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Abstract—During the last years, the research in the field of
video analytics has focused more and more on video sensor
networks. Although single-sensor processing is still an open
research field, practical applications nowadays require video
analysis systems to explicitly consider multiple sensors at once,
since the use of multiple sensors can lead to better algorithms
for tracking, object recognition, etc. However, given a network of
video sensors, it is not always clear how the network should be
configured (in terms of sensor orientations) in order to optimize
the system performance. In this work we propose a method to
compute a (locally) optimal network configuration maximizing
the coverage of a 3D environment, given that a relevance map
of the environment exists, expressing the coverage priorities for
each zone. The proposed method relies on a transformation
projecting the observed environment into a new space where the
problem can be solved by means of standard techniques such
as the Expectation-Maximization algorithm applied to Gaussian
Mixture Models.

I. INTRODUCTION

The use of Pan-Tilt-Zoom (PTZ) cameras in video analytics
systems has lately become more and more popular. Active
cameras that can be reconfigured in terms of orientation and
zoom levels open a totally new area of investigation, leading
to new solutions (and new problems) that were not considered
in the past, when video analysis systems mainly relied on
static sensors. PTZ cameras are nowadays especially used for
tracking purposes, so that the camera can simultaneously zoom
on a specific target and actively follow it, so that the camera
won’t lose the target because of its restricted field of view.
However, there are many other possible uses of PTZ cameras,
one of them is coverage optimization. If the cameras are used
to monitor a large environment, it is possibly unrealistic to
have each zone observed (covered) by at least one sensor.
When deploying the cameras it is thus necessary to find not
only the right places where to put them (but this is often
constrained by practical issues, such as the presence of a power
supply), but also the best orientation. Moreover, this optimal
configuration is not necessarily static, as it could depend on
dynamically changing coverage requirements.

This paper extends the work of Piciarelli et al. [1] on camera
networks reconfiguration. The main idea is to automatically
compute the optimal orientation (pan and tilt angles) and
magnification (zoom) parameters for each camera of the
network, in order to optimize the visual coverage of a given
environment. The optimization process relies on the use of
a relevance map, a function denoting the coverage priority

for each point of the monitored environment. The relevance
map is thus used to give more “importance” to the visual
coverage of some specific zones, and its definition is of course
context-dependent. For example the surveillance system of a
parking lot could give more importance to car entry/exit points,
meaning that a reconfiguration of the network of sensors
should give higher priority on the coverage of those zones. The
relevance maps could even be automatically generated, e.g. in
order to give more importance to the areas with higher activity
(high detection of moving objects). The work proposed in [1]
is based on 2D relevance maps, assuming that the cameras
are placed high enough to approximate all the zones to be
observed as lying on the ground plane. The main novelty of
this work is the extension of the reconfiguration technique
to full 3D relevance maps for applications where different
heights cannot be ignored. An example could be a closed
environment (e.g. an office) where the system must primarily
focus on the zones where faces can be detected. In this case,
the face positions cannot be approximated with their projection
on the ground plane and the heights at which heads can be
detected are not constant across the environment (e.g. areas
where people walk and working areas where people sit).

The paper is structured as follows: section II discusses
some related works on sensor reconfiguration, although few
works have been proposed on reconfiguration for coverage
optimization. Section III describes the proposed method in full
detail, and finally experimental results are shown in section IV.

II. RELATED WORK

Up to now sensor reconfiguration techniques have been
mainly proposed to improve tracking performances. Jain et al.
[2] propose a master-slave architecture involving both static
and dynamic cameras. Soto et al. [3] developed a system for
multi-target tracking with a network of self-reconfiguring PTZ
cameras without the need of a central processing unit by using
a distributed version of the Kalman filter. Karuppiah et al.
[4] propose two new metrics that, based on the dynamics of
the scene, allow to choose the pair of cameras that maximize
the detection probability of a moving object. In [5], Park
et al. discuss a distributed look-up table based approach
to determine the cameras’ viewing frustums that allows to
select the best cameras for tracking purposes. Qureshi and
Terzopoulos [6] propose a proactive control of multiple PTZ
cameras through a solution that plans assignment and handoff.



In particular, the authors consider the problem of controlling
multiple cameras as a multibody planning problem in which
a central planner controls the actions of multiple physical
agents. In the context of person tracking, their approach
computes the relevance of a PTZ camera to an observation
task by considering five factors: a) camera-pedestrian distance,
b) frontal viewing direction, c) PTZ limits, d) observational
range and e) handoff success probability. The planing is then
achieved by employing a greedy best-first search to find
the optimal sequence of states. Other approaches to sensor
reconfiguration for people tracking have been developed by
employing game theory. Arslan et al. [7], demonstrate that the
problem of finding an optimal configuration can be expressed
in terms of a game whose solution is expressed by the Nash
equilibrium. From this formulation, different approaches [8],
[9] solve the camera assignment problem by maximizing a
global utility function. Different mechanisms to compute the
utilities can be provided as in [8], [9], then a bargaining
process is executed on the predictions of person utilities at
each step. The cameras with the highest probabilities are used
to track the target, thus providing a solution to the handoff
problem in a video network. On the other hand, when a PTZ
camera is reconfigured to track an object or it is switched
on/off to save power, the topology of the network is modified.
As consequence, a new configuration is required to provide
optimal coverage of the monitored environment. Song et al.
[9] adopt a uniform distribution of the targets and the coverage
resolution utility to negotiate the new network reconfiguration.

Few works address the problem of optimizing the cam-
era coverage of the monitored area according to specific
criteria. Angella et al. [10] propose a method to maximize
the area coverage by using a 3D model of the observed
zone, but their work only aims at finding a good initial
camera displacement, which cannot be dynamically modified
according to the observed data. Mittal and Davis [11], [12] also
consider the presence of dynamic occluding objects in order to
evaluate the visibility of the scene. Piciarelli et al. [1] propose
a method to automatically and dynamically reconfigure the
camera orientations and zoom levels using an Expectation-
Maximization-based approach.

III. SENSOR RECONFIGURATION

Let ω(x), x ∈ H ⊂ R3 be the relevance map denoting the
relevance for each point x belonging to the finite volume H
to be monitored, ω(x) ≥ 0 ∀x ∈ H.

Assuming that the network is composed of K different
sensors, let also Θ = {φ1, θ1, ζ1, . . . , φK , θK , ζK} be the
set of parameters denoting the current network configuration,
expressed in the form of pan (φ), tilt (θ) and cone-of-view
width (ζ) angles for each camera. The position {Xk, Yk, Zk}
of each camera is fixed and defined a priori.

We define the observation function γk for each camera k as

γk(x; Θ) =

{
1 if x ∈ cone-of-view of camera k
0 otherwise

(1)

The function γk thus denotes if a given point is currently
observed by a specific camera, according to the current con-
figuration Θ.

The score function f(x; Θ, C) measures the total coverage
for each point x:

f(x; Θ, C) =

(
K∑
k=1

ckγk(x; Θ)

)ω(x)

(2)

Higher scores are given to points covered by several cameras,
as in many surveillance and monitoring applications it is
generally advisable to have different views of the same zone.
Moreover, the exponent ω(x) gives higher scores to points
with higher relevance. The values ck ∈ C are weights denoting
the “importance” of each camera (in terms of relevance of
observed points). These weights are important especially in
resource-aware contexts, e.g. when the system must switch
off the least important cameras because of limited resources
(power, bandwidth, etc.). Parameters Θ and C are the system
unknowns to be found in order to maximize the global score
function Λ, defined using a product integral as:

Λ(Θ, C) =

∫
H

×
f(x; Θ, C)dx (3)

or, in case H is a discrete set of points as in many practical
applications:

Λ(Θ, C) =
∏
x∈H

f(x; Θ, C) (4)

Maximizing Λ is equivalent to maximize its logarithm, thus
our final global score function λ is defined as:

λ(Θ, C) = log(Λ(Θ, C)) =

∫
H

log f(x; Θ, C) dx (5)

or, in discrete form:

λ(Θ, C) =
∑
x∈H

log f(x; Θ, C) (6)

The optimization process however is non-trivial, and requires
the explicit definition of γk in terms of φk, θk and ζk. We thus
propose a a reformulation of the problem that can be solved
with standard techniques.

Since cameras can rotate in pan and tilt directions, a spher-
ical coordinate system seems a natural choice to represent the
data as seen from a given camera. Moreover, the observation
function (1) in a spherical system does not depend on the
distance from the camera, thus we can drop the distance
dimension and keep only the two angular dimensions. More
formally, for each point x of coordinates (x, y, z), its spherical
coordinates (φk, θk) in a system centered on camera k are
defined as

φk = arctan
(
y−Yk
x−Xk

)
θk = arctan

(√
(x−Xk)2+(y−Yk)2

z−Zk

) (7)



where the arctan function also takes in consideration the sign
of the numerator and denominator, as done in the atan2
function defined in many programming and scripting lan-
guages. Assuming that the cameras are always located above
the volume H to be monitored, the ranges are φk ∈ (−π, π],
θk ∈ [0, π/2].

Fig. 1. The intersection of the cone of view of a camera with the unitary
sphere centered on the camera forms a circle.

Since we dropped the distance coordinate, the coordinate
change (7) maps the monitored volume on the surface of a
unitary semisphere centered on the camera. Figure 1 clearly
shows that the intersection of the camera’s cone of view with
the unitary sphere is a circle, which is the spherical equivalent
of the observation function γk. A second coordinate change
is now introduced to project the spherical surface on a plane
Pk. For this purpose, the stereographic projection is used:{

uk = 2 tan(θk/2) cosφk

vk = 2 tan(θk/2) sinφk
(8)

Figure 2(a) shows how the stereographic projection works,
projecting any point P ′ lying on the surface of an unitary
sphere to the point P ′′ on the plane z = −1 from the
projection point (0, 0, 1). This projection has been widely used
in cartography, and it is well known for being a conformal
projection (this is, locally preserving angles) such that circles
not containing the projection point (0, 0, 1) are mapped to
circles on the plane, as shown in figure 2(b). A combination
of equations (7) and (8) thus maps all the points within the
cone of view of a given camera k into a circle in Pk, as shown
in figure 3.

Let Mk be the coordinate change described above:

Mk(x) = (2 tan(θk/2) cosφk, 2 tan(θk/2) sinφk) (9)
x ∈ H,Mk(x) ∈ Pk

with φ and θ defined as in equation (7). We can now define
Γk as the equivalent of γk in the new coordinate system:

Γk(Mk(x); Θ) = γk(x; Θ) (10)

and we have shown that Γk has a circular shape, since it is
the stereographic projection of the intersection of a cone of

(a)

(b)

Fig. 2. A stereographic projection maps the surface of a sphere onto a plane.
(a) 3D point P mapped on a 2D plane using a stereographic projection; (b)
stereographic projections preserve circles.

view with an unitary sphere centered on the cone vertex. Γk
can thus be written in the form

Γk(u, v; Θ) =

{
1 if (u− µΘ

u,k)2 + (v − µΘ
v,k)2 ≤ (σΘ

k )2

0 otherwhise
(11)

where (µΘ
u,k, µ

Θ
v,k) ∈ Pk are the coordinates of the center of

the circle for camera k with configuration Θ and σΘ
k is its

radius.
We now approximate Γk with a Gaussian function. This

approximation is mainly needed to keep the problem tractable,
as typical optimization algorithms can be applied only to
continuous functions, but can also be seen as a way to give
more importance to the zones at the center of the image rather
than on its borders, a property that could be desirable in many
practical applications. Since the area where Γk is nonzero has
a circular shape, an isotropic bivariate Gaussian function is
sufficient:

Γk(x; Θ) ≈ Gk(x; Θ) =
1

2πσΘ
k

2 e
− ‖x−µ

Θ
k ‖

2

2σΘ
k

2

(12)

where µΘ
k = (µΘ

u,k, µ
Θ
v,k) is the mean of the Gaussian function

and σΘ
k is the standard deviation. Observe that these values

depend on the camera k and the current configuration Θ. This



(a) (b) (c)

Fig. 3. The proposed coordinate changes. (a) the ellipses resulting from the intersection of the cone of view of a camera with several planes in H; (b) the
cone of view is mapped into a 2D region in (φk, θk) coordinates; (c) the same region has a circular shape in Pk after stereographic mapping.

approximation allows to rewrite the score function (eq. 2) as

f(x; Θ, C) =

(
K∑
k=1

ckGk(Mk(x); Θ)

)ω(x)

(13)

and by substituting eq. 13 in the discrete global score function
(eq. 6) we obtain:

λ(Θ, C) =
∑
x∈H

ω(x) log

K∑
k=1

ckGk(Mk(x); Θ) (14)

We must now recall that the final goal is to find a cam-
era network configuration Θ̂ (and a set of weights Ĉ) that
maximizes the global score function:

Θ̂, Ĉ = argmax
Θ,C

λ(Θ, C) (15)

however, the above optimization problem is extremely sim-
ilar to a well-known parameter estimation algorithm, the
Expectation-Maximization (EM) algorithm [13]. The only
differences with respect to the standard algorithm are the
presence of the relevance ω(x) and the Gaussian function
being computed on Mk(x) rather than on x. As in the original
EM formulation, a locally optimal solution of the problem can
be found by setting to zero the partial derivatives of λ(Θ, C)
with respect to µΘ

k , σ
Θ
k and ck. Since neither ω(x) nor Mk(x)

depend on the integration variables, the procedure is basically
the same of standard EM and leads to the following solution:

µΘ
k =

∑
x∈H ω(x) p(k|x) Mk(x)∑

x∈H ω(x) p(k|x)

σΘ
k

2
=

∑
x∈H ω(x) p(k|x) ‖Mk(x)− µΘ

k ‖2

2
∑

x∈H ω(x) p(k|x)
(16)

ck =

∑
x∈H ω(x) p(k|x)∑

x∈H ω(x)

where p(k|x) is defined as

p(k|x) =
ckω(x)G(Mk(x); Θ)∑K
z=1 czω(x)G(Mz(x); Θ)

(17)

Equations 16 and 17 cannot be solved independently since
they are mutually dependent, however it has been proven

that an iterative process that alternates the computation of 17
(Expectation step) and 16 (Maximization step) will eventually
converge to the correct solution. Iteration can also run end-
lessly in order to automatically take into account changes in
dynamically-updated relevance maps.

Once the optimal means µk have been found, it would be
tempting to apply an inverse stereographic mapping to retrieve
the corresponding pan and tilt angles for each camera k. How-
ever, it must be noted that the mean of each Gaussian function
in Pk does not coincide with the center of the corresponding
circle on the surface of the unitary sphere. This is because the
stereographic projection is not isometric (distance preserving).
More specifically, the pan angle is preserved, but the tilt angle
is not, as shown in the side-view of figure 4, where it is evident
that the mean µ is different from C ′, projection on P of the
intersection C of the optical axis of the camera with the unitary
sphere. Inverting the stereographic projection equation (8) it is
however easy to compute the minimum and maximum angles
θ1 and θ2 within the cone of view (see again figure 4), defined
as: θ1 = 2 arctan

(
||µk||+σk

2

)
θ2 = 2 arctan

(
||µk||−σk

2

) (18)

and the desired tilt angle is the mean of θ1 and θ2. These two
angles also allow to define the angular width ζ of the cone of
view.

In other words, an isotropic Gaussian function with mean
µ and standard deviation σ approximates a circle in Pk
corresponding to the region observed by camera k whose
configuration is:

φk = arctan (µv,k/µu,k)

θk = (θ1 + θ2)/2

ζk = (θ1 − θ2)/2

(19)

Recapping the whole procedure: we have mapped the vol-
ume observed by a camera k into a circle in a new space
Pk (equation 8). If each circle is approximated with an
isotropic Gaussian function, the problem of finding on optimal
camera network configuration optimizing the global coverage



Fig. 4. The back-projection of the mean µ on the unitary sphere does not
coincide with the center of the circle obtained from the intersection of the
cone of view and the unitary sphere.

is reduced to an application of the Expectation-Maximization
algorithm (equations 17 and 16). Once the algorithm converges
to a solution, the pan, tilt and angular width angles for each
camera k can be obtained from the mean µk and variance σk
of the corresponding Gaussian function using equation (19).

IV. EXPERIMENTAL RESULTS

Fig. 5. Optimal 2-cameras system configuration for a relevance function
defined as a mixture of two trivariate Gaussian functions.

Visualizing the system results can be difficult, since it
requires to graphically display the 3D relevance function
ω(x, y, z). In order to give a visual example of the proposed
method we thus first present how the system runs on a toy
dataset shown in figure 5. In this example, ω is a bimodal
3D probability density function obtained as a mixture of two
Gaussian trivariate functions with centers in µ1 = (24, 32, 30)
and µ2 = (48, 11, 16) respectively. The surface displayed in
red is the isosurface such that ω(x, y, z) = 0.1, a contour

(a)

(b)

Fig. 6. Slices of the relevance function and camera cone of views at z = 16
(a) and z = 30 (b) for the example shown in figure 5.

projection of ω on the plane z = 0 has been drawn in order
to give a better visualization of the heights of the two main
clusters. Two cameras are placed at coordinates (80, 60, 60)
and (−20, 15, 60) and initially configured to aim downwards:
pan, tilt, and cone-of-view width angles are set to φ = 0◦, θ =
0◦, ζ = 28.6◦ for both cameras. After 12 iterations, the
system converges to the configuration φ1 = −122.00◦, θ1 =
52.80◦, ζ1 = 21.00◦, φ2 = 21.99◦, θ2 = 21.99◦, ζ2 = 33.44◦

which is shown in figure 5. Figures 6(a) and 6(b) show two
slices of the achieved result respectively at z = 16 and z = 30,
the mean heights of the two main clusters. As it can be seen,
at each level the cluster is fully enclosed in one of the two
ellipses, representing the intersection of the cone of view with
the plane, meaning that the system effectively focused the
two cameras on the clusters. Figure 7 shows the global score
(equation (6)) at each iteration of the EM algorithm. As it
can be seen, the global score increases at each step, until the
algorithm converges to a local maximum.

In order to give an intuitive performance measurement, we
finally define the total coverage C as the ratio between the
relevance of all the points falling within the cone of view of
at least one camera versus the total relevance:

C =

∑
x∈H ω(x) maxk{Γk(Mk(x))}∑

x∈H ω(x)
(20)

For example, the final configuration of the experiment shown



Fig. 7. The global score of the camera configuration increases at each
iteration.

in figure 5 has C = 0.9529, meaning that more than 95%
of the relevance falls within the regions observed by at least
one camera. Note that C is not 1 since the isosurface shown in
figure 5 is where ω(x) = 0.1, thus there are still some nonzero-
relevance points possibly outside the observed regions.

Using the total coverage measure, we finally evaluated the
performance of the proposed algorithm on a set of 20 different
relevance maps. The maps are created using an extension of
the trajectory generator already used in [1]. The trajectory
generator creates random sets of 3D trajectories grouped
in a limited number of clusters (from 2 to 5). The space
where trajectories lie has then been discretized into a grid
of 64×48×30 cells, and each cells is assigned the number of
trajectories crossing it. This way the relevance map is seen as
an activity map, denoting how many tracked objects have been
detected in a given portion of space (figure 8). We believe this
is one of the most direct applications of the proposed system,
since in many contexts it is advisable to automatically focus
the cameras on the most active zones. The number and position
of the cameras is chosen randomly, from a minimum of 2 to
a maximum of 5 cameras, always placed outside the map.
The measured total coverage for the considered datasets is
shown in table I. As it can be seen, the system behaved well
in all the cases, with a minimum and maximum total coverage
respectively of 0.9304 and 0.9998.

dataset total coverage dataset total coverage
1 0.9693 11 0.9987
2 0.9998 12 0.9545
3 0.9723 13 0.9785
4 0.9923 14 0.9614
5 0.9977 15 0.9735
6 0.9824 16 0.9788
7 0.9775 17 0.9817
8 0.9891 18 0.9937
9 0.9815 19 0.9798

10 0.9304 20 0.9615

TABLE I
EXPERIMENTAL RESULTS ON 20 DIFFERENT DATA SETS. THE TOTAL

COVERAGE IS DEFINED AS THE RATIO BETWEEN THE RELEVANCE OF ALL
THE POINTS FALLING WITHIN THE CONE OF VIEW OF AT LEAST ONE

CAMERA VERSUS THE TOTAL RELEVANCE.

Fig. 8. One of the 20 datasets used for performance measurement.
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