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Abstract

Video analytics has become a very important topic in computer vision. This work introduces advanced

Video Analytics Human-Computer Interfaces for a Video Surveillance System to ease the tasks of security

operators. The visualization of the most relevant views is provided by the HCI module that pre-emptively

activates cameras that will probably cover the motion of interesting objects. Human-Computer Interaction

principles has been considered to develop the novel User Interface. Four prototypes have been designed and

usability performance has been evaluated exploiting standard methods. Results obtained from such evaluations

show the efficiency of the novel information visualization technique.
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1 INTRODUCTION

Video Surveillance Systems (VSSs) have rapidly progressed in the past 10 years [1]. Even though the

number of cameras installed for surveillance purposes is increasing, it has been shown [2] that large

scale deployments are still not supporting the requests since both low-level and high-level computer

vision tasks are not enough robust yet.

Compared to the great amount of research done for the high level tasks [3], [4], [5], just a few researchers

focused their attention on the usability of video analytics systems. Modern systems [6], [7], [8] still require

operators’ endeavor to monitor the vast amount of acquired data. As a result, the human attention and

• N. Martinel, C. Micheloni, C. Piciarelli and G. L. Foresti are with the Department of Mathematics and Comptuer Science, University of

Udine, 33100, Italy.

E-mail: {niki.martinel, christian.micheloni, claudio.piciarelli, gianluca.foresti}@uniud.it.

Manuscript received February 4, 2012; revised May 15, 2012; revised Jan 12, 2013; accepted May 15, 2013. This work is partially supported

by the Interreg IV Italy-Austria project n. 4697 “SRSNet - Intelligent Audio/Video Sensor Networks”.

May 28, 2013 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 2

capabilities are overpowered. Only in the last few years, the research community has proposed new user

interfaces (UI) to better assist end-users in their monitoring tasks [8], [9], [10]. In particular, the new

proposed methods for wide area analysis [11] highlight relevant areas and guide the user attention only

on critical information while the development of UI for tracking tasks is almost not considered.

In current video analytics systems objects have to be followed through multiple cameras and surveil-

lance operators have to switch between camera views and monitors as well. In many cases, to follow

objects between camera views, video surveillance operators employ a single monitor which generally

have quite small dimensions [12]. Commercial products usually propose VSSs that are equipped with

huge wall screens and/or some remote smaller displays [13]. It is a matter of fact that such solutions

still require a huge mental effort. For these reasons, VSSs must provide effective UIs such that relevant

information are provided in a coherent and useful way.

The development of an effective and powerful information visualization technique is the goal of this

work. The idea is to properly visualize only the most important cameras and information contents to

simplify the operators’ tasks. The main novelty is the dynamic organization, activation and switching of

the UI elements based on the output of video analytics algorithms. Rather than displaying all available

camera views, only most probable streams, i.e. those that will be involved with the objects motion, are

presented. So, to reach the goal, two main challenges should be addressed: i) to distill the volumes of

monitoring information into a human manageable quantity; ii) to present the filtered visual information

to end-users such that they can take appropriate decisions in a limited amount of time.

The first challenge is addressed by the Video Analytics Module (VAM) using an approach similar to [14].

The hand-off between different camera views is used to track a single object among different fields-of-

view (FoV) that are geographically adjacent. The proposed camera planning algorithm uses geographical

clues and exploits the predicted trajectories to build an accurate camera activation plan. The camera

activation plan together with the tracking data is used to provide only the most valuable data to the

novel information visualization technique.

The Human-Computer Interface (HCI) addresses the second challenge. The new visualization algorithm

exploits the VAM activation plan and tracking data to arrange UI elements accordingly to visual semantic

information. In particular, camera views are arranged such that the operators have to focus only on

relevant information. The proposed system uses the overview plus detail representation technique [15] to

better display geographical clues.

The rest of the paper is organized as follows. A description of the system is given in section 3.

Section 4 introduces the trajectory clustering algorithm and cluster trees. Details about the three main

HCI components are given in section 5. Experimental results are shown in section 6. Finally, conclusions

and future works are discussed in section 7.
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2 RELATED WORK

The computer vision and video surveillance community have mainly focused on algorithms to extract

valuable information from footages. Despite most of these algorithms are efficient and have high per-

formance, the human part is still involved in the process of monitoring video streams from multiple

cameras.

As pointed out in [12], the human ability to understand and interact with a large amount of data could

be increased through visual analytic tools. A perceptual user interface that allows users interaction by

means of gestures was introduced in [16]. In [8] an attention-aware human-machine interface (HMI) to

monitor human operators attention was proposed. The VSAM project described in [17] demonstrates that

a single human operator can effectively monitor a significant area of interest. The proposed UI exploits

the VSAM technology to automatically display graphical representations of individuals into the digital

environment. The ADVISOR system [18] selects relevant outputs and displays the relevant video feeds

to the operator using a novel HCI. In [19] a framework for video surveillance based on the context of the

experiential environment for efficient and adaptive computations was proposed. In [10] a Dynamic Object

Tracking Systems introduced a novel VSS user interface. The same authors extended it by inspecting

activity patterns [20] and introducing geometric tools [21]. A new backbone system that was used to

develop advanced monitoring techniques, integrating cameras installed around the monitored area and

centralized information, was introduced in [22]. In [9] a two-tiered VSS that self-adapts to current user

needs was proposed. Similarly, in [23], the Virtual Document Planner was introduced to reduce the visual

clutter and to display only situation-tailored information.

Similar techniques were proposed in commercial products. The IBM Smart Surveillance system (S3) [24],

[25] uses a web-based service interface to support video based behavioral analysis. In [26] an integrated

command and control solution designed to support security management is proposed. 3D site maps

are displayed together with useful information to help contain and prevent dangerous events. Similarly,

in [27] a graphical model of the monitored site allows users to select specific areas in order to display

footages related to anomalous events. Finally, the Tag and Track system [28] allows users to select and

track people across different camera views.

Despite many of these works help improving end-users capabilities, they still require huge mental ef-

forts to the human operators. In particular, the main open issues are the followings: i) each user is required

to monitor a large amount of footages at the same time; ii) tasks like tracking across multiple cameras

require manual interaction with the UI to select desired camera views; iii) the position and the colors

of UIs elements are not chosen accordingly to Human-Computer Interaction principles. The proposed

work deals with those issues introducing: i) a predictive and autonomous selection of camera views;

ii) a dynamic activation, selection and organization of video streams; iii) an information visualization

technique that eases surveillance tasks. In Table 1,the properties of the proposed system are compared
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TABLE 1

Comparison of the main properties of commercial and research systems with respect to the proposed one.

System Wide

Areas

Crowded

Environ-

ments

On-line Retrieve

from

repository

Multiple

Object

Tracking

Area Map Multi-

camera

Visualiza-

tion

Predictive

Camera

Selection

VSAM [17] 4 4 4 4

ADVISOR [18] 4 4 4 4 4

DOTS [10],

[20], [21]

4 4 4

IBM

(S3) [25]

4 4 4

Siemens

Surveil-

lance

Van-

tage [26]

4 4 4 4 4

Siemens

SiteIQ [27]

4 4 4 4

Ipsotek [28] 4 4 4 4 4

Proposed 4 4 4 4 4

with the most important related works.

3 SYSTEM DESCRIPTION

As shown in Fig. 1, the architecture of the proposed VSS is organized in two main modules: i) the Video

Analytics Module and ii) the Human-Computer Interface module.

The VAM module focuses on camera tasking operations. Video streams are analyzed to identify events

of interest [29] that have to be provided to human operators together with useful information. For such a

purpose, the VAM detects and recognizes all the active (i.e. moving or temporary stationary) objects in the

monitored environment. When an object is acquired, the tracking algorithm starts to track the object. Then,

a high-level component correlates the objects activities along time and space through the different camera

views. Such an analysis is used by the trajectory estimator [30] to predict the trajectories of the objects of

interest. By using past information about activities and trajectories, this component is able to path-plan

the movements of the objects of interest such that the camera network can be opportunely tasked or

redirected in order to improve the analysis capabilities [31]. The reconfiguration component proposed

in [32] is used to automatically reconfigure the PTZ cameras and improve the system performance.

The estimated trajectories and the camera network configuration are input to the HCI module. The

objective of the HCI module is to organize and display video streams to better support operators’ tasks.
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Fig. 1. Proposed system. The Video Analytics Module fuses information about trajectory predictions and

object tracking to reconfigure the network and select only relevant streams. The HCI module organizes and

displays the selected streams through an advanced UI.

The HCI module is composed by: i) the stream activation, ii) the stream organization and iii) the data

display components. The stream activation component exploits VAM data to select and activate only

relevant video streams. Given the estimated evolution of the environment (trajectories and involved

cameras), it selects the streams that most probably will acquire objects activities. The stream organization

sorts the selected camera views with respect to their estimated importance. Finally, the data display

component displays the organized streams on the UI together with useful information provided by the

VAM.

4 VAM MODULE

The Video Analytics Module extracts information about the events observed in the monitored environ-

ment by detecting moving objects and processing their trajectories. Moving objects are detected by means

of a change detection algorithm and classified using a neural network, then the position of each object

is filtered using a Kalman filter and a Camshift color tracker [29].

As new trajectories are acquired, the trajectory clustering algorithm proposed in [30] organizes the

detected trajectory clusters in a probability-labeled tree. This allows to detect the clusters with higher

probability of being matched, corresponding to the zones where it is more frequent to identify a moving

object. This information is useful for event analysis tasks such as predicting object movements in the

near future. The algorithm is here briefly summarized, for full details see [30].
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4.1 Trajectory-cluster matching

A trajectory Ti is modeled by a list of vectors tij , each one representing the 2D spatial coordinates

of object i at time j: Ti = {ti1 . . . tin} where tij = (xij , yij). The spatial coordinates can be computed

directly on the image plane -even though in this work coordinates are expressed in a world reference

frame. This is achieved by projecting the image plane position of each object on a map of the monitored

environment using a homographic projection. Clusters (groups of trajectories with similar spatial features)

are represented in a similar way, with the addition of an approximation of the local variance σ2
ij of the

cluster i at time j: Ci = {ci1 . . . cin} where cij = (xij , yij , σ
2
ij).

In order to check if a trajectory matches a given cluster, a trajectory-to-cluster distance has been defined.

Given a trajectory T = {t1 . . . tn} and a cluster C = {c1 . . . cm} the adopted distance is defined as

D(T,C) =
1

n

n∑
i=1

d(ti, C) (1)

where

d(ti, C) = min
j

dist(ti, cj)√
σ2
j

 j ∈ {b(1− δ)ic . . . d(1 + δ)ie} (2)

with δ < 1 constant and dist(ti, cj) the Euclidean distance between the trajectory point ti and the cluster

point cj omitting the variance component. Using equation 1 the distance of a trajectory from a cluster is

thus the mean of the normalized distances of each trajectory point ti with the closest cluster point within

a temporal window whose size, controlled by parameter the δ, increases through time. The variable-

size temporal window allows matching also in case of limited temporal shifts between trajectories and

matching clusters, avoiding at the same time matches with excessively large temporal distances.

Finally, when a trajectory matches a cluster, the cluster itself must be updated with the information

of the newly matched trajectory. The updating equations implement a running average with exponential

forgetting of the trajectory data:

x = (1− α)x+ αx̂

y = (1− α)y + αŷ

σ2 = (1− α)σ2 + α[dist(ti, cj)]
2

(3)

where cj = (x, y, σ2) and ti = (x̂, ŷ) are the matching points as in eq. 2.

4.2 Cluster trees

The trajectory-to-cluster matching and updating equations described in the previous section cannot be

directly applied in real-life scenarios as typically only partial matches can be detected (e.g. a trajectory

starts close to a cluster and later leaves it). In order to model these behaviors the concept of cluster trees

is applied as in [30]. A cluster tree is a tree where each node is a cluster representing a spatial portion of

the environments shared by a set of sub-trajectories, and arcs represent connections between clusters. For
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example, the trajectories in Fig. 2(a) all share the same initial region, modeled by cluster c1. When the

trajectories diverge toward two different regions, these regions are represented by two new clusters, c2

and c3, and their link with c1 is modeled in the tree structure shown in Fig. 2(c). The tree data structure

is preferred to a graph one, since the system is forced to model as a single cluster only shared prefixes

(initial parts of trajectories) rather than suffixes; this is most useful for trajectory prediction and anomaly

detection tasks.

(a) Trajectories estimation

c1

c2
c3

c5

c4

(b) Trajectories clusters

c1

c2 c3

c5 c4

(c) Clusters tree

Trajectory Clustering

Fig. 2. Cluster trees represent the structure of a set of trajectories with partial sharing.

In order to create and update the cluster trees, the following procedure is used:

1) when a new trajectory is detected, its distance from existing clusters is computed using eq. 1;

2) if a match is not found, new cluster including the trajectory is created;

3) if a match is found, the cluster is dynamically updated according to eq. 3;

4) if the trajectory leaves a cluster:

4a) the cluster is split in two parts in order to create a new branch if needed. The tree structure

is updated accordingly;

4b) a match among the children of the just-left cluster is searched, then the algorithm is

iterated from point 2).

Points 2) and 4) rely on the trajectory-to-cluster distance D(T,C) defined in equation 1 to check if

a trajectory is matching or leaving a cluster. The distance is normalized according to the local cluster

variance, and thus it is directly linked to the probability of the trajectory to belong to the statistical model

represented by the considered cluster. For example, if D(T,C) < 2, it means that on average the trajectory

falls within the 2σ range from the cluster center (a range including the 95% of the trajectories represented

by that statistical model).

The described procedure allows to dynamically create and update cluster trees such as the one shown

in Fig. 2(c). Arcs can be labeled with probabilities, computed by counting the number of trajectories

matching each node. Specifically, if node C has n children nodes c1 . . . cn, the arc connecting C and ci is

labeled with probability |ci|∑n

j=1
|cj |

where |ci| is the number of trajectories matching cluster ci.
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In [30], labelled arcs are used for anomaly detection. The total probability of a fully developed trajectory

is defined as the product of all the probabilities in the path from the first to the last node matched by

the trajectory. Probabilities are used to predict the most probable future evolution of a partial trajectory.

This feature is exploited in the proposed work to automatically select and organize the cameras that most

probably will observe a given object.

5 HCI MODULE

Information about sensors streams and objects trajectories extracted by the VAM module are used by the

HCI module to tailor contents that have to be displayed to the end-users. Three innovative components

are introduced by the HCI module: i) the stream activation, ii) the stream organization and ii) the data

display.

5.1 Stream activation

The stream activation component connects information given by the VAM to the stream organization and

data display components. It uses the information from the trajectory estimation and network reconfigura-

tion components to select and activate only relevant streams. In particular, the estimated path correlated

to the fields-of-view computed by the network reconfiguration component, allows to plan the hand-off

and activate the cameras that will, most probably, cover the motion of the object. Such cameras are then

included in a priority queue that is used to keep the visual focus on the selected object.

Let Q be the priority queue, camj be the j-th camera with FOVj field of view, then camj is pushed in

Q if FOVj ∩ Ti 6= ∅, where Ti is a predicted trajectory.

5.2 Stream organization

The stream organization component organizes camera views such that only the most relevant views are

presented to the end-users. As shown in Fig. 3, the component achieves its objective re-weighting the

streams that have been inserted into the priority queue and sorting the camera views accordingly to their

estimated importance.

Streams that have been previously inserted into the priority queue by the stream activation component

are evaluated against all the possible object trajectories taking into account the geographical deployment

of sensors. Thus, according to the most probable trajectories given by the VAM module, the stream

organization component assigns to each view a priority value computed by intersecting the trajectory

clusters with each camera FoV that has been inserted into the priority queue.

The stream priority value is computed by traversing the predicted path tree (see Fig. 2). The edge value

P (Ci|Cj), connecting the clusters Ci and Cj , represents the probability of the object to reach cluster Ci

given its previous position in cluster Cj . Hence

P (Ci|Cj , Cj−1 . . . , Ck) = P (Ci|Cj)

k+1∏
l=j

P (Cl|Cl−1) (4)
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Tracked Object
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Predicted Path
Alternative Path

Cam 2

Cam 14

Cam 3
Cam 4

Cam 5

Cam 1

pr = 1.0

pr = 0.91

pr = 0.21

pr = 0.79

pr = 0.86

pr = 0.93

(a)

HCI
Module

DATA
DISPLAY

STREAM
ORGANISATION

STREAM
PRIORITY

Cam 1 Cam 2

pr = 1 pr = 0.91

Cam 1 Cam 2 Cam 3 Cam 14 Cam 4 Cam 5 Cam 6

pr = 1 pr = 0.91 pr = ? pr = ? pr = ? pr = ? pr = ?

Cam 1 Cam 2

pr = 1 pr = 0.91 pr = 0.72 pr = 0.62 pr = 0.57 pr = 0.4 pr = 0.19

Cam 3 Cam 4 Cam 5 Cam 6 Cam 14

Cam 1 Cam 2

pr = 1 pr = 0.79 pr = 0.68 pr = 0.63 pr = 0.49 pr = 0.21

Cam 3 Cam 4 Cam 5 Cam 6 Cam 14

PRIORITY
QUEUE

Cam 2
Cam 1Cam 3

Cam 4 Cam 14

Alternative
Camera

New
Camera

(b)

Fig. 3. In (a) the tracked object and the predicted path are shown together with camera FoV. In (b) the

corresponding behavior of the HCI module components is shown.

is the probability that the object will reach the cluster Ci through the path Ci, Cj , Cj−1, . . . , Ck. Thus, the

camera in the queue that covers the cluster Ci is assigned with a priority value equal to P (Ci|Cj , Cj−1 . . . , Ck).

The camera covering the cluster where the object is currently in is assigned a priority of 1. Once the

priority values have been computed, the queue is sorted in order to have higher priority cameras on top.

5.3 Data display

The data display component introduces a novel information visualization technique that aims to ease

surveillance operators tasks exploiting Human-Computer Interaction principles. As Fig. 4 shows, the

proposed UI introduces two main components: i) the video streams area and ii) the map area. The video

stream area organizes and displays the camera view UI elements inserted in the priority queue to better

support end-users tasks. The “switch panel” allows to switch between different areas of the monitored

environment and to organize the video streams on the basis of the objects of interest. In case of multiple

objects of interest, the operator is able to follow one of them just by switching the active visualization.

The map of the area displays geographical information about cameras positions, cameras FoV and moving

objects.

5.3.1 Video streams area

The video streams area introduces a novel information visualization technique to display only the most

relevant views. Three main novel features are introduced by this component: i) camera views displace-

ment; ii) camera views animation; iii) camera views representation.

The camera view displacement is organized such that, the stream of the sensor with highest priority is

displayed at the center of the video streams area (see Fig. 3). The streams that have lower priority values
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Fig. 4. Finally proposed User Interface. The top region shows five camera views that are displayed

accordingly to the priority queue computed by the VAM. The bottom region shows the map area component

together with the active camera fields-of-view.

are displayed either at the left or a the right side -depending on the predicted path of the object- of

the main camera view. The previous highest-priority camera is shown on the other side. The goal is to

provide the operator the previous and the next camera views that cover the predicted object trajectory.

It could be possible that the object of interest does not follow the most probable estimated trajectory,

so, the most probable alternative path is considered. The camera view that has been assigned the highest

priority with respect to such alternative path is displayed next to the previous highest-priority camera

view (see Fig. 3).

For instance, let consider Fig. 3 and let assume that the tracked object is moving -from right to left-

along the predicted path. Since the object is moving from Cam2 towards Cam3, Cam3 is displayed at

the left of the current main view. As Cam2 is the highest priority camera, Cam1 is displayed at its right.

The alternative camera with highest priority, Cam14, is placed next to Cam1. The camera priority is also

used to set the size of the displayed camera views. The camera view with the highest priority has the

largest size. Other camera views are scaled to 2/3 of the size of the camera view with a higher priority.

The camera views animation is introduced to smooth the hand-off between camera views. Accordingly to
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(a)

(b)

(c)

Fig. 5. Proposed camera views transition. The tracked object is moving from right to left. Camera views

are scaling and moving to the right. In (a) the initial camera view UI element position is shown. In (b) the

scaling and transition of all the camera views to the right is depicted. Finally, in (c) the updated camera view

UI element position after one transition is shown.

the camera view displacement feature, the stream of the sensor with the highest priority is displayed at

the center of the video streams area. Since objects are moving across a path, the camera views have to be

moved to respect the stated objective. If camera views are just switched a “flashing” effect is introduced

due to the fact that the relevant streams will be activated/deactivated at different camera views positions.

Such behavior cause confusion to the end-users and it does not respect Human-Computer Interaction

principles. To sidestep this issue, UI animation effects are introduced.
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As shown in Fig. 5, as long as the object of interest follows the predicted trajectory, the relevant

camera views are moved to the opposite direction with respect to the predicted object trajectory. Given

the homography transformation between camera views and the map of the monitored environment (see

section 4.1), the data display component estimates the velocity of the tracked object at each time instant

and moves the UI camera views accordingly. Similarly, as camera views move, they are gradually scaled

to the new sizes. Old selected views are scaled down and animated out of the UI.

(a) (b) (c)

Fig. 6. Color-blind people vision simulation of the proposed UI: (a) Deuteranope simulation (red/green color

deficit) (b) Protanope simulation (red/green color deficit) (c) Tritanope simulation (blue/yellow deficit)

The camera views representation introduces two main representation features: i) the color-coded and ii)

the drawing style techniques used to depict the camera view UI elements. To achieve internal coherence

the same representation techniques are used to depict the camera FoV in the map area component. The

colors used to depict UI elements have been selected such that each camera view can be distinguished

even from colour-blind people (see Fig. 6). To ease the end-users tasks, a different drawing style has been

used to highlight the most relevant view. A dashed line is used to represent the camera with the highest

priority. This allows to easily link the main camera view representation in the video streams area with

its FoV depicted in the map area.

5.3.2 Map area

The map area introduces a component that shows the topological representation of the monitored area.

As shown in [10], the map representation of the monitored area improves the ability to follow objects

and to analyze their behavior while these are moving across different camera views. Similarly to state-of-

the-art video analytics systems, cameras, FoV and objects are represented in the proposed map area (see

Fig. 7). In addition to that, the work introduces a novel map visualization technique. Though the standard

scrolling, panning and zooming techniques are useful to explore an information space at different levels

of detail, it is often useful to display more than one level of detail at the same time [33]. The overview plus

detail technique [15] is exploited to achieve such objective. This technique helps users to keep focusing

on the details of an information space without loosing the overview of the entire space.

The overview plus detail technique is used to display both the detailed map and the context view.

The context view displays a downscaled version of the map. It also highlights the portion of the map
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(a) (b) (c)

Fig. 7. Proposed map area UI component. In (a) a standard map representation together with objects

positions is shown. In (b) and (c) the overview plus detail representation is shown. Both the overview and

the detail view can be zoomed and panned. The viewfinder (red box) is updated accordingly.

displayed in the detail view with a rectangular viewfinder. Both the viewfinder and the detailed view can

be dragged to navigate the environment. The size and the position of the viewfinder in the context view

also provide useful information for navigation, such as details about the scale between the displayed

detailed map portion and the whole map. Thanks to the novel visualization technique, the operator has

an overview of the entire area even if it has zoomed the map view to retrieve more details about an

object (see Fig. 7(b) and Fig. 7(b)).

6 EXPERIMENTAL RESULTS

Human-Computer Interaction guidelines have been followed to evaluate the usability performance of the

novel system. Four prototypes have been designed respecting the main usability rules defined in [34].

Empirical and non-empirical methods have been employed to evaluate each prototype.

To correctly apply the Human-Computer Interaction principles, information about classes of users and

context of use have been identified. Users have been grouped in the following four different classes:

1) operators that use a VSS to monitor a small area for private purposes;

2) operators that use a VSS to monitor a small public environment;

3) operators that use a VSS with a multi-camera setup to monitor a wide area;

4) operators that use a VSS with a multi-camera setup to monitor multiple wide areas.

The second step was to identify the most probable contexts of use of the system. Five contexts of use

have been identified:

1) visualize video streams using single-multiple displays;

2) track objects through multiple cameras FoV;

3) fire alarms;

4) automatic recording of interesting events footages;

5) review recorded footages.

All the four proposed prototypes have been validated using empirical and non-empirical tests. The

following six different evaluation tasks have been proposed:
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1) visualize the real time footage from “AREA 2”;

2) fire the alarm if an anomalous event occurs;

3) associate current visible streams to area sensors;

4) start tracking an object and follow it along its path;

5) start tracking an object, then fire the alarm if an anomalous event occur;

6) start tracking an object, then switch to a different area and start tracking a new object.

Non-empirical evaluations have been performed with the support of four Human-Computer Interaction

experts. The non-empirical techniques have been used to obtain an initial evaluation of each prototype.

After the evaluation, each prototype has been reviewed accordingly to the reports provided by the HCI

experts.

To evaluate the prototypes, the six stated tasks have been performed by the experts. The steps required

to reach each given task have been analyzed using two common techniques: i) the heuristic evaluation [35]

and ii) the cognitive walkthrough [36]. After the evaluation, the experts provided a review for each of

the 10 principles proposed in [37].

The cognitive walkthrough technique has been used to mainly detect the UI design errors that affected

the ease of learning. A review for each UI feature, behavior and action involved in the proposed tasks

has been given by each HCI expert.

All the recommendations provided by HCI experts have been taken into account to solve the identified

problems. The process strongly helps the design and lets the system to perform better in terms of

affordance, visibility and coherence with respect to standard video surveillance system UIs.

Empirical evaluations have also been performed to validate the proposed prototypes. Three standard

empirical evaluation methods have been used to evaluate the usability performance: i) thinking aloud;

ii) video screen recording and iii) usability questionnaires. To perform the empirical evaluations forty

pre-identified end-users have been selected (see Tab.2) and grouped into the four proposed clusters. As

for non-empirical evaluation, they have been asked to perform the same six evaluation tasks.

Years of experience

0-1 2-5 5-10 10+

Real Operators
Male 2 4 5 2

Female 2 4 0 0

Others
Male 4 5 2 1

Female 6 2 1 0

TABLE 2

Forty pre-identified users have been selected to evaluate the performance of the proposed prototypes.

The test sessions have been conducted in a controlled environment using pre-recorded video data.
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During such sessions users were supported by the researcher that was not allowed to intervene unless

the end-user were not able to achieve the goal or if they had some questions about the UI elements

behavior that did not reflect their expectations. Video screen recordings have been captured during test

sessions. After completing all the assigned tasks, the usability questionnaires have been given to each

user. All the acquired data has been merged and compared to detect and solve the prototypes issues.

To get a quantitative evaluation of each designed UI two indexes have been proposed: i) the mean

success rate index and ii) the mean execution time index. Let p = {1, 2, . . . , P} be the proposed interface

and let j = {1, 2, . . . , J} be the current evaluation task. The mean success rate index (MSR) provides

information about how well p scales to j. It is given by:

MSR(p, j) =

∑nu

i=0 C
p
i,j

nu
(5)

where Cp
i,j is a matrix that gives the completion percentage of task j reached by user i using prototype

p. nu is the total number of tests. This index has been evaluated against each single task j and each

proposed prototype p in order to see if the current solution improves the previous one.

Similarly to the MSR index the mean execution time index (MET ) has been computed to investigate

the UI efficiency. The MET is computed as

MET (p, j) =

∑nu

i=0 T
p
i,j

nu
(6)

where T p
i,j is a matrix that gives the time required by user i to complete task j using prototype p. In

case a user was not able to fully complete the required task, the time assigned to that user is given by

maxT p
k,j with k 6= i. The MET index has been used to provide information about how much time a

single user needs to reach a given goal (user failure has been taken into account as well). By analyzing

this data, it was possible to identify which were the tasks that required more time. In particular, during

the design process, if a given task was requiring too much time the UI elements involved in that process

were deeply inspected before evaluating the next prototype.

In all the experiments, the distance threshold required by the clustering algorithm (see section 4.2) has

been empirically fixed to 2. Since the trajectory-to-cluster distance is normalized by the cluster variance,

this means that a trajectory matches a cluster if, on average, its distance from the cluster center lies in

the 2σ range.

6.1 Evaluation of the first prototype

A paper model has been used to design the first UI prototype. As defined by HCI rules, this is a common

solution that allows a faster and easier definition of the system UI. As shown in Fig. 8(a), the model does

not introduce any color that allows people to identify cameras and to relate their FoV. This choice allowed

to investigate how people associate cameras views and their UI map representation. The task #3 is thus

hard to perform under this scenario, and, as results depicted in Fig. 8(b) and Fig. 8(c) show, some users
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Fig. 8. First system prototype (paper). The first model lacked of colors and had poor interaction but was

equally helpful to detect the initial design issues. (a) Proposed user interface, (b) Mean Execution Time and

(c) Mean Success Rate.

did not complete it. The MSR for this specific task is about 81%, and the standard deviation is about

37%.

Even though the proposed UI was completely static, some of the given tasks required to track objects. To

sidestep this issue the UI elements behavior has been simulated by moving paper objects. Mainly because

of that, users failed to perform actions that required non-static UI elements and live video streams. In

particular, task #5 required a higher amount of time to be completed since the anomalous events were

displayed at 0’30”, 1’14”, 2’11’, 3’38’ and 5’40”. Notice that events used in task #2 were not the same as

those used in task #5. Results reported in Fig. 8(b) shows that all the users had trouble with such task.

As shown in Fig. 8(c), users failed to reach the required goal for task #3, #5, and #6. In particular, task

#6 has the lowest MSR (about 56%).

The main problems that came from the evaluations of the first prototype were:

• the lack of colors and techniques that allowed users to relate cameras depicted on the map with the

camera views in the video streams area;

• the lack of video streams and the low interaction;

• the lack of interaction with the map.

6.2 Evaluation of the second prototype

As for the previous prototype, a paper model has been used to design the second UI prototype. To solve

the issue detected from the previous evaluation two main novelties have been introduced: i) usage of

colors and ii) change of the alarm text-button to an icon-button.

As Fig. 9(a) shows UI colors have been added. The MET index (see Fig. 9(b)) shows that such feature

did not significantly decrease the average time required to perform the proposed tasks. In particular, as

Fig. 8(b) and Fig. 9(b) highlight, the task #3 reached a mean execution time of about 2’32” for the first

prototype and an average time of 2’01” for this second prototype. The other tasks, if compared to the

first prototype, achieved similar MET results even the standard deviation for each of them is about 6%
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(c)

Fig. 9. Second system prototype (paper). The second model introduced the colors different depiction

techniques to associate the camera views in the video stream area and the cameras in the map area.

(a) Proposed user interface, (b) Mean Execution Time and (c) Mean Success Rate.

lower. As for the previous evaluation task #5 was the one that required much time to be performed since

anomalous events were shown at 0’30”, 1’14”, 2’11’, 3’38’ and 5’40”. As before, events used in task #2

were not the same as those used in task #5.

Though the MET index doesn’t show any significant improvement by the new prototype, the MSR

index shows that the proposed colors and the employed depiction techniques solved the previously

detected issues. In particular, the mean success rate for the task #3 had strongly increased from about

81.25% to 100%. The same happened for task #6. In both cases, all the users achieved the required tasks

reaching a 100% MSR score. But, as shown in Fig. 9(b) and Fig. 9(c), task #4 and task #5 were still

difficult to perform and required a long time to be completed.

Similarly to the first prototype evaluation, the main issues posed by this second prototype were:

• the lack of video streams and the low interaction;

• the behavior and the representation of the alarm icon-button;

• the lack of interaction with the map.
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Fig. 10. Third system prototype (interactive model). The third model introduced video streams and an

interactive map. (a) Proposed user interface, (b) Mean Execution Time and (c) Mean Success Rate.
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6.3 Evaluation of the third prototype

As Fig. 10(a) shows a more interactive model has been used to design the third prototype. The third

prototype has been developed using a presentation software. The slides of the presentation were arranged

to simulate a real software. Footages recorded from a real-surveillance scenario have also been added. In

order to allow users to perform all tasks, behaviors of UI elements involved by the required tasks have

been defined. The main novelties introduced by the third prototype were: i) higher-level interactions and

ii) change of the alarm button.

Similarly to the previous evaluations, both the MET and the MSR indexes have been computed. As

the MET index shows (see Fig. 10(b)) the amount of time required to perform each single task has

decreased with respect to the two previously proposed prototypes. The standard deviation -of the MET

index- computed for all the six given tasks has averagely decreased of about 64%. The amount of time

required to complete the task #1 was about 0’15”. Similarly, the MET for task #3 has decreased from

2’01” (second prototype) to 0’48”. The strongest improvement has been achieved by the task #5, where

the MET has decreased from 3’41” to 1’20”. Since the same anomalous events have been used (as in the

first and the second prototype evaluation), the achieved results show that most of the users missed only

the first anomalous event (at 0’30”).

The MSR index shows similar results, to the ones achieved by the second prototype, for task #1, task

#2, and task #3. A 100% MSR has been reached by task #4. In contrast with results obtained from the

previous evaluation, task #6 was not fully completed by all users (see Fig.10(c)). A MSR score of 93%

has been achieved by both task #5 and #6. The problem was that the alarm icon-button was hard to

understand and its behavior was not clear. Users also expected to use the map to select the objects to

track.

Results of end-users tests conducted among the third prototype showed that the proposed UI elements

had a better affordance, but some issues were still present. Single-user questionnaires inspection and

results analysis showed that the main negative aspects posed by the third prototype were:

• when the active, the alarm button showed visual clues but no sound information was provided;

• the alarm button was misunderstood by many users;

• the lack of interaction with video streams. The selected videos came with multiple objects and some

users expected to start tracking a chosen object by clicking through it. The prototype was not designed

to allow such interaction and it started tracking a different object with respect to the selected one.

6.4 Evaluation of the fourth prototype

A software program has been developed as the fourth prototype (see Fig. 11(a)). As for other prototypes,

the same prerecorded data has been used. The main novelties introduced by such prototype were: i) the

overview plus detail UI element, ii) the depicted cameras FoV and iii) the representation of objects within

the map.
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Fig. 11. Fourth system prototype (software). Both the VAM and the HCI modules were designed and the

same prerecorded data has been used to evaluate the performance of the system prototype. (a) Proposed

user interface, (b) Mean Execution Time and (c) Mean Success Rate.

As Fig. 11(b) shows the MET index decreased with respect to the MET computed for the third

prototype. Also, the MET standard deviation computed for all the six given tasks decreased of about

47% on average. The strongest improvements have been achieved by the task #5 and task #6. In contrast

with previous evaluations, task #5 wasn’t the one that required the longest time to be performed: all the

users catch the first anomalous event. The higher MET was achieved by the task #6 since many users had

difficulties in selecting an object to track by clicking through it on the video streams UI representations.

The MET required to perform each single task was always less than a minute.

The best results come from the MSR index since all the tasks achieved a 100% score. Such results

show that the depicted camera FoV and the representations of the object onto the map component ease

the surveillance tasks. None of the real-operators nor the novel-users asked to view all other camera

streams that were not shown in the given UI. This is a very interesting result if compared to standard

VSS UIs where users have to manually switch between camera views to activate them to follow an object

of interest.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, a novel information visualization technique for Video Surveillance Systems has been

introduced. The video analytics system introduces the VAM and the HCI modules to properly visualize

only the most important cameras and information contents, thus simplifying surveillance tasks.

The VAM performs video analytics tasks and predicts the possible paths of the objects of interest.

Trajectories and cluster trees learned from real-tracking data are used to predict the most probable paths

of tracked objects.

The HCI module presents only relevant information to surveillance operators selecting the streams

accordingly to information provided by the VAM module. It introduces three main components to propose

a novel information visualization technique for VSS.
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Four UI prototypes have been designed and evaluated using standard Human-Computer Interaction

techniques. Non-empirical evaluations results have been fused together with two proposed indexes to

detect and solve usability issues introduced by each prototype. The results shows that the adopted

information visualization technique achieves high usability results and supports end-users during their

surveillance tasks.

The following three main problems affect the current system. i) The system can be used in situations

where the monitored scenario is not overcrowded. ii) In case the size of the display is small, the camera

views displayed in the video stream area may be too small and the task of recognizing objects may be

hard. iii) If the number of objects to track is very high, the “switching panel” gets overcrowded and

users may get confused by that. To address those issues, robust techniques that allows object tracking

over crowded environments and non-overlapping cameras [38] will be introduced. New displacement

methods to better display the camera views in the video stream area and the “switch panel” will be

analyzed as well. In addition, Video analytics systems for wide area surveillance [11] will be investigated

to integrate Unmanned Aerial Vehicle videos streams. A dynamic hierarchical view would be investigated

to allow operators to select the number of cameras that have to be displayed for a particular area and

for a particular task.
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