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Abstract—In many surveillance tasks it is very important for
security operators to know whether a specific person is present
in a given scene, at a given position and time. Person re-
identification deals with this problem in order to provide more
efficient security. A novel distributed appearance-based method
for person re-identification is proposed. Spatio-temporal features
are used to group the camera network into camera neighbour-
hoods. A intra-neighbourhood camera confidence hand-over mea-
sure is computed by exploiting a signatures’ distance measure.
The camera confidence measure is exploited to save network
resources. Features that capture the chromatic appearance and
the shape of an individual are used to compute a discriminative
signature. The Expectation Maximization algorithm is used to fit
Gaussian Mixture Models over the chromatic features. GMMs
are exploited to compute the distance between signatures and to
update the intra-neighbourhood camera confidence. The method
has been validated using a benchmark dataset and a new dataset
acquired from a wide camera network scenario.

I. INTRODUCTION

Wide area surveillance is gaining a lot interest from the

computer vision, sensors and telecommunication communities

due to its intrinsic open research issues [12]. As the monitored

site grows different problems arise, from the number of sensors

to deploy, their configuration, the way they intercommunicate

and how they cooperate to achieve a global goal. In this

context, even though cameras are becoming cheaper, it is not

affordable to have a full coverage of the area, and coverage

optimization algorithms should be employed to improve detec-

tion probability [13]. Partial area coverage opens to the “blind

gaps” problem concerning how to associate objects moving [3]

from the Field of View (FoV) of a camera to other ones across

not covered zones.

In case of person tracking, re-identification is the way

to classify [11] current detections to detections previously

achieved by any camera in the network at any location and at

any time instant. Re-identification solutions can be categorized

into two main categories: biometric, and appearance based

methods. The former exploits biometric features and matching

techniques to provide across FoV association. The latter relies

on the appearance of the objects. The aim of such methods

is to extract visual features able to describe a object under

different orientations and poses.

In [4], Gallagher and Tsuhan proved that even humans have

difficulties in re-identify people without information about

clothes. In [14] a color-position histogram descriptor is build

on image regions that share similar colors. Ba̧k et al. developed

the Mean Riemannian Covariance Grid (MRCG) descriptor [1]

by inspecting the features distribution and the appearance

temporal changes together with a dense grid structure method.

In [7] Hamdoun et al. proposed a method that accumulates

features from several time-spaced images during tracking. The

ensemble of localized features (ELF) approaches by Gray

and Tao [6] addresses the problem of viewpoint invariant

pedestrian recognition. An AdaBoost algorithm is exploited

to learn the signature composed by a combination of spatial

and color local features. In [8] a classifier has been trained

to learn pairwise dissimilarity profiles between people repre-

sentations. Doretto et al. proposed an algorithm that can be

used for generating signatures either from single-images or by

accumulating features from multiple images [2].

The proposed work introduces a novel distributed

appearance-based method for person re-identification in a

wide camera network. Appearance-based features of the same

pedestrian acquired by a camera are extracted from multiple

frames and accumulated to compute its signature. The Expec-

tation Maximization algorithm is used to fit Gaussian Mixture

Models over the chromatic features. A distance measure is

defined to compare the distributed signatures built by neigh-

bouring cameras. The distributed approach determines a set

of neighbours cameras based on mean pedestrian speed and

cameras FoV distances. As the time passes signature matches

within the neighbourhood cameras define a confidence hand-

over measure. This is used by a camera acquiring a person

to ask in a priority way which of the neighbouring cameras

previously acquired the current person. This is achieved by

sending the current signature to the most confident camera that

on the basis of the distance measure answer positively or not.

In the first case the re-identification is successful otherwise

the next confident camera is checked. An iterative intra-

neighbourhood approach is adopted to increase robustness.

Summarizing, the current work introduces the following

novelties: i) a novel intra-neighbourhood camera confidence

measure for distributed re-identification; ii) the EM algorithm

for fitting Gaussian Mixture Models over the chromatic fea-

tures; iii) a distance measure exploiting the trained GMMs and

the other accumulated shape features.

The rest of the paper is organized as follows. Section II

gives the system description. The exploited appearance-based
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Fig. 1. Distributed re-identification within a camera neighbourhood. The re-identification process within a single neighbourhood is shown.

features are introduced in section III. The methodology for the

computation of the proposed signature is given in section IV

and the distance measure is described in section V. In sec-

tion VI the intra-neighbourhood camera confidence measure is

described. The distributed re-identification policy is described

in section VII. In section VIII experimental results are given.

Finally, conclusions are provided in section IX.

II. SYSTEM DESCRIPTION

The proposed work introduces a novel distributed approach

for person re-identification. As shown in Fig. 1, the system

computes the intra-neighbourhood re-identification through

an iterative process. Network resources are saved exploiting

the camera confidence hand-over measure and by using a

distributed features approach.

Given a test camera, multiple images of a person

are acquired by means of a tracking algorithm. A fore-

ground/background segmentation is used to compute the sil-

houette of each person further decomposed into the three

salient body parts. Finally, three local features are extracted

(see section III): i) Pyramid Histogram of Orientation Gradi-

ents (PHOG); ii) SIFT; iii) weighted Gaussian color histogram;

To provide a pose and orientation invariant signature, an

accumulation procedure is introduced to integrate features

extracted from consecutive frames.

Given a signature Sj,q of the person q built by the camera

j, the goal is to determine if the same person has already been

detected by other cameras within the neighbourhood neigh(j).
A camera confidence hand-off measure is used by camera j

to ask in a priority way which of the neighbouring cameras

previously acquired the current person. The signature Sj,q is

initially sent to the most confident camera, let it be k, that

computes the distance measure d(·, ·) (see eq. 4) between

the sent signature Sj,q and the signatures Sk computed for

all the previously detected people. A match is detected if

d(Sj,q, Sk,t) < Th1 where Sk,t is the signature of the t-th

person computed with respect to camera k. All the matched

signatures are fed back to camera j. If none of the camera

k’s signatures returned a match for Sj,q , camera j keeps on

analysing new frames of person q in order to update the Sj,q

signature. For any update of Sj,q , the described procedure is

repeated. To propose a more efficient and distributed approach

only the updates of Sj,q are sent to cameras that already

have received a previous version of the same signature. The

procedure is repeated until a valid match is identified or the

person q has gone out of the FoV of camera j.

III. LOCAL FEATURES

A feature-based approach is exploited by the proposed

method. Three local features are extracted from a given image

to capture the appearance of an individual. Such features

are accumulated over multiple images by means of a feature

accumulation module to compute the signature of a person. A

foreground/background separation is initially exploited. The

body part division approach exploited in [9] is applied to

separate the three silhouette regions BH , BT and BL corre-

sponding to the head, torso and legs respectively. The extracted

features and the body part regions are used to compute a



discriminative signature by means of the proposed feature

accumulation module.

First, PHOG features are computed to capture the shape

and the whole appearance of a person. Before extracting

such features the given image is projected into the HSV

color space to achieve illumination and color invariance. A

PHOG matrix P ∈ R
m×3 is extracted by concatenating the

PHOG histograms extracted from the three image channels.

m represents the total number of histogram bins computed by

exploiting the original weighted combination of histograms

extracted at the different levels of the pyramid representation.

Then SIFT features are computed by exploiting the original

cascade filtering approach. The scale space nature of the

detector is used to compute the SIFT descriptors. The SIFT

features are exploited to capture the chromatic appearance of

the individual as proposed in [10].

Finally, for each SIFT feature keypoint vector p = [x, y]T

-where x and y are the coordinates of the keypoint center-

a circular image region R of fixed diameter, centred at p, is

extracted. Given the region region R, a Gaussian function is

used to compute a weighted Gaussian color histogram Hc ∈
R

bc for each channel c. The Gaussian function is used such

that more weight is given to the part of the region that is less

prone to occlusions and pose variations. bc is the number of

bins used for quantization.

IV. SIGNATURE COMPUTATION

Given the n frames of a person q acquired by camera j, the

signature Sj,q is defined as
〈

P (1,n), SIFT (1,n), H(1,n)
〉

where

P is the PHOG matrix, SIFT is the SIFT feature vector and

H is the weighted Gaussian color histogram. All the three

features are accumulated over frames 1, . . . , n. The PHOG

feature matrix is given by the pooling as P (1,n) = 1
n

∑n

i=1 P
i.

The SIFT and the weighted Gaussian color histogram features

are accumulated exploiting the following three steps: i) match

SIFT features; ii) accumulate SIFT features; iii) accumulate

weighted Gaussian color histograms of matching SIFT features

and update the number of Gaussian distributions used to train

a GMM over the weighted Gaussian color histograms.

Let i, l be the match computed exploiting the l2-norm

distance between SIFT
(1,n−1)
i and SIFT

(n,n)
l , the weighted

Gaussian color histogram H
(n,n)
l is assigned to SIFT

(1,n−1)
i .

Then the distance dχ2(H
(1,n−1)
i , H

(n,n)
l ) is computed as

dχ2(H
(1,n−1)
i , H

(n,n)
l ) = ω(pi, Bi, pl, Bl)

·
3

∑

c=1

ψcχ
2(H

(1,n−1)
i,c , H

(n,n)
l,c )(1)

where H
(1,n−1)
i,c and H

(n,n)
l,c are the weighted Gaussian color

histogram vectors computed for channel c. pi and pl are the

SIFT keypoints related to the SIFT
(1,n−1)
i and SIFT

(n,n)
l .

Bi and Bl are the silhouette regions on which the keypoints

pi and pl lie. ψc is the normalization weight. The function

ω(p1, B1, p2, B2) = max(DM (p1, B1), DM (p2, B2)) (2)

is used to provide a signature robust to occlusions and

pose variations. DM (p,B) is the Mahalanobis distance be-

tween a keypoint p and the silhouette body region B ∈
{BH , BT , BL} onto which the keypoint lie. If the distance

dχ2(H
(1,n−1)
i , H

(n,n)
l ) is higher than a given threshold Th2

the number of Gaussian distributions that have to be used to

train the GMMs over the weighted Gaussian color histograms

assigned to SIFT
(1,n)
i is incremented by one. All the non-

matching features in SIFT (n,n) are accumulated such that

SIFT (1,n) = SIFT (1,n−1)+SIFT (n,n). Finally, the Expec-

tation Maximization algorithm is exploited to train the GMMs

over all the signature’s weighted Gaussian color histogram.

Since the feature space over which the GMMs have to be

trained is given by number of bins used to quantize each

weighted Gaussian color histogram, three GMMs for each

SIFT feature are computed.

V. DISTANCE MEASURE

Given a query signature Sj,q of person q computed with

respect to camera j and a learned signature Sk,t of a person

t computed with respect to camera k the signatures distance

is given by exploiting a weighted combination of i) the dphog
distance between signatures’ PHOG features and ii) the dwgch

distance between Gaussian weighted color histograms. Here a

description about how the distributed signatures are compared

is given.

A weighted χ2 distance metric is exploited to compute the

PHOG distance

dphog(Sj,q, Sk,t) =

3
∑

c=1

κcχ
2(PSj,q , PSk,t) (3)

where PSj,q and PSk,t are the two PHOG matrices. κc is the

normalization weight.

Let SIFTSj,q and SIFTSk,t be the SIFT features of sig-

natures Sj,q and Sk,t, a match i, l between two SIFT features

is given exploiting the l2-norm distance. Given the match

i, l the probability p(H
Sj,q

i ) =
∑K

g=1 λwg
N (H

Sj,q

i |λµg
, λΣg

)

is computed. H
Sj,q

i is the related weighted Gaussian color

histogram. λµg
and λΣg

are the mean and the covariance

of the g-th GMM trained over the weighted Gaussian color

histogram assigned to the learned feature SIFT
Sk,t

l . K is

the total number of such models. Such a probability is then

weighted exploiting eq. (2). Finally, the dwgch distance is given

by computing the average probabilities computed with respect

to all the matches between Sj,q and Sk,t.

The final distance between a learned signature Sk,t and a

query signature Sj,q is given by

d(Sj,q, Sk,t) = α dphog(Sj,q, Sk,t)

+ βdwgch(Sj,q, Sk,t) (4)

α and β are the normalization weights.

VI. CAMERA CONFIDENCE MEASURE

A novel camera confidence measure is proposed to achieve

a more efficient and distributed re-identification method. The
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distance measure between signatures acquired from camera j

and all the signatures computed by cameras {k|k ∈ neigh(j)}
is exploited to compute the confidence hand-over measure.

The camera confidence measure is learned by exploiting the

distance between signatures computed from different cameras.

The confidence measure conf(j, k) between all the cameras

couples (j, k) in the same neighbourhood C is initially com-

puted during an off-line phase. Then conf(j, k) is updated

through the on-line re-identification phase. Given all the

signatures computed by j and all the signatures computed by

k with j, k ∈ C the confidence is defined as

conf(j, k) =

Q
∑

q=1

T
∑

t=1

1{d(Sj,q,Sk,t)<Th1} (5)

Q and T are the total number of signatures computed for

camera j and k respectively.

VII. DISTRIBUTED RE-IDENTIFICATION

As described in section II a query signature Sj,q is matched

with all the signatures Sk of the same neighbourhood such

that k ∈ neigh(j). The query signature Sj,q is initially sent to

the most confident camera k = argmaxk conf(j, k). Then the

distance measure d(·, ·) between the Sj,q and all the signatures

Sk is computed. The process is repeated for all k ∈ neigh(j)
until a match is answered. If no match is answered by k,

camera j acquires other frames of person q through a tracking

algorithm. Then, given the new frames, the re-identification

process is repeated by sending through the neighbours only the

features extracted from such images. Those features are used

to update the local representation Sj,q that has been previously

sent to each camera k. The updated signature is compared with

the k signatures as described in section V. Since more features

are used to compute Sj,q a lower threshold Th′1 < Th1 is

exploited. The whole process is repeated until a valid match

is identified or the person q has gone out of the FoV of camera

j.

VIII. EXPERIMENTAL RESULTS

The proposed method has been validated against a public

benchmark dataset and a dataset acquired from a wide area

camera network. As suggested in [5] the Cumulative Matching

Characteristic (CMC) curve and the Synthetic Recognition

Rate (SRR) methods have been used to validate the re-

identification method. The true positive rate versus false pos-

itive rate curves have also been provided. Each considered

datasets has been split into a train set and a test set. The

train set is used to compute the initial camera confidence. The

test set has been used during the on-line phase to perform

the re-identification and to update the camera confidence. N

images of the test set are used to compute the signatures

of each pedestrian with respect to all the neighbourhood

cameras. Evaluation performance have been computed for all

the neighbourhood cameras j ∈ C. The match threshold value

Th1 is set to 0.3. If no matches are detected between a query

signature Sj,q and signatures Sk the proposed features are

extracted from W images which are used to update Sj,q . The

reject threshold Th2 is set to 0.1. The values of α and β have

been set to 0.4 and 0.6 respectively. Different values for N

and W have been exploited to validate the performance of the

proposed method.
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Fig. 3. Performances on the CAVIAR dataset. The re-identification has
been performed with respect to each camera. In (a), (c), and (e) results are
compared to the method used in [10]. In (b), (d), and (f) the CMC, SRR, and
ROC curves shows the performance of the proposed method using different
values of N and W .

A. CAVIAR

The CAVIAR4REID re-identification dataset has been used

to validate the proposed method. To make a fair comparison

with state-of-the-art algorithms [10] images have been nor-

malized to 128×64. The proposed distance is exploited to

compare the signatures Sj with the signatures Sk. The camera

k is selected by exploiting the proposed confidence measure.

The proposed distance provides a ranking for the compared

signatures. Evaluation performance have been computed with

N = {1, 2} and W = {1, 2}. 100 independent trials for each

case have been performed to compute fair results.

In Fig. 3(a), 3(c), and 3(e) the proposed method has been

evaluated using N = 1 and W = 1 images to compute

and update the signatures. Results show that the proposed

method outperforms the method used for comparison with

respect to each considered camera. Even similar performance

are achieved by the two method with respect to the rank 1 and

rank 2 scores, the proposed method reaches a 70% of correct

recognition percentage at the rank 20 scores by considering

camera 2. The method used for comparison achieves 59% of

correct recognitions at the same rank. The proposed method

achieve a 70% of correct recognition percentage at rank 27 and

rank 29 by considering camera 3 and camera 1 respectively.

As Fig. 3(e) shows the method achieve higher performances

and has a true positive rate of about 70% considering a false

positive rate of 20%.

The proposed method has also been validated combining dif-

ferent values of N and W . The results of these validations are

shown in Fig. 3(b), 3(d), and 3(f). Even similar performance

are achieved by the method with respect to the rank 1 and rank

2 scores, by updating the signature with W = 2 images many

false positive will be rejected and performance increases. A

true positive rate of 50% is reached considering a false positive

rate of 20% with respect to camera 2 -using W = 2 images

to update the initial signature. The same true positive rate is

reached considering a false positive rate of 31% if N = 2 and

W = 1.

B. Wide Area Re-identification Dataset

To validate the performance of the proposed method with

respect to a real surveillance scenario a Wide Area Re-

Identification Dataset (WARD) is proposed. 4786 images of

70 different individuals have been captured from three non-

overlapping cameras. Since information about the camera

displacement and the camera FoVs are available for this

dataset, the set of neighbourhood between cameras is com-

puted by exploiting the proposed method. The novel and

distributed re-identification approach has been used to compare

the signatures Sj with the signatures Sk. The camera k is

selected by exploiting the proposed confidence measure. Given

a test signature Sj,q the proposed distance measure provides a

ranking for the signatures Sk. A perfect match is achieved if

rank 1 is assigned to the signatures Sk,t computed for the same

test person with respect to camera k. Performance evaluations

have been computed using N = {1, 2, 4, 8} and W = {1, 6}
images to compute the signatures. To make a fair evaluation

100 independent trials have been performed for each case.

In Fig. 4(a), 4(c), and 4(e) the CMC, SRR and ROC curves

show the performance of the proposed method with respect to

the method used for comparison in [10]. The evaluations have

been performed using N = 1 and W = 1 images to compute

and update the signatures. As shown in Fig. 4(a) the proposed

method outperforms the method used for comparison with

respect to the camera 2 of the neighbourhood. The proposed

method achieves a 63% of correct recognitions is reached

within the top 10 rank score using the camera 2.

The proposed method has also been validated combining

different values of N and W . The results of these validations

are shown in Fig. 3(b), 3(d), and 3(f). Since the dataset

comes with at least 10 images for each person with respect

to each camera the values N = {2, 4} and W = {2, 4} have

been used. Similarly to the CAVIAR evaluations, by using a

higher number of images to update the initial signature higher
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Fig. 4. Performances on the WARD dataset. The three cameras of the
neighbourhood have been used to perform the re-identification. Performance
of the method with respect to the method also compared in [10] are shown in
(a), (c), and (e). In (b), (d), and (f) different values fot N andW have been
used.

performance are achieved. A 77% of correct recognitions

is reached at the top 20 rank -considering camera 3- by

performing the re-identification using W = 4 images. Using

W = 2 images to update the initial signature a 71% of correct

recognitions is reached at the same top rank score.
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Fig. 5. Evaluations performance with respect to camera 3 is computed
selecting different values for N and W .

Fig. 5 shows how the performance of the proposed method

increases with respect to each considered camera by using

different values for N and W . As it is shown by decreasing

N and increasing W higher performance are achieved.

IX. CONCLUSIONS

This work introduces a novel distributed appearance-based

person re-identification method. Signatures are computed by a

temporal accumulation of local features on multiple frames.

A camera confidence is exploited to provide a more effi-

cient and distributed signature comparison. A distributed re-

identification policy is used to update non-matching signatures

by means of a feature fusion method. Evaluation has been

proposed using a benchmark dataset and a real surveillance

scenario dataset. The proposed method outperforms a state-

of-the-art method used for comparisons.
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