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Abstract—In this paper, the problem of the surveillance and
the security of indoor environments is addressed through the
development of an autonomous surveillance vehicle (ASV). The
ASV has been designed to perform, in addition to the classical
robotic tasks (e.g., navigation and obstacle avoiding), the tracking
of objects (e.g., persons) moving in indoor environments. The
selection of the target object to be tracked can be decided by a
remote operator or autonomously by the ASV itself in the case that
a suspicious behavior has been detected (e.g., a person entering a
forbidden area, etc.). The tracking procedure allows the ASV to
maintain the interesting objects in the center of the image and in
specific cases to localize particular parts of the object (e.g., face of
a person, etc.) in order to recognize it. Experimental results have
been performed on different real scenarios where no objects move
inside the monitored scene and where a group of people move in a
hallway.

Index Terms—Autonomous vehicle, face detection, object track-
ing, video surveillance.

I. INTRODUCTION

THE RESEARCH done over the past few years in the field
of mobile vision has been on many fronts: aircraft [1],

[2], autonomous underwater vehicles [3]–[5], and autonomous
guidance vehicles (AGVs) moving on the ground [6], [7]. Cer-
tainly, the work done on guidance of ground vehicle represents
a great part of the research in the context of mobile navigation.
In particular, two streams of research can be distinguished in
this field on the basis of the context in which the systems are
involved: outdoor and indoor navigation.

Regarding the navigation for outdoor vehicles, we could
count many works made for the guidance as represented by
the NAVLAB system [9], [10] for establishing the position and
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the boundaries of the roads, the work on vision-guided road-
following for “Autobans” [11], [12], the Prometheus system
[13], and the navigation on unstructured environments [14].

More interest has pointed toward indoor navigation, and in
the last few years, much work has been done. From the first
systems, like those proposed by Giralt et al. in 1979 [15] and
by Moravec in [16], many systems have been developed. For
further details on indoor navigation systems, see [17].

Recently, some researchers analyzed the problem of employ-
ing AGVs for surveillance purposes in both outdoor and indoor
environments. In [18], Lipton and co-workers employed an
airborne platform and ground vehicles to develop a multicamera
system to monitor activities in cluttered outdoor environments
using a distribution network of fixed and mobile sensors.

The video surveillance has certainly played a paramount role
in the research of the last decade in which many systems have
been proposed [19]–[24]. The application of video surveillance
has a high range of purposes, from traffic monitoring [25], [26]
to human activity understanding [27], [28]. Video surveillance
applications often pay attention to a wide area, so different
kinds of cameras are generally used, e.g., fixed cameras [21],
[23], [24], omnidirectional cameras [8], [29], [30], and pan and
tilt cameras [18], [31]–[34].

The use of these kinds of cameras requires that the number
and the placement of the sensors must be fixed in advance to
ensure an adequate monitoring coverage of the area of interest.
In the context of visual-based surveillance applications, there
are many conditions for which deciding a priori the placement
of sensors puts limits on system performance or significantly
increases the costs due to extensive use of sensors. We refer,
for example, to those cases in which an alarm situation can
occur with the same probability in any area of the monitored
environment or to those situations that require the tracking
of mobile objects in wide areas (e.g., a vehicle moving on a
road or a people moving in a building). In these situations,
especially in the context of indoor environments, the employ-
ment of mobile robots equipped with specific visual sensors
for surveillance purposes can become an important issue. The
integration of a mobile robot in a visual-based surveillance
system can allow the coverage of all types of environments, can
extend the perceiving capabilities of the system (e.g., acquire
images of higher quality by reducing the distance from the
camera to the target), and can furnish to a remote operator an
augmented reality of the observed scene (a target can be ob-
served from different points of view according to its position or
trajectory).
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In this paper, we have pointed our attention to the problem
of the surveillance and the security of indoor environments,
and to achieve these purposes, an autonomous surveillance
vehicle (ASV) has been designed and developed. The ASV is
able to perform, in addition to the classical robotic tasks (e.g.,
navigation in an indoor environment by avoiding obstacles), the
tracking of mobile objects (e.g., persons). The selection of the
target to be tracked can be decided by a remote operator or
autonomously by the higher level modules of the system when a
suspicious event is detected. Since the focus of the current work
is not on target selection, the reader can assume without loss
of generality that the target is manually selected. The tracking
procedure allows the system to maintain the interesting objects
in the center of the image and, in specific cases, to localize
particular parts of the object (e.g., face of a person, etc.) in order
to recognize it.

The use of video cameras placed on a mobile vehicle signif-
icantly increases the complexity of both detection and tracking
of mobile objects in the scene. The detection requires the
development of appropriate methods that are able to take into
account the ego-motion of the camera in order to apply change
detection techniques. While some benefits can result from the
use of stereo systems [53]–[55], this paper is concerned about
monocular systems, in which frame-by-frame-based techniques
are generally applied to estimate the displacement of two
consecutive frames due to the motion of the camera [14],
[32], [35], [56], [57], [59]. An image compensation is then
applied in such a way that static objects exactly overlap the
same objects in the previous frame. A frame-by-frame image
subtraction is then applied, and the classical object detec-
tion techniques can be used as in the case of fixed cameras
[23], [36]. However, these techniques demonstrate some limits
in presence of outliers (i.e., object moving in the scene) [37]
or when few features are extracted in the image sequence and
cannot be applied in the case of a camera mounted on a mobile
vehicle. The proposed ASV is able to detect moving objects by
means of a direct method [3], [38], [39], [60] by computing the
affine transformation for the alignment of the two consecutive
frames.

The tracking of mobile objects in the monitored scene re-
quires the ASV to move autonomously in such a way that the
tracked object appears in the center of the current image. This
constraint is necessary in order to simplify the work of the
higher level modules in charge to classify the detected object,
understand its behavior, or localize and recognize specific parts.
To this end, a Kalman-filter approach has been employed to
estimate in real-time the appropriate motion parameters of
the ASV.

II. SYSTEM DESCRIPTION

The proposed system has been build for performing two main
activities: vision and control (Fig. 1). The vision process aims to
identify all objects moving in the scene and to verify which one
must be considered the most important to monitor. To achieve
this objective, a motion detection module, a tracking module,
and face recognition module are involved.

Fig. 1. System architecture.

The motion detection module aims to solve the problem of
the detection of moving objects in the scene. This problem
has been addressed by applying an image differencing tech-
nique after the alignment of two consecutive frames I(x, t)
and I(x, t + 1). The thresholded output [36] of this process
is a binary image B(x, y) representing the pixels belonging
to moving objects. Then, B(x, y) is analyzed to group pix-
els belonging to the same object according to a bounding
ellipse.

Once the objects have been identified, a tracking module
is applied to maintain track of their movements. By main-
taining the objects inside the field of view of the camera,
the ASV is able to perform face detection and recognition
tasks. This is allowed by a face-detection algorithm that, by
receiving the bounding ellipses of mobile objects, is able to
detect the face pattern of the monitored person. Finally, the
pattern is given as input to a face recognition module for the
analysis.

The results performed by the tracking module are also used to
supply the position of the object to the motion control module.
This process of the ASV is performed by two separate modules:
the navigation and the motion control modules. Through these
modules, the system aims to identify the proper actions that
must be sent to the ASV. The navigation task fetches from
the ASV the distances of possible obstacles performing a first
computation about the self-localization inside a map. To build
the map, two main approaches can be taken into account:
map-based [40], [41] and map-building-based [42], [43]. The
map-based technique works on topological maps previously de-
fined instead, and the map-building approach involves sensors
to construct their own topological maps. The self-localization
allows the avoidance of obstacles by computing the metrical
distances and the movements of the ASV. Since the control
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Fig. 2. General architecture of the motion detection module with direct
methods and change detection.

activity is not the objective of this paper, see [17] in order
to obtain further details regarding techniques for mobile robot
navigation.

In the following section, the vision activity will be described
in detail by presenting the solution adopted to detect the
motion, to track the moving objects, and, finally, to detect and
to recognize people moving into indoor environments.

III. MOTION DETECTION

The main activity of this module is the detection of mobile
objects inside the scene: a task that cannot be easily solved if
a mobile camera is used. The problem consists of the identifi-
cation of the motion due to the camera actions and the motion
of moving objects. The proposed solution, as shown in Fig. 2,
is given by applying a direct method [3], [38], [60] to compute
the affine transformation for the alignment of two consecutive
frames.

From the equation of the optical flow given by Horn and
Schunk in [44]

Ixνx + Iyνy + It = 0 (1)

where Ix, Iy , and It are the spatial and temporal derivatives of
the brightness intensity, and νx and νy are the components of
the displacement, and by considering the equation of the affine
displacements, we obtain the equation of the affine flow

Ix(a11x + a12y + a13) + Iy(a21x + a22y + a23) + It (2)

and it is possible to define a linear system by considering the
(2) for each pixel of the image as follows:




Ix,1x1 Ix,1y1 Ix,1 Iy,1x1 Iy,1y1 Iy,1

Ix,2x2 Ix,2y2 Ix,2 Iy,2x2 Iy,2y2 Iy,2

...
Ix,nxn Ix,nyn Ix,n Iy,nxn Iy,nyn Iy,n




︸ ︷︷ ︸
A

×




a11

a12

a13

a21

a22

a23




︸ ︷︷ ︸
x

=




−It,1

−It,2

...
−It,n




︸ ︷︷ ︸
b

. (3)

Equation (3) can be written in closed form as ATAx = ATb
to compute the parameters (a11, a12, a13, a21, a22, a23) of the
affine transform. Not all the pixels supply enough information
to the computation of these parameters; this is the case of pixels
in which both spatial derivatives are equal to zero. Therefore,
the proposed method takes into account only those pixels whose
gradient is greater than a threshold TPG

∇I(x, y) ≥ TPG. (4)

The value of the threshold TPG is automatically set by using
a thresholding technique [36] that allows a reduction of 20%
the number of pixel involved in the computation of the affine
transform. This implies both a lighter computational load and a
smaller error in the solution of (3).

Since the equation of the optical flow holds only in the neigh-
borhood of the considered point, the affine flow can be com-
puted accurately only if the displacement between two images
is minimal. To overcome this constraint we have adopted two
techniques: a) iterative alignment and b) pyramids alignment.

A. Iterative Alignment

The common solution to the problem of the alignment in
context of wide displacements is adopting an iterative method.
For example, the well-known Newton–Raphson scheme can be
employed, but the efficiency of the iteration method does not
guarantee a real-time processing. Therefore, two heuristics have
been studied to speed up the iteration. The first consists in the
initial Cholesky factorization of the matrix ATA in order to
avoid an expensive factorization at each iteration, which is not
needed since such a matrix does not change during iterations.

The second is represented by the initialization of the itera-
tive process. In particular, by noting that consecutive frames
have a high temporal correlation, the parameters of the affine
transform are initialized to the values computed in the previous
frame. Therefore, the system starts the iterative computation
from an initial estimation of the affine motion that is repre-
sented by the affine transform computed at the previous frame.
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In order to reduce the errors in the parameters computation, the
initialization is periodically set to zero (i.e., in the experiments
the period adopted is of about 25 frames). The proposed algo-
rithm with the adopted heuristics is therefore the following.

Algorithm 1 Iterative Alignment. The alignment process
proceeds until ∆a is sufficiently smaller than a threshold Thr.

a[t] = a[t − 1]
L = Cholesky(ATA)
Repeat

Solve (LLT∆a = ATb)
a[t] = a[t] + ∆a
I(t) = Transform(a, I, t)

Until (∆a < Thr)

B. Pyramidal Alignment

Since the iterative method, which has been adopted in con-
text of wide displacement among the frames, requires a high
number of iterations, we propose an alignment method based
on multiresolution images. In particular, a pyramid of images
is represented by different levels, each characterized by the
original image at a different resolution. The scaling factor of
the level follows a logarithmic law so that the number of levels
is defined by the logarithm of the presumed displacement.

The proposed alignment method starts to compute the para-
meters of the affine transform at the highest level (i.e., the level
corresponding to the image with lower resolution) and ends at
the lowest one. At each level, a new iterative process for the
alignment computation is started by initializing the parameters
to the value obtained at the previous level. Doing this, due to
the scaling factor, we must take care to multiply the parameters
a13 and a23 (translations) by 2 while not changing the other
parameters.

When the displacement is small, the pyramids approach is
unfavorable since the standard iterative method would converge
to the solution in fewer steps. Therefore, the number of pyramid
levels is heuristically estimated at each time instant by taking
the logarithm of the displacement computed for the previous
frame.

A further problem during the alignment phase is represented
by those pixels belonging to moving objects that are involved
in the computation of the affine transform. We consider these
pixels as outliers since they violate the model of the affine
flow and are not described by a Gaussian model of noise like
pixels belonging to static objects. In order to give minor weight
to the equation of the linear system described in (3) corre-
sponding to the outliers, we have employed a robust estimator.
The choice of the iteratively reweighted least square (IRLS)
[45] as robust estimator allows us to maintain the structure of
the described method. With this estimator, the linear system
ATAx = ATb becomes ATWAx = ATWb, where W =
diag(w1, . . . , wn), and the weights wi are computed by the
estimator as follows:

wi = w(xi) =
ρ′(xi)
2xi

(5)

Fig. 3. Result of the alignments. Top row shows a test frame, and middle
and bottom rows show the results obtained by the change detection algorithm
executed on the alignments performed, respectively, by the least squares and
the IRLS methods. The moving person inside the test frame has finally been
highlighted with a bounding ellipse.

where xi is the residual of the pixel i, and ρ′ is the first
derivative of the Lorentzian estimator function ρ defined as

ρ(x) = log
(

1 +
1
2

(x

σ

)2
)

(6)

where σ is equal to a constant scaling factor. Fig. 3 shows the
results of the proposed alignment methods for a test frame.

Once the alignment phase has been successfully executed,
a change detection operation is applied on the two considered
frames in order to detect the moving pixels. The resulting binary
image is then processed by a seeded region growing technique
[46] (the moving pixels are the seeds) in order to find clusters
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Fig. 4. Example of iterative computation of the shape analysis on the spline
contour related to the detected objects. (a) A sliding window is moved to detect
a face on the basis of the shape analysis. (b) The sliding window is shown when
a face is detected. (c) The next time instant the procedure continues skipping
the contour classified as belonging to a face.

of moving pixels. The resulting cluster are then supposed to
represent a single moving object. For each cluster, spatial and
central moments are computed in order to find the center of
mass and the bounding ellipse of the cluster, as shown in
Fig. 3.

Sometimes the assumption that each cluster corresponds to
a single object does not hold; for example, two objects that
become very close each together can be erroneously enclosed
in a single cluster. The system is robust to this kind of errors if
the errors appear in a small number of consecutive frames, since
in this case, the noisy data are filtered out by the Kalman filters
described in Section IV. However, some sequences can show
different objects moving together for a relatively long time,
e.g., this is the case of a group of two or more people walking
together. Since this is a common case for a system tuned to track
people as the one proposed in this paper, an ad hoc algorithm is
proposed in order to handle such situations.

The possible presence of multiple people inside the cluster
can be hypothesized looking at the geometry of the bounding
ellipse: If the ratio between the major and minor axis falls below
a given threshold, the ellipse is assumed to be large enough
to possibly contain more people. In such a case, the upper
contours of the detected blobs are processed in order to compute
a spline contour of the moving objects. A shape analysis method
(described in Section V) is iteratively applied on a sliding
window that moves along the spline contour. Once the shape
analysis method returns a high probability of a face inside the
current window, the position is recorded as corresponding to
a face, and the process continues skipping the detected face
contour belonging to the current window. In Fig. 4, an example
of such a computation is shown.

A region segmentation algorithm [58] is then applied on the
region of the frame where motion was detected, in order to
subdivide the images of the moving people in regions of similar
colors. These regions are then clustered together on the basis of
the horizontal distance of their barycenter from the faces. This
way, an approximate silhouette of each person is extracted, and
the original cluster can be split in several moving objects, as
shown in Fig. 5.

IV. OBJECT TRACKING

The main goal of the tracking module is to estimate at
each time instant the position that the center of mass of the
tracked object will assume at the next instant. In this way, the
system can determine the motion required to maintain the target

Fig. 5. People detection inside a group. First row: Original sequence; second
row: the result of the segmentation algorithm; third row: face and body
detection; last row: bounding ellipses for each person composing the group.

at the center of the image. The problem has been addressed
by adopting a Kalman filter based on a rectilinear motion
model. The state vector X(k) = [xc(k), yc(k), ẋo(k), ẏo(k)]T

represents the coordinates of the center of mass (xc, yc) and
the speed of the object into the image plane (ẋo, ẏo). The
displacement of the center of mass among two time instants
is defined as follows:

∆xc = ẋo∆t + ẋt∆t

∆yc = ẏo∆t + ẏt∆t (7)

where ∆t is time interval between the measurements. The
vector [ẋt, ẏt]T represents the apparent speed of the object
due to the camera motion, and it is computed from the affine
transform parameters as follows:

ẋt = a11xc + a12yc + a13

ẏt = a21xc + a22yc + a23. (8)
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Therefore, the process model of the Kalman filter has been
defined by the following state equation:


xc(k)
yc(k)
ẋo(k)
ẏo(k)




︸ ︷︷ ︸
X(k)

=




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
A




xc(k − 1)
yc(k − 1)
ẋo(k − 1)
ẏo(k − 1)




︸ ︷︷ ︸
X(k−1)

+




∆t 0
0 ∆t
0 0
0 0




︸ ︷︷ ︸
B

(
ẋt(k)
ẏt(k)

)
︸ ︷︷ ︸

u(k)

+ ωk (9)

and by the measure equations(
x̂c(k)
ŷc(k)

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

H

(
xc(k)
yc(k)

)
+ υk (10)

where (x̂c, ŷc)T is the position of the blob center. The quantities
ωk and υk represent, respectively, the process and measure
errors and have been considered as Gaussian noises with zero
mean and covariance matrices Q and R.

The Kalman-filter process is defined trough its prediction and
updating phases as follows:

PREDICTION

x̂−
k = Ax̂k−1 + Bûk

P−
k = APk−1AT + Q

UPDATING

Kk = P−
k HT

(
HP−

k HT + R
)−1

x̂k = x̂−
k + Kk

(
zk − Hx̂−

k

)
Pk = (I − KkH)P−

k .

Before applying the Kalman filter, some parameters must
be initialized: 1) the status vector X(0); 2) the covariance
matrices R and Q related to the noise affecting the dynamic
and measure systems, respectively; and 3) the covariance matrix
P(0). The covariance matrices are initialized by considering
the expected motion. Therefore, since the matrix P(0) will
be updated by the filtering process, greater importance has
been given to the initialization of the matrices R and Q. In
particular, the following matrices have to take into account:
the measurement error and the process error, respectively. To
this end, the initialization is based on the results obtained by
Arsenio and Victor in [47] and by Kohler in [48], with the
following setup of the covariance matrices:

Q =
a2

c∆t

6

(
2I∆t2 3I∆t
3I∆t 6I

)
and R =

(
σ2

x 0
0 σ2

y

)
(11)

where ac = 12 pixel/frame2 is the spectral amplitude of the
white noise that defines the object acceleration, and σ2

x and σ2
y

are the error variances that could be experimentally estimated

simply by considering that the ground truth position of the
center of mass generally falls inside the computed bounding
ellipse. Let us suppose that the ellipse axes are parallel to the
image axis; then, by assuming a and b as the length of the two
axes, we obtain

σ2
x =

a2

4
and σ2

y =
b2

4
. (12)

Furthermore, by considering the rotation of the bounding
ellipse of an angle θ, we give a new definition of the covariance
matrix R′ as follows:

R′ =


 a2

4 cos2 θ + b2

4 sin2 θ
(

a2

4 − b2

4

)
cos θ sin θ(

a2

4 − b2

4

)
cos θ sin θ b2

4 cos2 θ + a2

4 sin2 θ




= MRMT (13)

where M is the rotation matrix. The covariance matrix R′ is up-
dated at each time instant by considering in its computation the
parameters (a, b, θ) related to the bounding ellipse computed at
the previous step.

The proposed filter is well suited to track the position of a
single object and should be applied to every object detected
with the procedure described in Section III; this means that
every object has its own vector state and Kalman matrices.

V. FACE DETECTION AND RECOGNITION

To address the problem of face detection and recognition, the
proposed method (see Fig. 6) processes the bounding ellipse
with a shape analysis method. The objective of this computation
is to identify the upper silhouette of the considered blob in
order to limit further computations to a restricted region of
interest (RoI). Once the area of interest has been determined,
three different face-detection modules are applied, each one
based, respectively, of the following techniques: 1) principal
component analysis (PCA); 2) neural networks; and 3) skin
regions. Therefore, a fusing process gives an estimation of
the face position by exploiting the results of the single face
detectors and by considering a temporal tracking information
carried out by a Kalman filter process.

The PCA module extracts all the possible patterns from the
area of interest and projects each of them to a face space that
has been built considering the AR face [49] and by adopting an
eigenfaces technique. Precisely, since objects can appear in the
image at different scales (due to zoom level or to the distance
from the camera), we have introduced a heuristic based on
planes of depth corresponding to three different scales on which
the PCA method has been trained. In particular, we trained the
PCA by scaling the images from the AR database [49] to obtain
the following template dimensions: 20 × 24, 30 × 36, and
40 × 49 (see Fig. 7). Once the object has been detected and its
bounding ellipse computed, the pattern dimension is selected
on the basis of the ellipse area A using the following rule:

Depth =

{ 0, if A < th1

1, if th1 ≤ A < th2

2, if th2 ≤ A
(14)



MICHELONI et al.: AUTONOMOUS VEHICLE FOR VIDEO SURVEILLANCE OF INDOOR ENVIRONMENTS 493

Fig. 6. General architecture of the face-detection and recognition module.
Displayed results have been computed on a PETS2002 [62] sequence.

Fig. 7. Example of the three depth at which three different templates for the
PCA method have been associated. (a) When the object is far from the camera,
the search proceeds on pattern of dimension 20 × 24. (b) When the object is at
a medium distance from the camera, the adopted pattern has size of 30 × 36.
(c) When it is close to the camera, we adopted a search pattern of 40 × 49.

where depth 0, 1, 2 correspond, respectively, to the three
template dimensions, and th1 and th2 are two experimentally
determined thresholds (i.e., we adopted th1 ∈ [8500, 9000] and
th2 ∈ [9500, 10 000] pixels).

Let y be the projection in the PCA space of the unclas-
sified pattern x, x the main face computed on the database
patterns, and M the number of meaningful eigenvectors con-
sidered. The distances ε2 and d2 of y from the face eigenspace

Fig. 8. Outline analysis with neural networks.

(DFFS—Distance From Face Space) and inside the eigenspace
(DIFS—Distance In Face Space) are, respectively, defined as

ε2 = ‖x− x‖2 −
M∑
i=1

y2
i

d2 =
M∑
i=1

y2
i

λ2
i

. (15)

Finally, an error measure representing the closeness of the un-
known pattern x to a face pattern has been defined as

εdist = d2 + cε2 (16)

where c = (1/kλM ) represents a scaling factor, k ∈ [1, . . . , 5]
is an experimentally defined constant related to the grade of
diversity among the training patterns and the unknown pattern
(i.e., different types of environment where the algorithm is
applied), and λM is the minimum eigenvalue. The error εdist

is finally thresholded to detect the center of the face box. If
its value is lower than the threshold, no face box is returned;
otherwise, a box of the selected dimensions centered in the
current position is returned.

The neural network method applies a multilayer perceptron
(MLP) neural network trained by a back-propagation algorithm
with the n coefficients of a B-spline which approximates the
upper blob shape. A number of n = 20 coefficients has been
determined experimentally. The neural network has four pos-
sible output classes. Each class represents a possible position
of the head in the upper part of the blob (see Fig. 8). The
neural network architecture is defined by a full-connection
MLP structure composed of 20 input units representing the
spline coefficients, 40 hidden units, and four output units, each
one related to the probability of the presence of a face in a spe-
cific zone.

The last face detector employed by the system adopts a
filter based on the Cb–Cr color space [50]. The skin regions
are detected by applying the filter on the RoI and by further
polishing the results by means of morphological operators. In
order to address the problem relative to multiple skin regions
(head, arms, legs, etc.), a selection based on the position and
dimension of the skin region boxes is performed. In particular,
if the box dimensions are too small with respect to the size of
the blob of the person, or the region is found in a position too
low with respect to the normal position of the head, then the
box is discarded.
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The results obtained by each localization method are than
processed by a position estimation module. At this step, a
unique location of the head is computed by applying an infor-
mation fusion technique [51]. In addition, since the localization
process of the face may be corrupted by occlusions or errors
derived by the change detection technique, a face tracker based
on a Kalman filter has been developed [47]. Once the pattern
of the face has been determined, the principal components are
extracted, and the recognition technique proposed in [52] is
applied.

VI. EXPERIMENTAL RESULTS

The proposed method has been tested on sequences acquired
in an indoor environment. Several experiments have been
executed following a strategy that involves an increasing
complexity for the tests. The sequences used for the tests have
been acquired by a Cohu 3812 charge-coupled-device camera
mounted on a Robosoft Pioneer 2-DXe mobile indoor platform
and are characterized by images of 320 × 240 pixels. The tests
have been performed on a laptop equipped with an Athlon
2000 + processor and 256 MB of RAM.

A. Motion Detection in Empty Scenes

The first group of tests was performed in order to justify
the choice of an affine model of motion and involved the
processing of sequences with no moving objects. The presence
of false positive results (detection of moving objects) in these
tests would be a clear evidence that the affine model is not
suitable for a mobile system. In order to numerically evaluate
the performance of the affine registration algorithm, a measure
related to the logarithmically weighted mean of the intensity
values in the difference images was adopted:

E =
∑

i gi log pi∑
i log pi

where gi are the gray values present in the image, and pi is the
number of pixels with intensity value gi. Since the tests do not
involve moving objects, the difference image should ideally be
black, and the error measure should be equal to 0.

The first problem with the affine model is that it cannot model
the convergence and chirping effects introduced by the rotations
of the camera [61], and these effects are more and more evident
as the field of view increases. A more suitable model would be
the pseudoperspective one

x′ = a1x + a2y + a3 + a7x
2 + a8xy

y′ = a4x + a5y + a6 + a7xy + a8y
2.

Both the affine and the pseudoperspective models have been
applied to sequences where the camera rotates with a big field of
view. Fig. 9 shows one of these sequences and Fig. 10 shows the
error E in both cases. It can be seen that the pseudoperspective
model gives only a small increment in system performance,
while it has some serious drawbacks: It is computationally
more expensive since it has eight parameters to be estimated
instead of the six of the affine model and sometimes causes the

Fig. 9. Frames 0–130–260–400 of the rotational sequence used for the evalu-
ation of the affine model.

Fig. 10. Alignment error for affine and pseudoperspective models.

Fig. 11. Frames 0–50–100–140 of the translational sequence for the parallax
error analysis.

nonconvergence of the registration algorithm, probably due to
the amplification of error noise in the quadratic terms.

Another important problem with the affine (and pseudoper-
spective too) model is that it cannot handle the presence of
parallax movement, which arises when the camera translates
and the scene is not planar. While this is true, it is also true that
the parallax movement is negligible when the distance of the
objects from the camera is much longer than the translation of
the camera between the acquisition of two consecutive frames;
this means that the alignment error is proportional to the camera
speed.

A test was made on a translational sequence (shown in
Fig. 11) involving a typical hallway scene. The sequence was
obtained moving the camera at the speed of 0.20 m/s and was
then processed at full frame rate, taking one frame every two
and taking one frame every four, thus simulating a speed of 0.40
and 0.80 m/s without the need of using a different sequence.

The alignment error E is shown in Fig. 12. It can be seen
that the error increases with the increment of speed, but the
system never recognizes false positives, thus still giving good
results. We estimate that the system can perform well in such an
environment with a camera speed up to 1 m/s. For faster speeds,
the parallax error becomes nonnegligible, thus imposing an
upper limit to the speed of the mobile system. If a faster object
has to be followed, it is possible to partially overcome this limit
by using the camera zoom, which is an affine transform and
does not introduce parallax movement.

In all the tests presented above, the number of iterations
needed for the convergence of registration algorithm was al-
ways very small—ranging from one to four iterations per frame.
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Fig. 12. Alignment error in the translational sequences [(a) slow, (b) medium, and (c) fast].

Fig. 13. Object detection on frames belonging to a test sequence.

B. Object Detection

The second phase in testing the motion detection module has
been executed on sequences in which at least one object moves
inside the monitored scene. In this context, multiple types of
camera motion have been taken into account considering two
types of motion for the moving objects: a tangent motion in
which the trajectory of the object is orthogonal to the optical
axis and a radial motion in which the object moves toward or
away from the camera.

This phase has revealed a good behavior of the system since
the object detection has been successful in 97.4% of the frames.
It is worth noting that the remaining 2.6% of the cases in which
the detection failed are related to spots and not to continuous
frames.

For these tests, the mean value of the error E is equal to
12.58, which is close to the performances obtained in context
of no moving objects. We should focus the attention on the
method used to compute this value. Since, in this context, the
computation of the error also in the area of the object would
alter the results, the area described by the bounding ellipse
has been removed from the computation of the parameter E.
Regarding the number of iterations needed to converge, the
value of 1.92 is again very close to results obtained with empty
scenes. An example of object detection for a test sequence is
shown in Fig. 13.

C. Object Tracking

To test the performance of the object tracking module, three
people have been asked to process the test sequences in order to
define the ground truth position of the moving person barycen-
ter. Then, the ground truth position for each frame has been
computed as a mean of the position marked by each person.

The result obtained in context of tangent motion points out a
good level for the performance of our method. For these kinds
of sequences, the mean error in the estimation of the barycenter
is equal to 20.85 pixels. This error is principally due to the ver-
tical component, while if we consider only the estimation error
performed on the horizontal axis, the performance increases by
reducing the value to 12.18 pixels. This is a good behavior,
considering the motion involved in this type of sequence.

Regarding the radial motion, the global error has been equal
to 16.43 pixels, which is lower than the error performed on the
previous sequences. Also, in this context, by considering only
the horizontal component, the error decreases to 9.66 pixels.

Globally, the object tracking module has supplied good
results, allowing us to maintain the object near the center of
the image for the majority of the frames belonging to the test
sequences. An example of the results obtained by the object
tracking module can be seen in Fig. 14.

D. Face Detection and Recognition

The proposed method has been tested on the images and,
in particular, on the bounding ellipse returned by the motion
detection module. Several people movements have been taken
into account during the acquisition process. The predicted error
(PE) metric selected to assess the algorithm efficiency is the
Euclidean distance between the center of mass calculated by
the system and the ground truth one.

In these tests, three people have been requested to mark the
position of the barycenter of the face by pointing to it with the
mouse.

The mean PE value is equal to 2.63. This is a good result
if we consider the problems related to indoor environments.
In particular, the system must deal with reflection due to the
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Fig. 14. Example of object tracking. The chart plots the (a) vertical position and the (b) horizontal position of the barycenter of the rightmost person in Fig. 13,
as marked by the testers (dotted line) and estimated by the tracking module (continuous line).

glass that surrounds the passageways. These problems reflect
on the goodness of the face-detection methods employed. In
addition, when occlusions appear on the face patterns, the pro-
posed method cannot be applied, and the system keeps tracking
the position of the face by means of Kalman estimation. This
information can be exploited by the control subsystem to plan
the robot motion for reducing the occlusions.

The small PE value has allowed the execution of the identifi-
cation of good patterns that often were brought to the center
of the face. Although the identification has been applied on
good patterns, the obtained results have demonstrated that
this field of computer vision has not yet reached an optimal
solution. Only in 73% of the cases on over 103 frames was the
identification correct. This quantity increases if we consider the
percentage of people correctly identified through the sequences.
The percentage of success in this case has been equal to 80.9%.

VII. CONCLUSIONS

In this paper, the use of an autonomous vehicle, called ASV,
for the surveillance and monitoring of indoor environments
has been exploited. The ASV has been specifically designed
to help a remote operator in monitoring wide indoor areas.
For such purposes, it is able to move around a specific indoor
environment (e.g., a building) and to track moving people. The
selection of the target object to be tracked can be decided
by the remote operator or autonomously by the ASV itself in
the case that a suspicious behavior has been detected (e.g., a
person entering a forbidden area, etc.). Additional surveillance
procedures like face detection and recognition of interesting
target persons can be performed by the ASV.

Several experiments on indoor sequences have demonstrated
that the proposed ASV performs a robust detection of the
motion inside the monitored scene. Then, to achieve a good
identification of the mobile objects and to track them with
enough accuracy, the ASV maintains the objects inside the field
of view. Finally, the system shows a good face-detection rate for
further person identification.

Although the results appear promising, the constraints im-
posed still limit the exploitation of such a vehicle as a fully
autonomous surveillance system. In particular, the face detector
applied in cluttered environments does not guarantee optimal
performances, especially due to occlusions. Thus, the use of a
multiple camera network could be useful to solve the occlusions
and to improve the understanding of the monitored scene.
Moreover, the exploitation of an affine model as a registration

technique limits the maximum speed of the vehicle. Indeed,
when the speed remarkably increases, the parallax error cannot
be addressed by the proposed method. This problem can be
solved using additional information on the scene depth that
could be acquired by range sensors mounted on board. Hence,
future works concerning the study of cooperative algorithms
and the use of 2-D laser range sensors will certainly give the
robustness required to efficiently adopt the proposed ASV for
the surveillance of indoor environments.
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