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Abstract

In this paper, we propose a technique for detecting possible events in outdoor areas
monitored by a video surveillance system. In particular, here we focus on the time
spent by an object to carry out simple events. To have a statistical representation
of the times commonly required to perform certain activities, mixtures of Gaussians
are maintained for each event type. Such statistics are then exploited both for the
analysis of the simple activities and for discovering anomalous situations (i.e. com-
plex events). In these cases, the system requires the attention of the human operator.
A novel way of presenting results to the operator is also discussed. Experiments have
been performed on a multi-camera system for parking lot security.
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1 Introduction

Research on automatic video surveillance systems is continuously evolving
along with the advances in computer vision. Signal and image processing tech-
niques are constantly being updated and improved, while more capable sensors
and communication means are being developed [1].

These technical and algorithmic advances are geared towards in increasing
accuracy and robustness especially for the low level processing tasks such as
target detection and tracking. This is extremely important since higher level
analysis modules for behaviour understanding and situation assessment rely
on the output from the underlying computer vision algorithms. Although low
level processing advances are really important since real scenario often cause
even state-of-the-art computer vision algorithms to fail, the high level analysis
should receive a bigger attention from the research community.
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As matter of fact, scene analysis and understanding are important modules of
a visual surveillance system since these modules replicate the knowledge of rec-
ognizing anomalous (and potentially dangerous) events. The more intelligence
is embedded in the system the less human intervention is required, thus reliev-
ing the operator from the chore of continuously observing the video streams
produced by the cameras. Different environments have different surveillance
requirements ranging from simple motion detection to recognition of complex
events. While many available systems claim the capability of performing good
motion detection and target tracking, few address the detection of anomalies
occurring in the monitored environment.

An anomalous event can be automatically detected as a deviation from com-
mon patterns of activity. Then how to represent and manage the knowledge
about normal behaviour is a crucial point for behaviour and scene understand-
ing. One way to infer the behaviour of the observed objects is by analysing
their movements.

Research on complex event recognition has slowly gained momentum in the
past ten years. A brief survey of recent works on the subject can be found in
[2]. In addition to that survey, the following works are worth mentioning. Rota
and Thonnat [3] proposed a generic framework for real-time interpretation of
real world scenes with humans. More recently, an unsupervised technique for
detecting unusual events in a large video set was presented in [4], while a
solution for tailgating detection at the entrance of a parking lot is described
in [5].

The approaches proposed in the literature can essentially be divided in two
categories according to the way events are modelled: implicitly or explicitly.
In the former ones, no a priori knowledge about the domain is provided. The
system automatically identifies common patterns of activity from observed
data. A framework for learning such patterns from targets trajectories in a
multi-camera system is discussed in [6]. In [7], in addition to trajectories,
other features and unsupervised multidimensional clustering of observed data
are discussed. These works describe a bottom-up approach that infers high
level knowledge from observations.

All the systems that require the explicit definition of what constitutes normal
and irregular activities [8] fall in the other category. In this case, the system
tries to match the a priori knowledge provided by the operator to observed
data patterns. Implicit modelling makes the system highly adaptable to differ-
ent scenarios and situations, but inaccurate in detecting specific and complex
events. On the other hand, explicit modelling generally yields better results
in terms of false alarms and missed alarms, but, of course, this method is not
self-adapting as all the knowledge is provided by the operator.
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Fig. 1. Logical system architecture

In this latter category, the VERL language [9] constitutes a potentially in-
teresting choice for event representation, however there exists only a partial
implementation of it that defines some of the syntactic elements of VERL
using the Web Ontology Language (OWL), however, there is no mechanism
that defines complex events and no mention on how they should be derived
from instances of simple events.

The VidMAP system, presented in [10], is a video-surveillance system employ-
ing a high level module that continuously checks if any of the rules defined a
priori by an operator is verified. The rules are encoded in Prolog, and a Prolog
reasoning engine is used to recognize programmed events.

Regardless of the way the event models are built, automatically from data
or manually provided by an operator, the process of recognizing an event is
also a debated topic in the literature. Examples are given by [11] and more
recently by [12], where a framework for recognizing events by employing a
hierarchy of the temporal constraint graph of the models (scenarios). The
proposed approches are geared to reduce the computational complexity of the
event recognition process, particulary in the multi-target case.

In this paper, we extend the approach proposed by Micheloni et al. [13] able to
learn basic statistics about the events ongoing in the monitored environment.
We propose the analysis of complex events by timing all the simpler events
composing them. In particular, the duration times for each type of simple
events are described by a distribution that is continuously updated. Events
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recognized as outliers are flagged as potentially anomalous, thus capturing the
attention of the system that eventually can warns the operator. The proposed
approach has been tested in an application for video surveillance of a parking
lot. The system uses static and moving cameras in a master/slave fashion in
order to keep track of the ongoing activities. The active cameras (e.g. PTZ) are
controlled by the system to zoom on vehicles entering end exiting the parking
area for the identification of the licence plate and its recognition [14].

We also propose a new way to visualize results to the operator so that anoma-
lous events may be easily identified on the screen. In particular, a means for
quick visualization of the objects remaining in the scene beyond average time
is presented here. Experimental results, performed on real outdoor scenes,
have demonstrated the effectiveness of the proposed approach and the added
value provided to the operator.

2 System Architecture

The proposed solution is based on a multisensor architecture in which static
cameras are used to detect moving objects and to extract information for be-
haviour understanding purposes, while active cameras (e.g. Pant-Tilt-Zoom
PTZ) are exploited for investigating suspicious events and for identifying ve-
hicles and humans. The first level of computation concerns the extraction of
moving objects (blobs) from video streams and the computation of relevant
features for event analysis purposes (see Fig. 1). Moving objects are detected
from the background (background modelling and foreground segmentation)
and their movements tracked on a 2D top-view map of the monitored scene
[1]. Tracking is performed using a Kalman Filter applied on map positions
together with a Meanshift based tracking technique on the image plane [15].

At each time instant, for each object, a set of low level features is maintained.
These can be divided in instance and temporal features. The former ones
(i.e. object classification, position, dimensions, etc.) are related to the current
time instant, while temporal features (i.e. trajectories, mean speed, mean size,
etc.) are computed over a time interval. In the proposed approach, events
are detected by analysing both instance and temporal features. To obtain a
camera geometry independent system , all the kinematic features are extracted
on the data computed on the 2D top-view map. This relaxes the problem to a
first calibration of the camera for the homography determination. The object
classification module distinguishes each detected object within a predefined set
of categories (e.g. cars, pedestrians, and groups of people). In the proposed
system, an adaptive high order neural tree (AHNT) classifier [16] has been
employed.
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3 Events Analysis and understanding

Event recognition exploits the output of low level processing modules for tar-
get detection and tracking. For each target, positional, temporal, and ID in-
formation is used for high-level semantic interpretation of the activities in the
monitored scene. The first problem is to choose a suitable way to represent be-
haviours. There are two main different approaches: a) Probabilistic definition
and b) Explicit definition.

In the probabilistic approach, an anomaly is an unusual (infrequent) event.
The identification of normal patterns therefore leads to the detection of anoma-
lies. The modelling of normal patterns involves a statistical approach in order
to discriminate what is normal from what is not. The explicit approach in-
stead is based on the system having a complete description of all the detectable
dangerous events. Events detected in the monitored scene are thus matched
with those stored in the database of dangerous events. The main disadvan-
tage of this approach is the need for a-priori knowledge of the activities in the
application domain.

Furthermore, building the database is not a trivial task. Describing all dan-
gerous events needs to derive all the possible temporal and spatial association
of simple events. Thus, even the use of automatic procedure could lead to a
difficult solution.

In the next section, the internal representation of simple events, their detec-
tion and the techniques for building more complex and more semantically
relevant events will be described. Here, an approach based on explicit mod-
elling of dangerous events is discussed. This can be used in combination with
the probabilistic approach to achieve more robust results.

Two different types of events have been considered: simple events, character-
ized by the motion (and behaviour) of a single object (e.g., vehicles, pedestri-
ans, etc. moving in the monitored environment) and composite events, charac-
terized by interactions among multiple objects. A composite event is therefore
a complex event generated by a set of temporally consecutive simple events
or an event composed by multiple moving objects, e.g., a group of people, a
queue of cars, etc.

Simple Events : In an urban environment, a simple event is normally repre-
sented by a vehicle, a bus, a motorcycle or a pedestrian moving in the moni-
tored area. A simple event v is defined over a temporal interval [T s, T f ] and
contains a set of features F = {f1, . . . , fm} belonging to a given object Oj

observed over a sequence of n consecutive frames as:

v(T s, T f ) = {fk|fk ∈ Oj, k ∈ [1..m]} (1)
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Examples of features are the ID (i.e. person identification or license plate),
the class of the detected object, the trajectory, the average speed, the blob
shape descriptors, the colour histograms, etc. In the context of a parking lot,
examples of simple events can be given by:

• a vehicle enters the parking area
• the vehicle moves with a given trajectory
• the vehicle stops in a given position
• a person exits from the vehicle
• the person moves in the parking area
• the person exits the parking area.

Hence, simple events are generally actions performed within a small area of
the monitored environment (entrances, exits, neighbours of a parked car, etc.)
or actions characterized by a uniform motion (move, stand, etc.). The main
characteristic of such events is therefore their simple and fast detection. This
yields to consider them as the building blocks of the scene understanding
process.

Composite Events : Composite events are represented by a set of simple events
that are spatially and/or temporally correlated. Hence, a composite event
is defined over a wide temporal interval as a graph G(V, E) where the set

of vertexes V =
{
v1(T

s, T f ), . . . , vn(T s, T f )
}

is the set of simple events and
the set of edges E is the set of the temporal and spatial associations between
simple events. In Fig. 2, an example of simple events association is shown. The
exploitation of graphs as data structures for representing composite events,
theoretically, allows to connect each node (simple event) with any other node
in the graph. This can be done regardless of the semantic meaning of the
composite event. Instead, even though within the monitored area different
spatially related simple events can simultaneously occur, only few of them
have significance. For example, it could happen that two cars intersect in
a zone inside the map by moving in different directions. In this case, both
temporal and spatial correlation exist. Though, a composite event given by
two cars moving in opposite directions is not of clear significance.

For this reason, in the proposed solution we restrict the event association to
a set of compatible simple events. This is achieved by exploiting a Event Cor-
relation Diagram (ECD) that describes the allowed relations between object
types, their states and actions. It therefore defines the possible links between
different simple events, even when they are generated by different objects. To
generate the ECD, the explicitly defined simple events are considered. For
each of these, its possible relations with any other defined simple event are
analysed and, if any exists, a link between the two simple events is added in
the ECD. Hence, building the ECD is an off-line job that is performed by
human operators in consequence of the activity knowledge they have about
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Examples of some composite events built exploiting the temporal and spatial
correlation of two or more simple events. In (a) a node given by a simple event is
presented. In (b)-(f) examples of graphs represented by complex events defined by
two simple events spatially and temporally correlated. It is worth noticing how in
(d) two simple events related to different objects can define a composite event (i.e.
person getting out of a car).

the monitored environment.

As shown in Fig. 3 the definition of the admitted correlations between simple
events are defined in the depicted ECD. For each event, several characteristic
properties (i.e. time of occurrence, position, etc.) are associated to the object
that caused the event.

The use of only one out-edge associate to each simple event states a unique
available correlation for such an event. Even though in the analysed scenario
such a representation has been proven to be sufficient for the majority of the
events, there could exist other scenarios requiring a more complex representa-
tion. In case that multiple associations are required, instead of increasing the
number of out-edges it is possible to split such events in more atomic events.
For example, to describe a group of people walking we could describe such
an event by describing the single persons walking thus using different simple
events. Once the ECD has been defined, its links are used to build the graphs
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Fig. 3. Event Correlation Diagram for composite event detection. Simple events are
divided into vehicle and person related events. Events can be correlated to build
a composite event if there exists a link between them in the ECD. Person related
events can be associated to vehicles events (i.e. person getting in/out of a car) only
when it appears/disappears in the neighbourhood of a motionless vehicle.

representing the complex events.

In the chosen test domain (parking lots), normal events are represented by
pedestrians walking with typical trajectories (e.g., almost rectilinear for a
long number of frames) or vehicles moving and/or stopping in allowed areas.
Suspicious events are represented by pedestrians jaywalking, or stopping in
a given area for extended periods of time, or loitering around vehicles. Dan-
gerous events are represented by pedestrians or vehicles moving or stopping
in not allowed areas. An off-line Event Graph (EG) is built with the models
of suspicious simple/complex events. The EG is a graph where single uncon-
nected nodes represent simple suspicious events (i.e. person moving with a
particular trajectory) while connected nodes represents composite suspicious
events. As shown in the algorithm of Table 1, for each new event a node with
related information/features representing the motion or the characteristics of
a given object is extracted and stored in the Active Event Graph (AEG).
The AEG is therefore updated every time a new simple event has been de-
tected. To reduce the graph growth, old events (i.e. events whose ending time
is older than a predefined threshold) are pruned to expedite further searches.
Determining simple suspicious events is carried out in two phases: a) a neural
network classification and b) graph similarity.
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v(T s, T f )=Detect Event()
Insert v(T s, T f ) into G(V,E)
for all v′ ∈ V do

if v′ and v are temporal related then
Insert v′ into TimeEvents

end if
end for
for all v′ ∈ TimeEvents do

if v′ and v are spatially related then
Insert v′ into Events

end if
end for
match=NULL
for all v′ ∈ Events do

if ECD allows (v′, v) then
if v′ is more probable than match then

match=v′

end if
end if

end for
if match neq NULL then

Insert (match, v) into E
end if

Table 1
The left chart shows the flow diagram of the main steps adopted to correspond
temporally and spatially the events of interest. A deeper representation is given on
the right by including a pseudo-code of such an algorithm.

In the first phase, the object trajectory is smoothed by a polynomial curve
fitting procedure that exploits the least-squares method for the computa-
tion of a Bezier-Spline. Trajectories are event independent and the degree of
the smoothing polynomial is object dependent. In our solution, since vehicles
due to their steering properties have lower motion abilities than humans, we
adopted a lower degree for vehicles and an higher degree for people (e.g. third
and fifth degree respectively for cars and humans). The m coefficients returned
as output of such a procedure are therefore given in input to the Adaptive High
Order Neural Tree [16]. Such a tree has been previously trained with the suspi-
cious simple events present in the EG and with a set of normal simple events.
The output is a binary classification among normal and suspicious events. If
the current event is classified as suspicious it is directly signalled to a human
operator.

On those events that have been classified as normal, a second phase is exe-
cuted. That is, their features are compared with those of the events present in
the EG. For example, a person walking in a forbidden area, a car moving in a
prohibited direction etc. Even in this case if a similarity is found, the anomaly
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is directly signalled to a human operator.

After this first step, all detected events are further analysed in order to iden-
tify potential anomalous composite events (see diagram and related algorithm
in Table 1). Every time a new simple event is added to the AEG, this is
inspected to find some correlations between the current event and those pre-
viously detected. A first search is performed according to the the time property
associated to each event. In particular, for each event v the time property is
composed by the starting T s

v and ending T f
v time attributes. Hence, first of

all, the starting time T s
v of the current event v is compared with the ending

times T f
v′ of the most recent events v′ into the AEG. The difference between

the two times is thresholded to find a temporal matching.

Event correlation is primarily based on temporal matching since the detec-
tion of anomalous events that are not temporally related is demanded to the
explicit definition of such anomalous events. For the sake of explanation, we
may think to an event concerning a parked car . Let us now suppose that the
driver gets off the car after a long time. The temporal correlation fails and the
event ”Person Enters” is not linked to the parked car. However, the explicit
definition represented in the EG takes care of this case by adding such a com-
posite event in the AEG. Hence, the alarm is raised as soon as the temporal
threshold for the correlation of ”car stopped” and ”person enters” event is
passed.

Once the first matching process is completed, a new phase investigates about
spatial correlations between the current event and the events that have been
temporally matched. The ending position Pv′(x, y) of each temporal correlated
event is compared with respect to the starting position Pv(x, y) of the current
event. If the distance between the two positions falls below an experimentally
defined threshold, then the two events can be composed together. If both
temporal and spatial properties agree and if the matching is allowed by the
finite automaton, a new event, virtually given by the concatenation of simple
events, is created.

4 Timing Analysis

Time can be used as a key feature to distinguish between usual and unusual
activities. Let us think to the time required for a person to get out the car
after having parked. Too short a time could hint the necessity to escape from
the parking spot as fast as possible, whereas too long a time could be related
to a person who is checking up on a possible target. Therefore, looking for
time patterns in activities boils down to building probability distributions of
the time needed to complete a certain action.
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Fig. 4. Example of computation of parking times. The chart plots computed times
in a 5 days analysis from 8.30 A.M. to 6.30 P.M.

Hence, it is by computing the time requested to perform simple and complex
events that the system is able to build a probabilistic representation of which
timings are usual inside the monitored environment. In Fig. 4 an example of
the time computation is shown. Let {T e

1 , . . . , T e
n} be the history of the last n

computed timings of an event e, the corresponding multimodal histogram sug-
gests a representation described by means of a mixture of narrow Gaussians.
In particular, to describe the probability distribution of the timing history of
each event we adopted a mixture of M Gaussians where the probability to
observe a duration T of an event e is described by:

P (T e) =
M∑
i=1

ωi ∗G (T, µi, σi) (2)

where M is the number of Gaussian distributions in the mixture, ωi is the
weight given to the i − th Gaussian, and µi and σi are its mean and its
standard deviation respectively. G is the Gaussian probability function given
by:

G (T, µi, σi) =
1√
2πσ

e−
(T−µ)2

2σ2 (3)

With such a formulation we have that each event timing is described by a
mixture of Gaussians where the current value is represented by either one
of the Gaussian or none. In the former case, the current value is used to
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update the model, while in the latter is used to highlight an unusual behaviour.
Thereafter, if the higher level modules of the systems assert that the current
event is not anomalous, the new value is used to update the model. A time
value is represented by the mixture if there exists a Gaussian that contains the
value. Hence, if it is within kσ from the mean µ of one of the M Gaussians,
where k is a per event/per Gaussian experimentally defined threshold, the
mixture of Guassians is updated:

ωi =


(1− α)ωi + α if the i− th distribution contains

the value

(1− α)ωi otherwise

(4)

where α is the learning rate. In addition, the i− th distribution is updated as
follows:

µ = (1− ρ)µ + ρT (5)

σ2 = (1− ρ)σ2 + ρ(T − µ)2 (6)

where ρ is the learning factor.

5 Complex events classification

Recognizing composite events means finding a temporally ordered sequence
of simple events following some predefined pattern. To accomplish this, we
employ graph matching. Graph matching is a classical optimization approach
which has been studied for a number of years and applied in many disciplines
such as pattern recognition and computer vision [17]. Classical concepts are
graph and subgraph isomorphisms. If an isomorphism can be established, that
is, a bijection transforming a graph G1 into a graph G2 and vice versa, then
the two graphs are the same. If one of the two graphs, say G1, is larger than
the other, G2, then it has to be matched against subgraphs of G1.

In particular, it is often the case where a template graph, which describes
some a priori information of interest drawn from the knowledge base, has to
be matched with a data graph that represents the information collected from
the sensors. The process is geared to recognizing occurrences of modelled in-
formation in the sensory data. Here, we employ this approach to recognize
sequences of simple events constituting complex events of interest among de-
tected sequences of correlated (temporally and spatially) simple events.
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Of course, real-world conditions, the bijective condition is generally too strong.
That is, detected sequences of simple events can differ from templates due
to a number of reasons. For example, Figure 5(b) shows three temporally
consecutive simple events that can constitute the complex event “Car arrives
and parks” if the stopping position is a valid parking position. The graph in
Figure 5(a) shows a data graph describing the behaviour of a car entering the
scene, stopping while looking for a spot, moving again, and finally stopping
in its final parking position. Therefore, the recognition process calls for an

Fig. 5. Example of graphs. (a) Data graph representing detected behaviour and (b)
template graph of a parking sequence.

inexact matching algorithm [18–20]. This kind of weaker matching is called
“homeomorphism”, which drops the conditions that nodes in the first graph
have to be mapped to distinct nodes of the second graph.

We employ attributed relational graphs, where a vector of features is associ-
ated to each node. Let G = (N, E, µ) denotes a graph, where N is the set
of vertices, E ⊆ N × N is the set of edges, and µ : N → Rm where m is
the number of node attributes. A solution to the inexact matching problem
can be expressed as a subgraph GS = (NS, ES) of the the association graph
GA = (N1 × N2, EA) between G1 = (N1, E1) and G2 = (N2, E2), such that
∀a1 ∈ N1,∃a2 ∈ N2, (a1, a2) ∈ NS and ∀(a1, a2) ∈ NS,∀(a′1, a′2) ∈ NS, a1 =
a′1 ⇒ a2 = a′2.

As described in [18], the matching is here performed by minimizing the fol-
lowing function:

f(GS) =
α

|NS|
∑

(a1,a2)∈NS

cN(a1, a2) +
(1− α)

ES

∑
e∈ES

cE(e) (7)
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where cN(a1, a2) is a dissimilarity function between the attributes of a1 and a2.
In practice, the node attributes employed in the experiments were time and
2D position on the map, thus accounting for three features. cN was defined
as the Euclidean distance between those features. The α parameter was set
to .5, and the edge dissimilarity measure employed in [18] was employed for
cE. In addition, to ease the process, composite events within each category are
simplified. Only entering and exiting events with their temporal properties are
considered. Moreover, if two different objects generate a complex event also
the events that relate the two objects are considered. For example composite
events related to single objects become {{car enters, car exits} or {person
enters, person exits}, while in case of two objects interacting they can be
summarized by {car enters, car stops, person enters, person exits, car stops,
person enters}}.

6 Experimental Results

To test the proposed solution we have run the system for a period of time of
about 10 hours. In particular, we have used two static cameras to analyse the
entire parking lot area in front of our University building and a Pan-Tilt-Zoom
(PTZ) camera for close-up acquisition of targets involved in suspicious events.
The PTZ is calibrated such that by providing a position on a 2D top view
map it is possible to define pan and tilt angles in order to get the point on
the map at the centre of the PTZ image. The zoom factor is selected on the
basis of how far the object from the camera is and the size the object has on
the static cameras.

During the experimentation phase the system has detected 942 simple events.
Of these, 56 were related to false events principally due to errors in low level
task (i.e. motion detection, tracking, etc.). Of the remaining 886 simple events,
824 have been correlated to other events while just 62 events have not been
correlated to any event. This last value represents an error of the system since
from the definition of our simple events any object entering the scene generates
at least two related events (entrance and exit).

Of the remaining complex events the system has correctly identified the 4
suspicious events that we have simulated on purpose. A first event consisted
in a person walking between the parked cars. This type of event was defined
as suspicious thinking to a person looking for a car to rob. This event has been
correctly detected by the neural network on the person’s trajectory.

A second event was about a situation in which a person parks a car in a free
spot close to the University building leaving the scene on board of a previously
parked car. This event was supposed to represent the placing of a car bomb.
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The detection of such an event has been performed by matching the computed
event graph with those stored in the EG.

The other two events, even though explicitly defined, have not been detected
by applying the neural network or the graph matching approach. However,
among the considered events for a parking lot application described in Section
3, a particular attention has been devoted to the time spent by the objects
while being stationary.

As discussed in Section 4, statistical information can be collected for each event
thus allowing the system to detect outliers as possible anomalous events. In a
parking lot, for example, parking times could be of particular interest. A vehi-
cle left parked for days in a public area where everybody is supposed to leave
after working hours is probably something that should capture the attention
of the system, that in turn should signal the event to the operator. The vehicle
could in fact be left abandoned, or, in a defence oriented application geared
to protect sensitive buildings, such a vehicle could even constitute a possi-
ble terrorist threat. Here, an idea for easy visualization of the vehicles whose
parking time can be considered an outlier event is presented. This is purely
for facilitating the operator in spotting those vehicles that can eventually be
checked: for example, if the organization, who owns the surveillance system,
maintains a database of the licence plate numbers of the vehicles belonging to
its employees, then suspect vehicles can be immediately identified; if the vehi-
cle doesn’t appear to be registered in the database, the event could definitely
be considered as something anomalous.

An example of the approach for easily conveying to the operator the location
and the parking time of suspicious vehicles, is shown in Fig. 6. The parking
time is represented as a column rising from the ground in the spot occupied
by the vehicle. The images in the sequence show how the columns rise as time
passes. A colour scheme can also be defined to further improve the visual-
ization of outliers. In the figure, the parking time of the car in the bottom
left corner is considered an outlier and consequently its column is coloured in
red, while the parking time of the car in the upper right corner is k times the
standard deviation σ from the mean of the matched Gaussian but it is still not
considered an outlier and its column is coloured in blue. The parameter k is
chosen by the operator depending on the particular application. The operator
could also toggle such visualizations or decide to visualize only outliers. The
columns can be used to represent not only parking times, but also every event
where an object remains stationary for an amount of time exceeding the mean
(i.e. k times the standard deviation as above) the distribution of that particu-
lar event. This means that the height of the columns does not represent time
in absolute terms, but it is relative to the time distribution of each particular
event.
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Fig. 6. Visualization of parking times. The system draws columns where vehicles
exceeding the mean parking time are located. The height of the columns increases
as time passes allowing the operator to quickly inspect the scene for this kind of
anomalous event.

To prove the effectiveness of the proposed approach, the system has been ex-
ecuted on sequences belonging to the i-Lids 1 dataset. The chosen test-bed
of such sequences is represented by an urban road. This experiment aimed to
detect cars parked along the roadside near the curb. The system has been ini-
tialised to maintain a single mixture of Gaussians for representing the parking
times alongside the curbs. This means that all computed parked times in such
an area have to be compared with such a mixture. For this purpose, a grid
based mask can be defined to group a set of neighbour pixels. Such a grid
is a per event defined and hence its granularity can be a priori decided (i.e.
greater for vehicles, smaller for persons,etc.). This allows to describe all the
pixels masked by a grid’ cell with a unique mixture. In this experiment, we
have defined a mask with a unique cell that groups all possible positions where
a car can stop near the curb. In Figure 7 the map representing the test-bed
area and the parking zone are respectively presented in the two images.

During the experiment we have run the system over a first sequence in which
a car remains stationary in the area of interest for 4.87s. During this analysis
there is no Gaussian distribution present in our model. Therefore, the system
considers such an event anomalous from the time instant in which the car
stops. However, the visualisation system starts to display the alert box only
after 3s from the anomaly signal. Such a period of time has been introduced
to filter out all those possible false positives generated by low level tasks (i.e.
change detection, etc.). Afterwards, the event has been manually declared nor-
mal affecting the mixture. Therefore, a first Gaussian is added with µ = 4.87
and σ = 1 considering the effective time elapsed as the mean and a compu-
tation error of 1s as the standard deviation of the distribution representing
such an event. In Figure 8, the key frames representing the event of this first
sequences are shown.

With the mixture trained with the first sequence a further experiment has been
carried out on a new dataset sequence. A first car stops and remains stationary
for 4.27s. Adopting a strategy of considering the events not represented by

1 Imagery Library for Intelligent Detection Systems (i-LIDS) is the new UK Gov-
ernment standard for Video Based Detection Systems (VBDS)
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(a) (b)

Fig. 7. (a) Map representation of the i-Lids test-bed area. (b) The red strip repre-
sents the parking area initialized with the same mixture of Gaussians.

(a) (b) (c) (d)

Fig. 8. Results obtained on the sequence rd6c7 of the i-Lids dataset. (a) The system
detects a car stopping at time 19, 353s and frame 580. After 3s at frame 670 (b)
the system still considers the even normal. Starting from frame 671 (c) the system
labels the events as anomalous till time 24.224s when the car regain motion (d).
The total time elapsed while the car were stationary is of about 4.87s.

a Gaussian if their duration is far from the mean more than two times the
standard deviation, we obtained that this first event is considered normal from
the actual mixture as it belongs to the only Gaussian in it. The first row of
Figure 9 presents some frames displayed by the visualisation system.

The match of this event with the unique Gaussian in the mixture results in
the update of such a Gaussian. Adopting ρ = 0.3, to give major weight to the
past than to the current measure, the updated distribution, computed by (6),
has a mean µ = 4.771 and a standard deviation σ = 0.85.

A second event, generated by a car parking in the area of interest is detected
on the same sequence and analysed by using the updated mixture. In this
case, the car remains stationary for a period of time that is longer than 20s.
For the first 6.51s the event is considered normal as it matches the Gaussian
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Results obtained on the sequence rd8c7 of the i-Lids dataset. The first
row presents key frames of a normal event. From the time instant in which the
system detects a car stopping (11, 245s) to the time instant in which it detects
the car moving again (15.516s) the total time elapsed has been 4.27s. At time
instant 42.809s the system detects a new event related to a car stopping (e). For
the first 6.45s the system considers the event belonging to the Gaussian present in
the mixture (f). From time instant 49.316 (g) till the end of the sequence (h) the
system labels the event as anomalous since its duration falls outside all Gaussians
in the mixture.

in the mixture (µ + 2σ = 6.471). From that instant on the event is flagged as
anomalous. This is displayed to the operator who can see an alert box raising
higher and higher above the car as time passes.

It is worth noticing how the system, after the first event has been able to
discriminate between normal and anomalous events. As matter of fact, in the
second sequence the drop off of a passenger is considered normal while parking
a car is not.

To test a system on a more challenging scenario, a complex event in a parking
lot has been analysed to illustrate the effectiveness of the proposed approach.
The sequence in Fig. 10 shows a car approaching the entrance gate of the
parking area as detected by the wide-angle static camera (a), this event triggers
the active camera that is positioned and zoomed so to acquire the licence plate
number of the car (b). The car then proceeds in the parking area looking for
a spot (c). Even if a spot is available, the driver decides to stop the car in the
middle of the lane and exits from the car (d). The car is left stationary in this
forbidden parking position for an excessive time and a column starts to grow
in that position to capture the attention of the operator (e). The driver is
still loitering around the vehicle as time passes (f). The driver re-enters in the
car (g), and drives towards the exit (h). When this last event is detected, the
system guides the active camera in order to acquire the licence plate number
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Fig. 10. Anomalous event detection. A car is detected close to the entrance of
the parking area (a). Its identification is performed by tasking and active camera
(b). The car is tracked (c) until it stops outside a parking spot (d). Statistics are
collected about this unusual stationary condition (e-g). Finally, it is tracked on its
way towards the gate (h), and its licence place is matched with the previous one (i).

as the car leaves the area (i).

On the scenario described in Fig.10, the proposed system is able to appropri-
ately match the simple events by analysing temporal and spatial properties.
As result, it has been able to build the graph of events depicted in Fig 11.

Moreover, in this case the system highlighted two suspicious activities: one
related to a person and the other to a vehicle. While the car remains parked out
of spot for 3′.11”, the mean and standard deviation of the available Gaussian
distribution for such event are respectively µ = 1′.15” and σ = 21”. Having
selected k = 1′.8”, the anomaly is detected after T = 1′.52”. Meanwhile, the
driver got out of the car (enters the scene), walked around, and finally got in
the car again (exits the scene). Even though the composite event within the
person category is considered normal, when it is associated with the parked
car it becomes unusual as the statistics generated by a person to get out of
and get back in the car have a lower or a larger mean time (i.e 15” and 25′).
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Fig. 11. Example of composite events detection. A set of vehicles events are easily
matched by their temporal properties. Concerning person events, it is worth noticing
how, thanks to both temporal and spatial properties, it is possible to link the events
regarding the person with ID = 7 to vehicle events, while those related to person
with ID = 6 describe a path of a walking person not correlated to any vehicle.

7 Conclusions

The main focus of this paper is statistical event analysis for multi-camera
video surveillance. The proposed approach allows the system to keep track
of the time needed by the objects to complete simple and composite events.
For each of them, a multi-Gaussian distribution is maintained and outliers
are detected as possible anomalous events, thus capturing the attention of the
system. The proposed approach has been applied to an application for parking
lot surveillance. Particular attention has been dedicated to the time spent by
objects while being stationary. An idea for quick visualization of the vehicles
exceeding the mean parking time, so that the operator could easily inspect the
scene, has been presented. Experimental results on real outdoor scenes have
proven the effectiveness of the system.
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