \cup \text{EMP}_2) \bowtie \text{EMP}_3$

Consider also the query:

SELECT	ENAME
FROM	EMP
WHERE	ENO = "E5"

