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In this paper we propose a hybrid model of a neural oscillator, obtained by partially discretizing a
well-known continuous model. Our construction points out that in this case the standard techniques
based on replacing sigmoids with step functions is not satisfactory. Then, we study the hybrid model
through both symbolic methods and approximation techniques. This last analysis, in particular, al-
lows us to show the differences between the considered approximation approaches. Finally, we focus
on approximations via ε-semantics, proving how these can be computed in practice.

Introduction

Neural oscillations are rhythmic and repetitive electrical stimuli which play an important role in the
activities of several brain regions. Some examples of brain locations in which it has been demonstrated
the central role of neural oscillations are the hippocampus [23], the cortex [19], the thalamus [20], and
the olfactory information processing [9]. With the aim of understanding neurophysiological activities,
we propose the modeling of oscillatory phenomena exploiting hybrid automata.

A continuous model of a single oscillator based on an ordinary differential system has been proposed
in [22]. Even if this is a simple model, its analysis and the analysis of its composition in multiple copies
is limited due to the non-linearity of the ordinary differential system involved. For this reason, we are
interested in the development of a piecewise affine hybrid automaton which correctly approximates the
continuous model and on which automatic analysis and composition can be made.

Trying to linearize the non-linear components of the original continuous model, we first replace in
the standard way the sigmoidal behaviours with sign functions [10, 14], approximating continuos signals
with discrete off-on signals. Unfortunately, the behaviour of this model differs from the original one. For
this reason, we propose a more sophisticated approximation of sigmoidals based on a piecewise linear
function exploited in the development of a hybrid automaton which simulates a single oscillator.

It is well known that the reachability problem over hybrid automata is source of undecidability.
Moreover, the exact computation of the reachable sets of hybrid automata, which represents the basis of
the automatic analysis of the models, does not always reflect the behaviour of the real modeled systems.
This is due to the fact that real systems are often subject to noise, thus their evolutions do not correspond
to a single precise formalization. This has been noticed already in [22] in the specific case of the continu-
ous model of the neural oscillator. For these reasons, we study our hybrid automaton exploiting different
approximation techniques that introduce noise.

In the literature, several approximation techniques have been proposed (see, e.g., [8, 18, 11, 21, 4,
17]). Fränzle in [8] presents a model of noise over hybrid automata. The introduction of noise ensures
in many cases the (semi-)decidability of the reachability problem. Another result of (semi-)decidability
always based on the concept of perturbation and concerning the safety verification of hybrid systems
is given by Ratschan in [18]. Furthermore, ε-(bi)simulation [11] relations, which are essentially relax-
ations on the infinite precision required by simulation and bisimulation, represent tools able to remove
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complexity and undecidability issues related to the analysis of the investigated model. Moreover, in [3]
it is presented a different approach based on the reinterpretation of the standard semantics of the for-
mulæ which compose hybrid automata. Exploiting this new class of semantics, called ε-semantics, the
authors provide a result of decidability of the reachability problem over hybrid automata with bounded
invariants.

In this paper, we focus precisely on the approximation approach based on the ε-semantics. In par-
ticular, we propose a translation that allows us to reduce the ε-semantics evaluation to the standard
semantics evaluation, computable by exploiting tools for cylindrical algebraic decomposition. Then, we
present some properties which have been automatically tested on the neural oscillator by applying such
translation. Hence, in this work, we prove both that ε-semantics better represents the real behaviour of
the neural oscillator, than the standard one, and that the approach is effective.

The paper is organized as follows: Section 1 gives some basic definitions concerning logics and hy-
brid automata; Section 2 is dedicated to the mathematical modeling of the neural oscillator; in Section 3
we present different approximation techniques based on noise, perturbation, approximate (bi)simulations,
and ε-semantics. Section 4 exposes some considerations regarding the application of the previously pre-
sented approximation approaches to the investigated model. Finally, in Section 5, we first define a
translation which make effectively computable the ε-semantics, then we experimentally exploit it in the
analysis of the hybrid automaton which models the neural oscillator.

1 Hybrid Automata

1.1 Preliminaries

We formally define hybrid automata by using first-order languages and, because of that, we first need to
introduce some basic notions and our notation.

We use X , Xi, Y , Yi, W , and Wi to denote real variables and X, Xi, Y, Yi, W, and Wi to denote tuple
of real variables. We always assume that all the variables that occur bound in a formula do not occur free
and vice versa. This enables us to label variables, rather than occurrences, as free or bound. We write
ϕ[X1, . . . ,Xm] to stress the fact that X1, . . ., Xm are free in ϕ . By extension, ϕ[X1, . . . ,Xn] indicates that
the components of vectors X1, . . ., Xn are free in ϕ .

The formula obtained from ϕ[X1, . . . ,Xm] by replacing Xi by s0, where s0 is either a constant or a vari-
able, is denoted by ϕJXi/s0K. By extension, ϕJXi . . .Xi+n/s0 . . .snK indicates the formula obtained from
ϕ[X1, . . . ,Xm] by simultaneously replacing all the variables Xi . . .Xi+n by s0 . . .sn. If X = 〈Xi, . . . ,Xi+n〉,
~s0 = 〈s0, . . . ,sn〉, ~s1 = 〈sn+1, . . . ,s2∗n+1〉, and ; is a relational symbol (e.g., = or ≥), then we may
write ϕJX/~s0K in place of ϕJXi . . .Xi+n/s0 . . .snK and ~s0 ; ~s1 in place of

∧
j∈[0,n]

(
s j ; s j+k∗n

)
(e.g.,

〈7,X〉 = 〈2,3〉 means 7 = 2∧X = 3). Finally, if ϕ[X1, . . . ,Xi, . . . ,Xn] then we may denote the formula
ϕJXi/~sK by writing ϕJX1, . . . ,~s, . . . ,XnK.

The semantics of a formula is defined in the standard way (see [7, 16]). Given a set Γ of sentences
and a sentence ϕ , we say that ϕ is a logical consequence of Γ (denoted, Γ |= ϕ) if ϕ is valid in any
model M in which each formula of Γ is valid too (M |= Γ). A theory T is a set of sentences such that
if T |= ϕ , then ϕ ∈ T . A theory T admits the so-called elimination of quantifiers, if, for any formula
ϕ , there exists in T a quantifier free formula ρ such that ϕ is equivalent to ρ with respect to T . If there
exists an algorithm for deciding whether a sentence ϕ belongs to T or not, we say that T is decidable.

Example 1. Consider the formula ϕ
def
= ∃X (a ∗X2 + b ∗X +C = 0). It is well known that ϕ is in the

theory of reals with +, ∗, and ≥ if and only if the unquantified formula b2−4ac≥ 0 holds.
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1.2 Syntax, Semantics, and Reachability

A hybrid automaton is an infinite state automaton that consists in a set of continuos variables and a finite
directed graph. Each node of a graph is labelled by both an invariant condition and a dynamic law, while
all the edges are tagged with an activation region and a reset map. The continuous variables evolve
according to the dynamic law of the current node of the graph and the node’s invariant condition must be
satisfied along all the evolution. An edge is crossable if and only if the variable values are included the
activation region and, when a hybrid automata jumps over it, the associated reset map is applied.

Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H of dimension d(H) ∈ N is a tuple 〈X,
X′, V, E, Inv, f·, Act, Res〉 where:

• X = 〈X1, . . ., Xn〉 and X′ = 〈X ′1, . . ., X ′n〉 are two vectors of variables ranging over the reals R;

• 〈V, E〉 is a directed finite graph, i.e., E⊆ V×V. Each element of V will be dubbed location;

• Each location v ∈ V is labelled by both a formula Inv(v)[X], called invariant, and a continuous
function fv : Rn −→ (R≥0 −→ Rn), called dynamics or flow function. The dynamics may be
specified either by differential equations, i.e., fv is the solution of a given Cauchy problem, or by
a logic formula. We use the formula Dyn(v)[X,X′,T ], where T is a temporal variable ranging in
R≥0, to denote the dynamics on v, i.e., Dyn(v)[X,X′,T ] def

= X′ = fv(X)(T );

• Each e ∈ E is labelled by the formulæ Act(e)[X] and Res(e)[X,X′] which are called activation and
reset, respectively.

If all the formulæ that define a hybrid automaton H belong to the same logical theory T , then we
say that H is definable in T or that H is a T hybrid automaton.

The semantics of any hybrid automaton can be specified as a transition system that is composed by
two different relations miming the double nature of the hybrid automaton itself: the continuous reacha-
bility transition relation and the discrete reachability transition relation.

Definition 2 (Hybrid Automaton - Semantics). A state a of H is a pair 〈v,r〉, where v ∈ V is a location
and r ∈ Rd(H) is an assignment of values for the variables of X. A state 〈v,r〉 is said to be admissible if
Inv(v)JrK holds.

The continuous transition relation t−→C between admissible states, where t ≥ 0 denotes the transition
elapsed time, is defined as follows:
〈v,r〉 t−→C 〈v,s〉 ⇐⇒ r = fv(r)(0), s = fv(r)(t), and Inv(v)J fv(r)(t ′)K hold for each t ′ ∈ [0, t].

The discrete transition relation e−→D among admissible states is:

〈v,r〉 e−→D 〈v,s〉 ⇐⇒ e = 〈v,v′〉 and both Act(e)JrK and Res(e)Jr,sK hold.

We write a→C a′ and a→D a′ to mean that there exists a t ∈ R≥0 such that a t−→C a′ and that there
exists an e ∈ E such that a e−→D a′, respectively.

Definition 3 (Hybrid Automata - Reachability). Let I be either N or an initial finite interval of N. A
trace of H is a sequence of admissible states a0,a1, . . . ,a j, . . . , with j ∈ I , such that ai−1 → ai holds
for all i ∈ [1,n] and either ai−2 →C ai−1 →D ai, ai−2 →D ai−1 →D ai, or ai−2 →D ai−1 →C ai for each
i ∈ I \{0}1.

The automaton H reaches a state an from a state a0 if there exists a trace a0, . . . ,an. In such a case,
we also say that an is reachable from a0 in H.

1This last condition supports not transitive dynamics. See [5] for a complete discussion.
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The problem of deciding whether a hybrid automaton H reaches a set of states S from a set of states
R is known as the reachability problem of S from R over H. A trace produced by an infinite sequence
of discrete transitions during a bounded amount of time is called Zeno trace and every hybrid automaton
allowing such kind of trace is said to have a Zeno behaviour.

Example 2. Let us consider a hybrid automaton Hb modeling a bouncing ball whose collisions are
inelastic. The automaton is equipped with two continuous variables X1 and X2 that represent ball’s

Ẋ1 = X2
Ẋ2 =−g

X ′1 = X1
X ′2 =−γX2

Figure 1: Bouncing ball hybrid automaton

elevation and velocity, respectively. The dynamics, resets, and discrete structure of Hb are presented in
Fig. 1. The two coefficients g and γ are the standard gravity and the coefficient of restitution, respectively.
The activation formula of the automaton edge is “X1 = 0”.

Imposing as starting height h0 = 10m and as coefficient of restitution γ = 0.86, the bounce peaks
decrease at each iteration and the automaton Hb has a Zeno behaviour.

As the halting problem for the two counter machine can be reduced to the reachability problem of
a particular class of hybrid automata, the reachability problem for hybrid automata itself is not always
decidable [1]. However, if H is a T -hybrid automaton and T is a first-order decidable theory, then
the reachability through a bounded number of discrete transitions can be characterized with a first-order
decidable formula (see e.g., [5]). In particular, in the case of automata defined through polynomials over
the reals, we can use cylindrical algebraic decomposition tools can to decide bounded reachability.

2 Neural Oscillators: Continuous and Hybrid Models

Oscillatory electrical stimuli have been considered central for the activities of several brain regions since
the begin of the ’80s. It was shown that they play an important role in the olfactory information process-
ing [9] and they were observed in the hippocampus [23], in the thalamus [20], and in the cortex [19].
Many studies suggested that, in the mammalian visual system, neurons signals may be group together
through in-phase oscillations [12]. Because of this, the development and analysis of models representing
oscillatory phenomena assume a great importance in understanding the neurophysiological activities.

A simple continuous model of a single oscillator has been proposed in [22]. The model describes
the evolutions of one excitatory neuron (Ne) and one inhibitory neuron (Ni) by mean of the ordinary
differential system.

f (τ,λ ) :
{

Ẋe =−Xe
τ
+ tanh(λ ∗Xe)− tanh(λ ∗Xe)

Ẋi =−Xi
τ
+ tanh(λ ∗Xi)+ tanh(λ ∗Xi)

, (1)

where Xe and Xi are the output of Ne and Ni, respectively, τ is a characteristic time constant, and λ > 0
is the amplification gain.

Hopf bifurcation characterizes a qualitative change in the evolution of f (τ,λ ): if τ ∗ λ ≤ 1, then
the point 〈0,0〉 is the unique global attractor of the system, if, otherwise, τ ∗ λ > 1, the origin is an
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unstable equilibrium and all the evolutions converge to a limit cycle attractor [2]. A simulation of f (3,1)
is represented in Fig. 5(a).

Even if f (τ,λ ) is rather simple, the ability of analyzing a complex system obtained by composing
multiple copies of this model is limited due to the non-linearity of f (τ,λ ) itself. For this reason, we are
interested in the development of a piecewise affine hybrid model whose behaviour fairly approximates
System (1) and that can be automatically analyzed and composed.

Since the non-linear components in System (1) have the form tanh(λ ∗X), we try to linearize such
function. In the case of genetic networks it is quite standard to approximate sigmoidal behaviours (e.g.,
tanh) through the sign function sgn [10, 14]. Such approximation replaces a continuous signal with a
discrete off-on one (see Fig. 3(a)). In our case, by replacing tanh(λ ∗X) with sgn(X) in System (1), we
obtain the following differential system:

f̂ (τ) :
{

Ẋe =−Xe
τ
+ sgn(Xe)− sgn(Xi)

Ẋi =−Xi
τ
+ sgn(Xe)+ sgn(Xi)

, (2)

which corresponds to the piecewise hybrid model depicted in Fig. 2(a). Unfortunately, the behaviour
of this model is quite different from that of System (1), as we can see comparing the simulation in
Fig. 2(b) with that of Fig. 5(a). In particular, the model base on f̂ (τ) has four attractors with coordinates
〈−2∗ τ,0〉, 〈0,−2∗ τ〉, 〈2∗ τ,0〉, and 〈0,2∗ τ〉, it is not periodic, and its principal axes are stable.

Xe

Xi

Ẋe =−Xe
τ

Ẋi =−Xi
τ
+2

v0

Ẋe =−Xe
τ
−2

Ẋi =−Xi
τ

v1

Ẋe =−Xe
τ

Ẋi =−Xi
τ
−2

v2

Ẋe =−Xe
τ
+2

Ẋi =−Xi
τ

v3

(a) The automaton has 4 locations. The dashed line
denote both the boundaries of the invariants and the
activation regions. The resets are identify functions.

6 4 2 0 2 4 6

6

4

2

0

2

4

6 Trajectory from (-0.5,-0.5)
Trajectory from (-1.0,6.0)

(b) Direction field and evolution of the automaton from the two
points 〈− 1

2 ,−
1
2 〉 and 〈−1,6〉 when τ = 3. The automaton has

four attractors, is not periodic, and its principal axes are stable.

Figure 2: The piecewise hybrid automaton associated to the function f̂ (τ).

A more sophisticated approximation of tanh(λ ∗X) is the piecewise linear function:

hλ ,α(z)
def
=


−1 if z <−α

λ
λ

α
∗ z if − α

λ
≤ z < α

λ

1 if z≥ α

λ

, (3)

where α is the approximation coefficient which determines the slope of the central segment (see Fig. 3(b))
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The substitution of tanh(λ ∗X) with hλ ,α(z) in System (1) leads to the system:

f̃α(τ,λ ) :
{

Ẋe =−Xe
τ
+hλ ,α(Xe)−hλ ,α(Xi)

Ẋi =−Xi
τ
+hλ ,α(Xe)+hλ ,α(Xi)

(4)

whose corresponding hybrid automaton is depicted in Fig. 4.

0

−1

−0.5

0

0.5

1

X = α

λ
X =−α

λ

tanh(λ ∗X)

sgn(X)

(a) sgn(X) approximating tanh(λ ∗X).

0

−1

−0.5

0

0.5

1

X = α

λ
X =−α

λ

tanh(λ ∗X)

hλ ,α(X)

(b) hλ ,α (X) approximating tanh(λ ∗X).

Figure 3: Both hλ ,α(X) and sgn(X) can be used as piecewise linear approximations of tanh(λ ∗X).

Xe

Xi

Xe =−α

λ
Xe =

α

λ

Xi =−α

λ

Xi =
α

λ

Ẋe =
τ∗λ−α

τ∗α Xe− λ

α
Xi

Ẋi =
λ

α
Xe +

τ∗λ−α

τ∗α Xi

v0

Ẋe =−Xe
τ
− λ

α
Xi−1

Ẋi =
τ∗λ−α

τ∗α Xi−1

v1

Ẋe =−Xe
τ

Ẋi =−Xi
τ
−2

v2

Ẋe =
τ∗λ−α

τ∗α Xe +1
Ẋi =

λ

α
Xe− Xi

τ
−1

v3

Ẋe =−Xe
τ
+2

Ẋi =−Xi
τ

v4

Ẋe =−Xe
τ
− λ

α
Xi +1

Ẋi =
τ∗λ−α

τ∗α Xi +1

v5

Ẋe =−Xe
τ

Ẋi =−Xi
τ
+2

v6

Ẋe =
τ∗λ−α

τ∗α Xe−1
Ẋi =

λ

α
Xe− Xi

τ
+1

v7

Ẋe =−Xe
τ
−2

Ẋi =−Xi
τ

v8

Figure 4: A graphical representation of the hybrid automaton H f̃ associated to the function f̃α(τ,λ )
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(a) An evolution of f (3,1)
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(b) An evolution of f̃2(3,1)

Figure 5: Direction field and evolution of the models discussed in Section 2. The green lines in the
figures depict the location invariant boundaries. The system f̃2(3,1) is a good approximation of f (3,1).

In the rest of the paper we present some general techniques for studying hybrid automata and then
we apply them to H f̂ to formally prove its properties.

3 Approximation Techniques

3.1 Noise and Disturbed Automata

The density of continuous variables provide an unbounded quantity of memory within a bounded region.
As a matter of fact, the undecidability results proved in [13] are based on the possibility of embedding N
in (0,1]⊆ R through the function f (n) = 2−n.

However, Fränzle in [8] observed that noise disturbes the trajectiories of real hybrid systems, aug-
menting the set of reachable points. Hence, in [8] a model of noise has been presented over hybrid
automata. Remarkably, the introduction of noise ensures in many cases the (semi-)decidability of the
reachability problem.

Our definitions of hybrid automata slightly differ from the ones in [8]. In particular, as far as the
syntax is concerned, the formulæ Act(e)[X] and Res(e)[X,X′] are glued together in a formula called
transe[X,X′]. Moreover, our formulæ Inv(v)[X] and Dyn(v)[X,X′,T ] are replaced by a single formula
actv[X,X′] whose meaning in our framework is:

∃T (T ≥ 0∧X′ = fv(X)(T )∧∀T ′(0≤ T ′ ≤ T → Inv(v) fv(X)(T ′)))

i.e., the formula actv[X,X′] syntactically ensures the existence of a continuous transition. Exploiting
these relationships between our hybrid automata and the hybrid automata defined through the formulæ
actv[X,X′] and transe[X,X′], we can reformulate the results presented in [8] in our framework.
Definition 4. Given a hybrid automaton H = 〈X, X′, V, E, Inv, f·, Act, Res〉 we say that the hybrid
automaton H̃ = 〈X, X′, V, E, Ĩnv, f̃·, Act, Res〉 is a disturbed variant of H if for each pair of states a,a′ if
a→C a′ in H, then a→C a′ in H̃.

Moreover, let δ be a distance over Rd(H) and ε ∈ R>0. H̃ is a disturbance of noise level ε or more if
for each s,s′ such that δ (s,s′)< ε it holds that if 〈v,r〉 →C 〈v,s〉 in H, then 〈v,r〉 →C 〈v,s′〉 in H̃.



8 Hybrid Automata and ε-Analysis on a Neural Oscillator

Intuitively, when there are no bifurcation behaviours, a small ε ensures that the dynamics of H̃ are
close to those of H.

In [8] it has been proved that in the case of bounded invariants there exists a finite computable index
i ∈ N such that the reachability over H can be over-approximated with reachability within i discrete
jumps over a disturbance of noise level ε or more of H.

Theorem 1. [8] Let T be a decidable first-order theory. Let H, H̃ be T hybrid automata, with H̃
disturbance of noise level ε or more of H for some ε ∈ R>0. There exists i such that for all pairs of
states a,a′ if a reaches a′ in H, then a reaches a′ in H̃ within i discrete transitions. Moreover, i can be
effectively computed.

Unfortunately, there are cases in which the over-approximation is always strict, no matter how small
ε is. Such automata are called fragile, in contrast with robust automata, where if a does not reach a′

in H, there exist ε ∈ R>0 and H̃ disturbance of noise level ε such that a does not reach a′ in H̃. As a
consequence, reachability is decidable over robust automata, while it is only semi-decidable over fragile
automata. It is not possible to decide whether a hybrid automaton is robust or fragile. Intuitively, since
real world systems are always subject to noise, a hybrid automaton is a reliable model of the real system
only if it is robust. So, it is fundamental to develop and exploit design techniques which ensure robustness
of the resulting hybrid automata.

3.2 Approximate Bisimulations and Simulations

Since the 90’s, simulation and bisimulation have been successfully used to investigate hybrid automata
However, due to the infinite precision required to relate different evolutions, there tools are able to remove
neither the complexity nor the undecidability issues that may affect the analysis of the investigated model.
The ε-(bi)simulation relations [11] relaxes these infinite precision requirements by relating system evo-
lutions whose maximal distance is less than a given ε . This enables us to simplify both the dynamics
and the resets of the investigated automaton. Moreover, provided an observation map 〈〈·〉〉 : Rd(H) −→Rd

that associates the internal status of an automaton H to the values measurable by an external observer,
ε-(bi)simulations allow to relate the “visible” behaviours of H to the behaviours of an automaton whose
dimensions is smaller that d(H).

Any pair of hybrid automata H1 to H2 related by an ε-simulation must have the same discrete structure
and share the same locations V and edges E by definition.

Definition 5. Let Hi = 〈Xi, Xi
′, V, E, Invi, f·,i, Acti, Resi〉 be a hybrid automaton for each i ∈ {1,2}.

Moreover, let ε be in R≥0. A relation Sε ⊆ (V×Rd(H1))× (V×Rd(H2)) is an approximate simulation
relation of H1 by H2 of precision ε if, for all 〈〈v1,r1〉 ,〈v2,r2〉〉 ∈Sε :

1. v1 = v2 = v;

2. ‖〈〈r1〉〉1−〈〈r2〉〉2 ‖ ≤ ε;

3. if 〈v,r1〉
t−→C 〈v,r′1〉 in H1, there exists r′2 s.t. 〈v,r2〉

t−→C 〈v,r′2〉 in H2 and 〈〈v,r′1〉 ,〈v,r′2〉〉 ∈Sε ;

4. if 〈v,r1〉
e−→D 〈v′,r′1〉 in H1, there exists r′2 s.t. 〈v,r2〉

e−→D 〈v′,r′2〉 in H2 and 〈〈v′,r′1〉 ,〈v′,r′2〉〉 ∈Sε .

The automaton H2 approximately simulates H1 with precision ε if there exists an approximate sim-
ulation relation of H1 by H2 of precision ε . An approximate simulation relation Sε of H1 by H2 of
precision ε is an approximate bisimulation relation between H1 and H2 of precision ε if the relation
S −1

ε = {〈a2,a1〉 | 〈a1,a2〉 ∈Sε} is an approximate simulation relation of H2 by H1 of precision ε .
Many methods have been developed to automatically compute approximate simulation relations be-

tween systems such as constrained linear systems, autonomous nonlinear systems, and hybrid systems.
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3.3 ε-Semantics

The undecidability of the reachability problem over hybrid automata having bounded invariants is a
direct consequence of the ability of characterizing dense regions of arbitrarily small size. As noticed
in [3], especially in the study of biological systems, such ability may result misleading. As a matter
of the fact, the continuous quantities used in hybrid automata are very often abstractions of large, but
discrete, quantities. In such cases, the ability of handling values with infinite precision is a model artifact
rather than a real property of the original system.

In order to discretize the continuous space, we introduce the concept of ε-sphere. Given a set S⊆Rn,
the ε-sphere B(S,ε) is the subset of Rn of points at distance less than ε from S, i.e., B(S,ε) = {q ∈ Rn |
∃p ∈ S(δ (p,q) < ε)}, where δ is the standard euclidean distance over Rn. Moreover, given a hybrid
automaton H and an initial set of points I ⊆ Rd(H), the set of points reachable from the set I by H,
denoted by RSetH(I), is characterized by

RSetH(I) =
⋃
i∈N

RSeti
H(I) = lim

i→+∞
RSeti

H(I)

where RSeti
H(I) is the set of points reachable from I in at most i discrete transitions.

Theorem 2 ([3]). Let T be a decidable first-order theory over reals and H be a T hybrid automaton
with bounded invariants. If there exists ε ∈ R>0 such that, for each I⊆ Rd(H) and for each i ∈ N, either
RSeti+1

H (I) = RSeti
H(I) or there exists a ai ∈ Rd(H) such that B({ai},ε) ⊆ RSeti+1

H (I) \RSeti
H(I), then

there exists j ∈ N such that RSeti
H(I) = RSet j

H(I) and the reachability problem over H is decidable.

This result finds applications when it makes no sense to distinguish measurements smaller than ε .
Hence, since hybrid automata characterization is based on first-order fromulæ, it seems reasonable to
reinterpret the semantics of semi-algebraic automata by giving to each formula a semantics of “dimension
of at least ε”. In [3] the authors introduce a new class of semantics for first-order formulæ, called ε-
semantics, which guarantee the decidability of reachability in the case of hybrid automata with bounded
invariants.

Definition 6. Let T be a first-order theory and let ε ∈ R>0. For each formula ψ on T let {|ψ|}
ε
⊆ Rd ,

where d is the number of free variables of ψ , be such that:

(ε) either {|ψ|}
ε
= /0 or there exists p ∈ Rd such that B({p},ε)⊆ {|ψ|}

ε
;

(∩) {|φ ∧ϕ|}
ε
⊆ {|φ |}

ε
∩{|ϕ|}

ε
;

(∪) {|φ ∨ϕ|}
ε
= {|φ |}

ε
∪{|ϕ|}

ε
;

(∀) {|∀Xψ[X ,X]|}
ε
= {|

∧
r∈R ψJr,XK|}

ε
;

(∃) {|∃Xψ[X ,X]|}
ε
= {|

∨
r∈R ψJr,XK|}

ε
;

(¬) {|ψ|}
ε
∩{|¬ψ|}

ε
= /0.

Any semantics satisfying the above conditions is said to be an ε-semantics for T .

Example 3 (The sphere semantics). Let T be a first-order theory over the reals and let ε > 0. The
sphere semantics of ψ , (|ψ|)

ε
, is defined by structural induction on ψ as follows:

• (|t1 ◦ t2|)ε

def
= B({|t1 ◦ t2|},ε), for ◦ ∈ {=,<};

• (|ψ1∧ψ2|)ε

def
=
⋃

B({p},ε)⊆(|ψ1|)ε
∩(|ψ2|)ε

B({p},ε);

• (|ψ1∨ψ2|)ε

def
= (|ψ1|)ε

∪ (|ψ2|)ε
;
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• (|∀XψJX ,XK|)
ε

def
= (|

∧
r∈R ψJr,XK|)

ε
;

• (|∃XψJX ,XK|)
ε

def
= (|

∨
r∈R ψJr,XK|)

ε
;

• (|¬ψ|)
ε

def
=
⋃

B({p},ε)∩(|ψ|)
ε
= /0 B({p},ε).

ε-semantics are exploited in the reachability algorithm defined in [3]. In particular, describing sets
of points through formulæ and, given a hybrid automaton H and an ε-semantics {|·|}

ε
, the computation

of the algorithm proceeds as follows:

1. Given an initial set of points represented by a formula I[X], the formula R[X] is initialized putting
I[X] in conjunction with the invariant conditions of H, while the formula N[X] is initialized as ⊥;

2. R[X] is replaced with R[X]∨N[X] and N[X] becomes ∃X′(ReachHJX′,XK∧RJX′K), where the for-
mula ReachH [X,X′] denotes automaton evolutions which perform at most one discrete transition,
i.e., if ReachHJs,dK, then H reaches d from s with at most one discrete transition;

3. Step 2 is repeated until {|N[X]∧¬R[X]|}
ε

is not empty.

Algorithm 1 Reachability(H, I[X],{|·|}
ε
)

1: R[X]← I[X]
2: N[X]←⊥
3: repeat
4: R[X]← R[X]∨N[X]
5: N[X]←∃X′(ReachHJX′,XK∧RJX′K)
6: until {|N[X]∧¬R[X]|}

ε
6= /0

7: return {|R[X]|}
ε

Intuitively, this means that reachability is computed incrementing at each iteration the number of
allowed discrete transitions. New reachable sets of points are computed until they became too small to be
captured by the ε-semantics. In the case of hybrid automata with bounded invariants, Algorithm 1 always
terminates. Finally, notice that replacing the ε-semantics with the standard one, the above algorithm
could not terminate even with bounded invariants, due to Zeno behaviours.

4 Approximated Analysis over Neural Oscillators

In this section we try to understand what happens when we apply the approximation techniques described
in Section 3 to our neural oscillator hybrid model H f̃ presented in Section 2.

4.1 ε-disturbance

The automaton H f̃ presents two main behaviours: (0,0) is an unstable equilibrium; each starting point
different from (0,0) reaches the limit cycle. For this reason we can prove that H f̃ is fragile. As a matter
of fact, if H̃ f̃ is a disturbance of noise level ε of H f̃ , then (0,0) in H̃ f̃ reaches points different from
(0,0), while in H f̃ it does not. In other words, if we consider backward reachability, (0,0) is backward
reachable in H̃ f̃ from a region R 6= {(0,0)}, while in H f̃ it is backward reachable from {(0,0)}. This is
not due to the fact that (0,0) is unstable, but to the presence of two limit behaviours over a connected
region. We recall that in a piecewise hybrid automaton the invariants are connected disjoint regions
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whose union is connected and the resets are identities, i.e., the trajectories are continuos. We use the
term limit behaviour of a hybrid automaton to denote both equilibria and limit cycles.

Theorem 3. Let H be a piecewise hybrid automaton presenting at least two different limit behaviours.
If from each point there is a unique possible evolution, then H is fragile.

Proof. Let b1 and b2 be two different limit behaviours. Let I be the union of the invariants of H. Let
R1 = {r | r reaches b1 but not b2} and R2 = {I(R1) = I \R1. Moreover, let b2 be the unsafe set and R1 be
the init set. H is safe since the points in R1 do not reach b2.

We have that R1 6= /0, since the points belonging to b1 reach b1 and they cannot reach b2, since the
evolutions are uniquely defined from each starting point. Similarly R2 6= /0. Hence, {R1,R2} is a partition
of I. Since I is connected, for each ε ∈ R>0 there are p1 ∈ R1 and p2 ∈ R2, such that δ (p1, p2)< ε . So,
p1 reaches p1 in H, implies that p1 reaches p2 in H̃ disturbance of noise level ε or more of H. So, since
p2 ∈ R2 reaches b2 in H, we get that p1 reaches b2 in H̃. Since, we made no assumption on ε , we get that
all the disturbances of noise level ε or more of H are unsafe, this means that H is fragile.

The above result points out that there are systems for which it is not possible to define robust models.
In [18] a model is said to be safe only if it remains safe under small disturbances. In this terms our
result show that there are systems which do not admit a safe model. This does not means that they
are not interesting or that we need to remove some of their behaviours. This simply means that such
systems have to be studied applying some form of disturbance or approximation. As the matter of facts,
if we study them by applying standard semantics, we define a precise border between the points reaching
different behaviours. Such precise border is not realistic.

4.2 ε-(bi)simulations

The automaton H f̃ has both an unstable equilibrium in 〈0,0〉 and a single limit cycle encompassing the
origin of the axes. Because of that we are guaranteed that, during its evolutions, H f̃ decreases the distance
of its state from the limit cycle regardless of the starting state s 6= 〈v0,〈0,0〉〉. Since all the differential
equation defining the dynamics of H f̃ are continuous, we can define an ε-simulation between states
whose distance from the limit cycle is smaller than ε . This enable us to both approximate the non-linear
differential System (1) with a linear differential system and reduce the complexity of the analysis.

However, if d is the maximum Euclidean distance between 〈0,0〉 and the cycle limit, no ε-(bi)si-
mulation, with ε < d, can relate 〈v0,〈0,0〉〉 with any other state of H f̃ . As a matter of fact, the points
belonging to any neighborhood of 〈0,0〉 eventually converge to the limit cycle. It follows that 〈v0,〈0,0〉〉
is a singularity of the model and, despite the original system always reaches a periodic evolution, any
approximation of the proposed model by mean of ε-(bi)simulation does not manifest this property.

4.3 ε-semantics

In order to exploit ε-semantics for the study of H f̃ the first step we have to perform is that of approximat-
ing through polynomials the solutions of the differential equations defining the semantics. This can be
done, for instance, by using Taylor polynomials or more sophisticated numerical integration techniques.
We do this in the next section, where we also apply cylindrical algebraic decomposition tools to auto-
matically prove properties of our model. Here instead we try to infer some general results about the use
of ε-semantics on H f̃ .

H f̃ has an unstable equilibrium in (0,0). This means that (0,0) reaches {(0,0)}. However, when we
compute the set of points reachable from (0,0) through an ε-semantics we get either the empty set or a
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set having diameter at least ε . In particular, if our ε-semantics under-approximates the standard one, then
we get the empty set. Otherwise, both cases are possible, depending on the ε-semantics. For instance, in
the case of sphere semantics, no matter how we approximate the dynamics, we get that (0,0) reaches a
set having diameter at least ε .

Similarly, unless we use an under-approximation ε-semantics or some unusual metrics, the limit
cycle is transformed into a limit flow tube. This means, that if we consider a point on the limit cycle and
we compute the set of points reachable from such point, we do not only obtain the limit cycle, but at least
a flow tube which includes the limit cycle. We will see some more details on this in the case of sphere
semantics in Section 5.

All the other points, again, will reach either the empty set or a set having diameter at least ε . The
result we would expect in this second case is that each point in the space reaches the flow tube including
the limit cycle. We will see that this is true in the case of sphere semantics, even when we use the simplest
Taylor polynomials of degree one.

These considerations already allow us to point out that sphere semantics better reflects the real system
behaviour than the standard one.

5 Computing Sphere Semantics

In this section we show how sphere semantics can be computed exploiting tools for cylindrical algebraic
decomposition. In particular, we introduce a translation from sphere semantics to standard semantics.
Then, we apply the translation to study the “sphere” behaviour of our neural oscillator example.

5.1 A translation into standard semantics

If T is a first-order theory and δ is a distance definable in T , then the sphere semantics of any formula
in T is T -definable in the standard semantics, i.e., for any formula ϕ[X]∈T we can compute a formula
(̂ϕ)

ε
[X] ∈T such that (|ϕ[X]|)

ε
=
{∣∣∣(̂ϕ)ε

[X]
∣∣∣} for all ε ∈ R>0.

In order to achieve this goal, we need to distinguish two kind of variables: the variables of the original
formula (named W , Wi, W and Wi), whose evaluations follow the rules of the sphere semantics, and the
auxiliary variables (named Y , Yi, Y and Yi) that will be introduced to encode the sphere semantics into
the standard one. From the point of view of the sphere semantics the later can seen as symbolic constants,
even if they will be quantified in the formula (̂ϕ)

ε
. In particular, we will use them to characterize sets of

the form (|
∧

r∈R ϕJr,WK|)
ε

and (|
∨

r∈R ϕJr,WK|)
ε

in the standard semantics.

Definition 7. Let T be a first-order theory over the reals, ϕ[Y,W] be any first-order formula T -
definable, and ε ∈ R>0. We define (̂ϕ)

ε
[Y,W] by structural induction on ϕ[Y,W] itself.

1. ̂((t1 ◦ t2)[Y,W])
ε

def
= ∃W0((t1 ◦ t2)JY,W0K∧δ (W0,W)< ε), for ◦ ∈ {=,<};

2. ̂(φ ∨ψ)
ε

def
= (̂φ)

ε
∨ (̂ψ)

ε
;

3. ̂(φ [Y,W]∧ψ[Y,W])
ε

def
= ∃W0(∀W1(δ (W0,W1)< ε _ ((̂φ)

ε
∧ (̂ψ)

ε
)JY,W1K)∧δ (W0,W)< ε);

4. ̂(∀Wφ [Y,W,W])
ε

def
= ∃W0(∀W1(δ (W0,W1)< ε _ ∀Y ̂(φJY,Y,W1K)ε

)∧δ (W0,W)< ε);

5. ̂(∃Wφ [Y,W,W])
ε

def
= ∃Y ̂(φJY,Y,W1K)ε

;

6. ̂(¬φ [Y,W])
ε

def
= ∃W0(∀W1(δ (W0,W1)< ε _ ¬ ̂(φJY,W1K)ε

)∧δ (W0,W)< ε).
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Theorem 4 (Semantics Equivalence). Let T be any first-order theory and δ be a T -definable distance.
The sphere semantics (|.|)

ε
of T is T -definable in the standard semantics and, in particular, (|ϕ[X]|)

ε
={∣∣∣(̂ϕ)ε

[X]
∣∣∣} for any formula ϕ[X] ∈T and all ε ∈ R>0.

Proof. By structural induction on ϕ . We follow the indexes of the (̂ϕ)
ε
’s definition.

ϕ[Y,W] is atomic.
By the definition of (|·|)

ε
, (|ϕ[Y,W]|)

ε
= B({|ϕ[Y,W]|},ε). Since Y is a vector of auxiliary vari-

ables, we should threat them as symbolic constants and we must not consider them as free vari-
ables. Hence, 〈~y,~w〉 ∈ (|ϕ[Y,W]|)

ε
if and only if there exists a ~w0 such that δ (~w, ~w0) < ε and

{|ϕJ~y, ~w0K|}. By the standard semantics, the later sentence holds if and only if ∃W0(ϕJY,W0K∧
δ (W0,W)< ε) does the same.

ϕ[Y,W] has the form φ [Y,W]∨ψ[Y,W].
By the definition of sphere semantics, (|φ ∨ψ|)

ε
= (|φ |)

ε
∪ (|ψ|)

ε
. By inductive hypothesis, both

(|φ |)
ε
=
{∣∣∣(̂φ)ε

∣∣∣} and (|ψ|)
ε
=
{∣∣∣(̂ψ)

ε

∣∣∣}. From the standard semantics and the definition of (̂·)
ε
, we

deduce the thesis.

ϕ[Y,W] has the form φ [Y,W]∧ψ[Y,W].
By the definition, (|φ [Y,W]∧ψ[Y,X]|)

ε

def
=
⋃

B({p},ε)⊆(|φ |)
ε
∩(|ψ|)

ε
B({p},ε), while, by inductive hy-

potheses, (|φ |)
ε
=
{∣∣∣(̂φ)ε

∣∣∣} and (|ψ|)
ε
=
{∣∣∣(̂ψ)

ε

∣∣∣}. From the standard semantics, we deduce that
(|ψ[Y,X]∧ψ[Y,X]|)

ε
=
⋃

B({p},ε)⊆
{∣∣∣(̂φ)ε

∧(̂ψ)
ε

∣∣∣}B({p},ε). The righter term of the last equation is

the union of all the ε-balls entirely included into the standard semantics of (̂ψ)
ε
∧ (̂ψ)

ε
. Any w is

included into such a union if and only if there exists a w0 such that all the points included into the
ε-ball centered in w0 satisfy (̂φ)

ε
[Y,W]∧ (̂ψ)

ε
[Y,W] and w is included into the ε-ball itself. By

the standard semantics, the later sentence holds if and only if the formula

∃W0(∀W1(δ (W0,W1)< ε _ ((̂φ)
ε
∧ (̂ψ)

ε
)JY,W1K)∧δ (W0,W)< ε)

does the same.

ϕ[Y,W] has the form ∀Wφ [Y,W,W].
By the definition, (|∀Wφ [Y,W,W]|)

ε

def
= (|

∧
r∈R φJY,r,WK|)

ε
. Because of the ∧-rule, this means

that (|∀Wφ [Y,W,W]|)
ε
=
⋃

B({p},ε)⊆
{∣∣∣∧r∈R

̂(φJY,r,WK)
ε

∣∣∣}B({p},ε). The righter term of the last equa-

tion is the union of all the ε-balls entirely included into the standard semantics of the formula∧
r∈R

̂(φJY,r,WK)
ε
. However, a point 〈~y,~w〉 belongs to

{∣∣∣∧r∈R
̂(φJY,r,WK)

ε

∣∣∣} if and only if 〈~y,~w〉

itself belongs to
{∣∣∣ ̂(φJY,y,WK)

ε

∣∣∣} for all y ∈ R. Hence,
{∣∣∣∧r∈R

̂(φJY,r,WK)
ε

∣∣∣} is equivalent to{∣∣∣∀Y ̂(φJY,Y,WK)
ε

∣∣∣}. Let us notice that the new quantified variable Y should not be expanded

since it was introduced exclusively to characterize the set
{∣∣∣∧r∈R

̂(φJY,r,WK)
ε

∣∣∣}. By using the
same argument used in the proof of the ∧-case, we can conclude that (|∀Wφ [Y,W,W]|)

ε
is defined

in the standard semantics by the formula

∃W0(∀W1(δ (W0,W1)< ε _ ∀Y ̂(φJY,Y,W1K)ε
)∧δ (W0,W)< ε).
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ϕ[Y,W] has the form ∃Wφ [Y,W,W].
By the definition, (|∃Wφ [Y,W,W]|)

ε

def
= (|

∨
r∈R φJY,r,WK|)

ε
. Because of the ∨-rule, this means

that (|∃Wφ [Y,W,W]|)
ε
=
⋃

B({p},ε)⊆
{∣∣∣∨r∈R

̂(φJY,r,WK)
ε

∣∣∣}B({p},ε). The righter term of the last equa-

tion is the union of all the ε-balls entirely included into the standard semantics of the formula∨
r∈R

̂(φJY,r,WK)
ε
. However, a point 〈~y,~w〉 belongs to

{∣∣∣∨r∈R
̂(φJY,r,WK)

ε

∣∣∣} if and only if there

exists a y such that 〈~y,~w〉 belongs also to
{∣∣∣ ̂(φJY,y,WK)

ε

∣∣∣}. Hence,
{∣∣∣∨r∈R

̂(φJY,r,WK)
ε

∣∣∣} is

equivalent to
{∣∣∣∃Y ̂(φJY,Y,WK)

ε

∣∣∣}. Hence, we can conclude that the two sets (|∃Wφ [Y,W,W]|)
ε

and
{∣∣∣∃W0(∀W1(δ (W0,W1)< ε _ ∃Y ̂(φJY,Y,W1K)ε

)∧δ (W0,W)< ε)
∣∣∣} are the same.

ϕ[Y,W] has the form ¬φ [Y,W].
By the definition, (|¬φ [Y,W]|)

ε

def
=
⋃

B({p},ε)∩(|φ [Y,W]|)
ε
= /0 B({p},ε). By using the same argument

used in the ∧-case, the sets
{∣∣∣∃W0(∀W1(δ (W0,W1)< ε _ ¬ ̂(φJY,W1K)ε

)∧δ (W0,W)< ε)
∣∣∣}

and (|¬φ [Y,W]|)
ε

are the same.

Corollary 1. Let ϕ[Y,W] be any first order formula definable in Tarski algebra, and ε ∈ R>0. Satisfia-
bility of (̂ϕ)

ε
[Y,W] is decidable.

Proof. Since (̂ϕ)
ε
[Y,W] is a formula definable in Tarski algebra, and since it is well known that Tarski

algebra is decidable, it immediately follows that satisfiability of (̂ϕ)
ε
[Y,W] is decidable.

Example 4. Let us consider the formula ϕ[X ]
de f
= X > 0∧X < 2. We have that ̂(X > 0)

ε
≡ ∃X0(X0 >

0∧δ (X0,X) < ε) ≡ X0 + ε > 0. By applying the same rule, ̂(X < 2)
ε
≡ ∃X0(X0 < 2∧δ (X0,X) < ε) ≡

X−2−ε < 0. Finally, since ε is a positive real, ̂(X > 0∧X < 2)
ε
≡∃X0(∀X1(δ (X0,X1)< ε _ X1+ε >

0∧X1−2− ε < 0)∧δ (X0,X)< ε)≡ X >−ε ∧X ≤ 2+ ε .

Let us notice that the application of the translation in Def. 7 to a formula, increases the evaluation
complexity of such formula with respect to its untranslated version. This is mainly due to the possible
introduction of quantifier operator alternations.

5.2 Experimental Results on the Neural Oscillator

Let us consider the hybrid automaton H f̃ described in Section 2 for modeling a neural oscillator. We
intend to study its behaviour through sphere semantics, exploiting cylindrical algebraic decomposition
tools to automatically compute it.

First, we have to replace the differential equations representing the dynamics with semi-algebraic
functions. We do this by exploiting their first-degree Taylor polynomials and obtaining the automaton
H ′f̃ depicted in Figure 6. In order to keep the presentation simple, in this section we fix the parameters as
follows τ = 3, λ = 1, α = 2. Hence, the activations correspond to the axis Xi =±2 and Xe =±2.

A simulation of H ′f̃ is presented in Figure 5, where we can notice that a limit cycle is still present, but
it has a diamond-like shape. We are interested in studying this limit cycle. In particular, we are interested
in proving, exploiting tools for symbolic computation, that if we apply sphere semantics, each point
in the space reaches a bounded region which includes the limit cycle. Notice that in this example our
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Figure 6: A graphical representation of the piecewise hybrid automaton associated to the function f2(3,1)

automata have unbounded invariants, hence the termination of sphere semantics reachability algorithm
is not guaranteed.

5 0 5

5

0

5

Trajectory from (0,0)
Trajectory from (-1,6)

Figure 7: Two evolutions of the first degree approximation of the model proposed in Section 2.

We start computing the intersections of the limit cycle with the activation regions. Consider for
instance the intersection Q0 = 〈xQ0 ,2〉 of the limit cycle with Xi = 2 and Xe > 0. We have that xQ0 is
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the unique solution of the equation which describes the intersection of the diamond-like limit cycle with
Xi = 2. Similarly, consider point Q1 = 〈2,yQ1〉 that in turn corresponds to the intersection of the limit
cycle with Xe = 2 and Xi > 0. We effectively calculated all these intersections by using Maxima [15].
So, for instance, we get xQ0 =

3526
√

17+14538
495
√

17+2041
and yQ1 =

190
√

17+786
39
√

17+161
. Notice that Q0 and Q1 are points

which satisfy the activation formulæ wich regulate the discrete transitions between locations v6 and v5,
and locations v6 and v7, respectively. Let us now consider a point P0 located on Xi = 2, but which is
such that its distance d0 from Q0 is at least 2ε , i.e., P0 = 〈xP0 ,2〉 and δ (Q0,P0) = d0 > 2ε . Consider
now any point P1 on Xe = 2 resulting from the sphere semantics evaluation of the continuous evolution
which starts in P0 inside location v6. Thus, let denote with d1 the distance between such P1 and Q1, i.e.,
δ (Q1,P1) = d1.

If we could prove that d1 is always smaller than d0, then we would be able to conclude that all the
points which start from a distance of at least 2ε from the limit cycle converge to a flow tube having
diameter 2ε that includes the limit cycle. Of course, to obtain such conclusion, we need to prove this
property on all locations.

We can formalize this concept through a first-order formula. We denote with r and s the straight lines
Xi = 2 and Xe = 2, respectively, and with the notation Q0 ∈ r∩C∩Xe > 0 the membership of Q0 to the
intersection of straight line r with limit cycle C and positive Xe semi-plane. Moreover, with the notation
(|P0→C P1|)ε

we denote the continuous transition from point P0 to point P1 performed exploiting sphere
semantics. Thus, our desired property can be expressed as:

∀Q0Q1∀P0P1
(
(Q0 ∈ r∩C∩Xe > 0∧Q1 ∈ s∩C∩Xi > 0∧P0 ∈ r∩Xe > 0∧
P1 ∈ s∩Xe > 0∧δ (Q0,P0)> 2ε ∧ (|P0→C P1|)ε

) _ δ (Q1,P1)< δ (Q0,P0)
) (5)

stating the convergence to the limit flow tube in location v6. Such property can be easily rewritten for
each location of the hybrid automaton, changing the roles of activation border lines r and s.

We automatically expanded such formula by using a Perl script that implements the Definition 7 to
translate sphere semantics into the standard one. In particular, (|P0→C P1|)ε

, in the case of location v6
becomes

ψ[X]
def
= ∃T(∃X0(∀X1(δ (X0,X1)< ε _ (T > 0∧φJX1,TK)))∧δ (X0,X)< ε), (6)

where

φ [X,T] def
= ∃X0(∀X1(δ (X0,X1)< ε _

(∃X2(Π1JX2,TK∧δ (X2,X1)< ε)∧
∃X2(Π2JX2,TK∧δ (X2,X1)< ε)))∧δ (X0,X)< ε)

(7)

and

Π1[X0,Y0,X1,Y1,T]
def
= 6∗X1 = 6∗X0 +(X0−3∗Y0)∗T, (8)

Π2[X0,Y0,X1,Y1,T]
def
= 6∗Y1 = 6∗Y0 +(Y0 +3∗X0)∗T. (9)

However, we notice that, since Π1 and Π2 are closed and convex, φ can be simplified as:

φ [X,T]≡ ∃X0(Π1JX0,TK∧Π2JX0,TK∧δ (X0,X)< ε). (10)

Similarly, ψ becomes:

ψ[X]≡ ∃T(T > 0∧∃X0(Π1JX0,TK∧Π2JX0,TK∧δ (X0,X)< ε)). (11)
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So we plugged this last formula in Formula 5 and used REDLOG [6] to test it. The formula turns out to
be true (the result is computed within few seconds), proving our conjectures.

Notice that we used Maxima to compute the exact coordinates of the points on the limit cycles since
that computation does not require quantifier elimination. However, we could have used REDLOG.

As far as 〈0,0〉 is concerned it is immediate to prove through a first-order formula that it reaches
points different from itself and, hence, it reaches the limit flow tube.

Other interesting properties that automatically verified express, for instance, the fact that applying
the sphere semantics there are points that cross the limit cycle (in both directions). This is quite natural
since points closer than ε to the limit cycle get expanded and cross it.

6 Conclusions

In this paper we have modeled a neural oscillator constructing a hybrid automaton whose components
derive from the approximation of the continuous model presented in [22]. We have analyzed its be-
haviours considering the application of some approximation techniques for the introduction of noise, as
already advocated in [22]. In particular, we focused on the approach based on the ε-semantics.

The simulation based on the application of the ε-semantics has revealed the any point which begins
its evolution from a distance of at least 2ε from the limit cycle, converges to a flow tube which possesses
a diameter equal to 2ε and that includes the limit cycle. Due to size of the formulæ which compose
the hybrid automaton and the growth of such formalæ introduced by the translation of the ε-semantics
evaluations, a direct computation of the reachable set would have high complexity and eventually returns
results of difficult interpretation. For this reason, we have reformulated the problem in form of a closed
property which guarantees the convergence of any point towards the limit cycle of the modeled system.

During the construction of the formula that describes the convergence to the limit cycle, some steps
of simplification of the formulæ have been applied. In particular, we have reduced the complexities of
translated formulæ, relying on the convexity of the sets characterized by some of their subformulæ. An
interesting aspect to investigate is to determine whether these simplification steps can be automatically
performed.

As future work, in order to analyze the behaviour of a group of neural oscillators, we plan to combine
several hybrid automata and to study their evolutions always adopting the approximation approach based
on the ε-semantics.
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