DCEL: Doubly-Connected Edge List

Claudio Mirolo

Dip. di Scienze Matematiche, Informatiche e Fisiche
Università di Udine, via delle Scienze 206 – Udine
claudio.mirolo@uniud.it

Computational Geometry
www.dimi.uniud.it/claudio
Outline

1. DCEL data structure
 - representation
 - example

2. Application of DCELs
 - overlay of two subdivisions
 - plane sweep: edges and vertices
 - plane sweep: faces

3. Further annotations
What about?

- Planar subdivision

- Planar embedding of a graph
 - node \rightarrow vertex
 - arc \rightarrow edge
 - + face
Planar subdivision

Planar embedding of a graph

- node \rightarrow vertex
- arc \rightarrow edge
- + face
Planar subdivision

Planar embedding of a graph

- node → vertex
- arc → edge
- + face
What about?

- Planar subdivision

- Planar embedding of a graph
 - node \rightarrow vertex
 - arc \rightarrow edge
 - + face
What about?

- Planar subdivision
- Planar embedding of a graph
 - node → vertex
 - arc → edge
 - + face
Outline

1. DCEL data structure
 - representation
 - example

2. Application of DCELs
 - overlay of two subdivisions
 - plane sweep: edges and vertices
 - plane sweep: faces

3. Further annotations
DCEL: Basic ingredients

Basic items:

- \textit{vertices}
- \textit{edges} = Line segments
- \textit{faces}

As well as topological relationships between such items: \textit{incidence}
DCEL: Basic ingredients

Basic items:

- vertices
- edges = Line segments
- faces

As well as topological relationships between such items: incidence
DCEL: Basic ingredients

Basic items:

- *vertices*
- *edges* = Line segments
- *faces*

As well as topological relationships between such items: *incidence*
Basic *local* access operations:

- walk around the boundary of a given face
- move from a face to an adjacent one (via a common edge)
- visit all the edges around a given vertex

Possibly, store/get additional data associated to, e.g., a face: *attribute information*
DCEL: Basic access operations

Basic *local* access operations:

- walk around the boundary of a given face
- move from a face to an adjacent one (via a common edge)
- visit all the edges around a given vertex

Possibly, store/get additional data associated to, e.g., a face: *attribute information*
Basic local access operations:

- walk around the boundary of a given face
- move from a face to an adjacent one (via a common edge)
- visit all the edges around a given vertex

Possibly, store/get additional data associated to, e.g., a face: attribute information
DCEL: Basic access operations

Basic *local* access operations:

- walk around the boundary of a given face
- move from a face to an adjacent one (via a common edge)
- visit all the edges around a given vertex

Possibly, store/get additional data associated to, e.g., a face: *attribute information*
DCEL: Representational tricks

One record for each item...

- edge \rightarrow two directed *half-edges* ...
- \ldots \rightarrow *twin* half-edges
- face lies to the *left* of its bounding half-edges ...
DCEL: Representational tricks

One record for each item...

- edge \rightarrow two directed half-edges...

- ... \rightarrow twin half-edges

- face lies to the left of its bounding half-edges...
DCEL: Representational tricks

One record for each item...

- edge → two directed half-edges...
- ... → twin half-edges
- face lies to the left of its bounding half-edges...
One record for each item...

- edge \rightarrow two directed *half-edges* ...
- ... \rightarrow *twin* half-edges
- face lies to the *left* of its bounding half-edges ...
DCEL: Representational tricks

... including its possible *holes*

Remark “walking” direction!
DCEL: Representational tricks

... including its possible holes

Remark “walking” direction!
Vertex record \(v \):

- pair of coordinates \((x, y)\)
- pointer to (any) incident half-edge, with \(v \) as its origin
DCEL: Vertices

Vertex record \(v \):

- pair of coordinates \((x, y)\)
- pointer to (any) incident half-edge, with \(v \) as its origin
DCEL: Vertices

Vertex record \(v \):

- pair of coordinates \((x, y)\)
- pointer to (any) incident half-edge, with \(v \) as its origin
DCEL: Vertices

Vertex record \(v \):

- pair of coordinates \((x, y) \)
- pointer to (any) incident half-edge, with \(v \) as its origin
DCEL: Faces

Face record \(f \):

- pointer to (any) half-edge of its outer boundary, with \(f \) lying to the left of this half-edge

- list of pointers to (any) half-edge of each inner boundary, with \(f \) still lying to the left of these half-edges
DCEL: Faces

Face record f:

- pointer to (any) half-edge of its outer boundary, with f lying to the left of this half-edge
- list of pointers to (any) half-edge of each inner boundary, with f still lying to the left of these half-edges
DCEL: Faces

Face record f:

- pointer to (any) half-edge of its outer boundary, with f lying to the left of this half-edge
- list of pointers to (any) half-edge of each inner boundary, with f still lying to the left of these half-edges
DCEL: Faces

Face record f:

- pointer to (any) half-edge of its outer boundary, with f lying to the left of this half-edge
- list of pointers to (any) half-edge of each inner boundary, with f still lying to the left of these half-edges
DCEL: Faces

Face record f

- pointer to (any) half-edge of its outer boundary, with f lying to the left of this half-edge

- list of pointers to (any) half-edge of each inner boundary, with f still lying to the left of these half-edges
DCEL: Half-edges

Half-edge record e:

- *source* vertex (origin of e)
- *incident* face, i.e. face to its left
- *twin* half-edge
- *next* half-edge, along boundary of incident face
- *previous* half-edge, along same boundary
DCEL: Half-edges

Half-edge record e:

- **source** vertex (origin of e)
- incident face, i.e. face to its left
- **twin** half-edge
- **next** half-edge, along boundary of incident face
- **previous** half-edge, along same boundary
Half-edge record \(e \):

- \textit{source} vertex (origin of \(e \))
- incident face, i.e. face to its left
- \textit{twin} half-edge
- \textit{next} half-edge, along boundary of incident face
- \textit{previous} half-edge, along same boundary
DCEL: Half-edges

Half-edge record e:

- **source** vertex (origin of e)
- incident face, i.e. face to its left
- **twin** half-edge
- **next** half-edge, along boundary of incident face
- **previous** half-edge, along same boundary
DCEL: Half-edges

Half-edge record e:

- **source** vertex (origin of e)
- incident face, i.e. face to its left
- **twin** half-edge
- **next** half-edge, along boundary of incident face
- **previous** half-edge, along same boundary
DCEL: Half-edges

Half-edge record \(e \):

- **source** vertex (origin of \(e \))
- incident face, i.e. face to its left
- **twin** half-edge
- **next** half-edge, along boundary of incident face
- **previous** half-edge, along same boundary
DCEL: Half-edges

Half-edge record \(e \) :

- *source* vertex (origin of \(e \))
- incident face, i.e. face to its left
- *twin* half-edge
- *next* half-edge, along boundary of incident face
- *previous* half-edge, along same boundary
Example

DCEL data structure
Application of DCELs
Further annotations

Example

C. Mirolo
DCEL
Example

DCEL data structure
Application of DCELs
Further annotations

representation
example

C. Mirolo
DCEL
Vertex records

<table>
<thead>
<tr>
<th></th>
<th>coord</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>(0.0, 2.5)</td>
<td>e_{12}</td>
</tr>
<tr>
<td>v_2</td>
<td>(-2.5, 0.0)</td>
<td>e_{23}</td>
</tr>
<tr>
<td>v_3</td>
<td>(0.0, 0.0)</td>
<td>e_{35}</td>
</tr>
<tr>
<td>v_4</td>
<td>(2.5, 0.0)</td>
<td>e_{41}</td>
</tr>
<tr>
<td>v_5</td>
<td>(0.0, -2.5)</td>
<td>??</td>
</tr>
</tbody>
</table>

![DCEL diagram](image)
Vertex records

<table>
<thead>
<tr>
<th>vertex</th>
<th>coord</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>(0.0, 2.5)</td>
<td>e_{12}</td>
</tr>
<tr>
<td>v_2</td>
<td>(-2.5, 0.0)</td>
<td>e_{23}</td>
</tr>
<tr>
<td>v_3</td>
<td>(0.0, 0.0)</td>
<td>e_{35}</td>
</tr>
<tr>
<td>v_4</td>
<td>(2.5, 0.0)</td>
<td>e_{41}</td>
</tr>
<tr>
<td>v_5</td>
<td>(0.0, -2.5)</td>
<td>e_{53}</td>
</tr>
</tbody>
</table>
Face records

<table>
<thead>
<tr>
<th></th>
<th>outer</th>
<th>inner</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_U</td>
<td>—</td>
<td>$< e_{32} >$</td>
</tr>
<tr>
<td>f_A</td>
<td>e_{12}</td>
<td>??</td>
</tr>
<tr>
<td>f_B</td>
<td>e_{13}</td>
<td>??</td>
</tr>
</tbody>
</table>
Face records

<table>
<thead>
<tr>
<th></th>
<th>outer</th>
<th>inner</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_U</td>
<td>—</td>
<td>$< e_{32} >$</td>
</tr>
<tr>
<td>f_A</td>
<td>e_{12}</td>
<td>$<>$</td>
</tr>
<tr>
<td>f_B</td>
<td>e_{13}</td>
<td>$<>$</td>
</tr>
</tbody>
</table>
Edge records

<table>
<thead>
<tr>
<th></th>
<th>src</th>
<th>face</th>
<th>next</th>
<th>prev</th>
<th>twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{12}</td>
<td>v_1</td>
<td>f_A</td>
<td>e_{23}</td>
<td>e_{31}</td>
<td>e_{21}</td>
</tr>
<tr>
<td>e_{23}</td>
<td>v_2</td>
<td>f_A</td>
<td>e_{31}</td>
<td>e_{12}</td>
<td>e_{32}</td>
</tr>
<tr>
<td>e_{31}</td>
<td>v_3</td>
<td>f_A</td>
<td>e_{12}</td>
<td>e_{23}</td>
<td>e_{13}</td>
</tr>
<tr>
<td>e_{13}</td>
<td>v_1</td>
<td>f_A</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{34}</td>
<td>v_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{41}</td>
<td>v_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edge records

<table>
<thead>
<tr>
<th></th>
<th>src</th>
<th>face</th>
<th>next</th>
<th>prev</th>
<th>twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{12}</td>
<td>v_1</td>
<td>f_A</td>
<td>e_{23}</td>
<td>e_{31}</td>
<td>e_{21}</td>
</tr>
<tr>
<td>e_{23}</td>
<td>v_2</td>
<td>f_A</td>
<td>e_{31}</td>
<td>e_{12}</td>
<td>e_{32}</td>
</tr>
<tr>
<td>e_{31}</td>
<td>v_3</td>
<td>f_A</td>
<td>e_{12}</td>
<td>e_{23}</td>
<td>e_{13}</td>
</tr>
<tr>
<td>e_{13}</td>
<td>v_1</td>
<td>f_B</td>
<td>e_{34}</td>
<td>e_{41}</td>
<td>e_{31}</td>
</tr>
<tr>
<td>e_{34}</td>
<td>v_3</td>
<td>f_B</td>
<td>e_{41}</td>
<td>e_{13}</td>
<td>e_{43}</td>
</tr>
<tr>
<td>e_{41}</td>
<td>v_4</td>
<td>f_B</td>
<td>e_{13}</td>
<td>e_{34}</td>
<td>e_{14}</td>
</tr>
</tbody>
</table>
Edge records (continued)

<table>
<thead>
<tr>
<th></th>
<th>src</th>
<th>face</th>
<th>next</th>
<th>prev</th>
<th>twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{14}</td>
<td>v_1</td>
<td>f_U</td>
<td>e_{43}</td>
<td>e_{21}</td>
<td>e_{41}</td>
</tr>
<tr>
<td>e_{43}</td>
<td>v_4</td>
<td>f_U</td>
<td>e_{35}</td>
<td>e_{14}</td>
<td>e_{34}</td>
</tr>
<tr>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>e_{32}</td>
<td>v_3</td>
<td>f_U</td>
<td>e_{21}</td>
<td>e_{53}</td>
<td>e_{23}</td>
</tr>
<tr>
<td>e_{21}</td>
<td>v_2</td>
<td>f_U</td>
<td>e_{14}</td>
<td>e_{32}</td>
<td>e_{12}</td>
</tr>
</tbody>
</table>
Edge records (continued)

<table>
<thead>
<tr>
<th></th>
<th>src</th>
<th>face</th>
<th>next</th>
<th>prev</th>
<th>twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{14}</td>
<td>v_1</td>
<td>f_U</td>
<td>e_{43}</td>
<td>e_{21}</td>
<td>e_{41}</td>
</tr>
<tr>
<td>e_{43}</td>
<td>v_4</td>
<td>f_U</td>
<td>e_{35}</td>
<td>e_{14}</td>
<td>e_{34}</td>
</tr>
<tr>
<td>e_{35}</td>
<td>v_3</td>
<td>f_U</td>
<td>e_{53}</td>
<td>e_{43}</td>
<td>e_{53}</td>
</tr>
<tr>
<td>e_{53}</td>
<td>v_5</td>
<td>f_U</td>
<td>e_{32}</td>
<td>e_{35}</td>
<td>e_{35}</td>
</tr>
<tr>
<td>e_{32}</td>
<td>v_3</td>
<td>f_U</td>
<td>e_{21}</td>
<td>e_{53}</td>
<td>e_{23}</td>
</tr>
<tr>
<td>e_{21}</td>
<td>v_2</td>
<td>f_U</td>
<td>e_{14}</td>
<td>e_{32}</td>
<td>e_{12}</td>
</tr>
</tbody>
</table>
Questions...

How to visit all the edges around a vertex, say v_3, in counterclockwise order?

<table>
<thead>
<tr>
<th></th>
<th>coord</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>v_2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>v_3</td>
<td>(0.0, 0.0)</td>
<td>e_{35}</td>
</tr>
<tr>
<td>v_4</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>v_5</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Questions...

How to identify all faces adjacent to a given one, say f_B?

<table>
<thead>
<tr>
<th></th>
<th>outer</th>
<th>inner</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_U</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>f_A</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>f_B</td>
<td>e_{13}</td>
<td>$<>$</td>
</tr>
</tbody>
</table>

Can the same face be met more than once?
Questions...

How to identify all faces adjacent to a given one, say f_B?

<table>
<thead>
<tr>
<th></th>
<th>outer</th>
<th>inner</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_U</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>f_A</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>f_B</td>
<td>e_{13}</td>
<td>$<>$</td>
</tr>
</tbody>
</table>

Can the *same* face be met more than once?
Outline

1. DCEL data structure
 - representation
 - example

2. Application of DCELs
 - overlay of two subdivisions
 - plane sweep: edges and vertices
 - plane sweep: faces

3. Further annotations
What does overlay mean?

Overlay of two subdivisions S_1 and S_2:

A face f belongs to the overlay $Ov(S_1, S_2)$ if and only if f is a maximal connected subset of $f_1 \cap f_2$ for $f_1 \in S_1$ and $f_2 \in S_2$.

Here faces = open sets.
Overlay of two subdivisions S_1 and S_2:

A face f belongs to the overlay $Ov(S_1, S_2)$ if and only if f is a maximal connected subset of $f_1 \cap f_2$ for $f_1 \in S_1$ and $f_2 \in S_2$.

Here faces = open sets
Overlaying subdivisions: S_1
Overlaying subdivisions: S_2
Overlaying subdivisions: $S_1 + S_2$
Overlaying subdivisions: $Ov(S_1, S_2)$
Approach

Much information about the edges can be reused

Approach:

- load a copy of the DCELs of S_1 and S_2 (not a valid DCEL as such)
- process the resulting network of edges and vertices: split edges and link parts together as appropriate
- rebuild face records and assign half-edges’ face fields
Approach

Much information about the edges can be reused

Approach:

- load a copy of the DCELs of S_1 and S_2
 (not a valid DCEL as such)
- process the resulting network of edges and vertices:
 split edges and link parts together as appropriate
- rebuild face records and assign half-edges’ face fields
Approach

Much information about the edges can be reused

Approach:

- load a copy of the DCELs of S_1 and S_2 (not a valid DCEL as such)
- process the resulting network of edges and vertices: split edges and link parts together as appropriate
- rebuild face records and assign half-edges’ face fields
Approach

Much information about the edges can be reused

Approach:

- load a copy of the DCELs of S_1 and S_2
 (not a valid DCEL as such)
- process the resulting network of edges and vertices:
 split edges and link parts together as appropriate
- rebuild face records and assign half-edges’ face fields
Much information about the edges can be reused

Approach:

- load a copy of the DCELs of S_1 and S_2 (not a valid DCEL as such)
- process the resulting network of edges and vertices: split edges and link parts together as appropriate
- rebuild face records and assign half-edges’ face fields
Plane sweep

Overlay of two subdivisions
plane sweep: edges and vertices
plane sweep: faces
Plane sweep

overlay of two subdivisions
plane sweep: edges and vertices
plane sweep: faces

DCEL data structure
Application of DCELs
Further annotations

C. Mirolo
Plane sweep

- **Invariant:**
 valid DCEL of $\text{Ov}(S_1, S_2)$ on the left of the sweep line
 (except from face information, to be processed later)

- event queue (EQ) and sweep line structure (SL)
treated as usual...

 - all edges incident at event point p come from
 the same original subdivision: can be used as it is
 - event point p involves items of both subdivisions:
 “tedious but not difficult” local updates
Invariant:
valid DCEL of $Ov(S_1, S_2)$ on the left of the sweep line
(except from face information, to be processed later)

event queue (EQ) and sweep line structure (SL)
treated as usual. . .
- all edges incident at event point p come from
 the same original subdivision: can be used as it is
- event point p involves items of both subdivisions:
 “tedious but not difficult” local updates
Plane sweep

- **Invariant:**
 valid DCEL of $Ov(S_1, S_2)$ on the left of the sweep line (except from face information, to be processed later)

- event queue (EQ) and sweep line structure (SL) treated as usual...
 - all edges incident at event point p come from the same original subdivision: can be used as it is
 - event point p involves items of both subdivisions: “tedious but not difficult” local updates
Plane sweep

- **Invariant:**
 valid DCEL of $Ov(S_1, S_2)$ on the left of the sweep line (except from face information, to be processed later)

- event queue (EQ) and sweep line structure (SL) treated as usual...
 - all edges incident at event point p come from the same original subdivision: can be used as it is
 - event point p involves items of both subdivisions: “tedious but not difficult” local updates
Plane sweep

Invariant:
valid DCEL of $Ov(S_1, S_2)$ on the left of the sweep line (except from face information, to be processed later)

- event queue (EQ) and sweep line structure (SL) treated as usual. . .
 - all edges incident at event point p come from the same original subdivision: can be used as it is
 - event point p involves items of both subdivisions: “tedious but not difficult” local updates
Plane sweep

Invariant:
valid DCEL of \(Ov(S_1, S_2) \) on the left of the sweep line (except from face information, to be processed later)

- event queue (\(EQ \)) and sweep line structure (\(SL \)) treated as usual...
 - all edges incident at event point \(p \) come from the same original subdivision: can be used as it is
 - event point \(p \) involves items of both subdivisions: “tedious but not difficult” local updates
Plane sweep

- **Invariant:**
 valid DCEL of $Ov(S_1, S_2)$ on the left of the sweep line (except from face information, to be processed later)

- event queue (EQ) and sweep line structure (SL) treated as usual...
 - all edges incident at event point p come from the same original subdivision: can be used as it is
 - event point p involves items of both subdivisions: “tedious but not difficult” local updates
Which local updates?

DCEL data structure
Application of DCELs
Further annotations

Overlay of two subdivisions
Plane sweep: edges and vertices
Plane sweep: faces

Which local updates?
What must be changed?

<table>
<thead>
<tr>
<th></th>
<th>coord</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>...</td>
<td>a''</td>
</tr>
<tr>
<td>u'</td>
<td>...</td>
<td>β</td>
</tr>
<tr>
<td>u''</td>
<td>...</td>
<td>e''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>src . . .</th>
<th>next</th>
<th>prev</th>
<th>twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>e'</td>
<td>u' . . .</td>
<td>ε'</td>
<td>δ'</td>
<td>e''</td>
</tr>
<tr>
<td>e''</td>
<td>u'' . . .</td>
<td>ε''</td>
<td>δ''</td>
<td>e'</td>
</tr>
<tr>
<td>a'</td>
<td>φ . . .</td>
<td>c''</td>
<td>α</td>
<td>a''</td>
</tr>
<tr>
<td>c''</td>
<td>v . . .</td>
<td>γ</td>
<td>a'</td>
<td>c'</td>
</tr>
</tbody>
</table>

overlay of two subdivisions
plane sweep: edges and vertices
plane sweep: faces
And how?

<table>
<thead>
<tr>
<th>coord</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>a''</td>
</tr>
<tr>
<td>u'</td>
<td>β</td>
</tr>
<tr>
<td>u''</td>
<td>e''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>...</th>
<th>next</th>
<th>prev</th>
<th>twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>e'</td>
<td>u'</td>
<td>ε'</td>
<td>δ'</td>
<td>e''</td>
</tr>
<tr>
<td>e''</td>
<td>u''</td>
<td>ε''</td>
<td>δ''</td>
<td>e'</td>
</tr>
<tr>
<td>a'</td>
<td>ϕ</td>
<td>c''</td>
<td>α</td>
<td>a''</td>
</tr>
<tr>
<td>c''</td>
<td>v</td>
<td>γ</td>
<td>a'</td>
<td>c'</td>
</tr>
</tbody>
</table>

Overlay of two subdivisions

Plane sweep: edges and vertices

Plane sweep: faces
How to find \textit{next}/\textit{prev}? How much does it cost?

<table>
<thead>
<tr>
<th>coord</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v)</td>
<td>(a'')</td>
</tr>
<tr>
<td>(u')</td>
<td>(\beta)</td>
</tr>
<tr>
<td>(u'')</td>
<td>(e'')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>src</th>
<th>next</th>
<th>prev</th>
<th>twin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e')</td>
<td>(u')</td>
<td>(c'')</td>
<td>(\delta')</td>
</tr>
<tr>
<td>(e'')</td>
<td>(u'')</td>
<td>(b'')</td>
<td>(\delta'')</td>
</tr>
<tr>
<td>(a')</td>
<td>(\phi)</td>
<td>(d')</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(c'')</td>
<td>(v)</td>
<td>(\gamma)</td>
<td>(e')</td>
</tr>
<tr>
<td>(d')</td>
<td>(v)</td>
<td>(\varepsilon'')</td>
<td>(a')</td>
</tr>
<tr>
<td>(d'')</td>
<td>(v)</td>
<td>(\varepsilon')</td>
<td>(c')</td>
</tr>
</tbody>
</table>
Event types

Events, in summary:

- vertex of S_1 only (nothing to do)
- edge of S_1 passing through a vertex of S_2
- ... and symmetric configurations, of course
- vertex of S_1 and S_2
- intersection of edges of S_1 and S_2
Event types

Events, in summary:

- vertex of S_1 only (nothing to do)
- edge of S_1 passing through a vertex of S_2
- ... and symmetric configurations, of course
- vertex of S_1 and S_2
- intersection of edges of S_1 and S_2
Event types

Events, in summary:

- vertex of S_1 only (nothing to do)
- edge of S_1 passing through a vertex of S_2
- ... and symmetric configurations, of course
- vertex of S_1 and S_2
- intersection of edges of S_1 and S_2
Events, in summary:

- vertex of S_1 only (nothing to do)
- edge of S_1 passing through a vertex of S_2
- ... and symmetric configurations, of course
- vertex of S_1 and S_2
- intersection of edges of S_1 and S_2
Event types

Events, in summary:

- vertex of S_1 only (nothing to do)
- edge of S_1 passing through a vertex of S_2
- ... and symmetric configurations, of course
- vertex of S_1 and S_2
- intersection of edges of S_1 and S_2
Event types

Events, in summary:

- vertex of S_1 only (nothing to do)
- edge of S_1 passing through a vertex of S_2
- \ldots and symmetric configurations, of course
- vertex of S_1 and S_2
- intersection of edges of S_1 and S_2
Vertex u of $Ov(S_1, S_2)$

- local changes: $O(\deg(u))$
- overall: $O((n + k)\log n)$

n complexity of $S_1 + S_2$; k complexity of $Ov(S_1, S_2)$
Analysis (… so far)

Vertex u of $Ov(S_1, S_2)$ …

- local changes: $O(\text{deg}(u))$

- overall: $O((n + k)\log n)$

n complexity of $S_1 + S_2$; k complexity of $Ov(S_1, S_2)$
Vertex u of $Ov(S_1, S_2)$...

- local changes: $O(\text{deg}(u))$
- overall: $O((n + k)\log n)$

n complexity of $S_1 + S_2$; k complexity of $Ov(S_1, S_2)$
Analysis (... so far)

Vertex u of $Ov(S_1, S_2)$...

- local changes: $O(\deg(u))$
- overall: $O((n + k)\log n)$

n complexity of $S_1 + S_2$; k complexity of $Ov(S_1, S_2)$
New faces: integrations

Faces:
- outer boundary
- list of inner boundaries

Half-edges:
- incident face
- everything else is already computed
New faces: integrations

Faces:
- outer boundary
- list of inner boundaries

Half-edges:
- incident face
- everything else is already computed
New faces: getting information

How many faces?

- as many as the outer boundaries...
- ... + 1 (unbounded face)

How to find the boundary cycles?

- graph: half-edges + next/prev links
- connected components
New faces: getting information

How many faces?

- as many as the outer boundaries…
- … + 1 (unbounded face)

How to find the boundary cycles?

- graph: half-edges + next/prev links
- connected components
How many faces?
- as many as the outer boundaries . . .
- . . . + 1 (unbounded face)

How to find the boundary cycles?
- graph: half-edges + next/prev links
- connected components
How many faces?

- as many as the outer boundaries...
- ... + 1 (unbounded face)

How to find the boundary cycles?

- graph: half-edges + next/prev links
- connected components
New faces: getting information

How to know if a boundary is “outer” or “inner”?

- follow the direction of half-edges
- at the (lexicographically) leftmost vertex
- does next half-edge turn left or right?
New faces: getting information

How to know if a boundary is “outer” or “inner”?

- follow the direction of half-edges
- at the (lexicographically) leftmost vertex
- does next half-edge turn left or right?
New faces: face records

Face records...

- create face records for each outer boundary and for the unbounded face
- set the corresponding field to point to a half-edge of the outer boundary
- set the incident face field accordingly for each half-edge of the outer boundary
New faces: face records

Face records...

- create face records for each outer boundary and for the unbounded face

- set the corresponding field to point to a half-edge of the outer boundary

- set the incident face field accordingly for each half-edge of the outer boundary
New faces: face records

Face records...

- create face records for each outer boundary and for the unbounded face
- set the corresponding field to point to a half-edge of the outer boundary
- set the incident face field accordingly for each half-edge of the outer boundary
New faces: outer vs. inner boundaries

Which disconnected edge cycles bound the same face?

- during plane sweep, register the neighbor edge below the leftmost vertex of each inner boundary cycle
- such items are adjacent along SL!
- The resulting links connect (directly or indirectly) inner and outer boundaries of a same face...
New faces: outer vs. inner boundaries

Which disconnected edge cycles bound the same face?

- during plane sweep, register the neighbor edge below the leftmost vertex of each inner boundary cycle

- such items are adjacent along SL!

- The resulting links connect (directly or indirectly) inner and outer boundaries of a same face...
New faces: outer vs. inner boundaries

Which disconnected edge cycles bound the same face?

- during plane sweep, register the neighbor edge below the leftmost vertex of each inner boundary cycle
- such items are adjacent along SL!
- The resulting links connect (directly or indirectly) inner and outer boundaries of a same face...
New faces: outer vs. inner boundaries

Which disconnected edge cycles bound the same face?

- during plane sweep, register the neighbor edge below the leftmost vertex of each inner boundary cycle
- such items are adjacent along SL!
- The resulting links connect (directly or indirectly) inner and outer boundaries of a same face...
Graph of boundary cycles
Are such links sound and complete?

- The interval on the sweep line between a vertex and the linked edge must belong to just one face, hence both related cycles bound the same face.

- The leftmost vertex of each inner boundary must be linked to some component, which must bound the same face.
Connected components of the graph

Are such links sound and complete?

• The interval on the sweep line between a vertex and the linked edge must belong to just one face, hence both related cycles bound the same face.

• The leftmost vertex of each inner boundary must be linked to some component, which must bound the same face.
Are such links sound and complete?

- The interval on the sweep line between a vertex and the linked edge must belong to just one face, hence both related cycles bound the same face.

- The leftmost vertex of each inner boundary must be linked to some component, which must bound the same face.
Further processing

- Set the incident face field for each half-edge of each inner boundary

- We may want to link each face of the new subdivision with the two overlapping original faces
 (information gathered from plane sweep processing...
Further processing

- Set the incident face field for each half-edge of each inner boundary

- We may want to link each face of the new subdivision with the two overlapping original faces (information gathered from plane sweep processing...)
Further processing

- Set the incident face field for each half-edge of each inner boundary

- We may want to link each face of the new subdivision with the two overlapping original faces (information gathered from plane sweep processing...)
Analysis (overall)

- additional cross pointers to work efficiently

- face information within edge and face records can be set in $O(n + k)$ after the plane sweep

- overall costs sum up to: $O((n + k) \log n)$

where $n = |S_1| + |S_2|$; $k = |Ov(S_1, S_2)|$
Analysis (overall)

- additional cross pointers to work efficiently

- face information within edge and face records can be set in $O(n + k)$ after the plane sweep

Overall costs sum up to: $O((n + k) \log n)$

where $n = |S_1| + |S_2|; \quad k = |Ov(S_1, S_2)|$
Analysis (overall)

- additional cross pointers to work efficiently
- face information within edge and face records can be set in $O(n + k)$ after the plane sweep
- overall costs sum up to: $O((n + k) \log n)$

where $n = |S_1| + |S_2|$; $k = |Ov(S_1, S_2)|$
Outline

1. DCEL data structure
 - representation
 - example

2. Application of DCELs
 - overlay of two subdivisions
 - plane sweep: edges and vertices
 - plane sweep: faces

3. Further annotations
Set operations

As special cases of the above technique:

- union of (simple) polygons
- intersection of polygons
- difference of polygons

all in $O((n + k)\log n)$

results are not always polygons
Set operations

As special cases of the above technique:

- union of (simple) polygons
- intersection of polygons
- difference of polygons

All in \(O((n + k) \log n) \)

Results are not always polygons
Set operations

As special cases of the above technique:

- union of (simple) polygons
- intersection of polygons
- difference of polygons

all in \(O((n + k) \log n) \) results are not always polygons
D.E. Muller & F.P. Preparata (1978)
Finding the Intersection of Two Convex Polyhedra
Theoretical Computer Science, 7(2)