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Abstract—During the last years, the task of automatic event anal-
ysis in video sequences has gained an increasing attention among
the research community. The application domains are disparate,
ranging from video surveillance to automatic video annotation for
sport videos or TV shots. Whatever the application field, most of
the works in event analysis are based on two main approaches: the
former based on explicit event recognition, focused on finding high-
level, semantic interpretations of video sequences, and the latter
based on anomaly detection. This paper deals with the second ap-
proach, where the final goal is not the explicit labeling of recognized
events, but the detection of anomalous events differing from typ-
ical patterns. In particular, the proposed work addresses anomaly
detection by means of trajectory analysis, an approach with sev-
eral application fields, most notably video surveillance and traffic
monitoring. The proposed approach is based on single-class sup-
port vector machine (SVM) clustering, where the novelty detection
SVM capabilities are used for the identification of anomalous tra-
jectories. Particular attention is given to trajectory classification in
absence of a priori information on the distribution of outliers. Ex-
perimental results prove the validity of the proposed approach.

Index Terms—Anomaly detection, event analysis, support vector
machines (SVMs), trajectory clustering.

I. INTRODUCTION

N the last years, several works have been proposed on event
I analysis. Partial surveys on this topic can be found in the
reviews by Buxton [1] and Hu et al. [2] in the field of video
surveillance. Even though many different approaches have been
developed, they can generally be classified in two categories,
often referred to with the terms explicit event recognition and
anomaly detection.

In the explicit event recognition approach, the system has an
explicit knowledge of the events that must be identified. Once
an event is detected, it can be properly labeled with a semantic
description. The fundamental part of an explicit recognition
system is thus an a priori knowledge base, where all the
information about the recognizable events is stored, and the
system behaves as a “parser” matching the incoming data with
predefined templates found in the knowledge base. Explicit
event recognition has its primary strength in its expressiveness,
because it allows the modeling of heterogeneous events by la-
beling them with high-level semantic descriptions, thus giving a
real interpretation of the analyzed scene. The main drawback of
this approach is the need of a prior modeling for each possible
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instance of any event of interest. In real-world scenarios with
uncontrolled and uncooperative environments, this could imply
an exponential growth of the number of models as the scene
complexity increases. Because of the nature of the explicit
event recognition task, it is not surprising that most works on
this topic are based on stochastic parsers for the identification
of known patterns of atomic events, as in the works by Ivanov
and Bobick [3], Minnen et al. [4] or Moore and Essa [5].
Similar to a parser-based approach is the work of Vu et al. [6],
even though in their case the language used to express complex
events is not a full grammar, but rather a set of subevents subject
to temporal and logical constraints. Other works are based on
the integration of prior knowledge and low-level data acquired
by video processing (change detection, object tracking, etc.)
as in the works by Ayers and Shah [7] or Medioni et al. [8].
Wada and Matsuyama proposed a work in which raw image
data are directly used to infer behavior recognition, without in-
termediate processing as object detection or tracking [9]. Other
works use a priori defined knowledge base partially modeled
using machine learning techniques rather than being manually
defined as in a stochastic grammar. Most of these works rely
on the use of hidden Markov models for event recognition, as
in the works by Oliver et al. [10], Galata et al. [11], Brand and
Kettnaker [12], and Bashir ez al. [13]. Finally, other works are
based on more general stochastic models, such as Bayesian
networks, as in Hongeng et al. [14] or Moénne-Loccoz et al.
[15].

The other popular approach to event analysis is based on
anomaly detection. In this case, the system does not require a
prior knowledge base about the events that should be recog-
nized. On the contrary, the event models are automatically built
by the system itself in an unsupervised way, as the data are ac-
quired. The models have a probabilistic nature, in the sense that
the system is able to detect the most frequent patterns of ac-
tivity occurred in the scene; the output of the event analysis
process is no more an explicit description of the detected event
(this would require a supervised learning), but only a measure of
probability of that event, allowing to focus on the most rare ones
(anomalies). A commonly used approach in this case is based
on the clustering of the trajectories of the detected moving ob-
jects; the obtained clusters are then used as a normality model
for anomaly detection. For a survey on trajectory (and more gen-
erally time series) clustering, see [16]. The work by Johnson and
Hogg [17] was probably one of the first researches in this direc-
tion, using vector quantization for the compact representation of
trajectories and multilayer neural networks for the identification
of common patterns. The same authors later published another
work on the same topic [18], where the probability density func-
tion of common patterns was approximated with a mixture of
multivariate Gaussian densities. Another notable work on trajec-
tory analysis has been done by Stauffer and Grimson [19], where
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vector-quantized trajectories are analyzed in terms of cooccur-
rence matrices of vector prototypes. Makris and Ellis [20], [21]
proposed a method for labeling the scene with topological in-
formation, which is then used within a Bayesian approach to
detect anomalous trajectories. Piciarelli and Foresti [22] pro-
posed a trajectory clustering algorithm especially suited for on-
line anomaly detection, which is a main issue in surveillance
systems. Other relevant works on trajectory analysis for event
detection include the ones by Porikli [23], which is based on
eigenvalue decomposition of affinity matrices in order to find the
correct number of clusters and compute conformity scores for
anomaly detection; Hu et al. [24] use a hierarchic clustering of
trajectories depending on spatial and temporal information; Lou
et al. [25] use dynamic clustering techniques for traffic anal-
ysis; Morris and Hogg [26] analyze trajectories in order to de-
tect interactions with known objects in the environment; Wang
et al. [27] define an ad hoc trajectory similarity measure and an
associated clustering technique; and Dee and Hogg [28] detect
anomalies using inexplicability scores, a measure of how much
a trajectory can be explained in terms of simple goals.

In this paper, we address the problem of trajectory analysis
for anomaly detection using support vector machines (SVMs).
Although SVMs have been a widely used tool for classification
and clustering problems and can explicitly address the problem
of anomaly (or novelty) detection [29], only few trajectory clus-
tering papers rely on SVM, such as [30]. In a preliminary work,
we proposed an anomalous trajectory detection technique based
on single-class SVM [31] and we faced the problem of choosing
the best training parameters for optimal clustering. The pro-
posed solution, however, had a high computational complexity;
in this work, we propose an alternative, faster technique for
SVM training in presence of outliers. Moreover, we present fur-
ther experimental results proving the validity of our approach.

This paper is structured as follows. In Section II, a short re-
view of the SVM theory is given to clarify some concepts that
will be recalled later in this paper. Section III discusses the pos-
sible applications of SVM techniques to trajectory analysis, and
some preliminary results are given. Section IV addresses the
problem of tuning SVM in presence of an unknown number of
outliers, which is a common scenario in practical applications.
Finally, Section V gives some experimental results proving the
validity of the proposed approach.

II. SUPPORT VECTOR MACHINES THEORY

SVMs are a set of classification and regression techniques
based on the concepts of statistical learning theory and risk
minimization, initially proposed by Vapnik et al. [32] and later
extended to the nonlinear case with the introduction of kernel
methods [33]. Single-class SVMs [29] are a particular type of
SVM well suited for anomaly detection tasks, because they con-
sider the training data as elements drawn from a single proba-
bility distribution, whose support has to be found while possibly
discarding outliers. This approach can naturally be applied to
anomalous trajectory detection: the detected trajectories are ini-
tially transformed in fixed-dimension feature vectors; then the
training data are clustered using a single-class SVM, thus de-
tecting the hypervolume in the feature space containing all the
normal trajectories. Identifying anomalous trajectories is just a
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matter of checking if a new trajectory falls outside the computed
hypervolume. To better understand the remaining sections of
this work, a brief description of the SVM theory is here given.
For further details on SVMs, see [34] and [35].

The main idea at the basis of SVM theory arises from the
application of statistical learning theory results to linear classi-
fiers. Let us consider the case of two-class hyperplane classifiers
in some dot product space 'H

(w-x)+b=0, w,X € H, beR )]

corresponding to the decision function

f(x) = sgn ((w-x) +0)

as depicted in Fig. 1. Statistical learning theory states that the
optimal classifier can be found by maximizing the margin,
which is defined as the distance along the direction of w
between the two hyperplanes parallel to the classification plane
and passing through the points in the two class sets nearest to
the classification plane (the dashed lines in Fig. 1). This can be
expressed as a minimization problem

1
min - ||w|?
w 2

subjectto  y;((w-x;)+b) > 1, 1=1,....,m

where m is the number of training data and y; € {—1,+1} is
the expected label for each element. The problem can be solved
introducing the Lagrangian multipliers «; > 0 and setting to
zero the partial derivatives of the Lagrangian with respect to
(w.r.t.) the primal variables w and b, thus leading to the dual
optimization problem

m m
1
max W(a) = Zai ~3 Z iy (X - X;)
=1 1,7=1
subjectto «a; > 0, i=1,...,m

Z QY = 0 (2)
i=1

which can be solved using standard quadratic optimization tech-
niques. The decision function is now defined as

f(x) = sgn (Z yioi(x - x;) + b) (3)

i=1

where «; are solutions of (2) and b can be found knowing that,
for any x lying on the margin borders, the following equation
holds:

yi(w-x;+b)—1=0.

The points lying on the margin borders are called support vec-
tors and they are associated to nonzero values of «;. This implies
that the final solution (3) is sparse, being defined only in terms
of a small subset of the data used in the training step.

The capability of solving only linear classification problems
and the definition in a dot product space are the main drawbacks
of this approach. Both problems can be addressed by defining
amap ® : X — H from the nonempty set of the original
input data X’ to a dot product space H (feature space) where
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Fig. 1. Optimal classification hyperplane separating two classes. The optimal
classification function is found by maximizing the distance between the two
dashed hyperplanes in the direction of w (the margin).

the problem has a linear solution. The fundamental observa-
tion is that, in the dual problem (2) and in the decision func-
tion (3), the only operations performed in H are dot products.
The classifier can thus be trained without doing any explicit
computation in A if an explicit formula for dot products in H
is given. This formula is traditionally called kernel, defined as
k(z,2") = ®(z) - (z’). Using kernels, the decision function
(3) becomes

flo)=sgn | > yicik(w,z;) +b )
=1

where « is a solution of the optimization problem

1 m
max W(a) = Z;ai —5 ‘Zl a;oyiyik(zi, ;)
i= i,j=
subjectto  «; > 0, i€{l...m}
> iy =0. 5)
i=1

Similar techniques can also be applied to nonclassification
tasks such as anomaly detection. Given a set of unlabeled mea-
sures generated according to an unknown probability distribu-
tion P, single-class SVMs are used to estimate the support of a
particular quantile of P. The goal is to find an appropriate region
in the feature space X’ containing most of the data drawn from
P, possibly leaving outliers outside this region. In the SVM
framework, this can be obtained by searching for a decision hy-
perplane in the feature space H, which maximizes its distance
from the origin, while only a small fraction of data (the out-
liers) falls between the hyperplane and the origin. This can be
expressed in terms of the constrained minimization problem

min

1, o, 1
Z _ )}
win g+ 2 e

subjectto  w- ®(x;) > b—¢&;, >0 (6)
where x; € X',i € [1...n] are n training data in the data space
X, ® : X — H is the function mapping vectors x; in the fea-
ture space H, and (w - ®(x)) —b = 0 is the decision hyperplane
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in H. In the minimization process, outliers are linearly penal-
ized by the slack variables &;, whose weight is controlled by the
parameter v € (0, 1]. Introducing the Langrangian multipliers
«;, the minimization problem (6) can be reformulated in its dual
form

(o3

1
min 5 ; aiajk(xi, Xj)

1
(vn)

subjectto 0 < o; <
> o=
i

Values «; can be found by solving the problem with standard
quadratic programming methods; w is given by

w = Z a; ®(x;) ®)

—_

(N

and, for any vector ®(x;) with a; # 0, the following equations
hold:

b= & = (W 0(xi)) = 3 ah(xi,%;) ©)

with & > 0 for outliers and &; = 0 for support vectors lying on
the decision plane. The decision function in the data space X is
thus defined as

f(x) =sign((w - ®(x)) - b)

=sign Z aik(x,%x;) — b (10)

The solution is again sparse because «; = 0 for any x; lying
within the support region identified by the decision function:
the majority of the training vectors do not contribute to the def-
inition of the decision function. For the other vectors (support
vectors), 0 < «a; < 1/(vn) if the vector lies on the decision
hyperplane, and « = 1/(vn) if the vector is an outlier.

The parameter v has an intuitive meaning because it tunes
the number of acceptable outliers. From (6), it can be seen that,
when v — 0, the outliers’ penalization factors grow to infinity,
thus leading to a hard margin solution, where no outliers are
allowed at all. On the other hand, if » = 1, the constraints in
(7) allow a single solution in which all the «; are saturated to
the maximum value 1/n, thus all the vectors are outliers. More
specifically, it can be proven that v is an upper bound for the
fraction of outliers and a lower bound for the fraction of support
vectors (e.g., with v = 0.1, at least 10% of the training vectors
will be support vectors, and at most 10% will be outliers).

III. SVM TRAJECTORY CLUSTERING

In this section, we will explore the possibility of using SVMs
for event detection systems. The basic idea is to extract the tra-
jectories of moving objects from video sequences, and cluster
together groups of trajectories sharing similar features while
leaving out the anomalous ones; testing a new trajectory for
anomaly detection will thus be only a matter of comparing the
new trajectory with the cluster model. Because a single class
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(the normal trajectories) is searched for and the aim is to find
outliers for that class, single-class SVMs seem to be well suited
for this problem, due to their ability to detect a region in the
data space enclosing the training data while possibly excluding
outliers.

First, a proper input space must be defined. Trajectories are
generally represented by variable-length sequences of 2-D co-
ordinates, but the most commonly used kernels are defined on
fixed-dimension spaces. A possible choice would be to define
an ad hoc kernel working on sequences, and some efforts have
recently been done in this direction, e.g., with the definition of
string kernels [36]; however, in this work, we have chosen to
work with standard kernels. This implies that trajectories must
be represented by fixed-dimension feature vectors, something
we obtained by trajectory subsampling (all the experiments in
this work have been performed by evenly subsampling trajec-
tories into a list of 16 2-D coordinates). Trajectories are also
smoothed with a running-average filter before subsampling in
order to remove the noise. Note that in this case we consider
only spatial features, but other features could also be included,
as long as the resulting feature vector has a fixed size. As an ex-
ample, one of the last experimental results in Section V includes
temporal information.

Regarding the choice of an appropriate kernel, it has been
proven that all the traditionally used kernels (Gaussian, polyno-
mial, and sigmoidal) have very similar performances given that
the proper parameters are chosen [34]. Because we are working
with spatial features, the Gaussian kernel seems a natural and
intuitive choice, since it explicitly takes under consideration the
Euclidean distance between feature vectors

NP
k(x1,22) = exp <—M) )

902 (CEl,fL‘z)EXXX.
The choice of o heavily influences the final result because it rep-
resents the “scale factor” at which the data should be clustered.
However, the scale factor is more related to the type of data (e.g.,
vehicle trajectories in a specific road, etc.) rather than on specific
instances of data sets: o could be estimated only once for each
given scenario, without the need of reestimation when new data
sets from the same scenario need to be processed. The choice
of the SVM parameter v is more critical, because it depends on
the specific data set and thus cannot be estimated a priori. In
Section IV, we propose a method to avoid an explicit choice of
v by automatically identifying the outliers in the training data.

A. Preliminary Tests

We will now present some preliminary experimental results
on trajectory clustering with SVMs. The first test is based on
labeled data sets, where training trajectories are grouped in
several known clusters. Multiclass SVMs are trained using
some training sets, and their generalization capabilities are
evaluated on the corresponding test sets. Being a supervised
learning problem, this classification approach cannot be di-
rectly applied to anomaly detection, and it has mainly been
performed to confirm the validity of the choices described in
the this section about trajectory representation and choice of
kernel. If the test succeeds in separating different trajectories
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TABLE 1
EXPERIMENTAL RESULTS WITH SUPERVISED SVM CLASSIFICATION

| # clust. || Classification errors |

2 || 0/10000  (0%)

3 || 0/15000 (0%)

4 || 0/20000 (0%)

5 || 025000  (0%)

6 || 1/30000  (0.02%)

7 || 035000  (0%)

8 || 1740000  (0.02%)

9 || 2/45000  (0.04%)
10 || 0/50000 (0%)

in different clusters, this implies that linear separability of the
data in the feature space H is possible. This is not obvious,
because H depends both on the initial feature space and on the
kernel used; a success in this test does not imply good results
in the final proposed method, but a failure would be a strong
indicator that the choices described in the previous section
could not lead to good results, whatever SVM technique is
used. Tests have been done with increasing number of classes,
ranging from a minimum of 2 to a maximum of 10. For each
case, 50 different training and test sets have been randomly
generated, each one with 100 trajectories in each class, for a
total of 900 data sets. Each training set has been used for the
training phase of a multiclass SVM with a Gaussian kernel
(o = 0.5), whose performances have been measured on the
corresponding test set. Results are shown in Table I, reporting
the total number of misclassifications in each run of 50 tests.
The good results (with a worst case of 0.04% of classification
errors) confirm that the combination of a Gaussian kernel with
subsampling-based spatial trajectory representation can be a
good choice for trajectory analysis with SVMs.

We will now give some results on unsupervised clustering
with single-class SVMs. Unlike in the previous experiment, this
time no clustering labels will be available. The SVM will be
used to identify the region in the feature space containing all
the trajectories in the training sets, and then it will be used
to evaluate if anomalous trajectories in the test sets fall out-
side this region. Because the tuning of the parameter v, strictly
correlated to the number of outliers, will be discussed only in
Section IV, here it will be assumed that no outliers are present
in the training sets. Data sets have been again randomly gen-
erated with increasing numbers of trajectory clusters, ranging
from 1 to 10, each one containing 100 trajectories and repre-
senting the normal data; each test set also contains ten anoma-
lous trajectories. The results are given in Table II in terms of
true positives (correctly detected anomalous trajectories) and
false positives (normal trajectories misdetected as anomalies).
The number of false positives is stable in all the tests, while
the true positives slowly decrease with the increasing number of
clusters, because it becomes more and more difficult to detect
a potentially anomalous trajectory among many different types
of normal ones. In any case, detections results seem promising,
especially with few clusters in the scene.

IV. OUTLIER DETECTION

The major problem in trajectory clustering with single-class
SVMs lies in the choice of the parameter v. This parameter is
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TABLE II
EXPERIMENTAL RESULTS WITH UNSUPERVISED SVM CLUSTERING

# clust. Classification results
True positives | False positives
1 || 498/500 (99.6%) | 0/5000 (0%)
2 || 480/500 (96.0%) | 0/10000 (0%)
3 [| 467/500 (93.4%) | 1/15000 (0.006%)
4 || 474/500 (94.8%) | 0/20000 (0%)
5 [| 456/500 (91.2%) | 2/25000 (0.008%)
6 || 452/500 (90.4%) | 3/30000 (0.01%)
7 || 446/500 (89.2%) | 3/35000  (0.008%)
8 || 443/500 (88.6%) | 3/40000 (0.007%)
9 |[| 428/500 (85.6%) | 4/45000  (0.008%)
10 || 437/500 (87.4%) | 4/50000 (0.008%)

directly linked to the number of outliers in the training data, be-
cause it is an upper bound for the fraction of outliers and a lower
bound for the fraction of support vectors. For example, if it is
known that 10% of the training data will be outliers, this would
imply that v must necessarily be greater than 0.1. However, in
practical trajectory clustering applications, there generally is no
prior knowledge on the amount of outliers, and thus no bounds
can be given.

Because an arbitrary choice of v would lead to suboptimal
results, this parameter should be properly estimated. There is
some literature on the estimation of SVM parameters [37], but
these works are generally based on cross validation or similar
techniques that search the parameter space for a configuration
that minimizes the generalization error. This approach can be
used in supervised learning problems, where labeled training
data are available for validation, but cannot be directly applied
to unsupervised, single-class clustering techniques. In this sec-
tion, we describe an approach to single-class SVM tuning not
relying on labeled data; note that labeled data will actually be
used for performance evaluation, but they are not involved in
the algorithm itself. The proposed method will entirely avoid
the problem of estimating a proper value for v by automatically
detecting outliers before applying SVM clustering techniques.

In a preliminary work, we already proposed a technique for
optimal v estimation [31], but it is affected by strong compu-
tational requirements because, for each classification problem,
n SVMs must be trained, with n proportionally increasing with
the required precision of the system. In this paper, we propose an
alternative and more efficient approach requiring only a single
SVM training by avoiding an explicit computation of v. The
main idea is that the outliers are by definition few in number and
with an underlying distribution different from the normal data.
We thus hypothesize that outliers can be detected by observing
the shrink of the hypervolume enclosing all the normal data as
we change the training conditions, for example, by varying the
value of v ranging from O to 1 (as we did in our previous work)
or directly by removing from the training set the support vec-
tors defining the boundaries of the classification function (the
approach used in this paper). More precisely, given a support
region initially forced to include all the data, its hypervolume in
the feature space would shrink rapidly when removing real out-
liers, while it would shrink slowly when removing normal data,
as shown in the 2-D toy example of Fig. 2. The detection of the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 11, NOVEMBER 2008

0.8

0.6

0.4F

0.2

:8.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8

Fig. 2. Support regions found by training a single-class SVM with different
values of v. The largest region is obtained with » = 10~7; the regions shrink
as v approaches to 1.

B (x,, \p o
0 [

0 |

Fig. 3. Training data lie on the surface of an hypersphere in 7 when using
normalized kernels. The classification hyperplane intersect the hypersphere thus
defining an hyperspherical cap containing the majority of the data, while outliers
(e.g., the element <I>(1:out)) lie outside the cap.

point of change in shrinking speed can thus lead to an optimal
support region discarding only real outliers. The support region
volume, however, cannot be easily computed in the data space
X, and thus we are forced to perform the computations in the
feature space H. Recall that H could be extremely complex or
even unknown, but there is an easy way to compute dot products
in H by means of kernels.

From now on, we will suppose to work with a normalized
kernel; this is a kernel k such that k(x,x) = 1,2 € X. Note
that the Gaussian kernel chosen in the previous section is always
normalized, because

|z — |
202

kGaussian(x7x) = €exp <_ ) = EXP(O) =1

Moreover, any other kernel £'(z1,22) = ®(z1) - ®(x2) has a
normalized version k defined as

(ZT1,22) = O(z1) . (w2)

A2 =g et

_ P(z1) - P(x2)
V(1) - ®(21)\/®(2) - ®(2)

k"(:vh :Ez)

- \/k‘/(xl,xl)\/k/(l‘z,l‘z) '
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Fig. 4. Comparative results for trajectory clustering with increasing amounts of outliers in the training set. (a) True positives (correctly detected outliers), and
(b) false positives (normal trajectories misclassified as outliers) with standard single-class SVM, v = 0.2 and with the proposed method.

The use of a normalized kernel influences the distribution of the
data projected in H, because

19(@)? = ®(x) - B(x) = k(x,x) =1,  x€X
and thus all the feature vectors in H lie on the surface of an
hypersphere with unitary radius, and the decision hyperplane
cuts the hypersphere so that all the nonoutlier data lie on the
resulting hyperspherical cap (Fig. 3). With normalized kernels
it is easy to compute the angle 6 between two feature vectors
®(z1), P(x2),z; € X lying on the hypersphere, because

D(x1) - D(x2) = [|@(x1)||[|®(x2)]| cos(8) = cos(6)
8 = arccos(®(x1) - P(x2))

arccos(k(x1,X2))

Y

(as a side note, observe that, if k(x1,22) > 0 such as in the
case of the Gaussian kernel, then cos(#) > 0 for any ®(z1) and
®(x4), and thus all the data lie in the same orthant).

Let us now consider the center ¢ of the hyperspherical cap
containing the nonoutlier data. Because vector w is perpendic-
ular to the decision hyperplane [see (1)], the center c is defined
as

Using (11), it is possible to compute the angle between c and a
generic outlier X,,¢ (see Fig. 3), defined as

Oout = arccos(c - P(Xout))

(w . @(xout)>
= arccos | ———— | .
Using (9), this leads to

/) _ (b — gout)
out — arccos | ———— | -
[[wll

Using (8) and (9) and knowing the values «;, obtained as a so-
lution of (7), f,4: can thus be defined as

Z aik(xout7 Xi)

\/Z;%:aiajk(xnxj)

12)

fout = arccos

We now observe that, in the degenerate case of v = 1, the
constraints in (7) lead to the solution «; = 1/n, and thus all
the data are considered outliers and the decision function (10)
reduces to a Parzen window estimate of the underlying distri-
bution. In this case, from (8), it follows that w /||w|| points to
the mean of the feature vectors in H; this can be intuitively seen
in Fig. 2, where the support region converges toward the data
center as v approaches 1.

The proposed outlier detection technique can now be defined.
Given a set of training data, a single-class SVM is ideally trained
using ¥ = 1 (we do not really need to compute the solution, be-
cause we already know it will be o; = 1/n); then, for each
training vector x;, the angle 6; between ®(x;) and the data
center c is calculated using (12). Note that (12) is defined only
for outliers, but in this case, it can be applied to any data vector,
because any vector is by definition an outlier when v = 1. The
considerations made at the beginning of this section on support
region hypervolumes can now be applied to the values of #: we
can assume that the majority of the data will have similar, small
values of 6 because, if the classification works correctly, they
are enclosed in the same hyperspherical cap of the nonoutlier
data, while few elements will have large values of #, being out-
liers falling out of the searched distribution. We identify these
elements by plotting the # values sorted in ascending order (see
Fig. 5): the plot will have a high-curvature “elbow” separating
the normal data, characterized by a slow growth in the values
of 6, from the outliers, characterized by a final quick growth of
the plot. The elbow can be identified by searching for the point
of the plot with the largest distance from a line connecting the
two extrema of the plot itself. The elbow point has an associ-
ated 6,5, angle (see again Fig. 5) that can be used as a threshold
in order to separate normal data from anomalies: outliers in the
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Fig. 5. Anomalous trajectory detection. (a) Training set: 300 normal trajectories are grouped in three main clusters and are perturbed with ten outliers. (b) Test

set: with ten utliers correctly detected. (c) Sorted values of 6.

training set can be detected by finding the elements z; such that
0; > 0.

At this point there is no need to explicitly find a good v value
for outlier removal, because we have already detected which
data should not be considered during the SVM training step. A
single-class SVM can thus be trained with a near-to-zero value
for v on the training data set where the supposed outliers are re-
moved; the small v will enforce the decision function to enclose
all the data previously classified as nonoutliers. The final classi-
fication function will not be influenced by the presence of out-
liers, because they have been explicitly detected and removed
from the training set.

The process can thus be summarized as follows. First, com-
pute the angle 6 for each element in the training data set. Then,
sort the obtained values and remove the outliers automatically
detected by searching for the elbow point in the plot of 4. Fi-
nally, train an hard-margin single-class SVM on the remaining
data. A single SVM training is needed, thus greatly reducing the
computational complexity if compared to our preliminary work
[31]. The overall computational time depends on the time re-
quired for the training of the SVM, which is O(m?), where m
is the number of elements in the training set, if no particular opti-
mizations are used and can be improved up to O(m) with proper
approximation techniques [38]. Computing the ¢ values can be
done in O(m?), while sorting them and finding the bend points
is O(mlogm). Once the training step is completed, checking
a new trajectory involves a standard SVM test, which is a very
fast operation because it is linear in the number ng, of support
vectors, and typically ne, < m.

V. EXPERIMENTAL RESULTS

To test the validity of the proposed approach, experimental
results on both synthetic and real-world data sets are here
given.! Before focusing on automatic outlier discovery, we
want to check if the angle 6, as defined in (12), is a good mea-
sure for outlier detection. To perform this test, we compared
the proposed method with another simple yet very effective
outlier detection technique, based on the concept of discords
[39], [40]: a discord is defined as the trajectory maximizing

IThe data sets used in this section are available at http://avires.dimi.uniud.it/
papers/trclust

its Euclidean distance from the nearest neighbor in the data
space. The discord distance d has the same interpretation of
@ in our work: the higher the value, the more probable it is
for a trajectory to be an outlier. We randomly generated 1000
data sets, each one containing 260 trajectories: 250 trajectories
grouped in five main clusters, plus ten outliers. For each data
set, we computed both 6 and d, and we checked if the outliers
really fall within the ten trajectories with highest 6 or d, respec-
tively. Experimental results show that the performances of the
two approaches are comparable, with a 3.70% error obtained
with the proposed method and 2.96% error using discords.
The use of discords has its main advantages in computational
efficiency (in [39], a linear algorithm for discord discovery
is proposed) and in the lack of tuning parameters, while the
results of our method proved to be dependant on a good choice
of o (o = 0.5 has been used in the previous test). On the other
hand, our method has the advantage of generalization, because
the analysis of previously unseen data drawn from the same
probability distribution of the training data can be done without
training again the system. Moreover, the major advantage
of the proposed method relies in its ability of automatically
detecting the number of outliers, while discord-based methods
as proposed in [39] can only detect the & most anomalous
trajectories, without giving any hint on a good choice of k.

1) Synthetic Data: In the rest of this section, we will test
the automatic outlier detection capabilities of the proposed
approach. To compare the proposed approach with a standard
single-class SVM with fixed v training, 50 experimental cases
were considered by randomly generating training sets with 100
normal trajectories grouped in two clusters, in which anoma-
lous trajectories were added, ranging from 1 to 50 anomalies;
results have been averaged over ten runs for each test case.
For each training set, two SVM were trained, one using the
proposed method and one with v = 0.2. Both SVMs use a
Gaussian kernel with ¢ = 2. Results are shown in Fig. 4 and
are measured in terms of anomalies and normal data correctly
identified in the training sets. Note that no test sets are used
here, because we are not measuring the generalization capa-
bilities of the proposed method, but only its ability to remove
outliers from the training data sets. As it can be seen, the
fixed v approach initially has a large number of false positives
(normal trajectories classified as anomalous) because v = 0.2
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FALSE POSITIVES RESULTS FOR THE PROPOSED METHOD, EXPRESSED IN TERMS OF NORMAL TRAJECTORIES MISCLASSIFIED AS ANOMALIES
OVER THE TOTAL AMOUNT OF NORMAL TRAJECTORIES IN EACH DATA SET. RESULTS HAVE BEEN AVERAGED OVER TEN RUNS

Anomalies Clusters in the training set [
1 2 3 4 5 6 7 8 9 10
1] 310% | 220% | 2.20% | 2.60% | 1.78% | 1.41% | 142% | 1.35% | 1.03% | 1.47%
2 || 1.70% | 2.05% | 1.53% | 2.02% | 1.80% | 1.31% | 125% | 0.90% | 1.24% | 0.87%
3 [[270% | 2.70% | 2.10% | 2.17% | 1.72% | 1.46% | 1.40% | 1.08% | 0.82% | 0.72%
4 1] 230% | 2.00% | 226% | 1.45% | 1.32% | 1.36% | 1.40% | 0.90% | 1.05% | 0.91%
5 330% | 215% | 2.26% | 1.60% | 1.82% | 1.08% | 1.12% | 0.92% | 1.33% | 0.96%
6 || 330% | 2.60% | 2.73% | 1.72% | 1.36% | 1.65% | 147% | 1.22% | 0.83% | 0.68%
71 190% | 2.15% | 1.40% | 1.10% | 1.52% | 1.16% | 1.62% | 1.10% | 0.95% | 0.65%
8 || 1.10% | 290% | 1.76% | 1.92% | 1.42% | 1.51% | 1.32% | 0.97% | 1.08% | 0.95%
9 |[ 270% | 295% | 1.50% | 1.92% | 1.98% | 131% | 1.48% | 1.02% | 0.94% | 1.27%
10 |[ 2.70% | 2.70% | 1.46% | 1.85% | 1.32% | 1.65% | 1.57% | 0.96% | 0.96% | 0.93%
TABLE IV

TRUE POSITIVES RESULTS FOR THE PROPOSED METHOD, EXPRESSED IN TERMS OF ANOMALOUS TRAJECTORIES CORRECTLY CLASSIFIED AS OUTLIERS
OVER THE TOTAL AMOUNT OF ANOMALOUS TRAJECTORIES IN EACH DATA SET. RESULTS HAVE BEEN AVERAGED OVER TEN RUNS

Anomalies Clusters in the training set |
T | 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 1 9 10

1 90.00% 100.00% | 100.00% | 100.00% | 80.00% 100.00% | 90.00% | 70.00% 100.00% | 80.00%
2 100.00% | 100.00% | 100.00% | 95.00% 100.00% | 100.00% | 95.00% | 100.00% | 100.00% | 85.00%
3 || 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 96.66% | 96.66% | 96.66% | 93.33% | 93.33%
4 100.00% | 97.50% 100.00% | 97.50% 92.50% 95.00% | 97.50% | 85.00% 95.00% | 90.00%
5 100.00% 98.00% 98.00% 100.00% | 98.00% 88.00% | 96.00% 92.00% 80.00% 94.00%
6 100.00% 95.00% 98.33% 100.00% | 95.00% 93.33% | 91.66% 90.00% 91.66% 86.66%
7 100.00% | 100.00% | 100.00% | 98.57% 92.85% 92.85% | 94.28% 91.42% 85.71% 84.28%
8 100.00% 97.50% 96.25% 98.75% 98.75% 95.00% | 97.50% 97.50% 95.00% 91.25%
9 98.88% 98.88% 98.88% 97.77% 95.55% 97.77% | 95.55% 96.66% 92.22% 87.77%
10 || 100.00% | 100.00% | 98.00% 98.00% 96.00% 97.00% | 92.00% | 96.00% 92.00% | 86.00%

is an overestimated choice for a small amount of outliers. If 300r

we increase the number of real outliers, we face the opposite 2501

problem, with low true positives rates. On the other hand, the

proposed approach always has a good true positives detection w 2000

rate (more than 90%) with a negligible false positive rate. 2

Previous results show how the proposed method can handle g 150

outliers in the training data better than the naive approach, how- § ool

ever they do not prove that the system has good generalization

performances when classifying previously unseen patterns. We 50k

thus considered 100 different experimental cases, each one with

a different number of groups of 100 normal trajectories (ranging
from 1 to 10) and outliers (from 1 to 10). For each test, ten dif-
ferent training/test sets were created, for a total of 2000 data
sets. Single-class SVMs have been trained using the proposed
method on the training sets and the results were measured on
the test sets (for an example, see Fig. 5). Note that outliers in
the test sets are drawn from the same distribution used for out-
liers in the corresponding training sets, in order to ease the de-
tection of anomalous training patterns being included in the nor-
mality class. Tables III and IV, respectively, show the general-
ization results of the proposed approach in terms of false posi-
tives and true positives. As it can be seen, the true positives de-
tection always gives good results, with an average of 92% of cor-
rect detections. Both true positives and false positives results do
not seem to be noticeably influenced by the increasing number
of outliers, while there is a slight performance degradation in
true positive detection when increasing the number of groups of
normal trajectories.

Because the last experiment did not show any appreciable
variation in the results with low numbers of outliers (from 1 to

150 200 250 300
outliers

0 50 100

Fig. 6. True positives results with high amounts of outliers both in the training
and in the test set and with 300 normal trajectories grouped in three clusters.

10 outliers in each training/test set), another test has been per-
formed to measure the robustness of the proposed method in
presence of large amounts of outliers. We considered the case
of three clusters of normal data, each one containing 100 trajec-
tories, where an increasing number of outliers has been added,
ranging from 1 to 300 (in the last case, the data sets thus contain
50% outliers). Fig. 6 shows the plot of the true positives detected
by the proposed approach; as can be seen, the system has a high
true positives detection rate even in presence of large amounts
of outliers. The maximum number of detected false positives
was 2.

2) Real-World Data: The previously described experimental
results were obtained on synthetic data to ease the evaluation
of the algorithm performances. We now conclude this section
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Fig. 7. Test results on publicly available data sets. The black thick trajectories are outliers. (a) Data set from [41]. (b) Data set from [42].

-1

test set: normal

test set: outlier

Fig. 8. Proposed method applied to real-world data. (a) Top view of an urban road. (b) Normal trajectories. (c) Anomalous trajectories detected in the test set

(bold lines: the U-turn trajectories added to the test set).

with some examples of applications to real-world data, even
though in this case there is no easy way to collect ground truth
information and thus it is not possible to give objective perfor-
mance measurements. We considered the case of an urban road,
monitored by a static color camera [Fig. 8(a)]. The acquired
video data consist in a 51-min-long sequence at 320 x 240
resolution, during which 1430 vehicles were detected by means
of multi-Gaussian background-subtraction techniques as in
[19] and tracked using a combination of Kalman-based and
CamShift trackers. We simulated the presence of two forbidden
U-turns obtained by merging the trajectories of vehicles moving
in opposite directions. Moreover, the trackers are not error-free,
and thus the acquired data are affected by noise, especially in
the form of broken trajectories due to lost objects. The acquired
trajectories have been split in a train and a test set, each one
containing 715 trajectories, and the proposed method has been
applied using 0 = 3. Because the trajectory shapes are quite
simple, we have chosen to subsample each trajectory using
eight points, thus leading to feature vectors composed of 16
elements (the x and y coordinates for each subsampled point).
The results on the test set are shown in Fig. 8(b) and (c). As
can be seen, the system has correctly recognized as anomalies
the two U-turn trajectories (bold lines); moreover, the broken
trajectories generated by errors in the tracking system are
marked as anomalies as well, because they significantly differ
in shape from the normal data.

To test the system on other publicly available data sets, we
also applied the proposed outlier detection algorithm to the tra-
jectory data sets used in [41] and [42]. The data set from [41]
consists in 160 trajectories of moving persons acquired in an in-
door environment. The 152 trajectories are grouped in four main
clusters, and the remaining eight are outliers. Fig. 7(a) shows
the results obtained by our system: all the eight anomalous tra-
jectories have been correctly detected, although also two false
positives are present. The data set used in [42] is made up of tra-
jectories extracted from infrared surveillance videos. Fig. 7(b)
shows how the 237 normal trajectories and the two outliers are
all correctly classified. To compare results under the same con-
ditions of [42], time has also been included in the feature vector
describing each trajectory.

VI. CONCLUSION

In this paper, we proposed a technique for anomalous event
detection by means of trajectory analysis. The trajectories are
subsampled to a fixed-dimension vector representation and clus-
tered with a single-class SVM. The presence of outliers in the
training data has led us to a novel technique for automatic de-
tection of the outliers based on geometric considerations in the
SVM feature space. The experimental results have proven the
validity of the proposed approach.
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