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Abstract

A real-time active system able to monitor wide areas by processing video sequences
acquired by a pant tilt and zoom (PTZ) camera is presented. The system is able to
compensate background changes due to camera motion, to detect and to maintain
the gaze on objects moving in the scene. To fit the real-time constraint two speed-
ups, representing the novelty of the proposed work, have been introduced. The first
speed-up consists in the adoption of a simple yet efficient transformation model for
image alignment computed by using a well known feature tracking method. The
robustness of such a task has been improved by developing a new feature clustering
method to reject badly tracked features. The second improvement relies on the
introduction of a reference map, containing well trackable features, that is used
to select features in a fast and reliable way. The map is maintained and updated
continuously by introducing new features related to new regions appeared in the
current frame. Hence, to detect moving objects, the previous and current frame,
after compensation, are processed by a change detection method. Finally, a standard
Kalman filter is applied to track objects and to determine the pan and tilt angles
that the camera has to perform in order to maintain the gaze on the target.

1 Introduction

Detection and tracking of moving objects are important tasks for computer
vision especially for visual-based surveillance systems [1–6]. The applications
of video-surveillance have an high range of purposes, from traffic monitoring
[7,8] (invece di [9]) to human activity [10] and behaviour [11] understanding .
Video surveillance applications, mostly, imply to pay attention to wide areas,
hence different kinds of cameras are generally used, e.g, fixed cameras [3,
5], omnidirectional cameras [12, 13] or mobile cameras [4, 14–17]; here, PTZ
cameras are considered.
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Motion segmentation is generally considered a difficult task if image sequences
are acquired by a moving camera [15–17], [18]. As matter of fact, when com-
paring two consecutive frames of a sequence, differences in pixel intensities
occur in the whole image, since the movement of the camera causes an ap-
parent (induced) motion of static objects. In the following, such set of static
objects in the scene will be indicated with the term background.
The literature proposes several methods for segmenting the motion in active
camera sequences. Mainly, these methods are based on temporal image differ-
encing techniques that can be classified in two major groups [19]: a) frame to
background [20–22] and b) frame-by-frame [15], [17]. The former consists in
building and maintaining a background image of the whole monitored scene.
Camera position is estimated and the appropriate subsection of the whole
background is used as reference for image differencing. Instead, techniques be-
longing to the latter group compute the image differences between two time
related images. These, can be consecutive frames or frames acquired at partic-
ular time instants. Hence, since the compensation of the apparent motion with
the alignment of all the pixels belonging to static objects is mandatory, reg-
istration techniques have to be considered. A survey of such methods [23] ex-
plains how particular transforms (translational, affine, perspective, etc.) have
to be computed for registering images.
Murray and Basu [15], in order to correspond pixels of the current image to
those in the previous, compute the background motion by reading at each time
instant the camera pan and tilt angles. Such readings are then used to com-
pute the transform. This technique just allows rotation of the camera about
the lens centre and shows problems in synchronization between image acqui-
sition and angles readings.
Irani and Anandan [17] address the problem of moving object detection in
multi-planar scenes by using a direct method which estimates a ”dominant”
8-parameters of an affine transformation. The solution is achieved by solving
a linear system that sometimes can be very large requiring a high compu-
tational cost. Araki et al. [18], proposes to estimate the background motion
by using a set of features. This is obtained by tracking some feature points
on the background and estimating the parameters of an affine transformation
between the previous and the current frame. In such a method, since feature
tracking is not reliable, principally due to noise, occlusions and also to track-
ing errors, an iterative process (LSMedS) is executed on the entire set of
tracked features. The resulting optimal features are therefore used to compute
an affine transform. Although effective, the proposed method requires a rele-
vant number of DSPs thus avoiding its employment for real-time application
on low-cost platforms. Therefore, to reduce the number of features processed
by the LSMedS algorithm, feature rejection or outlier detection rules could
be used. In [24], Shi and Tomasi adopt a priori defined threshold to reject
features whose residual 1 is too high. In [25], Tommasini et al. use a statistical

1 The residual is defined as the absolute difference between the current and the
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rule to identify and to reject the outliers (i.e. badly tracked features). Even
though more reliable then Shi and Tomasi technique, also Tommasini et al.
require a large number of feature (about 100) to track. Obviously, such a re-
quirement limits the performance of the system.
Recently, Sugaya and Kanatani proposed a technique to remove outliers [26] to
extract moving objects from a moving camera sequence [27]. The performance
of such algorithm, based on subspace separation, does not allow a real-time out-
lier detection. Indeed, just considering the outlier detection task the system
performance shows an upper bound of 4fps. Lately, Guo et al. [28] proposed a
linear combination representation for outlier detection. The proposed scheme
works on 4 frames by estimating 4 parameters for each of them. As for the
other outliers detectors the number of required features is too big for a real-
time application.
In this paper, we propose a motion segmentation method for video sequences
acquired by a PTZ camera rotating on the lenses centre. The main character-
istics of the proposed solution are the low computational requirements, hence
a fast method, and the reliability of both image alignment and detection of
moving objects techniques. To achieve these results, a feature based method
has been developed to compute the background transformation needed by a
frame-by-frame change detection algorithm. Moreover, conjecturing on a real-
time processing allowed us to model the induced motion with a translational
transform [29]. In addition, if compared to more complex models, the relia-
bility of the image alignment is not affected. Thanks to such scheme a lower
number of features can be considered hence reducing the computational ef-
fort. Moireover, the coarser alignment model allowed to develop an innovative
method that based on a Map of features is capable of a the fast feature se-
lection. The Map is studied to maintain track of good features through the
camera motion.
Moreover,a further reduction has been obtained by employing a new feature
rejection rule, based on a feature clustering technique [30]. Such a technique
allows a reliable execution of the entire method on a very low number of fea-
tures (in the range 10 ÷ 20). The obtained results show how the proposed
method is as robust as those proposed by Irani [17] and Araki [18] but faster
thanks to lower computational requirements.
The system is completed by an object tracker that based on a Kalman Filter
maintains the gaze on the target. The position of the tracked object at next
time instant is estimated. Therefore, on the basis of a pin-hole model, the PTZ
camera is driven to centre the target in the image centre.
Results will show how, thanks to the map, a fast and reliable feature extrac-
tion is performed for feature tracking and how the proposed alignment method
can work with a lower number of features than those required by the princi-
pal methods developed so far. We will highlight how both techniques allow to
speed up the image registration process yielding to a robust real-time object

previous feature
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detection.

1.1 Notation

Before proceeding with the description of the proposed method, let us intro-
duce some notation used hereafter. Let I(i) be the image at time instant i,
f i(x) be a W × W feature (i.e. a corner) in I(i) centred at pixel position
x = (x, y) and G : I × X × Y → {true, false} be the function that classifies
the feature centred in x as good or bad trackable feature. Such a function
has been written according to the heuristic introduced by Shi, Tomasi and
Kanade [24,31] which requires the following steps:

• Given the feature f i(x), compute the matrix

Mi(x) =
∑

f i(x)







I(i)2
x I(i)xI(i)y

I(i)xI(i)y I(i)2
y







where I(i)x = I(i)
∂x

and I(i)y = I(i)
∂y

represent the two spatial partial deriva-
tives.

• Compute the two eigenvalues λi
1(x) and λi

2(x) of the matrix Mi(x)
• Label f i(x) as a good trackable feature if, given a threshold λth, the following

holds:

min(λi
1(x), λi

2(x)) > λth (1)

Then, G is defined as follows:

G(I(i),x) =











true if min(λi
1(x), λi

2(x)) > λth

false otherwise
(2)

Notice how the goodness of the extracted features depends on the value λth.
In fact, if it was too low we would have the extraction of a large number of
features, while if it was to high we could prevent the extraction of any feature.
Therefore, we first normalize the eigenvalues in the range [0, 255] then an
adaptive thresolding technique [32] is applied.
The function G is therefore applied on the whole image to detect good features
to track and to build a Trackable Feature Set (TFSi) given by the best m
features, e.g. those with highest eigenvalues.
Let T : {f i(x1), f

i(x2), . . . , f
i(xm)} → {d1,d2, . . . ,dm} be the function that

estimates the local displacement of each feature belonging to a set of features.
It is defined as follows:

dj =
[

Mi
]−1

(xj)ξ (3)
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where [Mi]
−1

(xj) is the inverse of the 2×2 matrix used to compute the eigen-
values and ξ is the feature residual [31]. Then, the function T corresponds
features belonging to the TFSi from previous to current frame. The new po-
sition of a feature f i+1(x′

j) is given by x′
j = xj + dj.

Since extracting good feature from scratch for each time instant is very ex-
pensive we maintain track of the positions of good trackable features in a
map of features. In order to achieve this result, the map MAPi : X × Y →
{true, false} is defined as follows:

MAPi(x) =











1 if G(I(i),x) = true

0 otherwise
(4)

1.2 Outline

The structure of the remainder is as follows: In Section 2, we present a brief
description of the proposed method by highlighting the computation flow
through the developed modules. In Section 3, the new developed method to
achieve a fast feature selection is presented in terms of a Map that is up-
dated at each time instant. In particular, we describe a method for detecting
good trackable features for background motion estimation. In Section 4, we
describe the motion segmentation module for detecting moving objects inside
the monitored scene. Finally, in Section 5 results are presented in context
of a video surveillance application to highlight the efficiency of the proposed
method compared with other ones.

2 Method Description

The proposed method has been studied to give a solution to the problem of
detecting moving objects inside an area monitored with a PTZ camera. A
feature based method has been considered to estimate the background motion
for images alignment purposes. Features must be first selected on static objects
then tracked over two consecutive frames. Their displacements are finally used
to compute a transform that best aligns the considered frames. The main
problems of these methods concern on the execution of the feature selection
and the transform computation tasks. Therefore, the proposed solution can be
analysed by considering the two major tasks involved: Fast Feature Selection
(FFS) and Motion Segmentation (Fig. 1).

The FFS task has been studied to select in a fast and reliable way good track-
able features belonging to static objects. Here, the main technical issue is
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Fig. 1. General logical architecture of the proposed method

represented by the introduction of the concept of Map of Features. The MAP
is used to maintain track of the position of good trackable features through the
camera motion. This allows the selection of features just by checking inside
the MAP.
At the initialization step, a first Map (MAP0) is built by executing the func-
tion G for each pixel of image I(0). The feature selection module checks
whether at the position x there is a good trackable feature (MAPi(x) = 1)
or not (MAPi(x) = 0). Good features are finally selected and inserted into
the current TFSi.
Once the background motion estimation has been completed, the position of
good features must be update. In addition, possible new features must be
considered inside new background sections introduced by the movement of
the camera. The MAP updating module takes into account all these issues by
updating the good features’ position and by extracting good features within
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new areas.

The Lucas-Kanade-Tomasi tracker T [31,33] implemented in OpenCV library
[34], is applied on the TFSi generated during the last feature selection phase.
The output (a set of the local displacements di

j for each feature f i
j ∈ TFSi)

is used to segment the real motion in the current frame. Then, the motion
segmentation first computes the background motion estimation then warps
the current image on the basis of the computed transform.
Background motion estimation, at time instant i, takes as input the set Di =
T (TFSi) and uses a feature clustering property to estimate a vector di. This
vector, under the assumptions of a translational model, represents the motion
of the background and therefore the transformation for the image alignment.
Therefore, the background compensation applies the computed transform on
the current image yielding to a translated image I ′(x, i) whose static pixels
are aligned with the static pixels in the previous image.
Once having registered the current image, a change detection technique [35] is
applied on the I ′(x, i) and I(x, i−1) in order to detect the Moving pixels (i.e.
pixels whose intensity substantially changed between the two frames). Such
pixels are then used as seeds in a region growing process [36] which determines
moving regions and therefore the blobs corresponding to the moving objects.
Once a blob is selected for tracking, a technique based on a Kalman Filter
[37,38] is applied to maintain the detected object in the centre of the camera
frame.

To close the loop for the next iteration, a feature rejection module has been
developed to overcome the errors of the feature tracking step. Bad tracked
features are removed from both TFSi and MAP i. First,those features f i

j ∈
TFSi whose local displacement di

j is different from the estimated background
displacement di are deleted. Then, MAP i is updated in such a way that
MAP i+1(xf i

j
) = 0 if f i

j is a bad tracked feature.

3 Fast Feature Selection

The fast feature selection is composed by two modules for the current MAP
computation and by a module for the selection of a set of good trackable fea-
tures. The current MAP i can be indeed obtained in two different ways: a) by
building it from scratch or b) by updating it by considering important infor-
mation delivered by the motion segmentation task.
At the initialization of the system, MAP 0 is built from scratch by computing
the function G over the entire image. In the proposed version, the function G
is based on the quality criterion proposed by Tomasi et al. [31], but any other
quality criterion for feature extraction (i.e. the one proposed by Schmid [39])
can be here employed. In Fig. 2, the map computed on a real image is shown.
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(a) (b)

Fig. 2. Map representation (a) of a real image (b)

The MAP updating process is based on a simple observation: as the back-
ground translates so the good trackable features do. So, as well as tracked fea-
tures are used to estimate the displacement vector di between the current and
the previous frame, the MAP i could be translated by the displacement vector
di. The new MAP i+1(x) will be used in the next feature selection process.
During this operation, features belonging to regions no longer present in the
current frame I(i) are rejected from the new map. Nonetheless, as the camera
moves, new regions are introduced into the image hence requiring particular
attention from the updating process. It executes the extraction function G
only over the new areas.
Then, the updating process (see Fig.3) for the computation of the MAP i+1

from the current MAP i can be summarized as follows:

MAP i+1(x) = MAP i(x + di)
for each x ∈ new regions of I(i) do

MAP i+1(x) = G′(I(i),x) =











1 if G(I(i),x) == true

0 otherwise

end for

Since the iteration depends on the displacement vector di, we shorten the
expression to the form:

MAP i+1(x) = MAP i(x + di) + G′ i(di) (5)

where G′ i(di) represents the set of good features extracted from the regions
appeared in the current frame.

This method allows to save a lot of computational time elsewhere spent in
feature optimality calculation on the whole frame. Here, only few regions of
features, related to the camera motion, are analysed by the function G. Hence,
let O(W 2) be the complexity of the extraction function G then the proposed
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Fig. 3. Map updating process

method has the following complexity:

O((di
x × N + di

y × M)W 2 + N × M) (6)

where di = (di
x, d

i
y) and the image size is N × M . This represents a great

improvement if compared to the extraction of all the features from scratch
O(N × M × W 2). This improvement is highlighted by the time performance
evaluation, where the proposed method works about 100 times faster (0, 01s
vs. 1s on a 1.2GHz PC).
In addition, to satisfy real-time constraints, without using specialized hard-
ware like DSP [18], we have to work with few features. Then, these must
be selected carefully for they inclusion into the TFSi. In particular, it could
happen that all features belonging to the TFSi are located on a small region
(i.e., TFSi consists of few neighbourhood points). In such a case it could be
possible that the whole TFSi is wrongly tracked due to noise or occlusions.
To avoid this problem, only appropriate features should be selected from the
MAP i. This selection is performed in two steps. In the first step, a feature fj

is extracted from the MAP i; in the second one, all neighbourhood features of

9



Fig. 4. Feature selection inhibition. The second feature is selected outside of the
inhibition circle imposed by the first feature selection.

fj are inhibited at the next selection. Neighbourhood inhibition is an impor-
tant task in feature selection and an example of this process is shown in Fig.4.
The neighbourhood of a feature fj consists in a circle with centre on fj and

radius equal to a prefixed threshold Rth which depends on the complexity of
the scene. Textured background objects allow to extract a large number of
well trackable features, so an higher Rth value could be considered. On the
other hand, a smaller Rth value is required for scenes with homogeneous back-
ground containing few static objects. Experimental tests have demonstrated
that the 20 for the Rth parameter is a good trade-off for sequences acquired in
outdoor environments. The selection process must be repeated for a number
of times enough to select the desired number of features. On each iteration,
the Rth value is decreased of an amount ∆Rth

defined experimentally (i.e. in
our application ∆Rth

= 5). This selection mode allows to track good features
spread on different areas of the image.

4 Motion Segmentation

The Background Motion Estimation module, thanks to data computed by
the feature tracking algorithm, estimates the induced motion occurred on the
image plane. Such an estimation will be used by two more modules: a) Back-
ground Compensation that compensates the motion of static objects occurred
between two consecutive frames and b) Change Detection which first performs
the image differencing then thresholds the result to highlight only the moving
objects inside the monitored scene.
Once the TFSi is built, the feature tracking algorithm T is applied on it.
The output, T (TFSi) is a correspondence relation among selected features in
the current frame I(i) and in the previous I(i− 1). It often occurs that some
features are not well tracked due to noise, occlusions, etc. In order to face this
problem it is necessary to distinguish features tracked well from the others
(outliers). By analysing the behaviour of tracked features it has been possible
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to deduce the following feature clustering proposition [30]:

Features belonging to objects with different velocities, if correctly

tracked, group themselves in clusters on the basis of their local

displacement.

This proposition allows us to define

C(di
c) =

{

fj ∈ TFS|di
j = di

c

}

(7)

as the cluster of the features whose displacement is equal to the vector di
c.

Here, the distance between the features or other geometrical aspects are not
considered for the cluster association. Let C = {C(di

c)} be the set of all
clusters generated by the tracking algorithm; for each of them it is defined
a reliability factor RF as indicator of the reliability of its displacement with
regards to the background motion. Let RF be defined as follows:

RF (C(di
c)) =

∑

f i
j
∈C(di

c)
Ef i

j

|C(di
c)|

2
(8)

where Ef i
j

=

√

∑

x∈f i
j

[

f i
j(x + dj) − f i−1

j (x)
]2

is the residual of the feature

between its position in the previous and current frame and the | · | operator
returns the cardinality of a set. Then, according to the definition of the RF
factor and to the definition of the displacement clustering, the displacement
vector di is determined as follows:

di = di
l| RF (C(di

l)) = min
k=1...|C|

{RF (C(di
k))| C(di

k) ∈ C} (9)

where C(di
l) is the cluster selected to represent the background displacement.

After warping the current image by the computed displacement vector and
having computed the difference with the reference frame a thresolding phase
follows. For such a step, we considered the technique proposed by Rosin [35]
which is an adaptive thresholding method computed on the current image.
Besides this, the frame by frame technique results in a coarse identification
of the moving objects especially if their speed is slow, as shown by Collins et
al. [40]. To sidestep this problem, we have adopted a strategy that adaptively
selects previous frames on the basis of the speed of the object of interest and
therefore of the camera motion. Precisely, the rotation speed of the camera is
determined as consequence of the object’s speed on the image plane. Therefore,
if the target appearance, in the current detection, is not meaningful we select
an older frame as reference frame. This selection is done iteratively until the
detection is enough accurate or the displacement between the two selected
images is grater than 2×W . In the latter case, we suppose that the object is
became static and it is still in its previous position. Here, it is important to
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notice that we do not need to compute again the displacement between the
current and the selected reference frames, but we apply iteratively the already
computed displacement between all consecutive frames as follows:

drf =
i

∑

j=rf+1

dj (10)

where rf is the index of the reference frame and dj is the computed displace-
ment between time instants j and j − 1.

5 Experimental Results

The proposed method has been tested on sequences acquired in an outdoor
environment represented by a parking area around the university building.
Several sequences have been acquired by changing the pan and/or the tilt
and the zoom parameters of the camera. The tests have been performed to
evaluate first the proposed method for what concerns the feature extraction
and selection then to evaluate the motion segmentation for the moving object
detection. Different types of sequences grouped into two different scenarios
have been acquired.

The first scenario consists on sequences where no moving objects are present
hence ideal to evaluate the feature extraction and image alignment modules
of the system. Precisely, we applied multiple rotations to the PTZ camera in
order to evaluate the correctness of the background displacement estimation
performed by the proposed method. This is the simplest scenario since no fea-
ture occlusions occur (e.g., caused by moving objects). In addition, sequences
belonging to a scenario with one or more moving objects have been considered
to test the motion segmentation and evaluate the overall performance of the
proposed system. Since no higher level modules were provided, the selection
of the target to track was demanded to a human operator.
The sequences adopted in the testing phase have been acquired in 45 days con-
sidering different weather conditions (sunny, cloudy and rainy day). In Fig. 5,
some frames of the used sequences are shown. The images represent how the
proposed method identifies and tracks the features.

5.1 System Setup

The sequences used for experiments are acquired by a Cohu 3812 CCD camera
mounted on a Robosoft Pan-Tilt Unit (PTU 46-17.5) and are characterized
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Fig. 5. Three different conditions considered for the first scenario are here presented:
a) cloudy day with low 1× zoom level (top row), b) sunny day with 4× zoom level
and c) heavy rainy day with 1× zoom level. The forth row shows the feature’s map
state related to the frames in the third row. Finally, some frames from a typical
sequence in which there are moving objects in the scene is presented in the fifth
row.

by images of 384x288 pixels. The tests have been performed on a platform
composed by an Athlon 1.2GHz processor, 512MByte of RAM and a Matrox
Meteor II frame grabber. In addition, for the motion detection subsystem, the
method proposed by Tomasi and Kanade [31] has been selected as function
G and the method proposed by Shi and Tomasi [24], based on [33], has been
selected as function T . Such technique have been executed on feature with
dimension W = 11.
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Fig. 6
The graph plots the average number of fea-
tures miss-classified (light grey) during the
30 minutes of the 10 test sequences. In ad-
dition the average number of missed (grey)
and false features (black) are plotted as
well.

Bad Features

|TFS| µ %

10 0.32 3.2

20 0.88 4.4

30 1.38 4.6

40 1.97 4.9

50 2.71 5.4

60 3.42 5.7

70 4.34 6.2

80 5.36 6.7

100 7.28 7.3

Table 1
The average number of bad features
selected and inserted in the TFS and
the percentage of these features with
regards of the cardinality of the TFS
are shown.

5.2 Fast Feature Selection

In the first scenario context, we ran the proposed algorithm on 10 sequences of
about 30 minutes each (10*30min*60sec/min*25fps=450000 frames) of foot-
age and obtained by rotating back and forth the pan-tilt unit in a range of
120◦ and at the speed of 8◦/sec. We have therefore evaluated the performance
of the system by considering its different aspects. First of all, we verified the
reliability then the efficiency of the fast feature selection module.

Reliability
To measure the reliability we have computed for each frame the differences
between the Map and the image of the features extracted from scratch on that
particular frame. In Fig. 6, a graphical representation shows how the proposed
updating method allows to have a small error in the extraction of the features.
Precisely, the average number of wrongly classified features (missed and false)
is 185 with standard deviation σ = 8.69 over 3923 of good features, hence
representing the 4.71%. Of this amount, 137 (74%) with σ = 10.56 are bad
features (false) in the map and 48 (26%) with σ = 5.81 are the good trackable
feature not available (missed) in the map. It is interesting to notice how these
values are not affected by the time which means that the proposed feature
extraction method is stable in time.
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Proposed Tomasi and Kanade

Levels 1 2 3 1 2 3

Time 0.011s 0.015s 0.017s 0.891s 0.208s 0.078s

Missed 1.22% 1.98% 2.89% 0% 1.08% 2.22%

False 3.49% 2.48% 2.01% 0% 0% 0%

Table 2
Comparison between proposed Map approach and a multi-resolution version of the
Tomasi and Kanade method [31]. Data have been computed as average on the
sequences for the first scenario.

Moreover, in the Table 1 we can see how the number of bad features selected
is affected by the errors introduced by the map updating process. Such value
goes from the 3.2% when |TFS| = 10 to 7.3% when |TFS| = 100. The in-
creasing trend is mostly due to the fact that a good trackable feature is often
surronded by other good trackable features forming a sort of connected com-
ponent. Besides, even though the selection tries to pick out features in the
centres of such components, the inhibition policy force the selection on the
borders. Those areas are indeed the principal regions subject to the errors
committed by the updating process. This effect can be solved by reducing the
inhibition circle as consequence of the increasing dimension of the TFS.

Efficiency
To measure the efficiency of the proposed method, we compared it with the
feature extraction introduced by Tomasi and Kanade [31]. Precisely, we jux-
taposed the Map method to a multi-resolution approach where good features
detected on lower resolution levels are propagated to higher resolution levels.
As can be seen from Table 2, the proposed method does not gain in speed
with the use of multiple levels but even decrease its performance. This is the
result of the map updating for the different levels. Instead, for what concerns
the performance multi-resolution version of Tomasi and Kanade method, the
more the considered levels the better. However, the proposed method ran on
a single level is still 7 times faster than the Tomasi and Kanade method ran
on three levels (0.011s Vs. 0.078s). Besides, while looking at the reliability
of the two approaches, our method extracts false features and the other does
not, if we look at the missed features the proposed works better (1.22% Vs.
2.22%). Concluding the comparison, the proposed approach is faster than the
one proposed by Tomasi and Kanade, even if boosted with a multi-resolution
approach, and it is as well reliable like shown during the reliability evaluation.
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5.3 Motion Segmentation

To measure the performance of the motion segmentation module we followed
the same strategy adopted in the previous tests. We first evaluated the relia-
bility then the efficiency and the accuracy.

Reliability
For what concerns the reliability of the motion segmentation, multiple metrics
have been selected for this purpose. First, the module of the displacement error
MDD has been considered to give a qualitative measure of the displacement
estimation algorithm. It is given by the difference between the estimated vector
d and the real image displacement rd (i.e., the displacement that minimize
the compensation error thus minimize the percentage of misclassified pixel,
i.e. static pixels classified as moving and vice versa) and it is calculated as
follows:

MDD = ‖d − rd‖2 (11)

In addition, since the motion segmentation is based on a feature clustering
algorithm, to verify its robustness, we used two more metrics: the number of
good features rejected (GFR - missed) as the percentage of features rejected
that would be considered well trackable and (b) the number of bad features
maintained (BFM - false) as percentage of features not rejected that would be
considered not well trackable:

GFR =
|{x|x ∈ TFSi ∧ x /∈ TFSi+1 ∧ G(I(x, i + 1)) = t}|

|{x|x ∈ TFSi ∧ x /∈ TFSi+1}|
(12)

BFM =
|{x|x ∈ TFSi+1 ∧ G(I(x, i + 1)) = f}|

|TFSi+1|
(13)

For each of these parameters, the average µ and the maximum value Max
over sequences have been computed. In particular we first analysed the perfor-
mance on first scenario sequences then on 4 hours (4h∗60min/h∗60ses/min∗
25frame/s = 360000frames) of footage where at least one moving object
were acquired.
Both scenarios have shown a good behaviour of the system. In Table 3, the
values of the considered parameters for the first scenario sequences are shown.
The MDD parameter shows a good estimation of the background displace-
ment. This result is due to the ability of the proposed method to maintain a
good feature set. This is guaranteed by the low number of bad features main-
tained in the TFS. Nonetheless, the average time required to update the MAP
and to select the new features is 0.024s, allowing the system to operate at the
frame rate of about 25 frame/s.
In Table 4, the values of the considered parameters computed on sequences

belonging to the second scenario are shown. The system behaviour is good
also in these conditions demonstrating a great tolerance to the presence of
moving objects in the scene. Indeed, the obtained values are similar to those
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MDD GFR% BFM%

µ 0.181 4.11 1.01

Max 4 33.3 12.5

Table 3
The MDD value shows how reliable our
estimation algorithm is by computing a
displacement vector that has the aver-
age error of only 0.181 pixels. GFR and
BFM highlight how the proposed system
prefers to rejects good features whether
to maintain bad features. Values have
been computed as average on 5 hours
footage of first scenario

MDD GFR% BFM%

µ 0.25 5.32 1.12

Max 7 33.3 22.2

Table 4
Reported values show how the be-
haviour of the system is not affected by
the presence of moving objects in the
scene. Indeed, the values computed as
average on the 4 hours of footage for the
second scenario are similar to those com-
puted for the first as showed in Table 3.

computed for the first scenario. In addition, the frame rate is still equal to 25
frame/s.
The results, obtained from the two scenarios, show how the system performs
a good displacement estimation regardless the presence of moving objects.

Efficiency and accuracy
To give a better evaluation of the system, for what concerns its efficiency, the
proposed alignment technique has been compared with the methods proposed
by Araki [18], Lucas-Kanade-Tomasi (LKT) [31, 33, 34] and by Tommasini et
al. [25]. In particular, the proposed translational alignment has been com-
pared to the affine alignment proposed by Araki, while the methods proposed
by LKT and by Tommasini et. al have been used as feature rejecters. Then,
the resulting features have been considered for the computation of the image
alignment. As shown in Table 5, the average compensation error of the pro-
posed method is minor than the others, while the maximum is really close to
the maximum error performed by the Araki’s algorithm. Hence, we can con-
clude that the alignment accuracy of the proposed solution is as good as the
Araki’s one and really better then those obtained by employing the techniques
proposed by Lucas-Kanade-Tomasi and by Tommasini et al..
The quality evaluation of the proposed method has been performed by testing
each method off-line. Thus, to every algorithm we gave the necessary time to
process the current frame before proceeding to the next. In Fig. 7, for each
method, the processed frames per second and the execution time for each
frame versus the number of used features are plotted. Looking at the com-
putational effort we can say how the proposed method is faster than all the
others. Therefore, we can again conclude that the proposed method is accurate
as the Araki’s one but really faster.

Overall performance
On the 4 hours of ground-truth footage for the second scenario (excerpts of
sample sequences are shown in Fig. 8), we have measured the overall perfor-
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Compensation Error

Mean µ Max

Proposed 12.54 19.44

Araki [18] 15.49 17.32

Tommasini et al. [25] 25.77 49.45

Kanade-Lucas-Tomasi [34] 28.89 63.02

Table 5
The compensation error is given as percentage of the number of pixels miss-classified
by the algorithms over the number of miss-classified pixel by a null transform. It
has been computed as average of 5 hours footage for the first scenario sequences.
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Fig. 7. In figure (a) the performance in frames per second (fps) versus the number
of features for each of the methods used in the comparison is shown. It is interesting
to notice, even from the computational time required by each method plotted in
figure (b), how the proposed method works as fast as the LKT and faster than the
other two. In particular, it is worth noting that only the proposed algorithm is able
to operate with a number of feature lower than 40.

mance of the proposed system. For such purposes, we considered the following
aspects: the accuracy of the detection, its rate as well as the missed detection.
In 4 hours of footage, 2352 objects were acquired and 816 were selected to
be tracked. The average detection rate, as shown in Table 6, is 97.3%. The
acuracy is within 3.2 and 1.4 pixels respecitvely in x and y from the ground-
truth centroid. Such values represent the 4% of the width and the height of
the objects inside the image. Moreover, we like to state that the detection
accuracy is stable regardless the total running time of the system or the age
(i.e. time in the scene) of each object.
It is interesting to see, from the comparison presented in Table 6, how only the
performance of the proposed does not decrease when executed in real-time.
In particular, we have that the method proposed by Araki performs very well
off-line while in the real-time mode its performance worsen to an unaccept-
able level. The same effect can be seen also in the performance of the other
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Off-line Real- Time

Detected False Detected False

Proposed 97.3% 0.8% 97.3% 0.8%

Araki 98.3% 0.7% 1.1% 98.2%

Tommasini 82.4% 3.2% 68.9% 22.3%

Lucas-Kanade-Tomasi 75.8% 3.8% 71.5% 19.7%

Table 6
The table shows the results of the proposed comparison. The values of detection,
computed as number of detected objects over number of total objects on all frames,
and the false detection, computed as percentage of frames in which there is a false
detection, are considered. In particular, such values as been computed by running
the algorithm off-line therefore leaving them all the time needed for each frame and
simulating a real-time acquisition by dropping all the frames occurred in the time
needed for the computation

techniques even if with minor entity. This effect is due to the fact that in real
time, dropping frames, the magnitude of the transform for the alignment be-
comes bigger and the distortions cannot be modelled anymore by the chosen
transform.

5.4 Limits of the system

A critical situation is represented by objects moving on an almost uniform
background (e.g. a wall). In such a context, the system cannot be applied
because no features can be extracted from static objects. This limit is not
so restrictive if the proposed method is adopted in a video surveillance sys-
tem for the monitoring of outdoor environments where, generally, an uniform
background is not common.

Regarding the tracking subsystem, it imposes a limit on the objects speed.
Tests have highlighted that 60Km/h is the upper speed limit to allow the
system to obtain a reliable tracking of objects moving at the distance of about
50 − 100 meters from the camera. Once again, this limit is not to restrictive
since adopting the system for monitoring city roads, the law speed limit is
lower than the speed limit imposed by the system.
Moreover, limits have been identified on complex scenes presenting more than
6 vehicles performing unusual trajectories. In particular, we tested the system
asking to track a car going to stop and occluded by other vehicles making u-
turns, changing direction or proceeding backwards. As result we obtained that
the system continued to track the wrong vehicle. Basically, such a problem can
be solved by exploiting colour and shape information in the tracking process.

19



Fig. 8. Frames of test sequences with different zoom levels. The last three rows are
characterized by a lot of objects that occlude the moving objects. The last row, in
particular, shows a representative frame of a sequence where two vehicles cross their
trajectories.

6 Conclusions

In this paper, we have proposed an active (visual-based) surveillance system
able to compensate background changes due to the camera motion, detect and
track mobile objects in real scenes. The innovations are: (a) estimating in a
robust way the displacement occurring among two consecutive frames and (b)
speeding up the task for the maintenance of a reliable set of features.
Precisely, the proposed method obtains a good displacement estimation as
demonstrated by the low percentage of errors achieved. Moreover, the use of a
map of features for the maintenance of a reliable feature set, allows the system
to operate in real-time thanks to a lower complexity of the extraction process
for new features. Finally, the tracking module allows a continuous tracking of
an object with a moderate speed, also when briefly occluded by other objects.
The results allowed us to adopt the proposed system as part of a video-
surveillance system whose principal task is to monitor a wide area. Future
works will investigate the possibility to extend the system to automatically
change the camera parameters (focus, iris, zoom) and to track mobile objects
by maintaining them at the centre of the image with a constant size, optimal
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focus and luminosity.
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