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Compared with wheeled mobile robots, legged robots can easi ly step over obstacles and walk through
rugged ground. They have more flexible bodies and therefore, can deal with complex environment. Nev-
ertheless, some other issues make the locomotion control of legged robots a much complicated task,
such as the redundant degree of freedoms and balance keeping . From literatures, locomotion control
has been solved mainly based on programming mechanism. To us e this method, walking trajectories
for each leg and the gaits have to be designed, and the adaptab ility to an unknown environment cannot
be guaranteed. From another aspect, studying and simulatin g animals’ walking mechanism for engi-
neering application is an efficient way to break the bottlene ck of locomotion control for legged robots.
This has attracted more and more attentions. Inspired by cen tral pattern generator (CPG), a control
method has been proved to be a successful attempt within this scope. In this paper, we will review
the biological mechanism, the existence evidences, and the network properties of CPG. From the en-
gineering perspective, we will introduce the engineering s imulation of CPG, the property analysis, and
the research progress of CPG inspired control method in loco motion control of legged robots. Then, in
our research, we will further discuss on existing problems, hot issues, and future research directions
in this field.

biological inspired control, central pattern generator (CPG), locomotion control

1 Introduction

Creating effective locomotion for legged robots is

a very challenging task especially in an unknown

environment, where ground conditions affect the

robots much. Currently, most research works on

locomotion control are focused on the trajectory-

based method. With pre-designed foot trajectories

and the relative gait, the trajectory for every joint

can be calculated via the inverse kinematics the-

ory such that robots can walk and keep balance at

the same time[1]. In the walking process, robots

walk exactly according to the pre-designed trajec-

tories. The trajectories can be acquired by expe-

rience or some offline optimization methods. How-

ever, the pre-designed trajectories are unchange-

able and therefore, have many limitations: 1) It is
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difficult to get proper walking trajectories. 2) The

trajectories are sensitive to ground conditions. If

ground conditions change the trajectory may not

fit the ground conditions any more. Although we

can design many trajectories for different terrains

and switch among them while walking[2], it can-

not cover all the situations the robot encounters.

In short, this method cannot solve the problem of

robots’ walking in an unknown environment.

Nature has always been a major inspiration

source for engineers and scientists to solve tech-

nical problems. Animals walk smoothly and freely.

It is expected to have better performances for lo-

comotion of legged robots if we could design a sys-

tem that has a similar structure and function as

animals’.

Animals’ or human’s locomotion usually has

high stability and adaptability. For instance, when

we are walking, we do not need to consider how

high we should lift up our feet and where to step.

We just do it subconsciously. While walking on a

slippery ground, we step in a shorter distance and

with slower speed. On the other hand, when going

up a hill, we bend down a little bit. What an easy

thing for us.

Why does human has such a good rhythmic

movement? Biologists believe that central pattern

generator (CPG) is the answer to this question.

CPG is a kind of neural network that can endoge-

nously produce rhythmic patterned outputs[3−5]. It

is distributed throughout the lower thoracic and

lumbar regions of the spinal cord and responsible

for different walking patterns[6,7].

Based on biology discoveries, Shik[8], Cruse[9]

and Brewer et al.[10] initially introduced the CPG

mechanism into robot locomotion control. There-

after, various CPG models have been built and

have been used to control rhythmic motions for

robots. Acting as a locomotion control mechanism,

CPG has many features:

(1) It can produce periodic control signals even

without any sensory inputs and higher orders.

However, the sensory inputs and higher orders can

modulate the activity of CPG. So, with the CPG

inspired method, robots can either walk on flat ter-

rain with an open loop control or adaptively walk

on irregular terrain with a closed loop control.

(2) It is a distributed control method. Normally

one CPG unit controls one joint of a robot, and

a CPG network coordinates all joints to complete

a movement. By modulating the parameters of a

CPG network, it can generate output signals with

different phase relationships. These phase relation-

ships can be used to acquire different gaits.

(3) It can adapt to the environment. The mo-

tion planning process is separated with the control

loop in the traditional programming method. But

CPG network is a dynamic system. It combines

neural system, body, and environment. The neu-

ral system produces signals to control the body to

move in an environment. The reaction from the

environment to the body modifies the parameters

of the neural system to change control signals.

With these features, CPG brings a new way to

deal with locomotion control of robots with multi

degrees of freedom in a real environment. In this

paper, we will begin with the biological research

and the development of CPG. Then we will review

the applications in engineering fields, and intro-

duce our own research and experiments. At last,

we will discuss the existing problems and the future

study directions.

2 Biological development of CPG

2.1 Neurobiology research on CPG

Since the original research on animals’ locomotion,

there exist two hypotheses. One is Reflex theory,

and the other is CPG theory. The Reflex theory is

based on feedbacks from the peripheral stimulus.

According to this theory, the activation of effector

organs during locomotion might be triggered by

feedbacks from sensor organs in the skin and the

moving parts of the body. So, if the neural feed-

back loop is cut off, the body would not produce

next movement[11]. But this theory is proved to be

unreasonable. In his famous experiment, Brown in

1911[12,13] tested a decerebrated cat on a treadmill.

When the treadmill was set to run, not only could

locomotion patterns be observed which were very

close to the normal ones, but also the cat changed
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gaits according to the treadmill’s running speed.

From this experiment, we can know that there

might exist a locomotion pattern generator that

produces movement even without brain. Besides,

Brown proposed a half-centre oscillator model as

the basis to alternate activities of flexors and ex-

tensors during walking. The half-centre oscil-

lator model consisted of two neurons that did

not have rhythmogenic ability individually. But,

when the two neurons were reciprocally coupled,

the oscillator would produce alternating rhythmic

movement[14]. A research on the walking learning

infant indicated that lower level central nervous

system, especially the spinal cord, played an im-

portant role in walking control[15]. All these ex-

periments above demonstrate that central nervous

system does not necessarily need sensory feedbacks

to generate rhythmic movement.

After Brown’s experiment, more scholars have

focused on CPG and tried to find out its con-

figuration. In 1966, Skin et al.[16] explicitly ar-

gued that CPG controlled animals’ rhythmic move-

ments. Grillner and other scholars[17,18] gave fur-

ther demonstration and found that CPG could be

a small neural network to produce periodic os-

cillation under certain physical conditions. This

conclusion emerged from experiments on a vari-

ety of invertebrate and vertebrate species, such as

the heart beating CPG of leech[19], the swallow-

ing CPG of lobster[20], and the swimming CPG of

lamprey[21,22].

Because the central nervous system does not

change too much during evolution, bipedal, similar

to quadruped, may possess CPG as well to control

locomotion[23]. Duysens and Henry forecasted the

possibility of the CPG’s existence in primates and

humankind[24]. For example, infants could produce

certain quasi walking movement with a peripheral

stimulus[25]. The anencephalus still had stepping

movement on stimulation[26]. Whether CPG works

on human is still controversial[27,28].

2.2 The properties of CPG

CPG can produce basic rhythmic signals all by

itself. Sensory information may modify the out-

puts of the pattern generator. Also, CPG ac-

cepts orders from higher level nervous system, such

as brain, to adjust the initiation of a rhythmic

movement, control walking speed, and perform gait

transitions[29−31]. A decerebrate adult salamander

was tested by Cabelguen[32]. He found that when

the salamander was stimulated by electrical mi-

crostimulation, it generated two locomotor modes,

stepping and swimming. Grillner[33−37] gained the

same result from his research. At the same time,

experiments proved the peripheral stimulus’s ef-

fect on CPG. In ref. [38], Masakazu proposed that

CPG could be coupled with an input signal, and

the output signal would be affected by the input

signal’s amplitude, frequency and phase informa-

tion. Selverston[39] studied neuron chain and neu-

ron matrix. He proposed that the behavior of a

CPG network was a collective behavior of neu-

ron circuits. In other words, the neuron circuits

in a CPG network with different frequencies will

become entrained at intermediate frequencies.

Drew[40] did a survey on CPG from the view of

neurophysiology. He drew the following conclu-

sions: (1) CPG existed in animal bodies. (2) CPG

was made of many coupled units, and we could use

one CPG or several CPGs to control one degree of

freedom. (3) CPG produced rhythmic signals by

itself, while the higher order and feedbacks from

environment would modulate the outputs of CPG.

2.3 Walking control network of

vertebrates

The walking control network of vertebrate can be

illuminated by Figure 1.

Animals’ walking control can be considered hi-

erarchical and modular[41]. In Figure 1, the con-

trol structure is mainly divided into three parts:

higher-level central nervous system, lower-level

central nervous system (CPG), and feedbacks. The

higher-level central nervous system determines the

initiation of locomotion, walking direction, and

walking speed. CPG controls extensors and flex-

ors, and coordinates all joints. Higher orders and

feedbacks are necessary to modulate the whole net-

work working properly.

Musculo-skeletal system is a key point in walking

control and is used as an actuator. It is connected

with motoneurons and therefore, gets control sig-
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Figure 1 The basic control system of the animal locomotion (modified from ref. [42]).

nals from CPG. Sensory information about an envi-

ronment is used as feedbacks. Central nervous sys-

tem processes the feedback information quickly to

adapt the gait to the new environment. The main

reflexes in adaptive walking control are spinal re-

flexes and vestibular reflexes. Spinal reflexes, such

as stretch reflex, flexor reflex, and posture reflex,

refer to the reflexes confined on the spinal cord.

They play an important role in walking control.

Stretch reflex controls muscles’ contraction degree,

enhances muscles’ strength, and maintains limbs

and spinal column in their correct positions. Flexor

reflex is activated to contract limbs when receiving

stimulation from skin or muscles. It helps animals

to avoid obstacles. Posture reflex can coordinate

different muscles to maintain a proper posture[43].

Vestibular reflexes are responsible for the body’s

balance[44].

So, the final walking control signals are the re-

sult of the mutual interaction of central nervous

system and reflexes system. Higher-level central

nervous system sends orders. Then, CPG produces

rhythmic signals and these signals are passed to

musculo-skeletal system by motoneurons to gen-

erate a movement. Last, body receives feedback

information and reflexes to produce further move-

ment commands. A new loop begins.

3 Engineering simulation and property
analysis of CPG

From the control perspective, animals’ locomotion

control network can be treated as a feedforward

plus feedback control system. Higher-level central

nervous system, like cerebrum, cerebellum, brain-

stem, etc. performs as a feedforward controller to

send out initial values of the locomotion. Sensory

information about an environment is used as feed-

backs to maintain the stability of the locomotion.

From the engineering perspective, CPG neural cir-

cuits are distributed systems composed of nonlin-

ear coupled oscillators. Rhythmic signals are gen-

erated through the phase coupling of oscillators,

and different phase relationships can be produced

by changing the coupling methods among oscilla-

tors. For robots, different phase relationships cor-

respond to different gait patterns.

This biologically inspired control technique is

well suited to control robots with multiple degrees

of freedom as it can generate coupled control sig-

nals for all joints. Therefore, from the perspective

of engineering applications, the study of CPG in-

spired control method has become a hot topic. In

this section, we will review different kinds of math-

ematical models that are commonly used in the

CPG related studies.

3.1 Typical engineering CPG models

3.1.1 Neuron CPG models.

(1) H-H type models. One of the most fa-

mous neuron models is the Hodgkin-Huxley (H-

H) model[45−48]. It uses a squid giant axon prepa-

ration to measure membrane potentials and ionic

currents, and models these currents with a four-
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variable nonlinear system. However, the proposed

H-H neuron model is complicated and has many

parameters. Since then, many scholars had been

working on it to get a better understanding of

the basic behavior of the neuron and to build

more concise models. The well-known FitzHugh-

Nagumo model is a simplified H-H type model de-

fined by[49,50]

ẋi = c

(

yi + xi +
x3

i

3
+ fci

)

,

ẏi = −(xi − a + byi)/c,

(1)

where xi is the membrane potential of the ith neu-

ron; fci is the driving signal for neuron i; a, b and

c are constants that do not correspond to any par-

ticular physiological parameters.

Morris and Lecar[51] also developed an H-H type

model called Morris-Lecar (M-L) model. Laksh-

manan and Murali used a two-variable first order

autonomous system to build an H-H type neuron

model[52,53]. The difference between these various

H-H type models lies in the way they simulate a

neuron’s behaviors.

While analyzing biological neuron models, de-

tailed dynamics characters of small circuits usually

need be concerned with, such as pacemaker proper-

ties of signal neurons, the mechanism of the rhyth-

mogenesis of a large population of neurons, etc.

However, for engineering applications, we mainly

focus on the rhythmic activities.

(2) Stein’s model. Stein’s model, which is ca-

pable of producing oscillatory output, is defined

by the following differential equations[54,55]:

ẋi = a

[

− xi + 1
1+exp(−fci−byi+bzi)

]

,

ẏi = xi − pyi,

żi = xi − qzi,

(2)

where xi represents the membrane potential of the

ith neuronal oscillator; parameter a is a constant

affecting the frequency of the oscillations; fci is the

driving signal for oscillator i; b allows the model to

adapt a change in stimulus; q and p control the

rate of this adaption.

Collins and Richmond[56] had used Stein’s model

to study gaits. Constructed by four coupled Stein

oscillators, their CPG control network produced

multiple phase-locked oscillation patterns. For

quadrupedal robots, these patterns corresponded

to several common gaits–the walk, trot and bound.

(3) Leaky-integrator models. Leaky-integrator

models describe basic behaviors of neurons, but

they cannot simulate the degree of fatigue or adap-

tation of neurons. Therefore, they have been im-

proved to better fit for the properties of neurons.

The most famous neuron oscillator model with

an adaptation item was proposed by Matsuoka[57].

A mutual inhibition network consisting of n neu-

rons is represented by

Tru̇i + ui = −

n
∑

j=1

ωijyj − βvi + si,

Tav̇i + vi = yi,

yi = g(ui) (g(ui) = max(ui, 0)),

(3)

where ui is the membrane potential of the ith neu-

ron; vi is a variable representing the degree of the

adaptation in the ith neuron; Tr and Ta are the

constants of rising time and adaptation time; ωij

is the weight of inhibitory synaptic connection from

neuron j to the i; β is the parameter that deter-

mines the steady-state firing rate for a constant

input; si is an external input, and yi is the output

of the neuron.

Matsuoka[57,58] analyzed mutually inhibiting

neurons and found the conditions under which

neurons generate oscillation. Because it simu-

lates neuron properties more precisely, Matsuoka’s

model has been widely applied to locomotion con-

trol of legged robots. Based on Matsuoka’s model,

Taga et al.[59−61] proposed a similar model, which

used a set of inhibitory connected neuron oscilla-

tors to build a network. Kimura et al.[62−64] con-

structed a neural system based on the neural oscil-

lator proposed by Matsuoka and Taga. This CPG

model consists of two mutually inhibiting neurons

as shown in Figure 2. Each neuron is represented

by the following nonlinear differential equations:

Tru̇
{e,f}
i = −u{e,f}

i + wfey
{f,e}
i − βv{e,f}

i

+ s0 + Feed
{e,f}
i +

n
∑

j=1

ωijy
{e,f}
j ,

Tav̇
{e,f}
i = −v

{e,f}
i + y

{e,f}
i ,

y
{e,f}
i = max(u

{e,f}
i , 0),
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yi = −y
{e}
i + y

{f}
i , (4)

where the suffix e, f and i denote an extensor neu-

ron, a flexor neuron, and the ith neuron, respec-

tively; Feedi represent the feedback signals from

the robot, i.e. a joint angle, angular velocity, etc.

y{e}
i and y{f}

i are the output of extensor and flexor

neurons; wfe is the connection weight; yi is the out-

put signal of a CPG, and the sign of yi corresponds

to the activity of a flexor or extensor neuron.

Figure 2 Neural oscillator as a model of CPG.

In Kimura’s model, the linear summation of the

outputs of the two neurons is used as system’s out-

put. Since the output of each neuron has been

through a threshold function and therefore, is al-

ways positive, the sum of the outputs will have a

zero crossing dead zone. Zhang et al.[44] improved

Kimura’s CPG model by building the output of an

oscillator with two neural states, u
{e}
i and u

{f}
i , in

order to eliminate the zero crossing dead zone.

Neuronal oscillator models have clear biological

meanings, especially Matsuoka’s model. This kind

of models can easily couple the feedback informa-

tion of environment and the higher level orders. In

Matsuoka’s model, sensory feedbacks can be inte-

grated to the CPG network through the term Feedi

and the external input term s0 simulates control

signals from the higher level control nervous sys-

tem. This provides the opportunity to obtain mu-

tual entrainment between the CPG network and

the mechanical body. Since so many parameters

are involved in these models, selecting proper pa-

rameter is essential to the CPG inspired control

method.

3.1.2 Nonlinear oscillator models. In engineer-

ing applications, the main task of CPG is to pro-

duce periodic oscillatory signals instead of simulat-

ing neuron behaviors. So, the nonlinear oscillators

have been widely used to simulate CPG, such as

phase oscillators, harmonic oscillators and relax-

ation oscillators. In this section, we will introduce

several kinds of typical oscillators that are usually

used in engineering applications.

(1) Kuramoto’s model. Phase oscillator is a

simple oscillator, whose radius is completely ne-

glected while phase remains. Kuramoto’s model is

a typical example of this oscillator[65]. It consists

of a population of N coupled phase oscillators, and

the phase oscillators are coupled through the sine

function of their phase differences. In Kuramoto’s

model, each oscillator runs independently at its

own frequency, while the coupling tends to syn-

chronize them together. The mathematical model

is as follows:

θ̇i = ωi +
N

∑

j=1

Kij sin(θj − θi), i = 1, 2, . . . , N, (5)

where θi is the phase of the ith oscillator; ωi is the

natural frequency of the ith oscillator; Kij > 0 is

the coupling strength from the jth to ith oscillator.

Since it displays a lot of synchronization pat-

terns, Kuramoto’s model has been well studied. A

variety of more complex realistic models have been

proposed from original Kuramoto’s model[66−68].

When coupling is sufficiently weak, oscillators run

incoherently. But, after it goes beyond a certain

threshold, collective synchronization emerges spon-

taneously. This synchronization property of the

Kuramoto model is the main reason why we use it

as a CPG unit.

Inspired by a lamprey’s swimming CPG, Ijspeert

et al.[69−71] constructed a novel coupled amplitude-

controlled phase oscillators (ACPO) model based
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on Kuramoto’s model. The ACPO network has

been successfully implemented on bionic robots,

like a salamander robot, a snake robot, and a fish

robot. Based on Kuramoto’s model, Conradt[72]

built a distributed CPG network to control the mo-

tion of a serpentine robot, and it showed various

motion patterns under different environments.

(2) Hopf model. Hopf oscillator can be de-

scribed by

ẋ = (µ − r2)x + ωy,

ẏ = (µ − r2)y + ωx,
(6)

where r =
√

x2 + y2; µ > 0 determines the ampli-

tude of the output signals; the parameter ω con-

trols the frequency of the oscillator. The oscillator

has a stable limit cycle with radius
√

µ and angular

velocity ω rad/s.

Ijspeert et al.[73,74] demonstrated a pro-

grammable CPG model based on Hopf oscillators

and applied it to the locomotion control of hu-

manoid and quadruped robots. This CPG network

could learn arbitrary rhythmic teaching signals.

Because of the dynamic characteristics of the pro-

grammable CPG network, the learning process was

completely embedded in the system. Ijspeert[75]

validated his CPG control network with a hu-

manoid robot HOAP-2 in simulations. Nicolas[76]

studied the coupling methods of Hopf oscillators

and used two oscillators to control each degree of

freedom to get various phase differences. Righetti

et al.[77] constructed a locomotion controller with

modified Hopf oscillators which could indepen-

dently control the swing and stance phases of an

oscillation. We can control the locomotion speed of

robots by using the ascending phase of the oscilla-

tion to control the swing stage and the descending

phases to control the stance stage of legs.

(3) Van der Pol’s model and Rayleigh’s model.

Van der Pol’s model (VDP) and Rayleigh’s model

are all relaxation oscillators that can produce vari-

ous waveform signals. By adjusting the parameters

of the nonlinear oscillators, self-sustained limit cy-

cles can be generated.

Van der Pol’s analysis of electronics and heart-

beat is generally credited as the original signifi-

cant work for modeling biological phenomena with

nonlinear oscillators[78]. The basic equation of the

VDP oscillator is

ẍ + a(x2
− p2)ẋ + ω2x = 0, (7)

where x and ẋ describe the states of the system,

and a > 0 is the coefficient of the resistance. This

resistance is negative for a small amplitude of x, as

given by x2
− p2, and is responsible for the gener-

ation of self-sustained oscillation.

Rayleigh investigated the sound generating prin-

ciples of the musical instruments and created

Rayleigh’s model[79], which was very similar to

VDP oscillator. The basic equation of Rayleigh’s

model is

ẍ + a(ẋ2
− p2)ẋ + ω2x = 0. (8)

The parameters of Rayleigh oscillator are almost

the same as the VDP oscillator’s, except that the

resistance is negative when the amplitude of ẋ is

small.

As early as 1987, Bay and Hemami[80] made a

CPG model with coupled VDP oscillators. By nu-

merical simulations, they analyzed the property of

the system, and studied the ring and chain connec-

tion methods. Bay’s early work verified that the

VDP oscillator is a good model to simulate CPG.

Zielinska[81] used coupled VDP to generate rhythm

locomotion control signals for a two-legged walking

machine. Filho et al.[82,83] studied the behavior of

hips and knees in locomotion, and used mutually

coupled Rayleigh oscillators and VDP oscillators to

generate control signals that were similar to human

locomotion.

Based on these studies, we conclude that the use

of mutually coupled nonlinear oscillators is a good

method to construct CPG network for locomotion

control of legged robots. The motivation of using

nonlinear oscillator as a CPG unit is that we do

not have to study the oscillatory mechanisms be-

cause they have been well investigated in dynamic

system theory. We can just focus on the study of

inter oscillators’ coupling methods and the over-

all properties of CPG networks. The advantages

of these models are that various output patterns

can easily be realized by changing the topology of

CPG network and the engineering applications are

relatively easy to implement. However, these mod-

els have less biological meaning than neuron CPG

models.
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3.2 Analysis of engineering CPG models

Before applying CPG models to robots, the proper-

ties of the models must be analyzed first. There is

no well-established design methodology for CPG

networks. Generally, when constructing a CPG

network, the following issues must be considered:

(1) The choice of CPG models. We have re-

viewed some well-known CPG models that are

widely used in neurobiology and robots. Before

constructing a CPG network, we must choose an

appropriate CPG model according to the particu-

lar type of locomotion.

(2) The configuration of CPG networks. Many

factors must be considered including the number

of CPG unit, the topology of couplings, etc. There

are normally two configurations of CPG networks:

chain and ring. And, neurons are usually coupled

by unidirectional or bidirectional connections.

(3) Modulating parameters. The CPG network

is a nonlinear dynamic system, whose output sig-

nals are sensitive to parameters. We must grasp

the relationship of the parameters and the impor-

tant qualities, such as frequency, amplitude, phase

relations between the neurons, and the waveform

of the output signals.

(4) The feedback information. The feedback in-

formation is essential for animals to realize adap-

tive locomotion in a complex environment. How-

ever, we face such problems as how to add the

feedback information to the CPG network and how

feedback affects CPG.

A major difficulty in designing CPG networks is

that parameters and outputs are strongly coupled.

In engineering applications, three parameter mod-

ulation methods are usually used.

(1) Trial-and-error method. With this method,

we modify the parameters from time to time ac-

cording to our experience or experiment results.

The drawbacks are obvious. This method is te-

dious, inefficient and the final parameters are only

applicable to the specially studied robot, and can-

not be used as a reference.

(2) Evolutionary algorithms. In particularly, ge-

netic algorithm (GA) has been used extensively.

With GA, we only need to design a fitness func-

tion according to the desired performances[84], such

as the speed of the locomotion, the stability of the

body, and the phase relations of the legs. The main

disadvantage of this method is that it is difficult to

design a proper fitness function since too many as-

pects need to be considered.

(3) Numerical analysis method. First, we find

out the general relationships between parameters

and outputs through computer simulation. Then,

we adjust the parameters according to the desired

patterns. Because of the strong coupling between

the parameters and the outputs, it is still difficult

to use.

In engineering applications, the methods men-

tioned above can be combined when necessary. For

instance, when applying CPG methods to con-

trol locomotion of quadruped robots, we first get

the approximate range of parameters through com-

puter simulation and then, use GA to take further

optimization. Finally, during the practical applica-

tion, we adjust the parameters carefully according

to the actual control results. Because parameter

modulation of the CPG network plays an essential

role in determing the efficiency of the CPG-based

control method, the design method will be a direc-

tion for future research.

4 The application of CPG in robot loco-
motion

CPG methods have been used to control various

kinds of robots and modes of locomotion. They

are totally different from the traditional ones. It

produces motor commands in real time, and re-

duces the dimensions of the locomotion control.

In addition, this is a multi-subject research topic,

involving biology, neurophysiology, computational

neuroscience, bionics, robotics, etc. on the one

hand, the development of CPG inspired methods

provides a new way to control robots’ locomotion;

on the other hand, robots can be used as tools to

verify the mechanism of animals’ locomotion and

promote the development of other subjects.

Engineering applications of CPG-inspired meth-

ods emerged mostly in the 1990s. The main re-

search was focused on basic gait control, gait tran-

sitions control, dynamic adaptive locomotion con-

trol, etc. There are usually two methods to use
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CPG: the first one, inspired by biology, uses one

CPG unit for each degree of freedom; the second

one is to use the properties of CPG networks, like

synchronization, entrainment, etc.

4.1 Crawling robots

Lampreys and salamanders are known as the “Liv-

ing Fossil”. Although they have gone through mil-

lions of years, they still keep the same character-

istics as their ancestors. This is the reason why

biologists choose them to study the mechanism of

CPG. Ijspeert’s team[85−88] from EPFL has made

great contributions to the research of the motion

of crawl type robots. Inspired from a lamprey’s

swimming CPG, they constructed a CPG network

which could produce control signals for a sala-

mander robot, a fish robot, and a snake robot to

realize the swimming and serpentine locomotion.

The control signals were modulated online easily

through adjusting several parameters.

Many scholars and education institutions stud-

ied snake-like robots that imitate the mechanical

structure of nature snakes. For examples, Univer-

sity of Zurich developed a snake-like robot named

WormBot. Conradt et al.[72] constructed a CPG

network to control the serpentine locomotion of

WormBot. Ma et al.[89−91] built a mutual cyclic

inhibitory CPG based on Matsuoka’s model to con-

trol the 3D movement of a snake-like robot named

Perambulator. The successful applications of CPG

inspired methods in salamander robots and snake-

like robots set the foundation for the biological

mechanism to control the locomotion of legged

robots.

4.2 Legged robots

The investigation on insects’ locomotion greatly

helps the development of multi-legged robots, espe-

cially hexapod and octopod robots[92−95]. Inagaki

et al.[96] proposed a wave CPG model which could

change the oscillators’ number automatically. Fur-

thermore, the gait generation and transition could

be realized by controlling the virtual energy of the

oscillators. This wave CPG model was used to

control the leg movements of an autonomous de-

centralized multi-legged robot NEXUS. Barnes[97]

designed a gait generation system to control the

locomotion of a hexapod robot MAX. UC Berke-

ley developed a hexapod robot which looked like

a cockroach and could vertically climb[98,99]. UC

San Diego developed a lobster robot and stud-

ied the control method of this underwater walking

machine[100,101]. But, the main purpose of these

robots is to use bionics functions of cockroaches

and lobsters to accomplish specific tasks. So, their

locomotion control signals are only the basic rhyth-

mical signals.
Quadruped locomotion control with CPG had

been studied by Kimura’s group[63,64]. The study

was mainly focused on the autonomously adaptive

dynamic walking on irregular terrains, and sensory

feedbacks was found to lead to the most stable

locomotion on a complex terrain. They also de-

veloped a 12 DOF quadruped robot Patrush and

a 16 DOF robot Tekken. With feedbacks, these

quadruped robots could walk on ground containing

scattered pebbles and grasses, hollows, and slip-

pery surfaces[102,103]. To a large degree, the success

of Kimura’s experiments relied on a good mechan-

ical design. Tekken, for example, has relatively

simple mechanical structure, large motor torque,

small moment of inertia, low friction, and high

back-drivability. Also, this robot is equipped with

passive-ankles, which help to cushion the landing

effect from the ground. Ilg et al.[104] presented

a three-level adaptive architecture to control a

quadruped robot BISAM. Tsujita et al.[105,106] pro-

posed a control system for a quadruped robot with

nonlinear oscillators. This robot was equipped

with a leg motion controller which drove the ac-

tuator by a local feedback control, and a gait

pattern controller consisting of a set of nonlin-

ear oscillators. The adaptability of the proposed

control system was verified through hardware ex-

periments. Billard et al.[107] studied the locomo-

tion of the quadruped robot AIBO with a set

of leaky-integrator neurons. Combined with sen-

sory feedbacks, the AIBO could accomplish many

gaits. The CPG inspired methods have not been

well studied in China by now. Zhang et al.[44]

constructed a CPG network modified from Mat-

suoka’s and Kimura’s CPG models to control the

quadruped robot Biosbot. The Biosbot can walk

with a velocity of 0.13–0.24 m/s.
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The Laboratory of Robotics and Intelligent Sys-

tems of Tongji University has been seeking bi-

ological control methods for the dynamic adap-

tive locomotion of legged robots in unknown

environments[108−111]. The main researches we

have conducted are: (1) We studied the architec-

ture of the CPG. Basic gaits and gait transitions of

quadruped have been realized. (2) In order to elim-

inate the drawbacks of using CPG outputs directly

as joints’ control signals, we proposed a novel con-

trol strategy which integrated CPG and the mecha-

nism of muscle memories. CPG outputs were used

only as synchronization signals. The actual con-

trol signals were generated with the other set of

oscillators through online learning. These actual

control signals could be taken as muscle memo-

ries acquired after practicing. This method im-

proved the control precision and facilitated the in-

troduction of feedback information. (3) We devel-

oped a control strategy based on kinematics and

CPG. This method was composed of a gait pat-

tern modulator and a leg motion controller. The

modulator controlled the gait patterns, and mod-

ulated the duties of swing phase and stance phase

of the leg. So, we could use real-time environment

feedback information to adjust output control sig-

nals to realize adaptive locomotion. (4) We have

been designing a hybrid control method based on

CPG and ZMP (zero movement point). Since the

gravity center cannot be controlled with pure CPG

method, we will combine the advantages of CPG

and ZMP to achieve more stable locomotion. (5)

We have been constructing a completely adaptive

control network, including the higher level con-

trol modules, CPG and feedback/reflex module, to

achieve real adaption to environments. All of these

research results will be tested on a quadruped robot

AIBO and a bipedal robot NAO.
CPG inspired methods have been increasingly

used for locomotion control of bipedal robots

after Taga’s seminal work on neuromechanical

simulations[59−61]. Tenore et al.[112,113] used the

bipedal robot RedBot to validate the efficiency of

his CPG control network constructed by VLSI cir-

cuits. The patterns generated by these circuits

were shown to be sufficient to control a biped robot

with different locomotory gaits. Komatsu et al.[114]

proposed a hybrid central pattern generator (H-

CPG) to realize the adaptive dynamic walking and

running of a bipedal robot KAAL. This H-CPG

method consisted of not only basic CPG models

but also an extra force control system that con-

trolled the acting force from legs to the ground

in the vertical and the horizontal direction. Na-

gashima et al.[115] constructed a CPG network us-

ing a group of neural circuits which were modeled

by recurrent neural networks (RNN). This network

enabled humanoid robot HOAP-1 to walk success-

fully with different step distances. Integrating the

sensory feedback, HOAP-1 robot could walk up

and down stairs with a locomotion frequency of 2.2

rad/s. Endo et al.[116,117] used simple sine signals

produced by CPG to control joints. Then, two hu-

manoid robots CB and QRIO were used to validate

the proposed strategy.

5 The existing problems and research di-
rections of CPG inspired method

5.1 The existing problems

(1) The biological mechanism of locomotion con-

trol. Biologically inspired locomotion control is a

hot topic among biology, neurophysiology, bionics

and robotics. As indicated by ref. [118], the biolog-

ically inspired robots locomotion control has to be

based on the neurobiological research. Meanwhile,

the applications of biological inspired method in

robotics can in turn promote the development of

other aspects, that is, robots can be used as scien-

tific tools to test corresponding problems in other

subjects. Besides, most of the present researches

focus only on the CPG models. Actually, the

higher level control signals and the peripheral feed-

back loops are also essential in applications.

(2) The limitation from mechanical configura-

tion. The mechanical configuration of a robot en-

sures its good performance. However, we cannot

build a robot exactly according to an animal. For

example, on a robot, every joint is controlled by

a motor. On the other hand, animals’ joints are

controlled by muscles. Motors and muscles have

different motion properties. So we cannot control a

robot completely according to the biological mech-
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anism. Designing better body structures and hard-

wares is difficult too.

(3) How to produce a special control signal.

CPG outputs are usually used to control angles or

force torques. For some applications, such as robot

snakes, the serpentine locomotion can be easily ac-

quired by a sine signal. But, obviously this is not

an accurate design in robot walking control espe-

cially when sine or quasi-sine waves are not the best

signals to set walking patterns because of the com-

plexity of tasks. So, producing a special control

signal is necessary to fulfill skillful walking.

(4) Analysis of the whole system. Since the

whole system includes the neural system, robot

body, and environment, it is a big and complicated

nonlinear system, and it is difficult to analyze the

stability condition and find proper parameters for

the system. There is not any uniform engineering

method to do it yet.

5.2 Research directions

Based on the CPG walking method, the following

points call for more attentions.

(1) Parameters modulation. One problem of

CPG methods is how to produce special control

signal by modulating parameters. Since CPG is

a nonlinear coupled system, it is difficult to find

a simple mapping from the parameters to outputs.

Additionally, if we consider the problem in the neu-

ral system, body and environment loop, it is even

more difficult to find good parameters.

(2) Gait transition. Animals can easily change

gaits to get used to different environments. But,

this is actually a complex process because it has to

coordinate the higher orders, CPG, and reflex. For

legged robots, it is even more difficult to make a

stable and continuous gait transition. The normal

method to change gaits is to switch among several

pre-designed modes. The transition is sharp and

can easily cause instability. So, we need to put

emphasis on getting smooth and quick gait tran-

sition. The bifurcation theory may be helpful in

analyzing the system’s stability[119,120].

(3) Environment adaptability. Since it is a non-

linear system, CPG can produce coupled periodic

control signals even without feedbacks. But it is

only one of the biologically inspired locomotion de-

signs. To adapt to an environment, we need to add

feedbacks and consider the reaction from the envi-

ronment to the robot body. It is hard to organize

the feedbacks to represent the dynamics of body

and design feedback loops.

6 Conclusions

In this paper, we have studied the biologically in-

spired robots locomotion control and especially em-

phasized on CPG methods, the biological mecha-

nism, and their applications on robots. Consider-

ing the nonlinear characteristics of CPG, we have

also discussed the related hot issues and interesting

research directions.

CPG methods establish a new way to design bet-

ter robots’ locomotion and improve robots’ adapt-

ability to environments. It is a crossing of many

subjects like biology, neurophysiology, bionics and

robotics. Therefore, the development of this re-

search also brings benefits to other related sub-

jects.
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