
The Future of Computing: Logic or Biology

Text of a talk given at
Christian Albrechts University, Kiel

on 11 July 2003

Leslie Lamport

21 July 2003

In the late 60s, Bob Floyd and Tony Hoare discovered the concept of
program correctness.

(The idea actually goes back to von Neumann. As Fred Schneider has
observed, a number of explorers discovered America before Columbus—but
when Columbus discovered America, it stayed discovered. That’s why the
U.S. celebrates Columbus Day, not Leif Erickson Day.)

Some people initially working on program correctness thought that, in the
future, everyone would prove that their programs were correct. Programming
errors would then disappear.

We soon learned how naive that hope was. Floyd and Hoare showed that
we could, in principle, do this. But in practice, it turned out to be very hard.

Today, we know that verification is economically feasible only in a small
number of applications—mainly, for fairly small programs that perform life-
critical functions. Verification techniques are being used successfully to help
debug programs, at Microsoft and elsewhere. But actually proving the cor-
rectness of a program is rarely done.

But Floyd and Hoare did make a profound contribution to our way of
thinking about programs. They taught us that a program is a mathematical
object, and we could think about it using logic.

This idea inspired me, in early 1977, to write a short note titled How to
Tell a Program from an Automobile. Let me read part of it.

1



An automobile runs, a program does not. (Computers run,
but I’m not discussing them.) An automobile requires mainte-
nance, a program does not. A program does not need to have
its stack cleaned every 10,000 miles. Its if statements do not
wear out through use. (Previously undetected errors may need
to be corrected, or it might be necessary to write a new but sim-
ilar program, but those are different matters.) An automobile is
a piece of machinery, a program is some kind of mathematical
expression.

Programmers may be disheartened to learn that their pro-
grams are not like automobiles, but are mathematical expressions.
Automobiles can be loveable—one can relate to them almost as if
they were alive. Mathematical expressions are not loveable—they
are hard to relate to. Many programmers may feel like clinging to
their belief that programs are like automobiles. However, further
thought reveals that mathematical expressions do have certain
advantages over automobiles.

Unlike an automobile, a mathematical expression can have a
meaning. We can therefore ask whether it has the correct mean-
ing. One cannot talk about the correctness of an automobile—it
may run properly, but it makes no sense to say that it is correct.
Since a program is a mathematical expression, one can (at least
in principle) decide if it is correct. The user and the programmer
can agree in advance what the meaning of the program should be,
and the programmer can prove mathematically that his program
has that meaning. An automobile salesman can never prove that
he sold a properly running automobile, he can only give enough
evidence to satisfy a jury.

I have tried briefly to indicate the difference between an au-
tomobile and a program. The programmer should now apply
his new knowledge in the field, and see if he can tell the differ-
ence by himself. He should first examine his automobile, and ask
whether it is running properly, or if it has some bugs and requires
maintenance. If he cannot answer this question, he may have to
ask an auto mechanic to help him. He should then examine a
program, and ask what its meaning should be, and whether he
can prove that it has the correct meaning. If he can’t answer
these questions, it is probably because the program was written

2



by someone who thought he was building an automobile. In that
case, I suggest that the programmer ask these questions about
the next program he writes—while he is writing it! In this way,
any programmer can learn to tell a program from an automobile.

All I advocated in this note was that a programmer should ask himself
(or herself) two questions:

1. What is the meaning of the program?

In other words, what is it supposed to do?

2. Can he (or she) prove that it has the correct meaning?

In other words, can he or she prove that it does what it’s supposed to?

I didn’t say that programmers should write down precisely what their pro-
grams mean. I didn’t say that they should actually prove that their programs
have those meanings; just that they ask if they can prove it. So, I thought
that this was not in any way controversial.

At the time, I was working at Mass. Computer Associates. When I dis-
tributed my note to my colleagues there, it provoked outrage. I’m still not
sure why. But they objected to the idea of regarding a program as a mathe-
matical object and thinking about it logically.

Later in 1977, I moved to SRI International. Sometime within the next
couple of years, the following incident occurred.

Those were the days of the Arpanet, the precursor of today’s Internet.
Widespread communication by email was still somewhat new, and glitches
were frequent. At one point, our mail program displayed the following be-
havior.

If I tried to use the reply option for email from the Stanford artificial
intelligence lab, the program would type out something like

SUAI is not a correct address

However, if I used the send-message option and typed SUAI as the destina-
tion address—exactly the same address it just told me was incorrect—then
everything worked fine.

So, I called our system administrator to report this problem. He explained
that the source of the problem was that Stanford was sending out email that

3



was formatted incorrectly. Since it was their fault, he didn’t want to do
anything about it.

This was perfectly reasonable. However, when talking to him, it became
clear that he saw nothing fundamentally wrong with the program saying
SUAI is an incorrect address, and then accepting SUAI as correct. This
contradictory behavior did not bother him at all.

I realized that there was something very wrong with the way that system
administrator’s mind worked. It is illogical for a program to say that SUAI
is incorrect and then to accept SUAI as correct input. Someone who finds
nothing wrong with illogical behavior is not going to write programs that act
logically. Which means that he is not going to write programs that you or I
want to use.

That all happened twenty years ago. In retrospect, thinking of programs
as automobiles wasn’t so bad. Automobiles are pretty simple. If their car
stops working, people expect any good mechanic to be able to figure out why
and fix the problem.

Twenty years ago, people felt that way about programs too. Programs
were something they could understand. Even if they weren’t willing to ad-
mit that a program is a mathematical object, they still felt that, like an
automobile, a program could be debugged with the aid of logical reasoning.

That’s no longer the case. In the intervening years, computer programs
have become much more complicated. People no longer expect to be able to
deduce what’s wrong when a program doesn’t work.

Instead of thinking of programs as automobiles, people now think of them
as biological systems.

Biology is very different from logic—or even from the physical sciences.
If biologists find that a particular mutation of a gene is present in 80% of
people suffering from a certain disease, and missing from 80% of a control
group, then that’s a significant result.

If physicists tried to report an experiment in which 80% of the events
supported their theory, they’d be required to explain what happened in the
other 20%.

And imagine if a mathematician submitted a theorem that he claimed
was true because it was correct on 80% of the examples he tried.

I don’t mean to put down biology or biologists. It’s a difficult field because
the systems they study are so complex. The human body is a lot more
complicated, and hence a lot harder to understand, than an automobile.

4



And a lot harder to understand than logic.
When you get systems that are too complicated to understand, people

respond with superstition. Thousands of years ago, people didn’t under-
stand astronomy. So superstitions arose—like praying to appease the spirits
thought to be responsible for an eclipse.

Superstitions arise because people (and other animals) are naturally in-
clined to interpret coincidence as causality. If someone handles a frog and
then develops a wart, he will naturally assume that touching the frog caused
the wart. Especially if he does not understand what causes warts. Since a
person will tend to forget all the times he has touched frogs without getting
warts, it’s easy to see how people came to believe that touching frogs caused
warts. And since the human body is so complicated and not well under-
stood, people have come to believe in a number of medical superstitions like
homeopathy and faith healing.

We understand automobiles. There are no homeopathic automobile repair
shops, that try to repair your car by putting infinitesimal dilutions of rust
in the gas tank. There are no automotive faith healers, who lay their hands
on the hood and pray. People reserve such superstitions for things that they
don’t understand very well, such as the human body.

Today’s computer programs seem as complicated and mysterious to peo-
ple as the human body. So they respond with superstitions. Just as a person
might avoid frogs because he once got a wart after touching one, he might
avoid a particular sequence of commands because he did it once and his com-
puter crashed. He doesn’t expect to understand why touching a frog might
cause a wart, or why that particular sequence of commands might cause his
computer to crash. Superstitions arise because we don’t understand.

If this trend continues, we may soon see homeopathic computer repair.
Perhaps it will consist of adding a virus to a program, deleting the virus,
and then running the program. You may soon be able to take your laptop
to a faith healer, who will lay his hands on the keyboard and pray for the
recovery of the operating system.

Is this the future of computing? Or can we instead build on the idea
that a computer program is a mathematical object that can be understood
through logic?

When considering this question, we must realize that the nature of com-
puting has changed dramatically in the last twenty years. Twenty years ago,
computers performed only simple, logical operations. Responding to an email

5



message is a simple operation with a simple mathematical description. Com-
puters were used by technically sophisticated people, who interacted with
them only in terms of those logical operations.

Today, computers are used by almost everyone. Most people want to act
like human beings when they interact with their computers. And human
beings do not naturally interact through logic.

Consider the drag-and-drop feature in modern computer interfaces. If I
drag a file icon from one folder and drop it into another, that moves the file
to the other folder. If I drag a file icon from a folder and drop it onto a
program icon, that runs the program with the file as input.

Moving a file and running a program on the file are logically very different
operations. Yet, I find it quite natural for the same operation of drag-and-
drop to perform these two logically different operations. Why? Because
that’s how the human mind works.

Consider these two sentences:

• I’m running – Ich laufe.

• The computer is running – Der computer läuft.

These are logically two different meanings of run/laufen. But it seems per-
fectly natural to use the same word for both concepts—a person moving
rapidly on foot, and a computer sitting in one place executing a program.
Why?

Humans think and speak with metaphors. When machines were invented,
people thought and talked about them using concepts they were already
familiar with. In Germany and England, they used the metaphor of a person
running to describe what a machine does. So machines, and hence computers,
laufen.

In China, the metaphor they used was that of a person doing labor. So
in Chinese, machines work. (But computers execute.)

We think in terms of metaphors, and the metaphors we use influence how
we think. Thirty years ago, there was something of a debate about whether to
use the name memory or storage for what we now call memory. I was opposed
to personifying computers, so I thought it should be called storage. I was
wrong. Storage calls up an image of boxes neatly lined up in a warehouse.
It was appropriate for the simple arrays used then in most programs. But
memory is a more amorphous term. It’s much more appropriate for the
variety of structures with which data is maintained by today’s programs.

6



And, quite appropriately, today we reserve the term storage for media like
disks, in which data is kept in neat arrays of blocks.

Metaphors are not logical. There is no logic to machines running in
English and German, working in Chinese, and turning in French. Metaphors
can be good or bad, depending on how well they work. Memory works better
than storage at helping us write programs.

Drag-and-drop works very well. Dragging a file to a folder and bringing
the file to a program that will use it are good metaphors for moving a file
and for running a program on the file.

If how we use computers is to be based on metaphors, and metaphors are
not based on logic, what role does logic have in the future of computing?

I said that I could perform two different operations by drag-and-dropping
a file icon onto a folder icon, or onto a program icon. That’s not quite true.
I can do that if the file icon is in a folder. But if the file icon represents a
file attached to a message, I can’t. Using the Outlook mail program, I can
drag-and-drop the attached file onto a folder icon. As expected, that puts a
copy of the file into the folder. But I can’t drag-and-drop it onto a program
icon. That doesn’t work.

Why not? I don’t know. I can find no explanation. Not only is the behav-
ior illogical, but it’s hard to understand how it could have been programmed
that way.

Here’s how I think drag-and-drop works in Windows. When the user
clicks on the mouse to begin dragging the item, the program on which it
is clicking tells Windows what is being dragged. When dragging from a
folder, that program is the File Explorer. When dragging from a message,
the program is Outlook.

The File Explorer program and the Outlook program must be responding
to the mouse click by telling Windows two different things, since two different
things happen when I drop the file onto a program icon. Why? Why should
there even be two different things a program could tell Windows?

The only answer I can find is that this part of Windows was programmed
by the former SRI System Administrator. Remember him? The one who
saw nothing fundamentally wrong with a mail program saying that SUAI is
an incorrect address, and then accepting SUAI as a correct address. If not
by him, then by someone very much like him.

Computers interact with users through metaphors. Metaphors are not

7



based on logic, but they are not illogical.
Metaphor and logic are not opposites. They are complementary. A

good program must use good metaphors, and it must behave logically. The
metaphors must be applied consistently—and that means logically.

The inconsistency with the SUAI address in my old mail program at SRI,
and with the handling of drag-and-drop by Outlook, are minor nuisances. It
was easy enough to type SUAI to the SRI mail program; I can drag-and-drop
an Outlook message attachment into a folder and then drag-and-drop it from
there onto a program icon.

I am dwelling on these problems because of what they reveal about our
software and the people who write it. They tell us that there is a funda-
mental illogic in the programs. And that illogic comes from an inability of
programmers to think logically about their programs.

Today’s computer programs are very large and complex. They have to be
large and complex because they do many things. The old SRI mail program
just handled simple ascii text messages. The Outlook mailer handles

• formatted text—including letters and accents from many languages,

• images,

• audio files,

• calendar appointments,

• and all sorts of attachments.

It

• maintains multiple message folders,

• keeps an address book—remembering the addresses of everyone from
whom I’ve received email,

• issues reminders,

• sends vacation messages when I’m away,

• filters spam,

8



and does all sorts of other things. And it uses a sophisticated graphical
interface that most people find much more natural and easy to use than the
command-line interface provided by the old mail program.

How can programmers and system designers cope with this complexity?
There are two approaches.

The first is to use the paradigm of the complex systems with which most
people are familiar—namely, biological systems. We let computer systems
evolve. We regard malicious attacks as viruses, which we combat by mimick-
ing the complex defense systems used by living organisms.

This sounds like a marvelous approach. Look at how well it works
in nature. The biological system known as homo sapiens is a marvel of
engineering—much more sophisticated than any system designed by man.

Unfortunately, there are some problems with adopting this approach.
First of all, it’s very slow. It took nature millions of years. We don’t have
that much time.

Second, its results are far from perfect. Just consider all the auto-immune
diseases, like arthritis, that we suffer from. Biological systems tend to be just
good enough to survive (which admittedly has to be quite good given what
it takes to survive in a hostile world). We should have higher aspirations for
our software than “just good enough to survive”.

Third, biological systems respond quite slowly to a changing environment.
Nature can keep up with changes in weather patterns that take place over
thousands of years. But species often become extinct when faced with the
rapid changes caused by man. We must adapt our computer systems to rapid
changes in technology.

The fundamental problem with approaching computer systems as biolog-
ical systems is that it means giving up on the idea of actually understanding
the systems we build. We can’t make our software dependable if we don’t
understand it. And as our society becomes ever more dependent on computer
software, that software must be dependable.

The other approach to dealing with complexity is through logic. As Floyd
and Hoare showed us so many years ago, a program is a mathematical ob-
ject. We can understand complex mathematical objects by structuring them
logically.

The best way to cope with complexity is to avoid it. Programs that do a
lot for us are inherently complex. But instead of surrendering to complexity,
we must control it. We must keep our systems as simple as possible. Hav-

9



ing two different kinds of drag-and-drop behavior is more complicated than
having just one. And that is needless complexity.

We must keep our systems simple enough so we can understand them.
And the fundamental tool for doing this is the logic of mathematics. We face
two tasks in applying this tool.

Our first task is learning how. Floyd and Hoare pointed the way by
showing how mathematics could be applied to tiny programs. We need to
learn how to extend what they did to the real world of large programs.

Extending what they did does not mean trying to mathematically prove
the correctness of million-line programs. It means learning how to apply the
idea of a program as a mathematical object to the task of building large
programs that we can understand, and that do what we intend them to do.

There are many ways in which mathematics can be used to produce better
computer systems. My own work in this area has been directed towards
getting engineers to start using mathematical methods in the earliest stage
of system design. In my lecture yesterday,1 I described the progress that I’ve
made so far, and how hardware designers at Intel are taking advantage of it.
I’m just starting to try to understand how these methods can be applied to
software development at Microsoft.

Other researchers are developing tools for applying the ideas pioneered
by Floyd and Hoare to such varied problems as improving the coverage of
testing and checking device drivers supplied to Microsoft by other companies.

In addition to the task of learning how to apply mathematics to large
systems, we also face the task of teaching programmers and designers to think
logically. They must learn how to think about programs as mathematical
objects. They must learn to think logically. We will not have understandable
programs as long as our universities produce generation after generation of
people who, like my former colleagues, cannot understand that programs are
different from automobiles. And like that SRI system administrator who saw
nothing wrong with the mail program’s illogical behavior.

I’m not familiar with how computer science is taught in European uni-
versities. I know that American universities are doing a terrible job of it.

1This was a lecture about the TLA+ specification language. Some of the things I said
can be found in the paper High-Level Specifications: Lessons from Industry, to appear in
the Proceedings of the First International Symposium on Formal Methods for Components
and Objects, held 5-8 November 2002 in Leiden, The Netherlands. It is available on my
publications page, accessible from http://lamport.org.

10



There is a complete separation between mathematics and engineering. I
know of one highly regarded American university in which students in their
first programming course must prove the correctness of every tiny program
they write. In their second programming course, mathematics is completely
forgotten and they just learn how to write C programs. There is no attempt
to apply what they learned in the first course to the writing of real programs.

In my lecture yesterday, I described how being forced to describe their
designs mathematically taught the Intel engineers how to think about them
mathematically. And thinking mathematically improved their design process.

Thinking mathematically is something that engineers should be taught
in school. They shouldn’t have to learn it on the job. They can learn the
details of some particular programming language on the job. Teaching how
to think is the task of the university. But today, students in the U.S. can take
courses in C++ and Java and the details of the Unix operating system. But
few American universities have courses devoted to teaching how to think
logically and mathematically about real systems. Universities need to do
better.

When people who can’t think logically design large systems, those sys-
tems become incomprehensible. And we start thinking of them as biological
systems. And since biological systems are too complex to understand, it
seems perfectly natural that computer programs should be too complex to
understand.

We should not accept this. That means all of us, computer professionals
as well as those of us who just use computers. If we don’t, then the future of
computing will belong to biology, not logic. We will continue having to use
computer programs that we don’t understand, and trying to coax them to
do what we want. Instead of a sensible world of computing, we will live in a
world of homeopathy and faith healing.

11


