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Abstract—In the last years, the research effort of the scientific
community to study systems for ambient intelligence has been
really strong. Usually, the systems developed so far base their
analysis on images acquired by automatic cameras. In this paper,
we propose a way to develop new smart systems that are able to
actively decide both what to see and how to see it. In particular,
the main idea is to tune the acquisition parameters on the basis
of what the system desires to acquire. The regulation strategy
is based on two camera parameters, focus and iris. It aims to
identify an optimal sequence of steps to enhance the acquisition
quality of an object of interest. To this end, a hierarchy of neural
networks has been employed first to select which parameter must
be regulated then to adjust it. The proposed solution can be
applied to both static and moving cameras. The results show how
the proposed technique can be applied to images acquired by a
moving camera with zoom capabilities for surveillance purposes.

I. INTRODUCTION

Modern visual-based surveillance systems [1]–[4] base their
analysis on the detection of moving objects. Different applica-
tion domains require different object detection techniques and
system settings. In the transportation field, vehicles are the
main object of interest for traffic monitoring purposes [5], [6].
Persons are fundamental for human activity analysis [7], [8],
then trajectories computed on such objects can be exploited for
behaviour understanding [9]. Usually, video surveillance ap-
plications imply to pay attention to wide areas, hence different
kinds of cameras are generally used, e.g, fixed cameras [10],
omnidirectional cameras [11] or moving cameras [12]–[16].
Recently, systems using moving cameras have been widely
considered thanks to their capacity of patrolling large sections
of the monitored area. Moreover, systems using these cameras
can look at what they need simply by controlling the motion
parameters to redirect the camera’s gaze. In the literature, such
systems are considered as belonging to the field of Active
Vision [17].

For all image processing systems, the quality of the acquired
image is an important feature for the image formation process.
In this research, we focus our attention on the determination
of the intrinsic camera parameters to enhance the image acqui-
sition quality. The idea behind this work is that controlling the
image acquisition quality is preferable than simply assessing
it [18]. Managing the image formation process with respect
to the current image processing tasks is better than designing
complex and robust image processing modules operating on
low quality images. This exactly fits with the definition of
Active Vision. More, such a concept is extended in such a way
that Active Vision is not just the interaction among the observer
and the sensors to actively decide what to see [17] but also
how to see it.

Following this new concept, Active Vision should mean
more than just using moving sensors. We want to expand

this concept by including techniques that allow to actively
control the quality of the image acquisition with respect to an
object of interest for image processing purposes. Actual digital
cameras consider only a restricted area around the centre of
the image to tune the optimal intrinsic parameters. In addition,
such techniques have the objective to improve the quality for
the humans perception. With this research we want to change
this perspective by keeping the objects of interest at the centre
of the tuning process. Hence, the proposed solution could be
useful in all the ambient intelligent tasks in which decisions
have to be taken automatically by intelligent processes. These
will take their decisions not on the basis of the perception
quality but on the objects’ appearance quality.

To achieve such a result, the proposed method adaptively
tunes two acquisition parameters (i.e., focus and iris) by
applying quality operators on the object of interest. The control
strategy is based on a hierarchy of neural networks trained on
quality operators values and camera parameters.

II. RELATED WORK

To better clarify the purposes of this research it is important
to understand which are the characteristics of good quality
images. Typically, good quality images have a high sharpness
degree with respect to focused objects [19]. If we analyse
these objects in the frequency domain, we see how their
edges are described by high frequency components while
smooth (defocused) zones are described by low frequencies
[20], [21]. Therefore, since images with high sharpness degree
mean focused images, the modern cameras technology aims
to maximise the high frequency components [22], [23].

Krotkov in [24] presented and tested various criteria for
computing the defocusing degree. Such criteria are all based
on quality functions that effectively play an important role in
determining the complexity and the efficiency of the solution.
These functions should present a set of desired characteristics
to be efficiently employed in a regulation strategy:

• The function should achieve the maximum (minimum)
value when the best quality is reached.

• The function should not present local maxima (minima).
• The function should be independent of the structure of

the objects inside the image.

In addition, the algorithms for increasing the image quality
should be evaluated considering the following rules:

• Unimodality: the function should have just a maximum
(minimum).

• Amplitude difference: the quality function should present
significant variation between optimum and poor quality.

• Range amplitude: the quality function should continu-
ously vary inside a considerable range of values.
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• Complexity: the implementation should be as fast as
possible.

• Generalisation: the solution should not consider or be
limited to particular cases.

The regulation process here proposed, to guarantee the
desired properties, is based on well known quality operators
like tenengrad, flatness, entropy, saturation, max/min grey lev-
els, luminance, maximum local difference, variance, etc. [25],
[26]. In particular, the work introduced by Murino et. al
[27], which uses different quality operators [28], has been
taken into account for the proposed solution. The operators
are linearly combined to produce a classification function for
the assessment of the image quality. The quality degree of
an image is given by a global quality monotonic descendant
function Q able to carry information about the global quality
of the image. To enhance the image quality, Q has to be
minimized.

The proposed strategy iteratively tunes an intrinsic parame-
ter among Focus, Iris aperture, Gain and Black level. Once a
parameter is set to a new position, a new image is acquired and
a new Q value is computed. If Q has decreased, the change
is accepted. Otherwise, the change is discharged and a new
parameter is chosen. This problem can be seen as the search of
the minimum value of a function whose domain is represented
by the hyperplane defined on the camera parameters ranges.

The impossibility to estimate the surface of the function
Q avoids the use of gradient descendant algorithms. Murino
et al., by analysing the situation that may occur during the
acquisition process, identified that the image quality can be
generally classified into two main categories: a) out of focus
and b) with a bad brightness. Moreover, a relation between the
focus or brightness quality and the four intrinsic parameters
has been derived.

This yielded to define a strategy based on extracting simple
features in order to choose the parameters to set. The general
strategy is based on the definition of two semi quality functions
defined as linear combinations of simple operators. A function
called Brightness Quality (BQ) is introduced to estimate the
brightness degree and a function called Sharpness Quality
(SQ) is introduced to estimate the focus degree (see [27] for
the definitions of BQ and SQ).

Thus, to complete the regulation strategy Murino et al.
adopted different thresholds THS , THB1 and THB2 to estab-
lish if an image is well focused and/or has a correct brightness.
In general, an image has a good focus degree if SQ > THS ,
while if THB1 < BQ < THB2 then the image has a correct
brightness. Depending on the values of the two functions three
situations may occur:

1) an image is out of focus and its brightness is correct ⇒
activation of the focusing strategy.

2) an image has a good focus degree and its brightness is
wrong ⇒ activation of the brightness strategy.

3) an image is out of focus and its brightness is wrong ⇒
activation of the brightness quality

While the control of the brightness could be deterministic
(lighter or darker), the authors state that there is no information
for deciding how to adjust the focus parameter (e.g. near or

far). Summarising, the method proposed by Murino et al.
presents two main limits:
• The determination of the optimal values for the thresholds
THB1, THB2, THS

• The development of an efficient strategy for the regulation
of the parameters.

The use of fixed thresholds strongly depends on experimental
tuning, on the conditions of the experiments, on the context
of the acquisition, on the adopted sensor, etc. In addition, the
use of a random strategy to decide the focus direction (far
or close), even though supported by a trial-and-error tech-
nique, does not represent an optimal solution. A deterministic
solution for the automatic focus parameter regulation is still
missing. As matter of fact the number of steps to determine
the optimum focus is a key issue. In [29], Kehtarnavaz and Oh
present a new rule based approach that speeds up the search
for the focus peek. With respect to the trivial global search and
to a binary search the proposed solution achieves considerable
improvements. In particular, the number of steps to compute
the optimal focus is reduced to be around 61 on the average.

In the remainder of the paper, a description of the proposed
system is presented in Section III. In Section IV, the strategy
to decide how to tune the intrinsic parameters is presented.
Finally, in Section V a deep validation of the proposed solution
showing how the introduced novelties improve the actual
solutions is given.

III. SYSTEM DESCRIPTION

Fig. 1. General architecture of the regulation strategy. The first step identifies
the parameter to fix, thereafter the proper set of networks is activated to
compute the correct value of the selected parameter.

A CCD progressive colour camera mounted on a Pan-Tilt
platform is used to acquire images of the monitored area.
Within the controlled environment, there are no restrictions
either in terms of number of moving objects or in terms of their
movements. The object detection is assigned to a low level
change detection module adopting the registration technique
proposed by Micheloni and Foresti in [30]. A history of the
moving objects is stored in the states of a finite automaton
which allows to maintain track of all the objects of interest
inside the environment. Within the set of objects, a high level
module identifies an object of particular interest. Its blob is
then considered as the area of the image on which the proposed
regulation strategy is applied.
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The objective is to overcome the limits in [27] by proposing
two major improvements on the strategy regulation:
• Exploitation of a neural tree to determine if an image is

out of focus and/or it presents a non optimal brightness.
• Development of a hierarchy of neural networks for a fast

computation of the optimal focus and iris positions for
focusing and tuning the brightness.

In particular, as shown in Fig. 1, first a Generalised Neural
Tree (GNT) [31] is used to decide whether to tune the focus
or to improve the brightness. Thus, such a tree operating as a
classifier, identifies whether the image area needs to be focused
or needs a different brightness. Comparing this novelty with
the method proposed in [27], there is no need to adopt any ad
hoc fixed threshold for biasing the tuning strategy. In addition,
the generalisation of the tree is guaranteed by the heterogeneity
of the samples introduced in the training set. This allows to use
the developed solution in different contexts without requiring
any further tuning of the thresholds.

The considered GNT has been trained by patterns composed
by couples of BQ and SQ values. The possible classifications
are represented by the set C={out-of-focus, wrong brightness,
out-of-focus with wrong brightness}.

Once the classification has been performed, two different
branches can be taken for the regulation of the considered
intrinsic parameters. If the GNT demands a focus regulation,
four neural networks, based on the tenengrad measure, are
used. The definition of the tenengrad operator is based on:

|∇I(x, y)| = S(x, y) =
√
I2
x + I2

y (1)

where Ix and Iy are the gradients of the image respectively on
the x and y directions. The tenengrad operator is then given
by

TN =
N∑

x=1

N∑
y=1

S(x, y)2 for S(x, y) > Th (2)

where N is the number of pixels belonging to the area of
interest and Th is a threshold. In the current work, such a
threshold is automatically computed by using the thresholding
technique introduced by Kapur [32].

The objective is to identify four points within the focus
range in order to estimate an optimal focus position. Thus,
the required four focus regulations guarantee a considerable
improvement if compared to the 61 steps needed by the
technique proposed in [29].

On the other hand, if the GNT demands a brightness
regulation, a first neural network is used to identify whether
the iris must be opened or closed. Then, specific networks for
each of the two cases have been trained to identify the optimal
iris position for the next time instant.

With respect to commercial solutions, the proposed solution
allows to restrict the area of interest as desired (e.g. the
bounding box of a selected object). This feature applied on a
target tracked by an active method [30] allows to maintain the
gaze on an object of interest by keeping an optimal quality of
its acquisition. This is a real breakthrough. We are proposing
a new Active Vision paradigm in which the observer (i.e. the
system) totally tunes the intrinsic (focus and iris) and extrinsic

Fig. 2. The chart plots the tenengrad computed on an object’s blob. The
values have been obtained by sliding the focus position through its entire
range for four different zoom levels. The environmental conditions, the object
and the camera position have been kept constant.

(pan, tilt and zoom) camera parameters to optimally acquire
what the system requires.

In the following section, the attention will be focused on
the techniques to tune the selected intrinsic parameters.

IV. FOCUS AND IRIS TUNING

The tuning of the parameters takes into account two intrinsic
camera parameters: the focus and the iris. To tune each of these
two parameters, two different neural network hierarchies have
been studied. Since the tuning process of one value does not
locally (for each tuning step) depend on the other parameter,
the training processes of the two hierarchies have proceeded
separately. In the following subsections, the two processes are
presented.

A. Focus Regulation

As shown in Fig. 1, the adopted strategy employs four
different neural networks (NNs) that we called respectively:
Entry Point, Step, First Step, Optimum Focus.

Studying the tenengrad operator with respect to different
environmental contexts and camera configurations, it is no-
ticeable how such an operator is very noisy. In addition, since
it is basically a sharpness measure, it does not allow to infer
information about the optimal focal position. In particular,
from a single measure, it is not possible to determine the di-
rection (far/near) for the regulation. Therefore, it is mandatory
a sequence of measurements in order to determine the right
direction.

In Fig. 2, different tenengrad functions with respect to
different focus and zoom positions are shown. It is clear that
the optimal focus position of the same object varies when
the zoom changes. This is due to the fact that the depth
of field is linked to the focal length (zoom) of the optics.
What is interesting to notice is how the bell shape of the
tenengrad function narrows when the zoom level increases
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Fig. 3. To compute the optimal focus two focus values (e.g. TN3 and TN4

at position F3 and F4 respectively) greater than the threshold TN are needed.
If the current tenengrad value is smaller than the threshold, two points (e.g.
TN1 and TN2 at position F1 and F2 respectively) falling below such a
threshold are required to determine the F3 and F4 points. The threshold TN
has been computed as the mean of all the tenengrad values determined for all
the training sequences. In such a way, such a threshold can be considered as
the mean value of the tenengrad operator.

(lowest zoom 421 vs. highest zoom 1395). This means that,
as we acquire an object with a higher zoom level, we must
pay more attention to the focus positions. In these cases,
a small displacement from the optimal position results in
a big variation of the sharpness quality. Another parameter
that influences the depth of filed is the iris aperture. While
a zoom operation changes the optimal focus position the
iris aperture does not. This analysis suggested to introduce
the zoom position as a valuable parameter for the tuning of
the focus. Instead, the iris position has not been considered.
Anyhow, both zoom and iris parameters cannot be tuned while
a focusing regulation is active.

In Fig. 3, the meaning of the proposed strategy is shown.
The tenengrad measure computed on an object of interest is
plotted. The horizontal line, called Mean TN, represents the
mean value for the tenengrad measures computed on different
objects acquired with the same zoom level. Thus, for our
purposes, such a line represents a threshold for deciding if
the current tenengrad measure describes an object really out
of focus or an object that needs a fine focus tuning.

For the first case, we have developed the following four
steps strategy:
• Compute, inside the entire range, a first focus position
F1 that falls below the threshold TN .

• Given the entry point F1, move the focus into a new
position F2.

• Based on the slope of the line passing through F1 and F2,
compute two new focus positions F3 and F4 that reside
above the threshold TN .

• Based on the slope of the line passing through F3 and
F4, compute the optimal focus position FOF .

In the second case, when the object is not really out-of-focus
(i.e. the current tenengrad measure is greater than the threshold
TN ), we just need to get two points above the threshold TN
before running the last step of the aforesaid strategy. Since the
current measure is already above TN , a small motion of the
focus is performed for getting the second point. In particular,

Fig. 4. Network hierarchy and strategy for the tuning of the focus parameter.

from the current position the focus is moved nearer into Fn

position and farther into Ff position. The second point F4 is
therefore chosen as follows:

F4 =
{
Ff if TNf ≥ TNn

Fn Otherwise (3)

where TNx is the tenengrad value computed at focus position
Fx.

To develop such a tuning strategy, a neural network hierar-
chy has been developed (see Fig. 4). If the object is really out-
of-focus (i.e. the tenengrad value is lower than a threshold),
the entry point NN is applied on the current focus position
Fc, its related tenengrad measure TNc and the current zoom
value. The developed NN, defined by means of a trial and
error procedure, is full connected and composed by three input
nodes, two hidden layers each composed by three nodes and
an output node. The output value determines the first focus
position F1 within the focus range.

At this point, the system moves the lens to reach the
focus position F1. Once the repositioning is achieved, a new
tenengrad measure TN1 is computed over the area of interest.
This new tenengrad value, the corresponding focus position F1

and the zoom value are given as input to a second NN called
Step. This is also full connected and composed by three input
nodes, three hidden layers with three nodes each and an output
node. Such a NN finds out a second focus position F2 whose
tenengrad value falls below the threshold TN . The camera is
reconfigured to reach such a focus position for which a new
tenengrad measure TN2 is computed.

After these two first steps, it is possible to determine
the slope of the line connecting the two focus positions
in order to estimate two new values greater than TN . For
such a purpose, a further NN takes as input the pattern
(F1, TN1, F2, TN2, Zoom) given by the two computed focus
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Fig. 5. Examples of indoor sequences belonging to the training set. For each
sequence the corresponding tenengrad chart is plotted. In this case, the object
of interest is represented by a bottle of water.

positions with the corresponding tenengrad measures and the
zoom position. This NN, called first step, is full connected
and composed by five input nodes, two hidden layers with
five nodes each and two output nodes. These, determine the
two focus positions F3 and F4.

Computed the tenengrad measure for these two last
focus positions, the strategy reaches its last step. The
last optimum focus NN is executed on the pattern
(F3, TN3, F4, TN4, Zoom) given by the two focus positions,
the corresponding tenengrad measures and the zoom position.
Such a NN is full connected and composed by five input nodes,
two hidden layers with five nodes each and an output node.
The value returned by the output node is the optimal focus
position FOF that improves the sharpness value computed on
the object of interest.

If at the next step a new focus regulation is requested, the
last two focus positions F4 and FOF are chosen as F3 and
F4. It is interesting to notice how, with this strategy, just four
focus regulations are required to reach the optimal value.

Training Focus Network: Once the hierarchy of the four
NNs has been defined, the training phase has followed. At
this point, the definition of the training set is crucial to
achieve good performances. In particular, to generalise the
solution to different illumination conditions, both indoor and
outdoor training sequences have been acquired. Each recorded
sequence consists in a frame for each possible focus position
within the focus range. Precisely, 40 (10 scenes, 4 zoom
levels) indoor sequences and 80 (20 scenes, 4 zoom levels)
outdoor sequences have been used. In Fig. 5 some frames of
the training sequences obtained by acquiring the same scene
using different zoom levels are shown.

Once the sequences for the training set definition have been
acquired, the tenengrad values for the all frames of the training
sequences have been computed. The mean value (MeanTN )
(i.e., the mean tenengrad value of the training sequences)
represents a threshold between good and pour focus positions.
When MeanTN is plotted together with a tenengrad chart

(see Fig. 3), the pour focus positions generate two tails. One
on the left side of the chart and one on the right. For the clarity
of the presentation, hereafter only the left tail of the chart is
considered. Though, the same applies to the right tail.

To train the Entry Point neural network, for each sequence
i = 1, . . . , 120, the tail of the tenengrad chart, given by
the range that goes from the nearest focus position to the
point F i

TN , has been considered (see Fig. 6(a)). The tenengrad
value computed on F i

TN is the greatest value smaller than
the MeanTN value. Within such a range, a focus position
F i

rnd has been randonmly selected and its tenengrad value
TN i

rnd has been computed. These two values and the zoom
position Zoomi have been included in the training set as
a input pattern. Therefore, the mid point F i

1 of the range
[nearest, F i

TN ] has been selected as the desired output focus
position. The selection of the mid point follows a binary search
strategy also adopted in [29]. Summarising, the training set for
the first Entry Point NN is defined as follows:

TSEP = {((F i
rnd, TN

i
rnd, Zoom

i), F i
1)|i ∈ [1..120]} (4)

It is worth noticing that the training set is composed by data
related to focus positions whose tenengrad values are smaller
then MeanTN . The same holds for the desired output values.
The stop criteria adopted for the training process has consisted
in a maximum expected error of 0.01 equivalent to 1/100 of
the minimum focus step. Such a stop criteria required 9×104

training epochs to converge to a solution.
For the training of the Step NN, the operative situation has

been considered (see Fig. 6(b)). In particular, the Step NN is
executed on a pattern that is determined by the Entry Point
NN (i.e. F1). Thus, to train the Step, for each sequence i,
a focus position F i

rnd ∈ [nearest, F i
TN ] has been randomly

selected. Such a value defines the input pattern for the Entry
Point NN whose output is the focus position F i

1EP . For each
sequence i, the position F i

1EP represents a good approximation
of the optimal output F i

1 associated to the previous NN. So,
the input pattern of the Step network is determined on the
basis of the F i

1EP focus position. To define the desired output
value, following the strategy adopted in the previous training
process, the mid point F i

2 between F i
1EP and F i

TN has been
selected. Hence, the training set for the Step NN is defined as
follows:

TSS = {((F i
1EP , TN

i
1EP , Zoom

i), F i
2)|i ∈ [1..120]} (5)

It is worth noticing that, even in this case, the training
set is composed by patterns containing focus positions whose
tenengrad values are smaller than MeanTN . In addition, the
input patterns are composed by values computed by the first
NN as it will be in an operative situation. For the training
process of this NN, the maximum expected error has been set
to 4 × 10−3. Such a stop criteria required 9.6 × 104 training
epochs to converge to a solution.

To train the First Step NN, the same concept used for the
Step NN has been adopted (see Fig. 6(c)). To determine the
input pattern, for each sequence i, a focus position F i

rnd has
been randomly selected and given in input to the Entry Point
NN. Its output F i

1EP and the related values (i.e. TN i
1EP and
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(a) (b)

(c) (d)

Fig. 6. Convergence plots of the four Neural Networks developed

Zoomi) have been given in input to the trained Step NN. The
output F i

2s of this second NN represents a good approximation
of the optimal value F i

2 determined for the sequence i during
the definition of the previous training set.

At this point F i
1EP and F i

2s represent two focus positions
whose tenengrad values are minor than MeanTN . Hence,
looking at the focusing strategy, they represent two good
positions to train the third NN First Step. To determine two
optimal output positions, the mid point F i

3 of the range
[F i

TN , FOF ] and the mid point F i
4 of the range [F i

3, FOF ] have
been considered. Thus, the range related to the left side of the
good focus values has been iteratively bisected. F i

3 and F i
4 are

focus positions whose tenengrad values are both greater than
MeanTN . Therefore, the training set for the First Step NN
can be defined as follows

TSF S = {((F i
1EP , TN

i
1EP , F

i
2S , TN

i
2S , Zoom

i
), F

i
3 , F

i
4)|i ∈ [1..120]}

(6)

Let be {((F i
1EP , TN

i
1EP , F

i
2S , TN

i
2S , Zoom

i)} a pattern
determined by randomly selecting a focus position F i

rnd on the
sequence i and by running the Entry Step and Step NNs on it
(see Fig. 6(d)). Such a pattern given in input to the First Step
NN generates two focus position F i

3F S and F i
4F S . These two

positions define the input pattern of the last NN. Obviously, to
train the Optimum Focus NN, the desired output value is the
position FOF whose tenengrad value is the maximum. Thus, to
train the Optimum Focus NN the training set has been defined

as:
TSOF = {((F i

3F S , TN
i
3F S , F

i
4F S , TN

i
4F S , Zoom

i
), F

i
OF , )|i ∈ [1..120]}

(7)

For the training process of the last two NNs, the maximum
expected error has been set to 2× 10−3. Such a stop criteria
required about 10 × 104 and 11 × 104 training epochs to
converge to a solution respectively for the First Step and
Optimum Focus NNs.

As it can be understood, the adopted strategy for the
definition of the training set is not trivial. As matter of fact it
is a synthesis of several tests as much as selection methods.
In particular, selecting the training sets autonomously for each
network (i.e. without considering the output of the preceding
NNs) yielded to the missed convergence of the NNs or to
unpredictable outputs. For the convergence, the high variability
of the randomly selected input patterns did not allowed to
reach the required training errors. To achieve the convergence,
greater expected errors have been necessary. This solution
yielded to NNs whose outputs were not in accordance with
the defined strategy. In particular, the Step network computed
focus positions whose tenengrad values were greater than
MeanTN . Similarly, the First Step computed values were
either not greater than MeanTN or on either side of the
optimal point. These unpredictable values do not allow to
reach a position that well approximates the optimal focus.
Instead, by adopting a cascade strategy, the patterns variability
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Fig. 7. Network hierarchy and strategy for the iris tuning

is reduced and the convergence is achieved. In addition, the
Step NN gives always focus positions whose tenengrad values
are smaller than MeanTN . Similarly the First Step NN
guarantees two focus positions on the same side with respect
to the optimal focus. Thus, the strategy is always guaranteed
to operate on expected values.

B. Iris Regulation

Compared to the focus tuning, the regulation of the bright-
ness is much easier. Whilst the tenengrad value does not
suggest the tuning direction, the brightness does. From the
classification of the current object brightness as too dark or
too bright, it is possible to decide if the iris should be opened
or closed. Hence, the regulation strategy (see Fig. 7) for the
brightness value takes into account three different feed forward
NNs trained with a back propagation algorithm. The first NN
is composed by two input nodes, a hidden layer with two nodes
and two output nodes. This is the network that classifies the
image region as too dark or too bright. The input pattern is
composed by the value of the semi-quality function BQ and
by the Luminance value defined as follows:

L =
∑
x∈Bi

V (x) (8)

where B is the blob of the considered object and V (x) is
the Variance value computed on the position of the pixel x
and on the HSV colour model. The Variance is computed by
considering the grey level as a stochastic variable. It is given
by the quadratic difference between the grey values and their
mean µ:

V =
1
N2

N∑
x=1

N∑
y=1

[I(x, y)− µ]2 (9)

The desired output of the network is the classification of
the blob brightness as low or high.

The classification of the blob as too dark or too bright allows
to run the proper NN to open or close the iris. As shown in
Fig. 7, both NNs, to estimate the optimal iris position, use a
input pattern defined by the current iris position and by the
luminance values at the current time instant t and at previous
time instant t − 1. The difference between these two NNs is
that one is trained to open the iris while the other to close it.
The outputs of the NNs is the number of closing or opening
iris steps.

Fig. 8. Sample images belonging to the training sequences. The bounding
boxes determine the image area considered for the computation of the
parameters of interest.

To train the NNs the strategy followed was the same adopted
to train the focusing NNs. Thus, 20 sequences have been
acquired by scanning all the iris positions within the range.
This means that, by acquiring 30 images for each sequence,
a total of 600 training images have been considered. Some
examples of the training sequences are presented in Fig. 8.

Such images have been therefore classified by human oper-
ators into three classes: a) Too dark, b) Too bright and c) Good
quality (just one for each sequence). The images classified as
too dark or too bright have been used to compute the quality
function BQ and the luminance value L. Then, the first NN
has been trained with the following patterns:

TSCB = {
(
(BQi, Li), Dark/Bright

∣∣ i ∈ [1, .., 580]}

where i is the index of the the current image and Dark or
Bright its expected classification.

To train the following NNs, the images classified as too
dark have been employed to train the opening NN. While the
images too bright have been used to train the closing NN.
Since the two procedures are similar, only the training of the
opening NN is presented. For each image, the corresponding
iris position Iris and luminance value Lt have been inserted
in the training pattern. In addition, the luminance value corre-
sponding to the image related to the previous iris position Lt−1

in the opening direction is also included in the training pattern.
The expected value of the network is given by the number of
iris positions (steps) between the current iris position and the
iris position of the image classified as optimal.

V. EXPERIMENTAL RESULTS

To test the effectiveness of the proposed method and its
impact on active vision applications, the experiments have
been first conducted on a IEEE-1394 SONY DFW-VL 500
camera mounted on a PTU platform. This set of experiments
has been considered to verify the reliability and accuracy
of the proposed method to focus on targets, to tune the
target brightness and finally to adjust both parameters. A
second round of experiments has been considered to compare
the proposed solution to standard systems available on the
market. This type of experiments aimed to demonstrate how
the capability to tune parameters on selected image areas is of
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(a) (b)

Fig. 9. Plot of the tenengrad value computed for the first 10 seconds of a
sequence on the bounding box of the object of interest (a) and on the entire
image (b).

Fig. 10. Comparison between proposed strategy and automatic regulation.
Top row regards the proposed tuning process the bottom row an automatic
process.

great advantage for applications based on image processing.
To achieve such an objective, a standard Canon MV-600i
handycam and an Axis PTZ-213 have been selected as metre
to assess the proposed solution benefits. All the sequences
used for the experimental evaluation have been independently
acquired from those used during the training phase. As matter
of fact, the chosen environment, the lighting and the weather
conditions were different.

Focusing
The focusing capabilities of the proposed solution have been
evaluated by tracking and focusing objects in an outdoor
environment. In this context, the proposed method succeeded
in focusing the objects in a period that spans from 0.5s to
2s. This time range is in contrast with real-time applications.
However, the transmission delays to control the camera and
to acquire new images have to be taken into account in such
an evaluation. A noticeable reduction of the focusing time
could be achieved by implementing the proposed solution
on-board to smart cameras.

The important thing is that, no matter which are the initial
focus position and the defocusing degree of the objects, the
hierarchy achieves its goal about focusing the object.

It is worth noticing how the proposed technique, by operat-
ing on information extracted only from the object of interest,
introduces a side effect on the remaining areas of the image. In
particular, by improving the acquisition quality of the object,
the remaining regions of the image could exhibit a lower
quality. This effect can be seen in Fig. 9 where the tenengrad
values computed just within the bounding box of the object
Fig. 9(a) and on the entire image Fig. 9(b) are plotted for the

(a) (b)

(c)

Fig. 11. Evaluation of the the proposed technique on the basis of the
tenengrad value computed on a selected object with respect to its position
inside the image. The chart (a) plots the tenengrad value computed on the
object’s bounding box when the proposed tuning strategy is applied. The
chart (b) plots the tenengrad value computed on the object’s bounding box
when the auto focusing technique is adopted. Chart (c) plots the difference
of the two approaches.

first 10 seconds of a test sequence. In these two charts the
trend of the two curves is the opposite.

To compare the proposed solution with a commercial
camera, a first experiment has been executed by shooting
the same scene, represented by a moving object acquired in
an outdoor environment, with both automatic and proposed
regulation strategy. For both cases, during the acquisition
process the tenengrad value has been computed on the
bounding-box of the object of interest. Some frames of a
test sequence can be seen in Fig. 10. The experiment has
been conducted on 20 different sequences of 30s each. In
this context, after few frames, needed to estimate the first
Optimum Focus position, the performance of the proposed
strategy shows a mean increment of the tenengrad value of
about 15%. If we consider the case in which the object is
not in the centre of the image, the increment is of about
25%. As can be seen in Fig. 11, when the position of the
object of interest is not close to the centre of the image, the
commercial approach shows a worsening of the tenengrad
value (Fig. 11(b)). Instead, the proposed techinque, focusing
on the object, maintains the tenengrad value almost constant
regardless the position of the object inside the image (Fig.
11(a)). The difference of the two approaches is considerable
(Fig. 11(c)). The overall gain of the proposed solution is
estimated in a fair 6% for objects near the image center to a
remarkable 23% when the objects are near to the corners of
the image.

Brightness
Regarding the tuning of the image brightness the experiments

have been performed by comparing the results obtained by
the proposed and common techniques. In particular, the
segmentation performance for both methods has been
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Fig. 12. Comparison between the proposed brightness tuning actuated on
a Sony DFW-L 500 (top row) and an automatic regulation performed by a
Canon V600-i (bottom row).

selected as evaluation metric. Due to the difficulties of
creating the ground truth data of the blobs, the tests have
been limited to 4 sequences of 30s each. A sample of the
result obtained by the two approaches on a test sequence
is shown in Fig. 12. It is worth noticing how the proposed
solution generates images whose global quality is not
good. They seem overexposed. But, if we consider just the
region of the target, the contrast between the object and
the background is much greater than in the common sequence.

Surveillance scenario
To evaluate the impact of the proposed strategy in the context
of video surveillance applications, a last set of experiments
has been taken into account. A first test shows the advantages
of the proposed solution in tough lighting conditions. When
the object moves in an area whose brightness is much
different from the remaining part of the scene ( shadow vs.
sunlight), the proposed method shows an increment in the
segmentation (i.e., number of corrected foreground pixels
detected with respect to ground truth data) of about 35%. To
show this, an Axis PTZ 213 with auotmatic or controlled iris
regulation has been used. Fig. 13 shows some frames of the
sequence acquired with the camera in autoiris mode. Fig. 14
shows some frames of the sequence acquired exploiting the
proposed tuning strategy.

It is worth noticing that in the first case the automatic
configuration is not able to handle the brightness compensation
when the person walks in the bright area. As matter of fact, in
the Fig.13(d),(i)-(l) frames, the upper part of the body is totally
unnoticeable. In particular, in the frame Fig.13(k) the person
has the arms wide open at the shoulder level. In these cases,
there is no surveillance system able to segment the person to
identify the silhouette for further analysis like behaviour un-
derstanding. To demonstrate this, in Fig. 13(h),(m)-(p) frames,
the results obtained by the system described in [30] show how
the torso of the person has not been detected.

On the opposite, in the same lighting conditions, the pro-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 13. Frames extracted from a sequence acquired with the camera Axis 213
in automatic reconfiguration mode. First and third rows present the acquired
frames (full sequence available at http : //users.dimi.uniud.it/ ∼
christian.micheloni/TASE/AutomaticIndeo.rar.). Second and fourth
row show change detection images obtained by the system proposed in [30].

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 14. Frames extracted from a sequence acquired with the camera Axis
213 using the proposed regulation strategy. First and third rows present the ac-
quired frames (full sequence available at http : //users.dimi.uniud.it/ ∼
christian.micheloni/TASE/StrategyIndeo.rar.). Second and fourth
row show change detection images obtained by the system proposed in [30].

posed strategy continuously tunes the iris parameter making it
possible to acquire the person of interest with a good quality.
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Indeed, comparing Fig. 14(j) with Fig. 13(k) it is clear how
in similar conditions the acquisition quality of the proposed
solution outperforms the acquisition quality of automatic tech-
niques on-board of modern CCTV cameras. This difference is
even more evident comparing the change detection results. All
the frames 14(e)-14(h),14(m)-14(p) show how the same system
[30] applied on images acquired by tuning the parameters
returns the entire silhouette of the person. This result is of
great importance for further processing steps.

A second test has been performed to show how the pro-
posed technique could be coupled with usual active vision
techniques. In particular, we have measured the accuracy of the
blobs identification, computed by applying a change detection
technique [30], on the images acquired by a moving camera.
The proposed strategies (i.e. tuning both focus and iris) and
a common camera approaches have been considered. Also in
this context, the proposed method has shown good results by
incrementing the blob segmentation of about 10% with peaks
of 543%.

VI. CONCLUSIONS

In the current paper, a new method that aims to expand the
paradigm of Active Vision has been proposed. In particular,
the concept “how to see the object” has been introduced.
This is a new way of thinking how a sensor should actively
acquire an object of interest. To achieve such an objective,
we have studied and developed a new method for enhancing
the acquisition quality just on the image area related to the
object of interest. A hierarchy of neural networks has been
developed to control two main intrinsic camera parameters:
Focus and Iris.

These two parameters are unequivocally related to the con-
trol of the image focus and brightness. It has been shown how
the possibility to control these two parameters is relevant for
improving surveillance applications. To achieve such results,
quality operators have been exploited to define quality func-
tions and tuning strategies. In particular, two quality functions
have been used to classify the image and two operators have
been used as principal values for the input patterns for the
neural networks classifications.

The experimental results have shown how the proposed
technique is really effective to control the quality of the
image acquisition. Improving the quality of the acquired object
improves the detection performance of low level techniques.
This implies that new surveillance systems can be developed
by considering the control of the acquisition quality as part of
the loop for improving the system performance.
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