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Abstract

In this paper, the problem of non collaborative person identi�cation for a

secure access to facilities is addressed. The proposed solution adopts a face

and a speaker recognition techniques. The integration of these two methods

allows to improve the performance with respect to the two classi�ers.

In non collaborative scenarios, the problem of face recognition �rst requires

to detect the face pattern then to recognise it even when in non frontal poses.

In the current work, a histogram normalization, a boosting technique and a

linear discrimination analysis have been exploited to solve typical problems

like illumination variability, occlusions, pose variation, etc. In addition, a new

temporal classi�cation is proposed to improve the robustness of the frame-by-
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frame classi�cation. This allows to project known classi�cation techniques for

still image recognition into a multi frame context where the image capture

allows dynamics in the environment.

For the audio, a method for the automatic speaker identi�cation in noisy en-

vironments is presented. In particular, we propose an optimization of a speech

de-noising algorithm to optimise the performance of the Extended Kalman

Filter (EKF). To provide a baseline system for the integration with our pro-

posed speech de-noising algorithm, we use a conventional speaker recognition

system, based on Gaussian mixture models and Mel Frequency Cepstral Co-

e�cients (MFCCs) as features.

To con�rm the e�ectiveness of our methods, we performed video and speaker

recognition tasks �rst separately then integrating the results. In particular,

two di�erent corpora have been used: a) a public corpus (ELDSR for audio

and FERRET for images) and b) a dedicated audio/video corpus, in which

the speakers read a list of sentences wearing a scarf or a full-face motorcy-

cle helmet. Experimental results show that our methods are able to reduce

signi�cantly the classi�cation error rate.

1 Introduction

Security is getting everyday more importance in the research �eld. Providing

protection by means of new technologies is very stimulating for the research

community. Within the security domain, assessing people identity is certainly

one of the most challenging problems.

Biometrics have been recently referred to the study of methods for people
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recognition on the basis of their characteristics. Two main traits can be ex-

ploited for such a purpose:

• physiological: consists in physical properties of the body like shape, struc-

ture, etc. These traits are those that the person cannot change or train.

• behavioural: consists in behavioural properties like walking posture, keystroke,

voice, etc. These traits are those that the person learns in doing a task.

It is therefore possible to recognise a person by analysing its physical properties

or the way to perform an operation. On this point of view, we can see how

the former can be usually elaborated working on a single time sample while

the latter normally requires a temporal analysis.

Although there are di�erences in the two approaches, both select human traits

on the basis of the following parameters [1]:

• Universality: each person should have the characteristic;

• Distinctiveness: any two persons should be su�ciently di�erent in terms of

the characteristic;

• Permanence: the characteristic should be su�ciently invariant (with respect

to the matching criterion) over a period of time;

• Collectability: the characteristic can be measured quantitatively.

By simply following these parameters, a really mature technology for person

identi�cation is represented by �ngerprint and DNA recognition. Although

these technologies have even proven forensic capability, they do not ful�ll a

fundamental requirement for large scale recognition: acceptability. This is a

real important factor for determining the success of a technology. Indeed, a

person is not willing to press the thumb on a �ngerprint reader or to give a
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DNA sample for getting access to a restricted zone. Therefore, providing a

technology that is as less invasive as possible is of highest importance.

Under such considerations, the visual aspect of a person, acquirable with a

video camera, and the characteristic way everybody talks, are de�nitively two

technologies that deserve further investigation to propose them as mature

technologies as those given by �ngerprint or DNA.

With respect to visual recognition, there exist di�erent techniques for analysing

both physiological and behavioural traits. In this work, we want to address

only those considering the physiological characteristics by focusing on tech-

niques for face recognition. Such a technology is well accepted by citizens since

it could be adopted without requiring to touch a sensor (i.e. �ngerprint) or to

be beamed by active sensors (i.e. retina).

The majority of the available works deals with the problem of face recogni-

tion by assuming that the person is collaborative with the system. The face

recognition task is considered as a stand alone pattern classi�cation problem

and more speci�cally as a single still image classi�cation problem. Such as-

sumptions are not valid in a non collaborative scenario. In this domain, people

are not limited in their movements thus increasing the problem complexity. In

particular, the task to detect the face is mandatory: it can bring into the fol-

lowing recognition step additional errors with respect to the case in which still

images are used. Moreover, the possibility of detecting faces even when they

are in non frontal poses stresses even more the algorithms that well perform

on still images.

A lot of methods have been proposed to address the problem of face detection,

e.g., Support Vector Machines (SVMs) [2], Neural Networks (NNs) [3], Hidden
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Markov Models (HMMs) [4] or boosting algorithms [5]. For an exhaustive

survey, the reader is referred to the paper of Yang et al. [6].

Within the past two decades, several face recognition methods have been de-

veloped. In [7] a detailed survey classi�es the existing approaches in three gen-

eral categories: holistic, feature-based and hybrid techniques. Anyhow, many

current methods do not consider important factors like the pattern quality

(resulting from the detection) and the grade of possible occlusions. Indeed,

many works show results obtained on important face datasets acquired in

controlled environments or with ground-truth markers for image cropping and

alignment [8, 9].

Few methods consider the problem of face recognition in a non cooperative

scenario [10, 11]. These methods try to extend existing algorithms developed

for still images (single sequence frames), by applying probabilistic or majority

voting mechanisms to accumulate the recognition scores obtained on single

consecutive frames. However, fundamental spatio-temporal information is not

taken into account. Zhou et al. [11] have proposed a probabilistic algorithm

for applying still-to-video and a video-to-video face tracking and recognition.

The algorithm is based a Particle Filter (PR) method speci�cally modi�ed to

increase the computational e�ciency.

In this paper, the problem of non collaborative person identi�cation for a

secure access to facilities is addressed. The main objective is to obtain a natural

and non-intrusive interaction with the authentication system. This speci�city

is very important in the adopted application domain that requires a technology

that has to be made as transparent and easy to use as possible.

In the proposed work, to increase the robustness of the system, the face recog-

5



nition module is integrated with a speaker recognition module. Speech is the

result of a combination of physical traits (important for speech signal seg-

mental features, such as voice formant positions) and behavioural patterns

(important for supra-segmental features, such as prosody). Behavioural pat-

terns in the sense that speaking is something we do. Children grow learning

to speak in an environment in�uenced by many social and linguistic factors

(language, dialect, social status, etc.): this environment in�uences how we

speak. The speech is also a�ected by physical characteristics (nasal cavities,

vocal folds size and shape, vocal tract), and these factors in�uence how we

speak and how the speech sounds. In a non-collaborative scenario (where the

speaker's actions are not �nalized to his/her identi�cation), specialized mea-

surement devices (electropalatographs, electroglottographs, etc.) are inacces-

sible. Therefore, all information from the speech process must be extracted by

sampling the speech signal captured through one or more microphone devices.

In this paper, the speaker identi�cation in a non-collaborative single speaker

scenario is addressed. The adopted method is text-independent and user-

driven: users are allowed to say anything during both enrolment and test

phases. Non-collaborative scenario is often characterized by noisy environ-

ments (i.e. audio signal has a low Signal-to-Noise Ratio, SNR). To improve

noise robustness of speaker identi�cation we propose a time domain algorithm

based on the Extended Kalman Filter (EKF) optimized for speech de-noising.

Experimental results with non-collaborative subjects (someone wears a full

face helmet, others a scarf, etc.) show that the proposed method is able to

signi�cantly reduce the error rate (false and missed alarms) and to reach a

satisfactory level with respect to existing identi�cation methods working with

collaborative persons.
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2 Face Recognition

Face recognition is a really challenging task. Moreover, if we relax the con-

straint about the cooperativeness of the individual and the controllability of

the acquisition environment the challenge becomes even more demanding.

As matter of fact, in a non cooperative mode and in a free environment, we

have to deal with the following factors [12]:

• Illumination - state of the art algorithms perform well on standard datasets

whose test images have been acquired almost in the same conditions of

the training images. In real security applications, surveillance cameras [13]

adapt their intrinsic camera parameters on the scene to obtain the best qual-

ity. This implies that, due to the illumination changes caused by di�erent

factors (e.g. , environment re�ectance, sunlight, etc.), the appearance of a

subject could be noticeably di�erent between two di�erent time instants. To

overcome such a problem, di�erent techniques can be adopted to normalize

images.

• Pose - in a non cooperative mode we have to deal with di�erent acquisition

poses that generate quite di�erent patterns with respect to the training ones.

In these conditions, the performances of the algorithms su�er a considerable

reduction if compared to those obtained on standard datasets.

• Occlusions - working in a non controlled environment, people can move

without restrictions, thus each person can occlude any other. In addition,

we can have situations where occlusions are introduced by the clothes or

accessories a person is wearing (e.g., scarf, helmet, etc.).

A fourth problem described by Abate et al. [12] is represented by the time
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delay. This causes a non linear transformation of the face patterns due to

the aging process in which every person is involved. In this work, we do not

consider such a problem as it can be partially solved by periodically updating

the watch-list then training the classi�ers.

Instead, for the other three problems we propose a step-by-step procedure.

Once the image is acquired we perform a histogram equalization to normalize

the image contrast in both training and test images. Then, a face detection

algorithm is executed to detect the face and/or part of it. In particular, the

AsymBoost∗ algorithm [14] has been used to train multi-layer cascade clas-

si�ers able to detect multiple pose face patterns. The detector is based on

the coarse-to-�ne strategy introduced in [15] and it is similar to the cascade

concept. The �rst levels have been trained to detect a generic human face

shape, while the subsequent levels detect a more speci�c pose. In particu-

lar, the proposed technique deals with out�of�plane rotations, in the range

Θ = [−90,+90] degrees with a 15 degrees sampling. This subdivision cor-

responds to the di�erent levels and to di�erent classi�ers. At every level, a

di�erent classi�er has been trained with patterns belonging to the correspon-

dent view range. Each classi�er of this multi-layer detector corresponds to a

cascade of Haar based weak classi�ers trained by AsymBoost∗ algorithm. This

technique allows to detect face pattern in di�erent poses but with limited de-

gree of occlusion. To sidestep such a problem we trained, by using the same

algorithm, a cascade of classi�ers for detecting the eyes of the person. The

detection of such features has a double use depending on whether the entire

face has been detected or not. In the �rst case, the detection of the eyes is

fundamental to apply a transformation for the alignment of the face pattern

with respect to the ones present in the database. In the second case, from the
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Figure 1. Example of the face detection phase on three di�erent cases. (a) In the

normal situation both the entire face and the eyes are detected. In addition, the eyes

positions are exploited to crop the original detected pattern and to rotate it in order

to align the pattern with respect to those in the database. (b) When the face is slightly

occluded the face detector is still able to return a pattern. Though, this can produce

bad results during the recognition process. For this reason the eyes positions are used

to determine a reduced section of the face to be utilized for the recognition phase.

(c) In case of really occluded face, the detection of the whole face fails. Hence, we

adopted the results of the eyes detection for cropping an area surrounding the eyes

for the recognition process.

position of the eyes, a wider region is extracted for the recognition process.

The complete detection process is summarised in Fig. 1.

Once a face pattern or a part of it is detected, a linear discrimination analysis

is adopted to project the face patterns into a space where the linear sepa-

rability between the classes is optimized. Let S = {x1, . . . , xn} be a set of

p-dimensional samples belonging to c di�erent classes ci of di, i = 1, . . . , c di-

mension each. The linear discrimination analysis seeks a linear projection w

that maximizes the between class scatter and minimizes the within scatter of
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the projected samples by maximizing:

J(w) =
wTSBw

wTSWw
(1)

where the between class scatter matrix SB is given by

SB =
c∑

i=1

di(µi − µ)(µi − µ)T (2)

where µi and µ are respectively the p-dimensional means of the i-th class and

of the entire set S. While the within class scatter matrix is given by

SW =
c∑

i=1

∑
x∈ci

(x− µi) (x− µi)
T (3)

To maximise (1) the following eigenvalue problem has to be solved:

S−1
W SBw = λw (4)

As can be noted, such an equation has two main problems. The �rst consists

to the fact that SW has to be non-singular in order to compute its inverse. If

the number of classes c is lower than the dimensionality p of the samples, SW

is singular. If we consider that face pattern sizes are usually lower-bounded by

a size of 25× 25 we are required to have at least 625 di�erent classes to get a

non singular SW matrix. Instead, since we are working on what is commonly

called a Small Sample Size (SSS) problem, we need a technique that reduces

the dimensionality of the original patterns. For this reason it is common to

adopt a pre-processing step in which a PCA compression is applied to the

original data.

The second problem in (4) is represented by the rank of SB that being at most

c − 1 limits the number of non-zero eigenvalues to c − 1. This is a stringent

limitation especially in those cases where the number of classes is really small.

As matter of fact, in the selected watch-list case we could have a very small
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number of classes. To overcome such a problem Xiang et al. [9] proposed a

recursive solution. This, after extracting a feature wj discards its information

from all the sample vectors xi using the followin process:

xj+1
i = xj

i −
(
wT

j x
j
i

)
wj (5)

where x1
i = xi. Since this process is computationally demanding, the authors

proposed a faster method to compute the j − th scatter matrices from the

previous ones rather then rebuilding the entire training set as in (5). For

further details the reader is referred to [9]. In the current work, the regularized

LDA (R-LDA) [16] and the recursive FLD (RFLD) [9] have been adopted to

train the classi�ers. Once each of the two method extracted the �rst k features,

the training patters have been projected into the new space for computing the

covariance matrices Σi for each i − th class. Such an information is used to

compute the distance of a projected test pattern ŷ from a class i by using the

Mahalanobis distance that is:

Di
M(ŷ) =

√
(ŷ − µ̂i)

T Σ−1
i (ŷ − µ̂i) (6)

where µ̂i is the mean of the projected training patterns of the i− th class.

The distance is then normalised by

D̄i
M =

Di
M∑c

j=1D
j
M

(7)

To associate a higher classi�cation probability to the closer classes we have

de�ned the following rule:

P (x ∈ ci) =
1− D̄i

M

c− 1
(8)

Finally, the classi�cation is given by returning the class whose probability is
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the highest. It is worth noticing that when the detector returns occluded pat-

terns (e.g. scarf samples) the recognition probability drops down dramatically.

In such cases, we consider failed the recognition and we try with the region of

the eyes if available.

3 Speaker Recognition

The speaker recognition task is usually divided into speaker veri�cation and

speaker identi�cation.

a. Speaker veri�cation is �nalized to determine if an identity claim is true

or false.

b. Speaker identi�cation is a N + 1-class problem �nalized to determine if

the current speaker is a known speaker and to identify he/she among the

N known target speakers.

In the second case further subtask can be identi�ed:

• Speaker change detection - to detect di�erent speakers in a conversation.

• Speaker tracking - to track a given target speaker during a conversation.

• Speaker clustering - to group similar speakers accordingly to a similarity

measure.

• Speaker diarization - to assign a label to every speaker in a conversation

and to group the speeches of the same speaker.

In order to recognize the speech of a known target speaker, the system should

perform the speaker enrolment by processing an audio sample of speaker's

speech.
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This work deals with the speaker identi�cation in a non-collaborative single-

speaker domain. The system used is text-independent and user-driven [17]: a

fully text-independent system. Users can say anything during the enrolment

(in this experiment we used the same sentence for di�erent languages) and

test phases. Non-collaborative scenario is often characterized by noisy envi-

ronments (i.e. audio signal has a low Signal-to-Noise Ratio, SNR). To improve

the robustness to noise for the speaker identi�cation, we propose a time do-

main algorithm based on the Extended Kalman Filter (EKF). Experimental

results with non-collaborative subjects (wearing a scarf or a full face helmet)

demonstrated that our method is able to signi�cantly reduce the error rate.

A conventional speaker recognition system has been adopted as baseline for

the proposed speech de-noising algorithm. Such a classi�er is based on Gaus-

sian mixture models [18] and Mel Frequency Cepstral Coe�cients (MFCCs)

as features.

3.1 Speech de-noising

To improve the robustness to noise for the speaker identi�cation, the most

popular methods have been considered.

The de-noising algorithms can be divided into three categories: 1) frequency-

domain methods, such as di�erent forms of non casual Wiener �ltering or

spectral subtraction schemes [19, 20] and recent algorithms that attempt to

incorporate knowledge of the human auditory system [21, 22]; these methods

use little a priori information (only the Power Spectral Density noise estima-

tion); 2) time-domain restoration by signal models such as Extended Kalman

�ltering [23�25]: in these methods, to estimate the statistical description of
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the audio events (speech vs. music, for example), a considerable amount of

a-priori information is necessary; 3) restoration by source models: to develop

the physical model of the source, only a-priori information [26] is used.

The advantage of frequency-domain methods is that they are straightforward

and easy to implement. However, the limitations are : a) musical noise (short

sinusoids randomly distributed over time and frequency) is unavoidable; b)

the results depend on a good noise (and SNR) estimation; c) the power spec-

trum of the background noise has to be known in advance. Restoration by

source model is very limited to few cases and cannot be generalized. To solve

this problem, we propose a time domain algorithm, optimized for speech de-

noising, that uses the Extended Kalman Filter theory (EKF) in the imple-

mentation proposed by M. Nied¹wiecki and K. Cisowski [23, 27]. We observe

that the algorithm in [27] can be interpreted as the nonlinear combination of

two Kalman �lters: the �rst is used to follow the slow variations of the signal

time-varying AR model parameters, while the second takes part in the reduc-

tion of background and impulsive noise. At medium and high Signal-to-Noise

Ratios (say, SNR ≥ 10 dB), the performance of such a �lter is superior to that

of other standard methods like spectral attenuation. Anyhow, a simple use of

such a technique does not guarantee the best results. This is due to the non-

stationary characteristic of audio signals that yields to errors in parameter

tracking and noise �ltering, especially during fast transients. It means that,

in order to achieve maximum performance from the EKF, an optimization

of its implementation is mandatory. In this work, we propose to improve the

algorithm in [27] in order to deal with the non-stationary nature of the au-

dio signal. In particular, we use a more performing model tracking procedure

and a re�ned bootstrapping strategy. The careful combination of the proposed
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techniques and an accurate choice of some critical parameters allows to im-

prove the performance of the EKF algorithm. We implemented the algorithm

as a plug-in based software tool (using Microsoft DirectX technology), which

can be used as an added module to most used audio software. Real time com-

putation (with latency time of 200ms, approximately) is reached on a system

based on a 3.2 GHz Intel Xeon quad-core with Windows XP.

3.2 Problem statement

Let the audio signal s(t), t = 1, 2, ..., be modelled by a time varying autore-

gressive (AR) model of order p

s(t+ 1) =
p∑

i=1

ai(t)s(t− i+ 1) + e(t) (9)

driven by the Gaussian zero-mean white noise sequence e(t) with variance σ2
e .

The evolution of the time varying coe�cients ai(t) is modelled by the random

walk model

ai(t+ 1) = ai(t) + wi(t), i = 1, ..., p (10)

with wi(t) zero mean Gaussian white processes of variance σ2
w mutually un-

correlated, i.e., E[wi(t)wj(t)] = 0 for i 6= j, and independent of e(t).

Moreover, let us assume that the original signal s(t) is corrupted by a mixture

of a broadband noise (environmental noise) z(t) and impulsive noise (artefacts

in analog/digital audio recordings or - in general - a real signal characterized

by a short duration, a random occurrence and a high power spectral density)

v(t) (independent of e(t) and wi(t)), so that the available signal y(t) can be

written as

y(t) = s(t) + z(t) + v(t) (11)
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The noise z(t) is assumed to be Gaussian zero-mean white noise (in the case

of a coloured noise z(t), based on a estimated environment noise, it su�ces

to model it as an AR process and to increase the state dimension accordingly

[28]) with variance σ2
z , while v(t) is assumed Gaussian zero-mean noise with

σ2
v = ∞ if a click is present, or σ2

v = 0, otherwise. As a consequence, if a

click is revealed at time t, the corresponding sample y(t) must be discarded

since it does not bear information on s(t) and s(t) must be recovered from

{..., y(t− 1), y(t+ 1), ...}.

In [23], it is shown that under the above hypotheses, the problem of recovering

the signal s(t) from the noisy measurements Y(t) = {y(t), y(t − 1), ..., y(1)}

can be optimally handled by an Extended Kalman Filter (EKF).

3.3 Improvements

Bootstrap procedure The �rst problem we deal with, is the choice of the

�lter initial conditions. For such a purpose, let us notice that starting the

algorithm from scratch implies an initial transiency of the parameter tracker

during which the EKF noise reduction capabilities are greatly reduced. To

solve this problem, we introduced a bootstrap procedure: the �rst t0 ms of

the signal are time-reversed and fed to the �lter (we adopted t0 = 50ms. In

this way, the parameters for a proper initialization of the model are estimated.

Hence the restoration of the �true� signal will use such values as the initial

conditions.

Stability check The estimated time-varying AR-model is not guaranteed to

be stable at all times but, in practice, instability is quite a rare event. How-
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ever, it may severely interfere with proper click detection, we preferred to test

stability at each time t via the Levinson recursion [29], i.e. testing if the mag-

nitude of the corresponding re�ection coe�cients is less than the unity (the

computational overload is negligible). In the case of an unstable AR-model,

the parameter update is skipped.

Variable forgetting factor A very delicate part of the �lter (in particular,

when it is used as audio restoration tool) is the tracking part. By exploiting

a variable memory we can have �long memory� in almost-stationary cases (al-

lowing a better smoothing of coe�cients) and �short memory� (fast reaction)

in model transients. Such adaptive tracking is also known as �Variable Forget-

ting Factor� (VFF) [30]. The main idea behind it is to set the memory length

inversely proportional to the average information of the acquired samples.

For example, a time varying fourth-order (two formants) synthetic AR pro-

cess with Gaussian noise added (SNR = 20 dB) was applied to the EKF �lter.

Fig. 2 presents the coe�cients' true trajectories (dashed line) and the ones es-

timated by the VFF (continuous line) and the Exponentially Weighted Least

Squares (EWLS [30]) by means of dash dotted line. The transition is linear

between two stationary models and it is clear that VFF algorithm response is

faster than EWLS without increasing the variance.

The speech signals in our audio/video corpus have an average SNR = 20 dB.

The signals are segmented into frames up to 200ms long and each frame is

de-noised using both EWLS (with parameter γ = 1− 10−5) and VFF (γmin =

1 − 10−4) algorithms, in order to test their performances. For the last one,

several values of the forgetting factor were used (with the notation in [30],

q0 ∈ [0.1÷ 10.0]); it is important to notice that a smaller value could lead to

several interventions of stability check. We veri�ed that VFF algorithm has
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Figure 2. AR coe�cients (SNRi = 20 dB); true trajectories (dashed line), estimated

ones by the VFF (continuous line) and the EWLS (dash dotted line); particular of

the transition zone.

Figure 3. VFF forgetting factor of Fig. 2

a better performance in the high frequency zone than EWLS: however these

di�erences don't improve the result of the speaker recognition process.

Clicks detection uses the procedure explained in detail in [31]. This tool is not

been improved, because the low click-rate present in the considered recordings.
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3.4 Feature extraction and Classi�cation

In this work Mel Frequency Cepstral Coe�cients (MFCC) [32] are used. The

centre frequencies of band pass �lters are equally spaced on a mel scale,

and cepstrum vectors are computed from �lter log amplitudes through a

cosine transform. In the computation of MFCC vectors (such as the num-

ber and shape of �lters and the number of cepstral coe�cients), the pa-

rameters setup used was that one standardized by ETSI (ETSI ES 201 108,

http://www.etsi.org). This setup was tested by [33] on the YOHO corpus with

good results. The use of a �lter bank and its frequency spacing according to

the mel scale in the MFCC can be motivated as approximations of a basic

psychophysical function in the human auditory system, namely the frequency

resolution in the cochlea (critical bands).

The choice of the classi�cation method depends on the application of interest

[34]. Vector Quantization (VQ) is often used in text-independent scenario [35,

36]: a codebook is trained for each target speaker by optimizing the location of

the centroid vectors relative to the target's enrolment speech. The test metric

is the average distortion introduced when using a target's codebook to code a

test utterance: the smaller distortion, the more similarity between enrolment

and test speech.

The Hidden Markov Models (HMM), can be text-dependent (left-right HMMs

[37]) or text-independent (ergodic HMMs [38]). HMMs are functional to model

spectral dynamics, because they use statistical models instead of template

vectors to represent observation vectors in training data. HMMs are trained on

repetitions of a chosen unit (sub-word, word or phrase) by the target speaker.
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During training, the parameters of the HMM are chosen to optimize some

criterion. The test metric is usually the likelihood that the model generated.

The Gaussian Mixture Models (GMMs) are is inherently text-independent [39,

40]. The parameters of a (target) GMM are trained to optimize some crite-

rion de�ned on enrolment data from a target speaker, and the test metric

is the likelihood that a model generated some observed test data. We use

512-component GMM, jointly trained for male and female speakers. No score

normalizations (such as T- or Z-norm) [41] are performed.

4 Audio-Video Recognition

In the proposed solution, we have investigated the possibility of integrating

two di�erent recognition methods in order to achieve a more robust result. In

particular, we want to fuse audio with video information giving a recognition

that comes from both physiological and behavioural traits. Since both clas-

si�ers return the probability that an input pattern belongs to a class inside

the watch-list, we could think that these two processes are independent. This

allows to determine the association probability as:

P (x ∈ ci) = PA(x ∈ ci) · PV (x ∈ ci) (12)

where PA and PV are respectively the probabilities returned by the speaker

and video classi�ers.

The main problem in using such a solution is given by the fact that while

the speaker classi�er needs a time interval for the feature extraction and

therefore to give a probability, the video classi�er returns a probability for
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each frame (every 1/25s). Hence, to overcome such a problem, we studied

a triggering mechanism that is summarized by the following pseudo-code:

repeat

collect video probabilities P t
V (x ∈ ci)

until t > TI

Extract audio features in the time interval TI

Compute PA(x ∈ ci)i = 1, . . . c

Compute P TI
V (x ∈ ci)i = 1, . . . c

Compute P (x ∈ ci) = PA(x ∈ ci) · P TI
V (x ∈ ci)

where P TI
V (x ∈ ci) is de�ned by:

P TI
V (x ∈ ci) =

∏
t∈TI

P t
V (x ∈ ci) (13)

considering independent the probabilities that the patterns belong to a class

ci at di�erent time instants.

With regard to the speaker recognition, all the parameters used in the speech

de-noising (in particular: γ, p, µ, σz and the starting value of σ2
e [27,30,31,42])

are set in order to reach the best algorithm performance, without particular

respect to the real time: as matter of fact, to fusing audio with video infor-

mation allows to subdivide the audio track in di�erent segments (2200ms). In

this sense:

• the parameter γ must be chosen in accordance with the non-stationary

degree of the signal. We determine that a constant value γ = 1 − 10−5 is

adequate in the case of speech signal;

• for parameter µ, a small value (∼ 4) allows the detection of small clicks but
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introduces many false detections. We decided to use a higher µ value (i.e.

µ = 6);

• the m and q values depend on the particular signal: considering p = 12, we

chose m = 0.8 and q = 12 (q ≥ p is the signal vector, using the formalism

de�ned in [30, 31]) that provide an average SNR gain of about 10 dB for

SNRI ' 10 dB as the minimum average SNRI value for which the algorithm

gives satisfactory results.

The SNRO of the output signal produced by the smoothing algorithm was

measured and related to the SNRI of input signal. In particular the relation

described by

SNRO ' m · SNRI + q [dB] (14)

adapts well to 10 dB ≤ SNRI ≤ 40 dB.

The input signal (48 kHz sampling rate) is pre-emphasized, de-noised and di-

vided into 2200ms frames with an overlapping period of 1100s. A Hanning

window is applied to each frame. 13-element MFCC vectors are then com-

puted for each frame and delta and double-delta coe�cients are appended.

5 Experimental Results

To validate the proposed solution an incremental test phase has been studied

to show the e�ectiveness of the stand alone face and speaker recognition on

real non cooperative situations then to show how these two techniques can

be complementary when one of the two gives bad results or even fails. In

particular, we acquired di�erent videos and audio tracks of people of the Avires

Lab.
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As matter of fact, many speaker veri�cation corpora exist, covering many lan-

guages and di�erent communication channels. Some of them are available by

means of LDC (http://www.ldc.upenn.edu/) and ELRA (http://www.elra.info/).

In [34], Melin gives complete overview of the existing corpora. Depending on

the purpose of the experiments, there may exists a suitable public corpus, or

a dedicated corpus has to be collected. In this work, two corpora were used:

a. English Language Speech Database for Speaker Recognition (ELSDSR) [43].

Data Type: speech Data. Source: MARANTZ PMD670 portable solid

state recorder. Languages: English. Intersession interval: none. Channels:

Wideband. 16 kHz, 16 bits. 22 speakers (12 M and 10 F), and the age

covered from 24 to 63. The training text is the same for every speaker

in the database. The text was made with the attempt to capture all the

possible pronunciation of English language including the vowels, conso-

nants and diphthongs, etc. Seven paragraphs of text were constructed and

collected, which contains 11 sentences. For the training set, 154 (7*22)

utterances were recorded; and for test set, 44 (2*22) utterances were pro-

vided. Corpus of read speech has been designed to provide speech data

for the development and evaluation of automatic speaker recognition sys-

tem. ELSDSR corpus design was a joint e�ort of the faculty, Ph.D. and

Master students from department of Informatics and mathematical mod-

elling (IMM) at Technical University of Denmark (DTU). The speech is

spoken by 20 Danes, one Icelander and one Canadian.

b. AVIRES Corpus. Authors: Christian Micheloni and Sergio Canazza, 2008;

Univeristy of Udine, Italy. Data Type: video and speech Data. Source:

digital video camera and microphone. Languages: English, Italian and

Indi. Intersession interval: none. Channels: Wideband. 48 kHz, 16 bits.
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The recording sessions were conducted using 6 speakers (5 M and 1 F; the

age covered from 28 to 43), where each speaker performs the following

tasks: a) reads a list of sentences (to be used in the enrolment session); b)

gives a lecture in English language; c) gives a lecture in Italian and Indi

languages; d) reads a list of sentences putting on a scarf; e) reads a list of

sentences putting on a full-face motorcycle helmet. The tasks (d) and (e)

are necessary in order to test the system in a non-collaborative scenario.

Each speaker performed this set of tasks using the same equipment setups.

The sessions were one day long. We don't focus on the changing a�ected

by the human voice: long-term, mainly due to aging [44], and on shorter

terms due to other factors such as health, speech e�ort level and speaking

rate, emotional state [45].

Concerning the video corpora, together with the acquisition of the audio

AVIRES corpus we have acquired the footages containing people with no

occlusions, wearing a scarf or a full helmet. Typical frames of the acquired

sequences can be seen in Fig. 4.

5.1 Face Recognition

The face recognition results deeply depend on the performance of the face and

eyes detection. It is indeed fundamental that the classi�er works on pattern

that are as much as similar to those in the database. This means that detecting

the face correctly thus the eyes allows to crop the face pattern in a way it is

well aligned and similar to the training patterns.

The �rst set of experiments has been conducted to assess the performance of
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Figure 4. Samples of the test sequences. Top two rows have been used to validate the face recognition

techniques. Bottom two rows have been used to test both speaker and face recognition systems when physical

occlusions, as those represented by a scarf or a helmet, can signi�cantly modify the audio and video patterns

the two selected linear discriminant techniques (R-LDA and RFLD). The test

evaluates the e�ects of using just a small area surrounding the eyes instead of

the whole pattern. To make such an evaluation comparable, we have adopted

the experimental protocol de�ned in [16]. In particular, for all the subjects in

the FERET, 4 images have been randomly selected to be part of the training

set, while 2 patterns for each subject have been selected by the remaining

images to be part of the test set. In Figure 5(a) this �rst evaluation is pre-

sented. It is worth noticing how the R-FLD technique outperforms the R-LDA

accordingly to the results presented in [9]. Even more interesting is to notice

the performance degradation in correspondence of the use of the eyes region

as pattern for the recognition. Anyhow, the R-FLD technique still shows a

maximum error minor than 20%.

To test the performances of the two linear discrimination techniques on a

SSS problem we have recorded in cooperative mode 6 videos of the AVIRES

members. From each footage, 4 images have been randomly selected to be part
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of the AVIRES dataset. In this phase, since the number of people (i.e. classes)

belonging to our watch-list is limited to 6, the maximum number of features

usable by the R-LDA technique is 5 (see [16]). To sidestep such a limitation,

hence to increase the number of classes, we have populated our training set

by including patterns belonging to 40 di�erent people randomly selected from

the FERET database [8]. In particular, to extract homogeneous patterns, the

adopted face and eyes detection technique has been executed to crop patterns

belonging either to the AVIRES corpus or to the FERET. Hence, to evaluate

the two techniques and to show the error introduced by the non-coperativeness

of the subject as well as by the lower resolution of the images acquired by

the CCTV camera with respect to the dataset's ones, we have computed the

detection error versus the dimension of the projected space. The test set has

been determined by acquiring footages di�erent from the training ones. In this

new videos the subjects were allowed to turn the head. Occlusions were not

present. In Figure 5(b) the experiments results are plotted. It is interesting

to notice the e�ects of the alignment onto the detection rate. It can be noted

that without aligning the face patterns on the basis of the eyes positions, the

error rate is around the 70%. Such an error would not allow to adopt any of

these two discriminant techniques.

To further analyse this �rst battery of experiments the confusion matrices are

presented in Table 1. In particular, the errors dispersions are presented for the

AVIRES extended case with face aligned. The values reported, once again,

demonstrate how the RFLD technique performs 5% better even in context

of real sequences of non cooperative subjects. It is even interesting to notice

the error committed by classifying an AVIRES member as a FERET member

(IDX column) and the error committed by classifying a person not included
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Figure 5. Evaluation of the linear classi�ers. (a) Plots the error rate versus the number of features odopted

as dimension of the projecting space. The chart shows the performances of the two selected classi�ers

with respect to the type of patterns used:whole face or eyes region. (b) Plots the error rate computed on

the AVIRES corpus. The R-LDA and RFLD performances are presented on three di�erent cases: i) the

AVIRES dataset is extended with FERET patterns and no alignment is executed on the detected faces, ii)

the AVIRES dataset is extended with the FERET patterns and the alignment of the face patterns is done

on the basis of the eyes detection, iii) the AVIRES dataset is not extended and the face patterns are aligned.

in the training set (ID7 row).

A second experiment has been conducted to see the e�ects of using the whole

pattern face when some occlusions are present. For such a purpose, we have

acquired sequences of the 6 AVIRES members wearing a scarf. As result the

entire lower section of the face is occluded. This new condition has not cre-

ated troubles to the face detector since its performance remained similar to

the not-occluded situation. Instead, the recognition process demonstrated a

considerable degradation. The values presented in Table 2 show that when the

the whole face pattern is passed to the RFLD classi�er the correct classi�ca-

tion rate falls below the 50%. Instead, if the eyes coordinates are exploited to

crop a smaller area around the eyes and such an area is passed to the RFLD

27



R-LDA RFLD

@
@

@@x

c
ID1 ID2 ID3 ID4 ID5 ID6 IDX ID1 ID2 ID3 ID4 ID5 ID6 IDX

ID1 77,33 5,33 4,65 0,00 2,71 2,37 7,61 81,73 3,64 3,47 0,00 2,37 1,69 7,11

ID2 4,82 74,27 4,09 0,00 3,22 1,02 12,57 3,36 81,58 2,63 0,00 1,75 2,49 8,19

ID3 6,00 5,77 76,21 0,00 1,85 2,54 7,62 3,70 3,46 80,83 0,00 1,85 3,00 7,16

ID4 0,20 1,41 1,41 71,98 9,07 6,85 9,07 0,20 1,41 1,41 82,06 3,02 3,63 8,27

ID5 1,84 2,50 2,17 2,17 76,46 5,34 9,52 0,17 0,83 1,17 0,50 83,81 5,01 8,51

ID6 0,00 1,84 1,99 2,15 5,52 77,15 11,35 0,00 0,31 0,92 1,84 3,99 86,35 6,60

ID7 3,33 0,00 3,33 3,33 0,00 3,33 86,67 3,33 0,00 3,33 3,33 0,00 3,33 86,67

Table 1

The table shows the results obtained by the two linear discriminant techniques on real sequences. The rows

show the classi�cation percentage obtained on the 7 di�erent sequence concerning di�erent persons. The

columns indicated as �IDX� is related to those classi�cations that returned the identity of one the 40 people

extracted from the Feret thus not belonging to the watch-list.

classi�ers the performances increase. In particular, in this last case the correct

classi�cation rate is around the 70%.

To assess the performance of the face classi�er in a really tough situation, a

�nal test has been executed on a heavy occluded face patterns. In particu-

lar, sequences of the AVIRES member wearing a full face helmet have been

acquired for such purposes. In this case, just the results of the RFLD classi-

�er on the eyes patterns have been considered. On such sequences, the values

reported in Table 3 show a correct classi�cation rate that is slightly above

the 50%. In this situation, the appearance of the detected patterns resulted

to be really di�erent to the training patterns. For this reason, the system's

performance results so limited.
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Whole Face Eyes Region

@
@

@@x

c
ID1 ID2 ID3 ID4 ID5 ID6 IDX ID1 ID2 ID3 ID4 ID5 ID6 IDX

ID1 58,43 14,61 11,24 3,37 2,25 0,00 10,11 69,66 7,87 8,99 3,37 2,25 0,00 7,87

ID2 12,50 39,84 17,97 3,91 3,13 2,34 20,31 8,59 68,75 9,38 2,34 2,34 0,00 8,59

ID3 12,81 8,54 41,99 4,27 11,03 4,98 16,37 5,69 3,91 70,82 0,71 1,07 1,42 16,37

ID4 8,94 5,69 4,88 29,27 13,01 15,45 22,76 0,81 0,00 0,00 69,11 7,32 8,13 14,63

ID5 0,00 0,00 0,00 3,62 35,75 27,15 33,48 0,00 0,45 0,45 7,69 71,49 8,60 11,31

ID6 0,89 0,00 2,68 9,82 18,75 41,96 25,89 0,89 0,00 2,68 8,93 6,25 64,29 16,96

Table 2

The results reported in the table show the performance of the RFLD based face classi�er on two di�erent

types of patterns. On the left side the results obtained by using the whole-face patterns occluded by the scarf

are shown. Right side presents the result obtained by using a small area surrounding the eyes.

Helmet- Eyes Region

@
@

@@x

c
ID1 ID2 ID3 ID4 ID5 ID6 IDX

ID1 57,41 8,33 4,63 4,63 0,93 0,93 23,15

ID2 8,87 58,06 12,10 0,81 0,81 0,00 19,35

ID3 9,70 2,42 56,36 3,64 2,42 9,70 15,76

ID4 1,63 0,00 1,09 54,89 10,87 9,24 22,28

ID5 0,00 0,00 0,00 1,00 59,70 22,39 16,92

ID6 0,84 0,00 2,52 3,36 15,13 59,66 18,49

Table 3

The table presents the results obtained by the RFLD technique on patterns obtained

by cropping a small area surrounding the eyes of subjects wearing an helmet.

5.2 Speaker Recognition

To con�rm the e�ectiveness of de-noising methods described in the previous

section, we performed two speaker recognition tasks on:
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Corpus Condition Noise Den-oise Error rate

ELSDSR a1 No No 4.50%

ELSDSR a2 Yes No 18.20%

ELSDSR a3 Yes Yes 11.40%

AVIRES b1 Yes No 22.70%

AVIRES b2 Yes Yes 13.60%

Table 4

Experimental results under �ve di�erent conditions.

a. ELSDSR Corpus. To all clean signals xC(t) 10 dB white-noise xN(t) was

added, in order to synthesize the stimuli x(t).

b. AVIRES Corpus.

We conducted experiments under the following �ve conditions: (a1) recognition

of ELSDSR xC(t) data; (a2) recognition of ELSDSR x(t) data; (a3) recognition

of ELSDSR x(t) data using speech de-noising (see Sec. 3.1); (b1) recognition

of AVIRES data; (b2) recognition of AVIRES data using speech de-noising

(see Sec. 3.1).

Table 4 lists experimental results. The comparison of conditions (a1) and (a2)

shows that the error rate increased signi�cantly from 4.5% to 18.2%. This

increase indicates an evident in�uence of the noise. When speech de-noise is

used, the error rate decreased from 18.2% to 11.4%, which correspond to a

reduction in error rate of about 6.8%. Using the AVIRES corpus (in which the

data are a�ected by noise and the speakers using scarf and full face helmet)

the reduction in error rate is of about 9.10%.

In order to evaluate the performance of our system, we adopted the DET

(Detection Error Trade-o�) curves. They are a variant of the ROC curves
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Figure 6. The charts plot the miss probability Vs. false alarm probability. (a) presents such an evaluation

on a standard dataset (i.e. ELSDSR). Precisely the (a1), (a2) and (a3) conditions are presented respectively

by the continuous, dashed and dotted lines. (b) presents the same evaluation for the AVIRES corpus in

which (b1) and (b2) are respectively plotted with continuous and dotted.

such that the error rates are plotted on both axes, giving uniform weight to

both types of error. This allows to better distinguish the di�erent performances

even when they are similar [46]. Fig. 6(a) and 6(b) respectively show the DET

curves of the experiments {(a1), (a2), (a3)} and {(b1), (b2)}. It is worth

noticing how, in both cases, the system performance increases when the de-

noise algorithm is used (dotted curve).

In order to compare the results of the speaker recognition task with the results

of video recognition task, we calculated the probabilities that a speech Y is

from the speaker S (for each speaker and each speech) in the experiment under

condition b2 (see Tab. 5).
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ID1 ID2 ID3 ID4 ID5 ID6 IDX

Normal

ID1 81,30% 5,90% 7,15% 0,90% 1,90% 2,10% 0,75%

ID2 5,20% 68,00% 8,80% 0,85% 2,05% 2,00% 13,10%

ID3 5,23% 8,77% 80,00% 1,00% 1,90% 1,60% 1,50%

ID4 0,80% 0,50% 0,90% 77,90% 3,14% 3,12% 13,64%

ID5 7,34% 2,10% 1,10% 2,50% 48,00% 5,20% 33,76%

ID6 1,54% 1,22% 0,80% 1,00% 17,00% 65,00% 13,44%

Scarf

ID1 55,00% 13,87% 16,90% 1,13% 5,87% 4,90% 2,33%

ID2 9,00% 68,00% 9,60% 1,80% 5,50% 2,40% 3,70%

ID3 6,67% 8,54% 76,00% 0,90% 2,40% 2,10% 3,39%

ID4 0,70% 0,67% 2,20% 60,10% 9,80% 12,10% 14,43%

ID5 1,60% 2,90% 1,40% 3,30% 44,00% 9,77% 37,03%

ID6 2,20% 2,34% 1,30% 1,00% 18,60% 53,00% 21,56%

Helmet

ID1 61,00% 12,80% 14,85% 1,11% 3,88% 2,10% 4,26%

ID2 5,40% 43,66% 47,82% 0,22% 0,45% 1,00% 1,45%

ID3 7,04% 7,65% 77,80% 0,87% 1,95% 1,50% 3,19%

ID4 0,77% 1,10% 1,22% 50,56% 9,33% 11,30% 25,72%

ID5 3,45% 5,70% 1,22% 7,60% 22,00% 15,22% 44,81%

ID6 1,10% 0,70% 0,90% 2,20% 18,30% 37,75% 39,05%

Table 5

Probabilities that a speech Y is from the speaker S (for each speaker and each speech) in the experiment

under condition b2.

5.3 Audio-Video Recognition

To test the integration of the video and speaker classi�ers, for each subject of

the AVIRES corpus we have extracted sequences of 22s each belonging to the
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Figure 7. Classi�cation results obtained on a normal sequences for the ID1 subject. (a) Plots the video

classi�cation probability scores over time computed by using the temporal integration. 7(b) Plots the speaker

classi�cation probability scores over time computed every 1100s. 7(c) Plots the classi�cation probability

scores obtained by the integration rule.

three di�erent situations: normal, scarf, helmet.

In Figure 7 results obtained for the ID1 normal sequences are presented.

Precisely, 7(a) presents the probability scores associated to any possible class

on pattern belonging to class ID1. The temporal integration for video scores

is adopted. It is interesting to notice how, even if the classi�er has 86% of

correct detection in this situation, the temporal integration �lters out single

images classi�cation errors by keeping the correct classi�cation probability

around 90%. In addition, it can be noted the the probabilities associated to

the other classes (i.e. the error) fall all below 5%. Figure 7(b), shows respective

values computed by the speaker classi�er. Due to development limitations of

the de-noising algorithm the audio track has been subdiveded in segments of

2200ms. To relax such a constraint we have adopted a sliding window that

extracts 2200ms long samples every 1100ms. This allowed to have twice the

number of speaker classi�cations scores (i.e. every 1100ms against 2200ms).

The results obtained by the speaker classi�er in the normal condition can be

considered good even though the algorithm showed a problem in the classi-

�cation of the second pattern. Such a problem yields to a reduction of the
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correct classi�cation probability in correspondence of the second score. In

addition, due to the Kalman �ltering such an error is propagated for the fol-

lowing 5 classi�cations. Anyway, even the speaker recognition in this condition

performs very good. As matter of fact, the correct classi�cation probability is

maintained around the 80%, falling to a fair 60% only in correspondence of the

second pattern. The classi�cation probabilities computed for the wrong classes

are kept below 10%. Finally, if we look at the integration results presented in

Figure 7(c), it can be noted how the error introduced by the speaker classi�er

is still propagated but keeping the �nal classi�cation probability around the

70% yet. In addition, the integration of the audio and video scores allowed to

�lter out the wrong clasis�cation probabilities. As matter of fact, while the

ratio between correct association and wrong associations are 17 and 9 respec-

tively for the video and audio classi�ers, the integration shows a ratio of 75.

Hence, the discrimination between correct and wrong classi�cation improved

of a factor 4 and 8 with respect to video and audio discrimination respectively.

In Figure 8 an overall evaluation for all the subjects belonging to the AVIRES

corpus is presented. It can be noted how in this situation the video classi�ca-

tion would be su�cient since no occlusions occur. Anyhow, by integrating the

two classi�ers results even if the correct classi�cation probability decreases for

all the subjects, the correct versus wrong classi�cations ratio increases. Such

an increase is around 6% on the average.

As done for the normal situation for which non occlusions occur, we have tested

the algorithm for the scarf and helmet conditions. Figure 9 and 10 show the

obtained correct classi�cation probability scores respectively for the scarf and

helmet situations. In these two conditions, while the video scores (9(a) and

10(a)) are not as reliable as those computed for the normal situation, the
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Figure 8. No occlusions - Correct classi�cation results obtained by the video (a), speaker (b) and computed

by the integration rule (c).

Figure 9. Scarf - Correct classi�cation results obtained by the video (a), speaker (b) and computed by

the integration rule (c).

Figure 10. Helmet Correct classi�cation results obtained by the video (a), speaker (b) and computed by

the integration rule (c).

speaker scores (9(b) and 10(b)) obtains similar performances. This allow the

system to keep almost the same correct classi�cation probabilities when video

and audio classi�cation is integrated (9(b) and 10(c)).

Such performances, on the three situations (no-occlusions, scarf, helmet), gen-

erate the classi�cation error chart plotted in Figure 11. In such a chart, the

mean classi�cation errors computed on the integration results are considered.

It is worth noticing how the overall error is kept below the 20% in all the three

35



Figure 11. The mean classi�cation error computed on all the sequences belonging to the same conditions

are plotted.

situations. This shows how the fusion of video and audio scores represents a

reliable way to grant access for restricted zones.

Conclusions

In this paper we presented di�erent techniques for the automatic recognition

of non-cooperative persons that try to get access to a restricted zone. In par-

ticular, such an objective has been achieved by developing video and audio

based classi�ers. In the context of visual recognition, we have proposed a tech-

nique able to detect the face or parts of it even in a non frontal pose or when

the person is wearing clothes that occlude some features. In order to classify

such patterns we have selected two di�erent linear discriminant techniques

like R-LDA and RFLD to project the patterns in a new space. On this space

a Mahalonobis distance is computed to provide a frame-by-frame classi�ca-

tion probability on the new space. The obtained probabilities are therefore

temporally associated by using an independent probability assumption to ob-

tain an improvement of the robustness . In the context of speaker recognition,
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we described a noise reduction system based on the Extended Kalman Fil-

ter (EKF) optimized for speech de-noising by means of some improvements

about the bootstrap procedure, the stability check and the Variable Forgetting

Factor. We used this method, in noisy environments, in combination with a

conventional speaker recognition system, based on Gaussian mixture models

and Mel Frequency Cepstral Coe�cients (MFCCs) as features.

Experiments have been proposed by using two di�erent corpora. Video and

speaker recognition applied to such corpora show some limitations due to the

non cooperative context. Anyway, by adopting the temporal video classi�ca-

tion and integrating it with the speaker classi�cation, the system is able to

obtain interesting results where the drawbacks of each of the two methods are

smoothed by the qualities of the other.
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