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Abstract

In this work we introduce a novel approach for painting recognition and registration for mobile

Augmented Reality applications. To address the challenges of real-time painting recognition and regis-

tration we introduce three main contributions: (i) A relevant painting region detector extracts the painting

region from the given image. (ii) Two local and global features are extracted from the relevant region to

robustly match a painting database. (iii) A RANSAC homography estimation method is used to overlay

the additional content in an AR framework. Experiments have been carried out on a dataset built with

publicly available images.

Index Terms

Painting recognition, registration, mobile device, augmented reality.

I. INTRODUCTION

Since the early years of mobile devices technology, the computer vision community has been interested

in mobile cameras. Whilst in the past applications and algorithms focused on the interaction and produc-

tivity, recently, with the technology evolution, the community has been actively involved in mobile vision.

Nowadays, many computer vision solutions find applications in mobile devices. Within such a category,

Augmented Reality (AR) is gaining more and more interest from both researchers and end-users. Of

particular interest for AR applications is the task of recognizing objects such that related information can
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be shown through device displays [1]. In this work, we focus on the tasks of painting recognition and

registration.

Recognizing paintings and computing the transformation to align the acquired image of a painting and

its image in a database are nontrivial tasks. Common static computer vision issues (e.g. illumination,

view, scale changes, etc.) are more severe in context of moving cameras as different effects (e.g. blur,

noise, motion, etc.) arise. In addition, reflection of spotlights, image saturation and image exposure add

up for the recognition of the paintings present in exhibitions.

In the recent years, the problems of image retrieval [2], landmark [3] and location [4] recognition using

appearance-based features have been deeply investigated. To achieve their objectives, those methods match

appearance features against a large database of location-tagged images [5]. While many approaches were

proposed, only a little effort was spent to tackle the challenges posed by both the recognition and the

registration tasks. In [6], the monoSLAM system estimates the hand-held camera’s motion from the

live image stream to achieve high AR performance. In [7], [8], [9] recent techniques for tracking and

occlusion handling in an AR framework were discussed. The challenges of real-time recognition and

camera pose estimation system for planar shapes were addressed in [10]. The proposed system performs

shape recognition by analyzing contour structures and generating projective-invariant signatures. In [11],

an AR rendering pipeline that supports global illumination techniques was proposed.

While specifically designed markers have been the dominant choice by state-of-the-art AR methods,

the use of such markers in a real scenario is not always feasible. Motivated by this and inspired by

feature-based computer vision techniques, we propose a novel marker-less approach to cope with the

AR challenges. We introduce a method to detect and extract the relevant painting region (RPR) from a

given input image. Local features are extracted from the RPR and matched with a candidate target in the

database. RANSAC is used to detect feature outliers. As the current image may not be aligned with the

candidate target image, extracting global feature from it considerably reduces robustness. To tackle this,

we use the homography transformation output by RANSAC to align the current RPR to the candidate

target RPR. This allows to extract global feature from the aligned RPR only, thus noticeably improving

performance. Then, a weighted similarity measure is used to compute the final match. Once a match is

found, we use the RANSAC homography transformation to properly overlay the additional content to

the current frame.

To summarize, we introduce the following contributions: (i) A RPR detector extracts the painting

region from the current image. (ii) Two local and global features are used to robustly match database

paintings. (iii) The RPR detector together with a robust feature-based matching technique and RANSAC
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Fig. 1. Architecture of the proposed system. The current camera frame is processed by the three main modules of the system.

The first module extracts the RPR. The second module computes the match between the current camera frame and a candidate

target in the database. Given a match with the candidate target, the homography transformation used to overlay the additional

content to the current camera frame is computed by the third module.

are used to display the additional content in an AR framework. To evaluate the proposed system a dataset

of paintings has been built with publicly available images.

II. SYSTEM OVERVIEW

The architecture of the proposed approach is shown in Fig. 1. Three main modules are used to achieve

the proposed goal: i) the RPR detector module, ii) the matching module and iii) the AR display module.

Given the current camera frame, the RPR detector module is in charge to extract only the RPR, thus

rejecting the painting frame and the background. Once the RPR is detected, the matching module extracts

the local features from such region and matches them with the candidate target local features. RANSAC

is used to reject matching outliers. Then, the homography matrix output by RANSAC is used to align

the current RPR with the candidate target RPR from where the global features are then more robustly

extracted. The local and global features that form the current signature are finally matched with the

candidate signature using a linear weighted similarity measure. Finally, given the best match with a

candidate target, the homography transformation used by RANSAC is used to overlay the additional

content to the current camera frame.

The values of the algorithm parameters given in the following sections have been selected using 4-fold

cross validation (see Section VI for details).

III. RELEVANT PAINTING REGION DETECTOR

Assuming that the frames of paintings have elliptical or rectangular shape, the RPR detector removes

the background and the painting frame to keep only the portion of the image that contains the paint-

ing, i.e. the RPR. The RPR detector achieves its objective using the Randomized Hough Transform
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(RHT) method [12]. The RHT is a particular derivation of the Hough Transform (HT) that avoids the

computationally expensive HT voting procedure. As shown in [12], the RHT can achieve a computational

complexity lower than an upper bound of order O((ntN
n)/nnmin), that is considerably smaller than the

order O(NNn−1
a ) of the standard HT. N and Na are the total number of pixels in the image and the

size of the accumulation array respectively. n is the number of curve parameters, nmin is the length of

the shortest curve in the image, and nt is a small number.

To detect the RPR, we first apply the Canny operator to the grayscale representation of the current

camera frame Q ∈ RM×N . Then, the RHT is used to fit ellipses and rectangles. As a painting may

contain more than a single rectangular or ellipse shaped object, we consider the RPR boundary to be the

detected rectangle or ellipse which area is at least r times the input image size. The detected RPR is

denoted as RQ ∈ RM ′×N ′
where M ′N ′ ≥ rMN and r ∈ [0, 1].

IV. MATCHING

Let RQ and RI be the RPR of the current camera frame Q and the RPR of a database candidate target

image I , respectively. To match RQ and RI we consider two local and global features. To achieve this

objective with lower computational costs, the Speeded-Up Robust Features (SURF) [13] and the Pyramid

of Histogram of Oriented Gradients (PHOG) [14] features are used.

Local features: As illumination invariance is intrinsic to SURF [13], we extract such features from

the grayscale representation of RQ by exploiting the standard integral image. The SURF feature detector

is based on an approximation of the Hessian matrix, while the feature descriptor ψRQ

F ∈ R64 describes

the distribution of Haar-wavelet responses within the neighborhood of the detected interest points ψRQ

K =

[x, y]. The computed SURF feature vector is denoted as ψRQ =< ψ
RQ

F , ψ
RQ

K >.

Given two SURF feature descriptors ψRQ

F (q) and ψRI

F (i), we consider q, i being a match if the similarity

SF (ψ
RQ

F (q), ψRI

F (i)) =
1

1 + ‖ψRQ

F (q)− ψRI

F (i)‖2
(1)

is higher than a fixed threshold Ths. Matching features are then analyzed to detect outliers using an

approach similar to [15]. Given 4 feature correspondences, the homography HQ,I is computed using the

Direct Linear Transformation method [15]. The process is repeated with t trials, and the solution that

has the maximum number of inliers is selected. A SURF feature keypoint ψRQ

K (q) is considered to be

an inlier if the corresponding keypoint projection ψ̂
RQ

K (q) is consistent with HQ,I within a tolerance of

σ pixels.

Global features: Given HQ,I , we use it to align RQ to the RI . The transformed RPR is denoted

as R̂Q. This operation allows us to extract the global feature in a more robust fashion as, after such
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transformation, the edges used to extract the global features are aligned and have similar orientations as

the edges of the candidate target.

PHOG features are extracted from R̂Q to capture information about the shape and the whole appearance

of the painting. Before extracting PHOG features, we project R̂Q into the HSV color space to achieve

illumination invariance. Then, for each of the three channels, edges and orientation gradients are used

to compute the PHOG feature matrix ρR̂Q ∈ Rm×3. m is the total number of histogram bins for each

image channel.

Candidate target matching: Once the local and global features have been extracted, we match Q and

I as follows.

SURF features similarity is computed as

Φψ (ψRQ , ψRI ) =

∑
q,i∈match SF (ψ

RQ

F (q), ψRI

F (i))

ε+match
(2)

where match is the total number of matched SURF features and ε is a small constant used to prevent

division by zero.

PHOG features are matched as suggested in [16]. Let ρR̂Q and ρRI be the PHOG feature matrices of

R̂Q and RI respectively. The PHOG similarity is computed as

Φρ(ρ
R̂Q , ρRI ) = 1−

∑
c

λcχ
2(ρR̂Q

c , ρRI
c ) (3)

where ρR̂Q
c and ρRI

c are the PHOG features computed for the c-th color channel. λc is the normalization

weight.

Let I be the set of all database images, the objective is to find arg maxI∈I Φ(Q, I) where

Φ(Q, I) = αΦψ (ψRQ , ψRI ) + (4)

β Φρ(ρ
R̂Q , ρRI )

α and β = 1− α are the normalization weights.

V. AR DISPLAY

The last module of the proposed system is in charge to overlay the additional content to the current

camera frame Q. As both paintings and the additional content are planar surfaces, the transformation we

need to compute can be described as an homography.

According to [15], the literature defines two categories of automatic homography computation: i)

direct and ii) feature based. In this work we use a feature-based homography computation method. In
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(a) (b)

Fig. 2. Example of AR. (a) Reference frame with the additional information to display. (b) Current frame with the additional

information transformed using the feature-based homography transformation.

particular, to save computational resources, we use the same feature-based homography transformation

HQ,I computed in section IV. As shown in Fig. 2, using the inverse homography transformation matrix

H−1Q,I it is possible to overlay the additional content (given in the original region I coordinate system)

to the current camera frame Q.

VI. EXPERIMENTAL RESULTS

Experiments have been carried out on a dataset built using 607 publicly available pictures of 70

Vang Gogh paintings. Pictures are taken from different viewing angles and under different illumination

conditions. Some pictures come with light reflections and occlusions.

To evaluate our approach we selected the following parameters using 4-fold cross validation. The RPR

boundary parameter r has been set to 0.55. SURF features have been computed using 5 octaves and,

for each octave, the number of scale levels has been set to 4. To compute PHOG features, edges are

extracted using the Canny operator, while orientation gradients are computed using a 3× 3 Sobel mask.

The extracted HOG features are quantized in 9 bins at 4 levels of the spatial pyramid. The normalization

weight vector λ has been set to [0.5, 0.3, 0.2]. The tolerance σ has been set to 4 pixels and t = 500 trials

are performed to compute H . The matching threshold Ths has been set to 0.85. To show the performance

of the method we report the results as ROC curves and normalized Area Under Curve (nAUC) values.

The algorithm has been tested on a standard PC with P4 CPU 2.0GHz, 1GB RAM, Windows XP

and on a Tablet with ARMv7 processor 1GB RAM, Android 4.2.2. In the first test with non-optimized

August 9, 2013 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

α 0 0.25 0.28 0.5 0.75 1

RPR

Detection

0.7927 0.8110 0.8320 0.7485 0.6917 0.6281

No RPR

Detection

0.6368 0.6572 0.6635 0.6470 0.6341 0.6290

TABLE I

AVERAGE NAUC VALUES FOR DIFFERENT VALUES OF ALPHA (FROM 0 TO 1 WITH STEPS OF 0.01). BEST RESULTS ARE IN

BOLDFACE FONT.

Rotation 0° 45° 90° 135° 180° 225° 270° 315°

RPR Detection

Scale = 0.5 0.9223 0.8025 0.8918 0.7178 0.9020 0.6708 0.8949 0.7518

Scale = 0.75 0.9243 0.8049 0.9032 0.7158 0.9128 0.7010 0.8986 0.8209

Scale = 1 0.9258 0.8233 0.9138 0.7188 0.9180 0.7044 0.9053 0.8226

No RPR Detection

Scale = 0.5 0.8130 0.5502 0.7015 0.5492 0.6810 0.5476 0.7963 0.6133

Scale = 0.75 0.8104 0.5529 0.7023 0.5510 0.6966 0.5498 0.8082 0.6214

Scale = 1 0.8244 0.5655 0.7026 0.5738 0.7082 0.5585 0.8144 0.6329

TABLE II

NAUC VALUES COMPUTED FOR TEST IMAGES SCALED TO 1/2, 3/4 AND 1/1 OF THE ORIGINAL SIZE AND ROTATED FROM

0°TO 315°(STEPS OF 45°).

MATLAB code the average recognition and registration time for a single frame is 0.591s, while in the

latter with optimized code the same activities take 0.632s.

In Table I, we report the nAUC values computed as a function of the similarity normalization weight

α. Each value is computed averaging all the results computed for images scaled to 1/2, 3/4 and 1/1 of

the original image size and for different image rotations from 45° to 315°, with intermediate rotations of

45°. The best results are achieved for α = 0.28: in the following experiments such value has been used.

In Fig. 3 we show the performance of our method without using the RPR detector. In Fig. 3(a) results

are shown as a function of the rotation of the test images. The original scale has been used. The method

achieves reasonable results for rotations multiple of 90°. The performance decreases in the other cases.

This is probably due to the changes occurring in the oriented gradients used to compute the PHOG

features. On average, a true positive rate of 49% is achieved for a false positive rate of 20%. In Fig. 3(b)

results for different image scales are shown. Thanks to SURF invariance properties and the pyramidal

approach used to compute PHOG, the performance are not much affected by the scaling issues. In such

scenario, an average true positive rate of 67% is achieved for a false positive rate of 20%.
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Fig. 3. Recognition performance computed without using the relevant region detector module. In (a) test images are rotated

by multiples of 45°. In (b) test images are not rotated but their scaling factor has been changed.
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Fig. 4. Recognition performance computed using the relevant region detector module. In (a) test images are rotated by multiples

of 45°. In (b) test images are scaled down using multiple reduction factors.

In Fig. 4 we show the performance of our method using the RPR detector. In Fig. 4(a) results have

been computed for different rotations to the test images as in Fig. 3(a). On average, a 71% true positive

rate is reached for a false positive rate of 20%. Though, the worst results are reached for rotations of
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135°and 225°, where a true positive rate of about 59% is reached for the same false positive rate of

20%. If compared to the results shown in Fig. 3(a), a significant improvement has been achieved. Most

importantly, the performance has increased of about 33% for a false positive rate of 0%. In Fig. 4(b) the

results are computed varying the scale of test images. If compared to Fig. 3(b), an average improvement

of 37% is achieved for a false positive rate of 0%.

In Table II we report the results of our method in terms of nAUC values. We consider images scaled

to 1/2, 3/4 and 1/1 of the original image size and rotations from 45° to 315° (with steps of 45°). The

first three rows show the results of our method using the proposed RPR detector, while in the last three

rows results have been computed without using the RPR detector. For both such cases the best results

are achieved when the original image size is kept and no rotation is applied. However, using the relevant

region detector, performance increases of more than 17% on average. In particular, for rotation of 90°and

180°, an average increment of 20% is achieved.

VII. CONCLUSIONS

In this work a marker-less method for painting recognition and registration that supports mobile AR

applications has been proposed. A RPR detector is used to extract only the relevant painting region. The

RPR is then considered to extract local features that are matched with a candidate target using RANSAC.

The homography transformation output from RANSAC is applied to transform it to the candidate target

RPR. This allows to robustly extract global features that are finally used, together with local features, to

compute the match between the current frame and the candidate target. Once a valid match is detected,

RANSAC homography transformation is used to overlay the additional content to the current frame. The

method has been evaluated using a dataset of publicly available images showing significant improvements

to standard feature-based matching techniques.

As future plans we will collect more images to evaluate our method against a larger database. To

improve the painting recognition performances, we will also investigate novel approaches that allow to

identify mobile users locations within indoor environments.
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