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Abstract—Vision Network based surveillance systems are more
and more common in public places. Typically, a mixture of static
and Pan-Tilt-Zoom (PTZ) cameras is used. Modern systems task
PTZ cameras as a consequence of particular events needing
further investigation; anyhow, the configuration of the network
can be considered fixed and determined at the moment of
deployment. In this work, we deal with a problem that has not yet
been widely addressed: how a network can automatically change
its configuration to enhance the monitoring capabilities. In
particular, we propose a novel network reconfiguration algorithm
that, given a map of activities, configures the Pan, Tilt and Zoom
parameters of all the cameras in order to improve the detection. A
spherical model to project all the activities in the monitored area
with respect to the optical centre of each camera is introduced.
Such a model leads to an optimization problem that can be
solved by means of the Expectation-Maximization algorithm and
whose solutions are the new Pan, Tilt and Zoom values for each
PTZ camera. Experimental results will be proposed with both
synthetic and real data to show how the proposed algorithm can
be applied to different cases.

I. INTRODUCTION

Sensor networks and computer vision have been the core
of many researches in the last decade. A natural application
has been video surveillance by means of video networks.
In this field, a lot of effort has been conducted and many
achievements have been obtained. Complex and wide systems
have been proposed to solve problems from object detection
to tracking and finally behaviour analysis [5]. From single
footages acquired by static cameras, more recent developments
exploit large video networks equipped with different kind of
visual sensors like common cameras, forward looking infra-
red (FLIR) and Pan Tilt Zoom (PTZ) cameras. Problems that
seemed to be almost solved for single cameras, determined
new situations that opened new questions once projected in
a multi-sensor environment. Among these, tracking is one
of the most studied problems. In this context, problems like
the handover between cameras with or without overlapping
fields of view have been successfully addressed for static
cameras. Instead, when PTZ cameras are considered, many
problems arise. Indeed, while static networks require only
post-acquisition analysis, dynamic networks need also a man-
agement strategy for the sensors. In particular, two stages can
be determined. First, a static configuration of the sensors has
to be decided to maximize coverage and minimize resources.
Then, a strategy for planning, programming and controlling
the network of sensors is worthwhile to acquire data from

the dynamic environment. Moreover, it is interesting to define
such a strategy in order to improve the performance of the
network while keeping the required resources. These two
phases have been marginally studied if compared to the current
research emphasis on sensors networks [1] that principally
considers distribution levels for the communication [6], power
consumption [4], embedding [2], scalability [9] and security
[3]. Considering the distribution levels connected to data
acquisition represents a novel research field. For example,
sensors crashes, communication breakdowns, data degradation
or black out due to wrong coverage require new methodologies
allowing the network to react in order to reduce the effects of
such problems.

Concerning the static configuration of the sensors, Mittal
and Davis [10], [11] proposed an interesting approach for
the optimal deployment of static sensors. With respect to
previous works the proposed methodology considers not only
occlusions due to static objects in the scene but also dynamic
objects. A probabilistic framework for the visual coverage of
the dynamic scene is therefore introduced to take into account
the average environmental situation. Sensor network deploy-
ment works like those proposed by Karuppiah et al. [8] or Park
et al. [13] can be adopted to determine the optimal subset of
cameras necessary for optimally acquiring the targets. In [8],
two metrics based on the dynamics of the scene are introduced
to determine the pair of cameras that maximize the probability
of tracking people moving within the monitored scene. In
[13], a distributed look-up table based approach is proposed
to determine the cameras’ viewing frustums that allows to
select the cameras for tracking purposes. Such an approach
is interesting since allows to reduce the network traffic for the
camera selection task.

The aforementioned approaches propose solutions for static
sensors and do not consider the possibility for reconfiguring
a dynamic sensor network. In this context, to solve the
reconfiguration problem, a first approach has been proposed
by Kansal et al. [7]. In particular, a laser system is proposed
to define map of all the static obstacles in the scene. When an
event of interest is detected, the map is exploited to select the
best high resolution sensor. Such a camera is redirected to the
location of the event of interest while low resolution cameras
are reconfigured to cover the remaining zones. Starting from
such a work we want to introduce a novel approach to answer
the question “how can a network automatically change its



configuration to enhance the monitoring capabilities?”. In
particular, we propose a network reconfiguration algorithm
that, given a map of activities, configures the Pan, Tilt and
Zoom parameters of all the cameras in order to improve the
detection. A spherical model to project all the activities in
the monitored area with respect to the optical centre of each
camera is introduced. Such a model leads to an optimization
problem that can be solved by means of the Expectation-
Maximization algorithm and whose solutions are the new Pan,
Tilt and Zoom values for each PTZ camera. It is worth noticing
that the proposed solution can foresee a development that
allows each camera to compute its reconfiguration parameters
thus allowing a distributed reconfiguration strategy. As a
matter of fact each camera can autonomously determine its
reconfigured parameters by knowing the activity map and the
position of the other cameras.

II. SYSTEM ARCHITECTURE

The proposed solution (see Figure 1) can find application in
any visual surveillance system that employees PTZ cameras
even in static mode (i.e., the configuration of Pan-Tilt-Zoom
parameters is kept fixed). Static cameras configuration with
wide angle of view can monitor a large area of the envi-
ronment, but cannot be reliably used for many surveillance
tasks because of their low resolution. On the other hand,
PTZ cameras can be pointed and zoomed on specific areas of
interest in order to gather useful information (e.g. faces, license
plates, etc.) but cannot have a global view of the scene. The
proposed work is based on the idea that static PTZ cameras can
acquire global information on the activities happening within
the scene, and this information can be used to automatically
schedule the PTZ cameras to more specific tasks. We will
focus on monitoring the zones with highest activity. Depending
on the activity of interest (i.e. moving people or vehicles, event
of interest, task of interest, etc.) the video surveillance systems
extract useful information from all video sensors. In the current
development, the activity of interest is the localization of the
moving objects in the scene. Thus, the video streams acquired
by static PTZ cameras are processed in order to detect and
track moving objects; the object trajectories can in turn be
processed in order to obtain an activity density map, as shown
in Figure 1. The density map is computed by subsampling the
scene map in a low-resolution grid, and by counting how many
objects pass through each cell. The final aim of this work is
to propose an algorithm to automatically reconfigure the PTZ
cameras in order to optimally cover the zones with highest
density in the activity density map.

III. NETWORK RECONFIGURATION

The task we are going to tackle with has many similarities
with 2D data fitting problems, in which the data distribution
is approximated by a mixture of density functions (i.e., Gaus-
sians): in our case there is an activity density map that should
be fit by the coverage areas of the PTZ cameras. One of the
most popular Mixture-of-Gaussians data fitting algorithms is
Expectation-Maximization (EM) [12]; we will first give a short

Fig. 1. A real-life scenario with the corresponding activity density map.

description of the EM algorithm, then we will show how EM
can be applied to our map coverage problem.

A. EM data fitting

Expectation-Maximization is a popular tool for data fitting;
although it can be applied to several data models, we here
describe the special case of 1D Gaussian fitting. Let us suppose
to have a set of data {x1, . . . , xn}, which can be seen as
the realizations of the random variables X = {X1 . . . Xn}.
The data are drawn from k Gaussian distributions, thus each
element has a label denoting which Gaussian it has been drawn
from. The set of labels is denoted {z1, . . . , zn} (realizations
of the random variables Z = {Z1, . . . , Zn}) and it is initially
unknown. Moreover, the data generation process is governed
by a set of hidden parameters Φ, representing mean, variance
and weight of each Gaussian distribution. Aim of the data
fitting process is to find the set of parameters Φ̂ maximizing
the probability of the data set p(X|Φ). By using the total
probability theorem, we get

p(Xi = xi|Φ) =
k∑
z=1

p(Xi|Zi = z,Φ)p(Zi = z|Φ) (1)



The term p(Xi|Zi = z,Φ) is the likelihood, and it is a
Gaussian distribution; p(Zi = z|Φ) is the prior probability,
constant for each class and independent from i. Eq. 1 can
thus be written as

P (Xi = xi|Φ) =
k∑
z=1

G(xi, µz, σz)cz (2)

where

G(xi, µz, σz) =
1√

2πσz
exp

(xi − µz)2

2σ2
z

and cz are the weights of each Gaussian model. The opti-
mization problem can thus be expressed as the search for
the unknown parameters Φ̂ = (µ1, σ1, c1, . . . , µk, σk, ck) such
that

Φ̂ = argmax
Φ

p(X|Φ)

= argmax
Φ

ln p(X|Φ)

= argmax
Φ

ln
n∏
i=1

p(Xi|Φ)

= argmax
Φ

n∑
i=1

ln
k∑
z=1

G(xi, µz, σz)cz

(3)

A solution for the optimization problem (3) can be found
by setting to zero the partial derivatives w.r.t. µz, σz and cz
respectively. This leads to the equations

µj =
∑n
i=1 xipij∑n
i=1 pij

(4)

σ2
j =

∑n
i=1(xi − µj)2pij∑n

i=1 pij
(5)

cj =
1
n

n∑
i=1

pij (6)

for each Gaussian j, where pij = p(Zi = j|Xi = xi,Φ) is
the posterior probability, and can be defined as

pij =
G(xi, µj , σj)cj∑k
z=1G(xi, µz, σz)cz

(7)

As it can be seen, the unknown parameters depend on
the posterior probability and vice-versa; they can thus be
computed with an iterative process, starting from a random
choice for µ, σ and c. The two iterative steps are respectively
called the Expectation step (in which the posterior probability
is computed based on the previous values for µ, σ and c) and
the Maximization step (in which the Gaussian parameters and
weights are found using the previously computed posterior
probabilities), hence the name of the algorithm. The iterative
process is proven to converge to a local maximum.

Fig. 2. Approximation of the real camera coverage with two bounding
ellipses.

B. Reconfiguration Model

How can EM data fitting be applied to network reconfigu-
ration? The basic idea is that each camera has its own cone
of view, representing the portion of space observed by the
camera, and the intersection of a cone of view with the ground
plane is an ellipse (assuming the camera is not looking above
the horizon, otherwise the intersection would be a parabola or
an hyperbola). The ellipse represents the ground area observed
by a camera and its position, orientation and eccentricity are
uniquely defined by the pan, tilt and zoom parameters of the
sensor. The problem of network reconfiguration for optimal
coverage can thus be reduced to a problem of fitting ellipses
to a data set, something strictly related to EM data fitting. A
main approximations is used here: even though the optic of a
camera has a circular shape, the imaging sensor (the CCD) has
not, and thus the observed area has not an elliptical, but rather
a trapezoidal shape. In the present work we will not consider
this problem and will assume that the observed area can be
approximated by an ellipse; a better approximation could be
obtained by considering the inscribing and encircling circles of
the CCD, and thus approximating the trapezoid by bounding
it between two ellipses, as shown in Figure 2.

Another problem to be faced is that EM works with Gaus-
sian distributions, not simply ellipses. However, the isovalue
contours of a bivariate Gaussian distribution are ellipses, and
thus the camera coverage area can be approximated as the
support region of a fixed quantile of a Gaussian distribution.
In particular, we can consider ellipses as the set of all the
points x with a given Mahalanobis distance R, defined as

R =
√

(x− µ)TΣ−1(x− µ) (8)

where µ and Σ respectively are the mean and the covariance
matrix of the Gaussian distribution. By mathematical proper-
ties of Gaussian distributions, we know that the area enclosed
by the support region with R = 2 covers the 95% of the total
probability distribution, and thus can be a safe approximating
choice for our map coverage problem. In other words, if the
data set is fitted by a set of n Gaussians, and for each Gaussian
we use the ellipse with R = 2 as the coverage area for a given
camera, the cameras will be granted to cover the 95% of the
entire data set.

Finally, which kind of data the data set should be composed
of? As stated in the previous section, EM works with a



Fig. 3. A camera with the corresponding feature space (the camera space).
Ellipses on the ground plane become circles in the camera space. Any circle
in the camera space is associated to a valid PTZ configuration; the same is
not true for ellipses on the ground plane.

discrete set of data elements (in our map-coverage problem,
the elements will be two-dimensional vectors representing map
coordinates); however what we have is an activity density map
as described in section II. The activity map is a matrix A in
the form A(i, j) = n, meaning that n moving objects passed
in the map sector (i, j) during a given observation period.
The activity map can be easily converted in a usable form for
EM maximization by creating a set X of m =

∑
i

∑
j A(i, j)

elements in the form of

X = {

A(i,j)times︷ ︸︸ ︷
(i, j), . . . , (i, j)} ∀i, j (9)

C. Constrained EM

In the above sections we have shown how the activity
density map can be converted in a data set that can be
processed by the Expectation-Maximization algorithm, and
we discussed how the resulting mixture-of-Gaussians solution
can be converted in a set of ellipses covering almost all the
data set. However, standard EM cannot be directly applied to
network reconfiguration problems, since the resulting ellipses
do not necessarily represent the map coverage of any of
the available cameras (even though this information could
be useful if the network topology has not been fixed yet
and the optimal position of the cameras must be chosen). In
order to perform network reconfiguration a constrained EM
problem must be solved, where only valid ellipses can be
selected. The problem can be solved by defining the ellipses no
more in terms of mean and covariance values, but expliciting
their dependencies in terms of Pan, Tilt and Zoom camera
parameters, and solving the optimization problem (3) in terms
of these variables. However, the resulting equations quickly
become very complex, and an analytic solution can hardly
be found, thus requiring the use of more sophisticated, non-
analytical optimization strategies.

Instead of following the complex approach of solving an
explicitly constrained Expectation-Maximization problem, we
propose a much simpler method, consisting in projecting the
data in a set of non-constrained feature spaces where standard
EM can be applied. An intuitive view of what the new feature
spaces should represent is clearly given in Figure 3. For
each camera with position (Xc, Yc) on the map and height
Zc, consider a sphere surrounding the camera, with centre
in (Xc, Yc, Zc) and radius Zc. The entire spherical surface is
spanned by two coordinates, φ and θ, respectively representing
the pan and tilt angles of the camera. If the ground plane is
projected on the surface of the sphere (actually, only on the
lower semisphere), we can represent any map point in terms
of (φ, θ) coordinates; in other words we shift to a spherical
coordinates system:

φ = arctan
(
y−yc

x−xc

)
θ = arctan

(
(x−xc)2+(y−yc)2

zc

) (10)

thus transforming the original ground plane (Figure 4(a)) in a
spherical space (Figure 4(b)). We further transform this space
in polar coordinates in order to make explicit the fact that the
system is centred in the camera origin:

{
u = θ cosφ
v = θ sinφ

(11)

thus moving from the space of Figure 4(b) to the one shown
in Figure 4(c). Coverage ellipses in the (x, y) ground plane
space become circles in the new (u, v) space (from now on,
the camera space), as it is intuitively evident by looking at
Figure 3.

The advantage of using the camera space is that any circle in
the camera space corresponds to a valid pan/tilt/zoom camera
configuration, as opposed to the original ground plane space,
where only a subset of the possible ellipses could be really
obtained by the intersection of the camera cone of view with
the ground. In other words, the constraints of the original
problem disappear if the processing is done in the camera
space, and the problem becomes unconstrained.

The standard EM algorithm can thus be applied for each
camera in its own camera space, with the only difference
that circles must be found, rather than ellipses, and thus the

covariance matrix must be in the form
(
σ2 0
0 σ2

)
where σ is

the circle radius. We force this by defining σ2 = max(λ1, λ2),
where λ1, λ2 are the eigenvalues of the data covariance matrix;
this way the circle radius is set to the length of the major axis
of the ellipse.

The whole EM process is now defined as

• for each camera j with position (Xj , Yj , Zj), project all



(a) (b) (c)

Fig. 4. Definition of the new feature space. (a): the original (x, y) ground plane; (b) the spherical pan/tilt space; (c) polar version of the pan/tilt space.

the data (xi, yi) in the camera space:

φij = arctan
(
yi − Yj
xi −Xj

)
θij = arctan

(
(xi −Xj)2 + (yi − Yj)2

Zj

)
uij = θij cosφij
vij = θij sinφij

• iterate until convergence
– for each camera j. . .
∗ E step:

pij =
Gj(i)cj∑k
z=1Gz(i)cz

∗ M step:

µj =
[∑n

i=1 uijpij∑n
i=1 pij

,

∑n
i=1 vijpij∑n
i=1 pij

]
σ2
x =

n∑
i=1

(uij − µj,1)2/

n∑
i=1

pij

σ2
y =

n∑
i=1

(vij − µj,2)2/

n∑
i=1

pij

σxy =
n∑
i=1

(uij − µj,1)(vij − µj,2))/
n∑
i=1

pij

σ2
j = max

(
eigenvalues

(
σ2
x σxy

σxy σ2
y

))
cj =

1
n

n∑
i=1

pij

where Gj(i) is the j-th bivariate Gaussian applied to the i-th
data element projected in the j-th camera space. As it can be
seen, there is no need of a unified feature space: each camera
can run the optimization process in its own camera space; the
only “interaction” between cameras is in the E step, when the
probability of a given point in all the camera spaces is needed.
Because of this, a distributed implementation is also feasible,
in which each camera performs its own optimization process;
the only data to be transferred over the network connecting

the sensors are the mean and variance of the cameras at each
iteration.

Once the iterative process has converged to a solution and
µj and σ2

j are computed for each camera j, the corresponding
pan and tilt angles can be easily computed by applying the
inverse of eq. 11: φj = arctan

(
µj,2
µj,1

)
θj =

√
µ2
j,1 + µ2

j,2

(12)

and 2σj is the angular width of the field of view of camera
j. Note that, in practical applications, additional constraints
on the values of σ should be applied, in order to model the
camera minimum and maximum zoom limits.

IV. EXPERIMENTAL RESULTS

The proposed network reconfiguration technique has been
tested both on synthetic and real-world data. In the first
case, the dataset has been manually generated in the range
[−1, 1]× [−1, 1] as shown in Figure 5, and it is composed of
85 points. Four cameras with height 1 are placed in the map
corners, their initial configuration is φ = 0, θ = 0, σ = 0.1.
The algorithm converges in 13 iterations, with a good approx-
imation achieved already after 5 iterations (Figure 5(d)). The
iterative process is stopped when no camera has moved by
more than 10−4 radians in pan or tilt direction among two
consecutive iterations. The ellipses shown in Figure 5 are the
coverage areas of each camera, associated to the isovalues of
each Gaussian where σ = 2; the straight lines connect the
cameras with the centres of the observed areas in the image
plane projected into the map (note that this is different from
the centre of the ellipses).

Figure 6 instead shows an example taken from a real-
world scenario. The map represents a portion of a parking
lot, covering an area of 82×58 metres. Two PTZ cameras are
mounted on the roof of an adjacent building at an height of
12.1 metres. Initially, the cameras have been configured by a
human operator who has been asked to setup the network for
monitoring the left section of the parking lot and the passage-
way bringing to the building. Two hours long footages from
the two cameras have been processed to localize humans and



(a) (b) (c)

(d) (e) (f)

Fig. 5. Network reconfiguration with synthetic data; four cameras are placed in the map corners. (a) Initial configuration; (b) iteration 1; (c) iteration 3; (d)
iteration 5; (e) iteration 9; (f) optimal solution found at iteration 13.

(a) (b) (c)

Fig. 6. Network reconfiguration in a real scenario. (a) initial configuration; (b) iteration 1; (c) optimal configuration found at iteration 37.

(a) (b)

Fig. 7. Views of the left ((a)) and right ((b)) PTZ cameras after the proposed reconfiguration.



vehicles in the monitored scene. Localization positions on a 2D
map of 640× 480 pixels with resolution of 0.128m× 0.120m
have been recorded. From such data an activity map of 64×48
cells, each covering a ground area of 1.28m×1.2m, has been
created in such a way that each cell contains the number of
objects that entered such an area. The reduction from the orig-
inal map size to the activity map size has been done to smooth
data and speed up the EM-analysis. The activity map’s data
converted in real measurements (i.e., meters) together with the
positions of the two cameras have been passed to the proposed
algorithm. Using the same initial configuration and termination
criterion described above for the synthetic case, the algorithm
converges in 37 iterations. The final configurations for the
two cameras are φ1 = 45.35, θ1 = 68.44, FoV1 = 29.41 and
φ2 = 114.49, θ2 = 65.93, FoV2 = 36.42, corresponding to the
views shown in Figure 7. As it can be seen, the cameras have
been configured in order to cover all the regions of interest.

V. CONCLUSIONS

In the current work a novel method for reconfiguring a
network of video sensors has been proposed. An EM-based
data fitting algorithm has been exploited to determine an
optimal configuration of the PTZ parameters to cover the
entire area based on an activity map. A new space centred
in the optical centre of the camera has been introduced to
project the activity map into a space in which EM compu-
tation is easier. Results demonstrate the applicability of the
proposed algorithm for determining an optimal configuration
of the video sensors. In fact, in a real scenario the computed
reconfiguration minimizes overlapped zones with respect to
the original configuration and acquire the same area with
higher definition (higher zoom level for both cameras) thus
improving the recognition performance of the system. In our
future works we plan to adopt the proposed algorithm to
reconfigure the network as consequence of particular events,
for example a malfunctioning sensor not acquiring data from
its area of interest. The system can be applied by removing
the sensor from the EM analysis (i.e., reducing the number of
Gaussians) to find out the optimal coverage with the operating
sensors. Future developments will also investigate different
definitions of the activity map for solving different problems

(best configuration for people detection and/or recognition,
different configuration for different hours, etc.).
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